《应用随机过程》第九版Sheldon M.Ross习题答案
应用随机过程课后习题解答 毛用才 胡奇英
第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k === 。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解 0()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 1(())x p p e x dx ∞--Γ=⎰ (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
随机过程_第一章
则称P为(Ω,F)上的概率,(Ω,F,P)称 为概率空间,P(A)为事件A的概率。
由此定义出发,可推出概率的其它一些性质:
(4) P(F) 0;
(5) 若A, B F , A B, 则P( B A) P( B) P( A), 且P( B) P( A)
FY ( y ) P(Y y ) P( X , Y y ) F (, y )
分别称FX(x)和FY(y)为 F ( x, y ) 关于X和关于Y的 边缘分布函数。
离散型随机变量(X,Y)边缘分布律计算如下
P( X xi ) pi pij
, i 1,2,
设X,Y是两个随机变量,若对任意实数x,y有
P( X x, Y y) P(( X x) (Y y)) P( X x)P(Y y)
则称X,Y为相互独立的随机变量。
若X,Y为相互独立随机变量,则有
F ( x, y ) FX ( x) FY ( y ) f ( x, y ) f X ( x ) f Y ( y )
注:所谓某个事件在 试验中是否出现,当且仅 当该事件所包含的某个样本点是否出现,因此 一个事件实际上对应于的一个确定的子集。 事件的概率论运算 Ω子集的集合论运算。
样本空间 W 也是一个事件, 称 W 为必然事件,
空集 F 称为不可能事件。
注:由于事件是集合,故集合的运算(并、交、 差、上极限、下极限、极限等)都适用于事件。
定义1.5 设( Ω ,F,P)是概率空间,X=X(e) =(X1(e),…,Xn(e))是定义在Ω上的n维空间Rn中 取值的向量函数。如果对于任意x=(x1,…,xn) ∈Rn, {e:X1(e) ≤x1,…,Xn(e) ≤xn} ∈F,则称X=X(e)为n维 随机变量。称
随机过程习题答案及知识点
协方差矩阵及n 维正态分布1、设n 维随机变量)(n X X ,,,X 21⋯的二阶混合中心距:[][];,,2,1,},)()({),(,n j i j X E j X X E X E X X Cov c i i j i j i ⋯=--==都存在,则称矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=∑nn c c c c c c c c c n2n12n 22211n 1211为n 维随机变量)(n X X ,,,X 21⋯的协方差矩阵,它是一对称矩阵。
2、n 维正态分布定义:若n 维随机变量)(n X X ,,,X 21⋯的概率密度可以表示成以下的形式:⎭⎬⎫⎩⎨⎧-∑--∑==⋯-)()(21ex p )(det )2(1)(),,,(f 12/12/21U X U X X f x x x T n n π其中,Tn T T n X E X E X E U x x x X ))(,),(),((),,,(,),,,(21n 2121⋯=⋯=⋯=μμμ∑是)(n X X ,,,X 21⋯的协方差矩阵,则称n 维随机变量)(n X X ,,,X 21⋯为n 维正态随机变量,记为),(~),,,X (21∑⋯=μN X X X n ,),,,(f 21n x x x ⋯为n 维正态概率密度函数。
N 维正态随机变量的性质(1) n 维正态随机变量)(n X X ,,,X 21⋯的每一个分量都是正态变量;反之,若nX X ,,,X 21⋯都是正态随机变量,且相互独立,则)(n X X ,,,X 21⋯是n 维正态随机变量。
(2) n 维随机变量)(n X X ,,,X 21⋯服从n 维正态分布的充要条件是n X X ,,,X 21⋯的任意的线性组合n n X l X l X l +⋯++2211服从一维正态分布;(3) 若)(n X X ,,,X 21⋯服从n 维正态分布,设n Y Y ,,,Y 21⋯是),,3,2,1(X n j j ⋯=的线性函数,则n Y Y ,,,Y 21⋯也服从正态分布。
《随机过程及其在金融领域中的应用》习题六答案
②
k 1
k
t Pik
t zk
kk
k 1
t Pik
t zk
