线性变换的矩阵表示式
第五节线性变换的矩阵表示式
= T[(1, ···, n)P] =T[(1, ···, n)]P
= (1, ···, n)AP = (1, ···, n)P-1AP ,
因为 1, ···, n 线性无关, 所以
B = P-1AP .
证毕
这个定理表明 B 与 A 相似, 且两个基之间的
过渡矩阵 P 就是相似变换矩阵.
由关系式 (1) , 可见 与 T() 在基 1 , ···, n 下的坐标分别为
x1
x2
xn
,
x1
T
( )
A
x2
xn
,
即按坐标表示, 有
T() = A .
二、举例
例 12 在 P[ x]3 中, 取基
在 Vn 中取定一个基 1 , 2 , ···, n , 如果这个基
在变换 T 下的象(用这个基线性表示)为
T (1) a111 a212 an1n ,
T
(2 )
a121 a222
an 2 n
,
T (n ) a1n1 a2n2 annn ,
a2n
ann
,
那么, A 就称为线性变换 T 在基 1 , 2 , ···,
n 下的矩阵.
显然, 矩阵 A 由基的像 T(1), T(2), ···, T(n)
唯一确定.
如果给出一个矩阵 A 作为线性变换 T 在基
1 , 2 , ···, n 下的矩阵, 也就是给出了这个基在
0 1
0 0 .
0 0 0
(2)
TTTiijj
矩阵的变换和应用
矩阵的变换和应用矩阵是线性代数中重要的概念之一,它具有广泛的应用范围。
在数学、工程、科学等领域,矩阵用于描述和处理各种数据和问题。
本文将重点介绍矩阵的变换和应用,包括线性变换、旋转变换、缩放变换和平移变换等。
一、线性变换矩阵的线性变换是矩阵在向量空间中的应用之一。
线性变换是指将一个向量或一个向量组通过矩阵的相乘操作进行转换的过程。
在二维空间中,线性变换可以表示为如下形式:\[\begin{pmatrix}x' \\y'\end{pmatrix}=\begin{pmatrix}a &b \\c & d\end{pmatrix}\begin{pmatrix}x \\y\end{pmatrix}\]其中,矩阵的第一行表示了原始向量在x轴上的线性变换,第二行表示了原始向量在y轴上的线性变换。
通过对矩阵进行相乘运算,可以得到经过线性变换后的新向量坐标。
二、旋转变换旋转变换是矩阵在几何学中的重要应用之一。
通过矩阵的乘法运算,可以将一个向量绕着原点进行旋转。
在二维空间中,旋转变换可以表示为如下形式:\[\begin{pmatrix}x' \\y'\end{pmatrix}=\begin{pmatrix}\cos\theta & -\sin\theta \\\sin\theta & \cos\theta\end{pmatrix}\begin{pmatrix}x \\y\end{pmatrix}\]其中,θ表示旋转的角度。
通过对原始向量和旋转矩阵进行相乘运算,可以得到经过旋转变换后的新向量坐标。
三、缩放变换缩放变换是矩阵在图形学和几何学中的常见应用之一。
通过矩阵的乘法运算,可以将一个向量在x轴和y轴上进行不同比例的缩放。
在二维空间中,缩放变换可以表示为如下形式:\[\begin{pmatrix}x' \\y'\end{pmatrix}=s_x & 0 \\0 & s_y\end{pmatrix}\begin{pmatrix}x \\y\end{pmatrix}\]其中,s_x表示x轴的缩放比例,s_y表示y轴的缩放比例。
线性变换的矩阵表示与相似矩阵
线性变换的矩阵表示与相似矩阵线性代数是数学中一个重要的分支,研究向量空间和线性变换的性质以及相应的代数结构。
在线性代数中,线性变换是其中一个重要的概念,它可以用矩阵表示,并且与相似矩阵有着密切的关系。
一、线性变换的矩阵表示线性变换是指保持向量空间中的线性结构不变的变换。
在二维或三维向量空间中,线性变换可以用一个矩阵来表示。
以二维向量空间为例,设有向量v=(v₁, v₂),线性变换v将其映射为向量v=(v₁, v₂),则可以使用矩阵v来表示v的线性变换,即:[v₁] [v₁₁, v₁₂] [v₁][v₂] = [v₂₁, v₂₂] × [v₂]其中,矩阵v=[v₁₁, v₁₂; v₂₁, v₂₂]表示线性变换v的矩阵表示。
这种矩阵表示的好处在于可以简化线性变换的计算,尤其是在高维向量空间中。
二、相似矩阵的定义相似矩阵是指具有相同特征值的矩阵。
设有两个v×v矩阵v和v,如果存在一个可逆矩阵v使得v=v⁻¹vv成立,则称矩阵v和v相似,矩阵v称为相似变换矩阵。
三、线性变换的矩阵表示与相似矩阵的联系线性变换的矩阵表示与相似矩阵有着密切的联系。
以二维向量空间为例,设有一个线性变换v的矩阵表示为v=[v₁₁, v₁₂; v₂₁, v₂₂],我们希望找到一个矩阵v使得v=v⁻¹vv中的矩阵v与v相似。
根据相似矩阵的定义,我们可以得到v=v⁻¹vv的形式。
对于二维向量空间来说,v为一个2×2的可逆矩阵,假设v=[v₁₁, v₁₂; v₂₁, v₂₂],则v可表示为:[v₁₁, v₁₂][v₂₁, v₂₂]若要使得v=v⁻¹vv成立,只需令v⁻¹=[v₁₁, v₁₂; v₂₁, v₂₂]即可。
则v的形式为:[v₁₁, v₁₂][v₂₁, v₂₂]通过矩阵相乘的运算可以得到:[v₁₁, v₁₂] [v₁₁, v₁₂][v₂₁, v₂₂] × [v₂₁, v₂₂]由此可以得到v=[v₁₁, v₁₂; v₂₁, v₂₂]与v=[v₁₁, v₁₂;v₂₁, v₂₂]相似的条件为:[v₁₁, v₁₂] [v₁₁, v₁₂][v₂₁, v₂₂] = [v₂₁, v₂₂]也就是说,要使得两个矩阵相似,只需保证其对应位置上的元素相等即可。
线性变换的相关知识点总结
线性变换的相关知识点总结一、线性变换的定义线性变换是指一个向量空间V到另一个向量空间W的一个函数T,满足以下两条性质:1.加法性质:对于向量空间V中的任意两个向量x和y,有T(x+y)=T(x)+T(y)。
2.数乘性质:对于向量空间V中的任意向量x和标量a,有T(ax)=aT(x)。
根据以上的定义,我们可以得出线性变换的几个重要性质:1. 线性变换保持向量空间中的原点不变;2. 线性变换保持向量空间中的直线和平面不变;3. 线性变换将线性相关的向量映射为线性相关的向量;4. 线性变换将线性无关的向量映射为线性无关的向量。
二、线性变换的矩阵表示在研究线性变换时,我们通常会使用矩阵来表示线性变换。
设V和W分别是n维和m维向量空间,选择它们的一组基{v1, v2, ..., vn}和{w1, w2, ..., wm}。
线性变换T可以用一个m×n的矩阵A来表示,假设向量x在基{v1, v2, ..., vn}下的坐标为[x],向量T(x)在基{w1, w2, ..., wm}下的坐标为[T(x)],则有[T(x)]=[A][x]。
由此可见,矩阵A中的每一列都是T(vi)在基{w1, w2, ..., wm}下的坐标,而T(vi)可以写成基{w1, w2, ..., wm}的线性组合,所以矩阵A的列向量就是线性变换T对基{v1, v2, ..., vn}下的坐标系的映射。
另外,矩阵A的行空间也是线性变换T的像空间,而零空间是T的核空间。
线性变换的基本性质在矩阵表示下也可以得到进一步的解释,例如线性变换的复合、逆变换等都可以在矩阵表示下进行研究。
因此,矩阵表示是研究线性变换的重要工具。
三、特征值和特征向量特征值和特征向量是线性代数中的一个非常重要的概念,它们在研究线性变换的性质时有非常重要的应用。
设T是一个n维向量空间V上的线性变换,那么存在一个标量λ和一个非零向量v,使得Tv=λv。
这里的λ就是T的特征值,v就是T的特征向量。
线性变换的矩阵表示
n
T ( ) T ( x i i ) x i T ( i )
n
n
i 1
x1 x (T ( 1 ), T ( 2 ), , T ( n )) 2 xn
i 1
i 1
x1 x ( 1 , 2 , , n ) A 2 , xn 即 x1 x1 x x T [( 1 , 2 , , n ) 2 ] ( 1 , 2 , , n ) A 2 , xn xn 上式唯一地确定了一个变换T, 并且, 所确定的变 换T是以A为矩阵的线性变换. 反之, 以A为矩阵的线性变换T由上式唯一确定. 结论: 在Vn中取定一个基后, 由线性变换T可唯一 地确定一个矩阵A; 反之, 由一个矩阵A也可唯一地确 定一个线性变换T.
0 1 0 0 0 0 2 0 . A 0 0 0 n 1 0 0 0 0 例3: 在R3中, T表示将向量投影到xoy平面的线性 变换, 即 T ( xi yj zk ) xi yj , (1) 取基为i , j , . k , 求T的矩阵 (2) 取基为 i , j , i j k , 求T的矩阵. 1 0 0 i 0 , j 1 , k 0 . 其中 0 0 1 1 0 0 解(1): Ti i 即 T ( i , j , k ) ( i , j , k ) 0 1 0 . j, Tj 0 0 0 T k 0
三、线性变换在不同基下的矩阵
上面的例子表明: 同一个线性变换在不同的基下 的矩阵不同. 那么, 这些矩阵之间有什么关系呢?