z
z
k 1
k
t Pik
t zk
z t
z
Pik
t
zk
z
t
G t, z
z
③
k1 t Pik1 t zk k 1 t Pik1 t zk m t Pim t zm1
概率分布。 答:
P01 t
1
P00
t
+
+
e +t
1 2
1 e2t
,
P00
t
1 2
1+e2t
,P11
t
1 2
1+e2t
,P10
t
1 2
1 e2t
记 Pk t P N t k x0 0
解得 0
M
,
j
CMj
j
Mj
,
j
1, 2,
,M
(2)
0
30 90
10
1 310
,
j
C1j0
60 j 90
30 10 j 90
拓扑学尤承业答案
拓扑学尤承业答案【篇一:点集拓扑学】工业大学数学学院预备知识1.点集拓扑的定义《点集拓扑学》课程是一门现代数学基础课程,属数学与应用数学专业的理论课。
是数学与应用数学专业的主干课。
点集拓扑学(point set topology),有时也被称为一般拓扑学(general topology),是数学的拓扑学的一个分支。
它研究拓扑空间以及定义在其上的数学构造的基本性质。
这一分支起源于以下几个领域:对实数轴上点集的细致研究,流形的概念,度量空间的概念,以及早期的泛函分析。
它的表述形式大概在1940年左右就已经成文化了。
通过这种可以为所有数学分支适用的表述形式,点集拓扑学基本上抓住了所有的对连续性的直观认识。
2.点集拓扑的起源点集拓扑学产生于19世纪。
g.康托尔建立了集合论,定义了欧几里得空间中的开集、闭集、导集等概念,获得了欧几里得空间拓扑结构的重要结果。
1906年m.-r.弗雷歇把康托尔的集合论与函数空间的研究统一起来,建立了广义分析,可看为拓扑空间理论建立的开始。
3.一些参考书籍(1)《拓扑空间论》,高国士,科学出版社,2000年7月第一版(2)《基础拓扑讲义》,尤承业,北京大学出版社,1997年11月第一版(3)《一版拓扑学讲义》,彭良雪,科学出版社,2011年2月第一版2第一章集合论初步在这一章中我们介绍有关集合论的一些基本知识.从未经定义的“集合”和“元素”两个概念出发给出集合运算、关系、映射以及集合的基数等方面的知识等。
这里所介绍的集合论通常称为“朴素的集合论”,这对大部分读者已经是足够了.那些对集合的理论有进一步需求的读者,例如打算研究集合论本身或者打算研究数理逻辑的读者,建议他们去研读有关公理集合论的专著。
1.1 集合的基本概念集合这一概念是容易被读者所理解的,它指的是由某些具有某种共同特点的个体构成的集体。
例如我们常说“正在这里听课的全体学生的集合”, “所有整数的集合”等等.集合也常称为集。
(完整版)随机过程习题答案
(完整版)随机过程习题答案随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的⼀维概率密度、均值和相关函数。
解因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的⼀维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的⼀维概率密度及),(),(21t t R t EX X 。
解对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的⼀维概率密度xtt x f t x f Y 1)ln ();(-=,0>t)(][)]([)(dy y f e eE t X E t m yt tY X相关函数+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X 2.3 若从0=t 开始每隔21秒抛掷⼀枚均匀的硬币做实验,定义随机过程=时刻抛得反⾯时刻抛得正⾯t t t t t X ,2),cos()(π试求:(1))(t X 的⼀维分布函数),1(),21(x F x F 和;(2))(t X 的⼆维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,⽅差 )1(),(22X Xt σσ。
9第九章答案
课后答案网
6 7 8 9 2 3 3 3 3 1 2 3 1 3 1 2 2 2 3 1 5.90 4.68 5.90 5.63
(1) 试作最优生产条件的直观分析,并对 3 因素排出主次关系. (2) 给定α=0.05,作方差分析与(1)比较. 【解】(1) 对试验结果进行极差计算,得表 9-5-1. 表 9-5-1
4 4 2 ij 4
i =1
S E = ST − S A =151350.8, F=
故灯丝材料对灯泡寿命无显著影响. 表 9-1-1 方差分析表
w.