线性变换的矩阵表示
线性变换的矩阵表示线性变换是数学中的重要概念,它在许多领域都有广泛应用。
线性变换可以通过矩阵表示,这种表示形式方便计算和讨论线性变换的性质。
本文将介绍线性变换的矩阵表示以及相关概念和性质。
1. 线性变换的定义线性变换是指满足以下两个条件的映射:(1) 对于任意向量u和v以及实数a和b,线性变换T满足T(a*u +b*v) = a*T(u) + b*T(v)。
(2) 线性变换T对于向量的加法和数乘运算封闭,即T(u + v) = T(u) + T(v),T(k*u) = k*T(u)(k为实数)。
2. 矩阵表示的意义线性变换的矩阵表示可以将线性变换转化为矩阵的乘法运算,从而方便计算和分析线性变换的性质。
对于任意线性变换T,可以找到一个矩阵A,使得对于任意向量u,有T(u) = A*u。
矩阵A被称为线性变换T的矩阵表示。
3. 线性变换的矩阵表示方法线性变换的矩阵表示可以通过以下步骤得到:(1) 选择标准基下的基向量,分别记作e1, e2, ..., en。
(2) 对于每个基向量ei,计算线性变换T(ei)的坐标表示,得到矩阵A的第i列。
(3) 将所有计算得到的列向量排列起来,得到矩阵A。
4. 矩阵表示的性质线性变换的矩阵表示具有以下性质:(1) 线性变换的合成对应于矩阵的乘法。
对于线性变换T1和T2,它们的矩阵表示分别为A和B,则它们的合成线性变换对应的矩阵表示为A*B。
(2) 线性变换的逆对应于矩阵的逆。
若线性变换T存在逆变换,它们的矩阵表示分别为A和A^-1,则逆变换对应的矩阵表示为A^-1。
(3) 线性变换的像空间和核空间可以通过矩阵表示进行刻画。
像空间对应于矩阵的列空间,而核空间对应于矩阵的零空间。
5. 矩阵表示的例子考虑一个二维平面上的旋转变换,将向量绕原点逆时针旋转θ度。
选择标准基下的基向量为e1 = (1, 0)和e2 = (0, 1)。
对于基向量e1,旋转变换后的坐标表示为cosθ*e1 - sinθ*e2。
线性变换与矩阵的关系
线性变换与矩阵的关系线性代数是数学中的一个分支学科,它是整个数学的一个基础。
线性代数的核心概念是线性变换和矩阵。
线性变换可以被视为线性代数中最基本的概念,矩阵则是线性变换最常用的工具。
本文将探讨线性变换与矩阵之间的关系。
一、线性变换的定义线性变换是一种把向量空间V中的每一个元素映射到向量空间W中的一种映射。
如果对于每个向量x和每个标量c,我们都有T(x + cy) = T(x) + cT(y),则此映射为线性变换。
其中,T为线性变换的运算符,y是向量空间V中的元素。
线性变换的一个重要性质是它保持线性运算。
这意味着,对于向量空间V中的任何两个向量x和y,以及标量c,都有:T(x + y) = T(x) + T(y)T(cx) = cT(x)这些性质使得线性变换在数学中扮演着重要的角色。
二、矩阵的定义矩阵是一个有限的、有序的、由数构成的矩形表。
我们通常用大写字母表示矩阵,例如A。
矩阵可以用来表示线性变换,而线性变换可以用矩阵来描述。
我们可以将矩阵视为一种数字表示,它包含了一个线性变换所以可能的操作。
三、线性变换和矩阵的关系线性变换和矩阵是密不可分的。
每个线性变换都可以表示为一个矩阵,而每个矩阵也可以表示为一个线性变换。
矩阵的第i行和第j列上的元素用a(i,j)表示。
我们可以用以下公式将一个向量空间中的向量转换成矩阵的形式:⎡ a(1,1) a(1,2) ... a(1,n)⎤⎢ a(2,1) a(2,2) ... a(2,n)⎥A = ⎢ ... ... ... ... ... ⎥⎢ a(n,1) a(n,2) ... a(n,n)⎥⎣⎦对于一个给定的矩阵A,我们可以将它作为线性变换T的矩阵表示。
这个线性变换对一个向量进行变换的方式为 T(x) = Ax,其中x为向量,Ax表示矩阵A和向量x的乘积。
矩阵乘法的目的是用一个矩阵描述一种线性变换。
在矩阵乘法中,行列式中每个元素都表示了一种特定的线性变换。
线性变换的矩阵表示式
§5 线性变换的矩阵表示式上节例10中,关系式()T x Ax =()n x R ∈ 简单明了地表示出中的一个线性变换. 我们自然希望中任何一个线性变换都能用这样的关系式来表示. 为此,考虑到n n Ae Ae ==αα,,11 (n e e ,,1 为单位坐标向量),即()n i Ae i i ,,2,1 ==α,可见如果线性变换有关系式()Ax x T =,那么矩阵应以()i e T 为列向量. 反之,如果一贯个线性变换使()()n i e T i i ,,2,1 ==α,那么必有关系式()11122(),,()n n n T x T e e x T x e x e x e ==+++⎡⎤⎣⎦1122()()()n n x T e x T e x T e =+++()11(),,()(,,)n n T e T e x x Ax αα===总之,中任何线性变换,都能用关系式()()nR x Ax x T ∈=表示,其中1((),,())n A T e T e =.把上面的讨论推广到一般的线性空间,我们有定义7 设是线性空间中的线性变换,在中取定一个基n αα,,1 ,如果这个基在变换下的象(用这个基线性表示)为11112121212122221122(),(),(),n n n n n n n nn n T a a a T a a a T a a a αααααααααααα=+++⎧⎪=+++⎪⎨⎪⎪=+++⎩记()()()()n n T T T αααα,,,,11 = ,上式可表示为11(,,)(,,)n n T A αααα=, (5)其中1111n n nn a a A a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,那么,就称为线性变换在基n αα,,1 下的矩阵 .显然,矩阵由基的象()()n T T αα,,1 唯一确定.如果给出一个矩阵作为线性变换在基n αα,,1 下的矩阵,也就是给出了这个基在变换下的象,那么根据变换保持线性关系的特性,我们来推导变换必须满足的关系式:中的任意元素记为in i i x αα∑==1,有 11()()n n i i i i i i T x x T ααα====∑∑121((),,())n n x x T T x αα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭121(,,)n n x x A x αα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 即112211(,,)(,,)n n n n x x x x T A x x αααα⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪⎢⎥ ⎪ ⎪=⎢⎥ ⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ (6)这个关系式唯一地确定一个变换,可以验证所确定的变换是以为矩阵的线性变换.总之。
线性变换的矩阵表示式
0 1 0 0 0 2 A 0 0 0 0 0 0
0 0
n 1
0
例3 在 R3中,T表示将向量投影到xOy平面的线性
变换,即
(1)取基为Ti(,xji,
k,
yj zk) xi 求T的矩阵;
yj ,
(2)取基为
i ,
j,
i
j
k,
求T的矩阵.
解 即
Ti i ,
(1)
TTkj
j, 0,
1
T (i , j , k ) (i , j , k ) 0
0 1
0 0.
0 0ቤተ መጻሕፍቲ ባይዱ0
T i ,
(2)
T T
j ,
i j
,
即
1 0 1
T ( , , ) ( , , ) 0 1 1.
0 0 0
此例表明:同一个线性变换在不同的基下一般 有不同的矩阵.
i 1
i 1
x1
(T ( 1),T (
2),
,T (
n))
x2
xn
x1
( 1 , 2 , , n)A x2 ,
xn
即
T ( 1 , 2 ,
,
n)
x1 x2
( 1 , 2 ,
,
n) A
x1 x2 .
x
n
xn
上式唯一地确定了一个变换T ,并且所确定的 变换T是以A为矩阵的线性变换.
x
n
xn
可知 : 在基 1 , 2 , , n下,
的坐标为
x1
x2 ;
xn
T ( )的坐标为
x1
T ( ) A x2 .
线性变换的矩阵表示
线性变换的矩阵表⽰千⾥之⾏始于⾜下,重视基础才是本质。
在矩阵论中提到的线性变换是⼀个相对抽象的概念,先给出相关定义定义:设V 是数域K 上的线性空间,T 是V 到⾃⾝的⼀个映射,使对任意向量x ∈V ,V 中都有唯⼀的向量y 与之对应,则称T 是V 的⼀个变换或者算⼦,记Tx =y ,称y 为x 在T 下的象,⽽x 是y 的原象(象源)这个T 类似于数学分析中的函数y =f (x ),不过那⾥是数量函数,这⾥是向量函数。
如果变换T 满⾜⼀定的线性变换要求T (kx +ly )=kT (x )+lk (y ),则T 为V 的⼀个线性变换。
概念类⽐到数量函数,线性变换T 的也是很好理解的。
但是在具体计算过程中,我们怎么把抽象的概念具体化?这就涉及到线性变换的矩阵表⽰。
从定义⼊⼿的话,如果需要确定线性变换T ,则需要找到V 中所有向量在T 下的象。
事实上不需要这么⿇烦的。
V 中所有向量都可以由V 的基向量组(x 1,x 2,……,x n )线性表⽰,加上T 是V 的线性变换,则V 中所有象都可以由基象组(Tx_1,Tx_2,……,Tx_n)线性表⽰。
设T 是线性空间V n 的线性变换,x ∈V n ,且x 1,x 2,……,x n 是V n 的⼀个基,则x =a 1x 1+a 2x 2+……+a n x n Tx =a 1(Tx 1)+a 2(Tx 2)+……+a n T (x n )令Tx 1=a 11x 1+a 21x 2+……+a n 1x n Tx 2=a 12x 1+a 22x 2+……+a n 2x n ……Tx n =a 1n x 1+a 2n x 2+……+a nn x n 在处理具体问题时,采⽤矩阵乘法的形式表⽰上述公式组:T (x 1,x 2,……,x n )=(Tx 1,Tx 2,……,Tx n )=(x 1,x 2,……,x n )A 这个A 称为线性变换T 在V n 的基x 1,x 2,……,x n 下的矩阵,简称A 为T 的矩阵。
1-2 线性变换及其矩阵表示
定理2:设x1,x2,…,xn是数域K上n维线性空间V的一 组基,在这组基下,V上的每一个线性变换都与 Kn×n中的唯一一个矩阵对应,且具有以下性质: ① 线性变换的和对应于矩阵的和; ② 线性变换的数量乘积对应于矩阵的数量乘积; ③ 线性变换的乘积对应于矩阵的乘积; ④ 可逆线性变换与可逆矩阵对应,且逆变换对应 于逆矩阵。 推论1:设T是线性空间V的一组基x1,x2,…,xn下的 f 矩阵, ( x ) am x m am 1 x m 1 a1 x a0 , 则线 性变换f(T)在同一组基下的矩阵是: f ( A) am Am am 1 Am 1 a1 A a0 I .