S A /(r − 1) 44360.7 / 3 = = 2.15 S E /(n − r ) 151350.8 / 22 , F0.05 (3, 22) = 3.05 > F .
方差来源 因素影响 误差 总和
kh da
后
表 9-2-1 方差分析表
S A /(r − 1) 167.7 = = 0.465 S E /(n − r ) 360.8
平方和 S 335.35 13685
答 案
自由度 2
w.
均方和 S 167.68 360.80
i =1
网
SA = ∑
1 2 T..2 =186112.25-185776.9=335.35, Ti. − ni n
2 3 4 5 6 7 8
kh da
课
1 1 1 2 2 2 2
A B C D 试验指标 品种 施氮肥量 氮、磷、钾肥比例 插植规格 产量 1 1(科 6 号) 1(20) 1(2∶2∶1) 1(5×6) 19.0 2 1 2(25) 2(3∶2∶3) 2(6×6) 20.0 3 2(科 5 号) 1 1 2 21.9 4 2 2 2 1 22.3 5 1(科 7 号) 1 2 1 21.0 6 1 2 1 2 21.0 7 2(珍珠矮) 1 2 2 18.0 8 2 2 1 1 18.2 (1) 试作出最优生产条件的直观分析,并对 4 因素排出主次关系. (2) 给定α=0.05,作方差分析,与(1)比较. 【解】被考察因素有 4 个:A,B,C,D 每个因素有两个水平,所以选用正交表 L8(27) ,进 行极差计算可得表 9-6-1. 表 9-6-1 列号 A B C D 水平 1 3 7 试验结果 2 4 5 6 试验号 1 1 1 1 1 1 1 1 19.0
布朗运动理论简介
f (x1 , x2," , xn ) = ⎧ 1 ⎡x 2 (x − x )2 ⎫ (x − xn−1)2 ⎤ 1 ⎪ ⎪ ⎥ exp ⎨ − ⎢ 1+ 2 +" + n ⎬ (7) ⎢ ⎥ t t t t t 2 − − ⎭ n n−1 2 1 ⎩ ⎣ 1 ⎦ ⎪ ⎪ (2π)n / 2[t1(t2 − t1)"(tn − tn−1)]1/ 2
连续,在 t > 0 连续,
3 布朗运动的变形形式
O
X(t) 的任一样本函数 x(t) 在 t > 0 连续,但
却处处不可导(图 2).
t
布朗运动的变形可以导出其他的随机过程,他们 有各自特定的性质,在数学建模中也有广泛的应用,设
图 2 X(t) 的一个样本函数
X(t) 是标准的布朗运动,下面是布朗运动常用的一些
t > 0 时刻开始,每隔 ∆t 时间,粒子等概率的向左或者
向右移动大小为 ∆ x 距离 , 设 t 时 刻粒子的位置为 X(t) , 则 X(t) 可 以表示为
←⎯⎯⎯ → O
p = 1/ 2
x
图1
随机游走
X(t) =∆ x(X 1 + X 2 + " + X[t /∆ t ])
(1)
f (x, t) =
中,并且令 ∆t → 0 ,得到
∂f (x, t) ∂2 f (x, t) =D ∂t ∂x 2
(2)
(6)
上式中 , D 为扩散系数 , D = 2 RT / Nf , R, N 均为常 数, f 是反映液体性质的常量, T 是温度. 可以验证式
(5) 是方程 (6) 的解 , 已经证明 , 若 X(t) 在 t = 0 连续 (依概率连续)的条件下式(6)的解是唯一的.
应用随机过程答案1
2. (1) 求参数为的()b p ,分布的特征函数,其概率密度为Γ()()是正整数p b x x e x p b x p bx p p ,0 000,1>⎪⎩⎪⎨⎧≤>Γ=−−(2)求其期望和方差。
(3)证明对具有相同参数的b Γ分布,关于参数具有可加性。
p 函数有下面的性质:解 (1) 首先,我们知道Γ()()! 1−=Γp p根据特征函数的定义,有()[]()()()()()()()()()()()()()()()()()()()()pp p x jt b p p xjt b p p x jt b p p xjt b p p xjt b p p bxp p jtxjtxjtXX jt b b jt b p p b dxe x jt b p p b dx e x jt b p p b dx e x jt b p p b e x jt b p b dx e x p b dx e x p b edx x p e e E t f ⎟⎟⎠⎞⎜⎜⎝⎛−=−−Γ=−−Γ==−−Γ=−−Γ+−−Γ=Γ=Γ===∫∫∫∫∫∫∞−−−∞−−−∞−−−∞−−−∞−−−−−∞∞∞−!1!11110010202010110L所以()pX jt b b t f ⎟⎟⎠⎞⎜⎜⎝⎛−=(2)根据期望的定义,有[]()()()()()()()bpdx x p b p dx e x p b b p dx e x bp p b e x bp b dx e x p b dx e x p b x dx x xp X E m bx p p bx p p bxp p bx p p bx p p X ==Γ=Γ+−Γ=Γ=Γ===∫∫∫∫∫∫∞∞−∞−−∞−−∞−∞−∞−−∞∞−010100011类似的,有[]()()()()()()()()()()()()()2201200010101222111111b p p dx x p b p p dx e x p b b p p dx e x b p p b dx e x bp p b e x bp b dx e x p b dx e x p b x dx x p x XE bxp p bxp p bxp p bxp p bx p p bx p p +=+=Γ+==+Γ=+Γ+−Γ=Γ=Γ==∫∫∫∫∫∫∫∞∞−∞−−∞−∞−∞−+∞−+∞−−∞∞−L的方差为X 所以,[]()222221b pb p b p p mXE D XX =⎟⎠⎞⎜⎝⎛−+=−=(3)()()()jt jnt jt e n e e t f −−=115. 试证函数为一特征函数,并求它所对应的随机变量的分布。
随机过程习题和答案.doc
一、设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:袋中有一个白球,两个红球,每隔单位时间从袋中任取一球后放回,对每一个确定的t对应随机变量X(t)t3te如果对如果对t时取得红球t时取得白球试求这个随机过程的一维分布函数族.设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
设随机过程X(t)U cos2t U E(U)5,D(U)5.求:,其中是随机变量,且(1)均值函数;(2)协方差函数;(3)方差函数.设有两个随机过程X(t)Ut2Y(t)Ut3,U随机变量,且D(U)5.,其中是试求它们的互协方差函数。
设A,B,X(t)At3B t T(,)的均值是两个随机变量试求随机过程,函数和自相关函数.A,B,~(1,4),~(0,2),()(,)若相互独立且A N B U则m X t及R X t1t2为多少?一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令N(t)表示(0,t)时间内的体检人数,则N(t)为参数为30的poisson过程。
以小时为单位。
则E(N(1))30。
40k(30) P(N(1)40)ek!k030。
在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1,2,当1路公共汽车有N人乘坐后出发;2路公共汽车1在有N2人乘坐后出发。
设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当N1=N,1=22时,计算上述概率。
应用随机过程教学探索与实践
预习和自学。 因 此,应 针 对 授 课 对 象 的 基 础 和 专 业 要求,选择合适的教材。目前,国内外关于随机过程 的书籍很多,侧 重 点 各 不 相 同。 如 北 京 大 学 龚 光 鲁 和钱敏平编写的《随机过程论》理论体系完整、结论 严谨,适用 于 基 础 较 好 的 数 学 系 本 科 生。 清 华 大 学 出版社出版的林元烈编著的《应用随机过程》和科学 出版社出版的方兆本和缪柏其编写的《随机过程》侧 重于知识的广泛性和实用性,分别介绍了泊松过程、 马尔科夫过 程、平 稳 过 程、分 支 过 程、布 朗 运 动 与 随 机积分、鞅过程,适用于非数学专业的理工科学生和 一般院校的数学系本科生。SheldonM.Ross编写的 《StochasticProcess》,涉 及 的 内 容 宽 泛,学 生 有 基 本 概率论的知识就可以学习,是一本很经典的随机过 程外 文 书,适 合 作 为 双 语 教 材。 SamuelKarlin和 HowardE.Taylor编 写 的 《AFirstCourseinStochastic Processes》和 《A SecondCourseinStochasticProces ses》,内容丰富、阐述详细,对于老师和基础较好的 学生是很好的教材和参考书。