2. 线性变换的矩阵表示
(a) 线性变换在给定基下的矩阵表示 设x1,x2,…,xn是n维线性空间V的一组基,T是V上 的线性变换。
对于V中的任意一个向量x,必存在数域K中的一 组数k1,k2,…,kn使得 x k1 x1 k2 x2 kn xn , 从而有 T ( x ) k1T ( x1 ) k2T ( x2 ) knT ( xn ). 这表明,T(x)由T(x1),T(x2),…,T(xn)完全确定。
设T为线性空间V的线性变换,若有V上的变换S 使得:TS=ST=Te,则称T为可逆变换,并称S为T 的逆变换,记为S=T-1。 1. 可逆变换的逆变换仍然是线性变换。 2. 线性变换T可逆当且仅当T是一一对应。 3. 可逆线性变换把线性无关的向量组变成线性无 关的向量组。 4. 设x1,x2,…,xn是线性空间V的一组基,T是V上的 线性变换,则T可逆当且仅当T(x1),T(x2),…,T(xn)也 是V的一组基。 (T1T2 )1 T21T11 . 5. 若T1,T2都是可逆变换,则
线性变换的矩阵表示线性变换与矩阵的关系与计算
线性变换的矩阵表示线性变换与矩阵的关系与计算线性变换的矩阵表示——线性变换与矩阵的关系与计算在数学中,线性变换是一类重要的变换,具有广泛的应用背景。
线性变换可以通过矩阵来表示,这为我们在计算和理解线性变换提供了便利。
本文将介绍线性变换与矩阵的关系,以及如何进行线性变换的矩阵计算。
一、线性变换与矩阵的关系线性变换是指保持直线性质和原点不动的变换。
对于一个n维向量空间V中的向量x,若存在一个线性变换T,将向量x映射为向量y,即y=T(x),则称T为从V到V的一个线性变换。
线性变换可以通过矩阵的乘法运算来表示。
设V是n维向量空间,取V中的一组基{v1,v2,...,vn},在这组基下,对于向量x和y,若y=T(x),则存在一个n×n的矩阵A,使得y=Ax。
这个矩阵A就是线性变换T对应的矩阵表示。
矩阵表示的好处在于,通过矩阵的乘法运算,我们可以将线性变换转化为矩阵的计算,从而简化问题的求解过程。
二、线性变换的矩阵表示对于线性变换T,我们希望找到它对应的矩阵表示A。
假设V是n 维向量空间,取V中的一组基{v1,v2,...,vn}。
根据线性变换的定义,对于向量vi,有T(vi)=wi,我们可以将T(vi)表示为基向量w1,w2,...,wn的线性组合。
设T(vi)=w1i+w2i+...+wni,其中wi是基向量wi的系数。
我们可以将系数wi构成一个列向量Wi,将基向量构成一个矩阵W。
则有W=[w1,w2,...,wn],Wi=AW,其中A是线性变换T对应的矩阵表示。
求解矩阵A的方法有很多种,最常用的方法是利用线性变换T在基向量上的作用。
将基向量vi映射为向量wi,我们可以在基向量的基础上用线性组合的方式得到wi。
将所有的基向量和对应的映射向量展开,我们可以得到矩阵A的表达式。
三、线性变换的矩阵计算在得到线性变换的矩阵表示后,我们可以利用矩阵的乘法运算对线性变换进行计算。
设矩阵A对应线性变换T,向量x对应向量y,即y=Ax。
3线性变换及其矩阵表示
此公式在工程和物理中被称为 叠加原理。如果 u1 , u2 ,u p 分别是某个 系统或过程的输入信号向量,则 T (u1 ), T (u2 ),T (up ) 可 分别 视为 该系 统 或过程的输出信号向量。
判断一个系统是否为线性系统的判据 如果系统的输入为线性表达式
y k1u1 k 2 u2 k p u p ,则当系统的输
T (k1α k2 β) k1T (α) k2T ( β)
n u , u , u V 更一般地,若 1 2 ,反 p
复使用上面公式可得
T (k1u1 k2 u2 k p u p ) k1T (u1 ) k2T (u2 ) k pT (u p )
使 T1 1 , T 2 2 ,
则有 1 , 2 Vn ,
从而 1 2 T1 T 2 T 1 2 T Vn ,
因1 2 Vn ; k1 kT1 T k1 T Vn , 因k1 Vn ,
§3
线性变换及其矩阵表示
一、线性变换的引入
在技术科学、社会科学和数学的一些分支中,不
同向量空间之间的线性变换起着重要的作用。因此, 为了研究两个向量空间之间的关系,有必要考虑能够