收稿日期:20190624 基金项目:安徽省高等学校省级质量工程教学研究项目(2017jyxm0071)。 作者简介:程 培(1982),女,安徽大学数学科学学院副教授,博士,主要从事随机系统控制研究。
第 35卷 第 9期
程 培:应用随机过程教学探索与实践
·63·
精选过程中应注意以下几点。 (二)优化知识点 随机过程内容庞杂,因此在知识点的选择上,除
随机过程习题及部分解答(共享).docx
随机过程习题及部分解答习题一1.若随机过程X(/)为X(0 = A?,-oo<r<+oo,式中4为(0, 1)上均匀分布的随机变量,求X(/)的一维概率密度Px(x;t)。
2.设随机过程X(/) = 4cos(初+ 其中振幅A及角频率①均为常数,相位&是在[-兀,刃上服从均匀分布的随机变量,求X(/)的一维分布。
习题二1.若随机过程X(/)为X(t)=At -00 < r < +00 ,式中4为(0,1)上均匀分布的随机变量,求E[xa)],7?xa』2)2.给定一随机过程X(/)和常数Q,试以X(/)的相关函数表示随机过程y(0 = X(/ + a) —X(/)的自相关函数。
3.已知随机过程X(/)的均值阪⑴和协方差函数Cx (爪© , 0(/)是普通函数,试求随机过程丫⑴=X(/) + 0(/)是普通函数,试求随机过程丫⑴=X(/) + 0(/)的均值和协方差函数。
4.设X(t) = A cos at + B sin at,其中A, B是相互独立且服从同一高斯(正态)分布N(0Q2)的随机变量,a为常数,试求X(/)的值与相关函数。
习题三1.试证3.1节均方收敛的性质。
2.证明:若X(t),twT;Y(t),twT均方可微,a0为任意常数,则aX(t) + bY(t) 也是均方可微,且有[aX (?) + b Y(/)]' = aX'(/) + b Y'(/)3.证明:若X⑴,twT均方可微,/X/)是普通的可微函数,则f(Z)X(Z)均方可微且[f(ox(or-/w(o+/(ox,(o4.证明:设X⑴在[a,b]上均方可微,且X0)在[a,切上均方连续,则有X'⑴ dt = X(b) — X(a)J a5•证明,设X(t\t eT =[a,b];Y{t\t eT = [a,b]为两个随机过程,且在T上均方可积,a和0为常数,则有(*b (*b (*bf [aX(/) + 0Y(/)M = a [ Xit)dt + /3\ Y⑴ dtJ a J a J aeb rc rbaX (t)dt = X (t)dt + XQ) dt,aWcWbJ a J a Jc6.求随机微分方程X'(/) + aX ⑴二丫⑴ze[0,+oo]'X(0) = 0的X(t)数学期望E [X(0]。
随机过程_华东师范大学中国大学mooc课后章节答案期末考试题库2023年
随机过程_华东师范大学中国大学mooc课后章节答案期末考试题库2023年1.隐马尔可夫链的三类基本问题不包括_____________.答案:识别问题2.有限状态时齐马氏链的任意一个状态都不是零常返的答案:正确3.接上题。
试用切比雪夫不等式估计小王在一个小时完成的概率最大是________?答案:0.064.小王同学要做一个社会调查,为此他打算到某公共场所发放调查问卷。
他先去该场所观察人群到达情况,发现到达的人流可以用强度为1000人/小时的泊松过程拟合。
由于人手不够,小王只能在到达的人群中随机发放问卷,每个人拿到问卷的可能性是30%,另外,不是所有人都会配合调查问卷,根据经验每个人拿到问卷的人都有50%的可能配合完成调查。
小王要获得200份已完成的调查问卷,请问配合小王完成调查问卷的人群所构成的泊松过程的强度是______人/小时。
答案:1505.【图片】表示相继两列列车之间的等待时间(单位:小时),服从(1, 2)上的均匀分布,乘客按强度为100人/小时的泊松过程到达火车站,问乘上某列火车的乘客中等待时间超过1个小时的乘客数量。
答案:506.已知随机游动【图片】的步长分布为【图片】. 那么【图片】=——————(用小数表示,四舍五入,保留4位小数)。
答案:0.02887. 2. .若N(t)是个等待时间分布为F(t)的更新过程,g是一个定义在正整数上的函数, 满足g(0)=0, g(n+1)=g(1)+rg(n), 【图片】, 其中r是个常数,那么函数h(t)=E(g(N(t)))满足_____.答案:8.平稳独立增量过程一定是平稳过程答案:错误9.努利过程既是平稳过程也是严平稳过程答案:正确10.若随机变量序列【图片】为独立增量过程,那么【图片】.答案:错误11.对离散时间随机过程【图片】定义【图片】,那么【图片】是关于该随机过程的停时答案:错误12.已知W是初值为0, 步长分布为【图片】的随机游动,那么以下错误的是答案:13.已知非负整数值随机变量X的概率母函数为【图片】那么【图片】______.(用小数表示)答案:0.514.若X,Y是独立同分布的随机变量服从参数为a的指数分布, 那么在X+Y=1的条件下X的分布是_____.答案:均匀分布15.【图片】(注意结果用小数表示)答案:0.0516.【图片】(注意:结果用小数表示)答案:0.517.已知X, Y是两个方差有限的随机变量,若以X的一个函数随机变量g(X)作为Y的一个近似,为了使得近似误差的均方最小,那么在几乎处处意义下g(X)=_____。