从一个向量空间到另一个向量空间的转换关系的函数。 事实上,在我们的日常生活中,也经常遇到这种 转换。当我们欲将一幅图像变换为另一幅图像时,通 常会移动它的位置,或者旋转它。例如,函数就能够 将图像的坐பைடு நூலகம்和坐标改变尺度。根据和大于1还是小 于1,图像就能够被放大或者缩小。
在 Vn 中取定一个基 1 , 2 ,, n ,如果这个基 在变换T下的象为
定义 设T是线性空间 Vn 中的线性变换,
线性映射(线性变换)的矩阵表示
持加法与纯量乘法运算.任取,∈Hom(V,W),设 ()=A, ()=B,
即 (1,,n ) (1,, m )A , (1,, n ) (1,, m )B ,则
( )(1,,n ) (( )(1),,( )(n ))
在 V、W 中分别取定一个基{ j }、{i}以后,对于 V 到 W 的每 一个线性映射σ,有唯一确定的 m×n 矩阵 A 与它对应.因此,这个 对应给出了 Hom(V,W)到 F mn 的一个映射.设∈Hom(V,W),
则 ()=B 是 在 基 { j } 和 基 {i} 下 的 矩 阵 . 若 B=A , 则
命题 7.3.1 设 1,,n 是 V 的一个基,1,, m 是 W 的一个基, ∈Hom(V,W),且在基{ j }和基{i }下的矩阵为 A.又 α
∈V,设α在基{
j
}下的坐标为
x1
xn
,则
()
在基{i
}下的坐
标为
A
x1
xn
.
证 我们有
() x1 (1) xn (n )
将此写成矩阵形式,并令σ( 1,2,,n )=( (1), (2 ),, (n ) ), 则得
(1
,
,
n
)
(
1
,
,
m
)
a11 a 21
a1n a2n
,
(2)
am1 amn
其中矩阵 A= (aij )mn F mn ,叫做线性映射σ在 V 的基{ j }和 W 的基 {i }下的矩阵.
j
}下的坐标为
X=
x1
xn
,W
线性变换的矩阵表示与坐标变换
线性变换的矩阵表示与坐标变换线性变换是线性代数中非常重要的概念之一。
它是指将一个向量空间中的向量按照一定的规则进行变换的操作。
线性变换可以通过矩阵进行表示,并且与坐标变换之间存在着紧密的联系。
一、线性变换的定义与性质线性变换是指满足以下两个性质的向量空间之间的映射:1. 对于任意的两个向量u和v,线性变换T(u+v) = T(u) + T(v);2. 对于任意的标量k和向量u,线性变换T(ku) = kT(u)。
线性变换具有一些重要的性质:1. 零向量的线性变换结果仍为零向量:T(0) = 0;2. 线性变换保持向量空间中向量间的线性组合关系;3. 线性变换将向量空间中所有向量的零向量映射到目标向量空间的零向量。
二、矩阵表示线性变换线性变换可以通过矩阵来表示。
假设V和W是两个向量空间,维数分别为n和m,线性变换T: V→W可以表示为一个m×n的矩阵A。
对于向量v∈V,其在基底B={b1,b2,...,bn}下的坐标表示为[v]B =[x1,x2,...,xn]^T,T(v)在基底B'={b1',b2',...,bm'}下的坐标表示为[T(v)]B'= [y1,y2,...,ym]^T,则矩阵A表示了从基底B到基底B'的坐标变换关系。
具体而言,矩阵A的第j列为T(bj)在基底B'下的坐标表示的列向量。
通过矩阵向量乘法,可以得到变换后向量的坐标表示。
即:[T(v)]B' = A[v]B三、从坐标变换到线性变换以上我们讨论了线性变换如何通过矩阵表示,现在我们来看看如何从给定的坐标变换得到对应的线性变换矩阵。
考虑二维向量空间的坐标变换示例。
假设向量空间V的基底为B={e1,e2},向量空间W的基底为B'={e1',e2'}。
将V中的向量v表示为[v]B = [x1,x2]^T,W中的向量T(v)表示为[T(v)]B' = [y1,y2]^T。
线性变换与矩阵表示
线性变换与矩阵表示
线性变换是线性代数中的重要概念,可以用来描述向量空间中的变换关系。
而矩阵表示则是将线性变换表示为矩阵的形式,便于计算和分析。
线性变换
线性变换是指保持向量空间中向量加法和数乘的运算规则不变的变换。
具体地,对于向量空间V中的两个向量u和v,以及标量c,线性变换T满足以下条件:
1. T(u + v) = T(u) + T(v)
2. T(cu) = cT(u)
这意味着线性变换保持向量加法和数乘的运算结果不变。
矩阵表示
线性变换可以通过矩阵表示来进行计算和分析。
对于向量空间V中的一个线性变换T,选择向量空间V的一组基{e1, e2, ..., en},对于每个向量ei,线性变换T(ei)可以表示为一个线性组合:
T(ei) = a1i * e1 + a2i * e2 + ... + ani * en
其中aij为标量。
将向量空间V的基按列组成一个矩阵A:
A = [e1, e2, ..., en]
那么对于向量空间V中的任意向量x,线性变换T(x)可以表示为:
T(x) = A * x
其中x为列向量。
通过选择合适的基和矩阵A,可以将线性变换T表示为矩阵的形式,通过矩阵乘法进行计算和分析。
总结
线性变换是保持向量空间中向量加法和数乘的运算规则不变的变换,矩阵表示则是将线性变换表示为矩阵形式。
通过选择合适的基和矩阵,线性变换可以方便地用矩阵乘法进行计算和分析。
对于线性代数的学习和应用,理解线性变换和矩阵表示是非常重要的基础知识。
线性变换的矩阵表示及相似矩阵
线性变换的矩阵表示及相似矩阵
【例5-10】
在上一节【例5-7】的平面解析几何中,定义了将平面 绕原点O逆时针旋转θ角的线性变换Tθ.取定R2中的基 ε1=(1,0)T,ε2=(0,1)T,则容易验证Tθ在这组基下的矩阵即为
(v1,v2,…,vn)=(α1,α2,…,αn)A
线性变换的矩阵表示及相似矩阵
其中vi(i=1,2,…,n)是V中任意的向量.根据定理52,则存在V上的一个线性变换σ,满足
σ(αi)=vi,i=1,2,…,n 由于 [σ(α1),σ(α2),…,σ(αn)] =(v1,v2,…,vn)=(α1,α2,…,αn)A 故矩阵A是σ在基α1,α2,…,αn下的矩阵表示.因此 φ(σ)=A.这样φ是一个满射.
线性变换的矩阵表示及相似矩阵
【例5-11】
在空间R3中,取定一个直角坐标系{O;e1,e2,e3}.对于R3 中的任意一个向量xe1+ye2+ze3,令 ρ(xe1+ye2+ze3)=xe1+ye2,显然ρ是R3的一个线性变换.又 e1,e2,e3是R3的一组基,直接验证可得ρ关于这组基的矩阵 表示为
称式(5-8)的矩阵A为σ在基α1,α2,…,αn下的矩阵表示.
线性变换的矩阵表示及相似矩阵
提示
σ在基α1,α2,…,αn下的矩阵表示A是式(5-7) 右端α1,α2,…,αn的系数矩阵的转置;矩阵A的第j 列(a1j,a2j,…,anj )T就是σ(α j)在基α1,α2,…,αn下 的坐标向量,j=1, 2,… ,n.
线性变换的矩阵表示 及相似矩阵
线性变换的矩阵表示及相似矩阵
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§5 线性变换的矩阵表示式
上节例10中,关系式
()T x Ax
=
()n x R ∈
简单明了地表示出n R 中的一个线性变换. 我们自然希望n
R 中任何一个线性变换都能用这样的关系式来表示. 为此,考虑到n n Ae Ae ==αα,,11 (n e e ,,1 为单位坐标向量),即
()n i Ae i i ,,2,1 ==α, 可见如果线性变换T 有关系式()Ax x T =,那么矩阵A 应以()i e T 为列向量. 反之,如果一贯个线性变换T 使()()n i e T i i ,,2,1 ==α,那么T 必有关系式
()11122(),
,()
n n n T x T e e x T x e x e x e ==++
+⎡⎤⎣⎦
1122()()()
n n x T e x T e x T e =++
+
()11(),,()(,,)n n T e T e x x Ax
αα===
总之,n R 中任何线性变换T ,都能用关系式
()()n R x Ax x T ∈=表示,其中1((),,())n A T e T e =.
把上面的讨论推广到一般的线性空间,我们有
定义7 设T 是线性空间n V 中的线性变换,在n V 中取定一个基
n αα,,1 ,如果这个基在变换T 下的象(用这个基线性表示)为
11112121212122221122(),(),(),
n n n n n n n nn n T a a a T a a a T a a a αααααααααααα=++
+⎧⎪=+++⎪⎨⎪⎪
=++
+⎩
记()()()()n n T T T αααα,,,,11 = ,上式可表示为
11(,,)(,,)n n T A αααα=, (5) 其中
1111
n n nn a a A a a ⎛⎫ ⎪=
⎪ ⎪⎝⎭,
那么,A 就称为线性变换T 在基n αα,,1 下的矩阵 .
显然,矩阵A 由基的象()()n T T αα,,1 唯一确定.
如果给出一个矩阵A 作为线性变换T 在基n αα,,1 下的矩阵,也就是给出了这个基在变换T 下的象,那么根据变换T 保持线性关系的特性,我们来推导变换T 必须满足的关系式:
n
V 中的任意元素记为
i
n
i i x αα∑==1,有
1
1
()()
n
n
i i i i i i T x x T ααα====∑∑
121((),
,())n n x x
T T x αα⎛⎫
⎪ ⎪
= ⎪ ⎪⎝⎭
121(,
,)n n x x A x αα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,
即
112211(,,)(,,)n n n n x x x x T A x x αααα⎡⎤
⎛⎫⎛⎫
⎢⎥ ⎪ ⎪⎢⎥ ⎪ ⎪=⎢⎥ ⎪ ⎪⎢⎥ ⎪ ⎪
⎢
⎥⎝⎭⎝⎭⎣⎦
(6)
这个关系式唯一地确定一个变换T ,可以验证所确定的变换T 是以A 为矩阵的线性变换.总之。
以A 为矩阵的线性变换T 由关系式(6)唯一确定.
定义7和上面一段讨论表明,在n V 中取定一个基以后,由线性变换
T 可唯一确定一个矩阵A ,由一个矩阵A 也可唯一地确定一个线性变换T ,这样,在线性变换与矩阵之间就有一一对应的关系.
由关系式(6),可见α与()αT 在基n αα,,1 下的坐标分别为
112
2,(),
n n x x x x T A x x αα⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 即按坐标表示,有 ()ααA T = .
例11 在3][x P 中,取基 321234,,,1,
p x p x p x p ====
求微分运算D 的矩阵 .
解
21123421234312341123430300,
20020,10001,00000,
Dp x p p p p Dp x p p p p Dp p p p p Dp p p p p ⎧==+++⎪
==+++⎪⎨
==+++⎪⎪
==+++⎩
所以D 在这组基下的矩阵为
0000300002000
010A ⎛⎫
⎪
⎪= ⎪
⎪
⎝⎭
.
例12 在3
R 中,T 表示将向量投
影到xOy 平面的线性变换,即
()T xi yj zk xi yj ++=+ ,
(1) 取基为k j i ,,,求T 的矩阵;
(2) 取基为k j i j i ++==,,βα,求T 的矩阵 . 解 (1)
,,0,Ti i Tj j Tk =⎧⎪
=⎨⎪=⎩
即
100(,,)(,,)010000T i j k i j k ⎛⎫ ⎪
= ⎪
⎪⎝⎭ (2)
,
,T i T j T i j ααββγαβ==⎧⎪
==⎨⎪=+=+⎩
即
()()101,,,,011000T αβγαβγ⎛⎫ ⎪
= ⎪
⎪⎝⎭
由上例可见,同一个线性变换在不同的基下有不同的矩阵,一般地,我们有
定理 3 设线性空间n V 中取定两个基:n n ββαα,,,,,11 ,由基
n αα,,1 到基n ββ,,1 的过度矩阵为P ,n V 中的线性变换T 在这两个基下
的矩阵依次为A 和B ,那么
1
B p Ap -=. 证 按定理的假设,有
11(,,)(,,),n n p p ββαα=可逆;
及
11(,,)(,,)n n T A αααα=,
11(,,)(,,)n n T B ββββ=, 于是
[]
111(,,)(,
,)(,,)n n n B T T p ββββαα== []11(,
,)(,
,)n n T p Ap
αααα==
11(,
,)n p Ap
ββ-=,
因为n ββ,,1 线性无关,所以
1B p Ap
-=
证毕
这定理表明B 与A 相似,且两个基之间的过度矩阵P 就是相似变换矩阵.
例13 设2V 中的线性变换T 在基
21,αα下的矩阵为
11122122a
a A a a ⎛⎫= ⎪
⎝⎭,
求T 在基21,αα下的矩阵.
解 :
211201(,)(,),
10αααα⎛⎫
= ⎪⎝⎭
即
0110P ⎛⎫= ⎪
⎝⎭ , 求得
101,
10P -⎛⎫
= ⎪⎝⎭
于是T 在基21,αα下的矩阵为
1112212222212122111212
11010101101010a a a a a a B a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
定义8 线性变换T 的象空间()n V T 的维数,称为线性变换T 的秩. 显然,若A 是T 的矩阵,则T 的秩就是()A R .,若T 的秩r ,则T 的核r
S 的维数为n r -.
“线
性变换与矩阵的一一对应”
的最佳匹配结果
(注:本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待你的好评与关注!)。