随机过程(一)
肖争艳 中国人民大学统计学院 zhengyanxiao@
1
教材与参考书
教材
– 张波、张景肖编著,《应用随机过程》
– A.G Malliaris and W.A.Brock, Stochastic Methods in Economics and Finance, Elsevier Science B .V.
2
什么是随机过程
随机过程是概率空间(,F ,P)上一族取值于S的 随机变量{X(t), t∈T},其中t为参数,它属于某 个指标集T。T称为参数集。S称为状态空间
常见的参数集T: T {0,1, 2,L },T {0,1, 2,L , n} T [0,),T [a,b]
4
X(t1,ω)
X(t2,ω)
t1
t2
X(t,ω1) X(t,ω2) X(t,ω3) tn
定义 对每一固定w∈,称X(t,w)是随机过程
{X(t,w), t∈T, w ∈ }的一个样本函数.
也称轨道, 路径,现实5.
随机过程的分布
一维分布
F (t, x) P( X (t) x)
X (t) E( X (t))
几乎处处收敛
依概率收敛
r阶矩收敛
依分布收敛
1、所有反方向都不成立;
2、几乎处处收敛与r阶矩收敛没有蕴含关系;
3、在学习随机过程的收敛性一定要注意是哪种含义下的
收敛。
13
例:设X1,X2,…,独立同分布,且
E(X1)=, 则对任意>0,
弱大数定律
lim
n
P{|
1 n
n k 1
Xk
|
软件工程第9版部分习题答案
习题参考答案Exercises(Homework): P251.3 What are the four important attributes that all professional software should have? Suggest four other attributes that may sometimes be significant.Answer:Four important attributes are maintainability, dependability, performance and usability. Other attributes that may be significant could be reusability (can it be reused in other applications), distributability (can it be distributed over a network of processors), portability (can it operate on multiple platforms e.g laptop and mobile platforms) and inter-operability (can it work with a wide range of other software systems).Decompositions of the 4 key attributes e.g. dependability decomposes to security, safety, availability, etc. is also a valid answer to this question.2.1Giving reasons for your answer based on the type of system being developed, suggest the most appropriate generic software process model that might be used as a basis for managing the development of the following systems:• A system to control anti-lock braking in a car• A virtual reality system to support software maintenance• A university accounting system that replaces an existing system • An interactive travel planning system that helps users plan journeys with the lowest environmental impactAnswer:1. Anti-lock braking system This is a safety-critical system so requiresa lot of up-front analysis before implementation. It certainly needs a plan-driven approach to development with the requirements carefully analysed. A waterfall model is therefore the most appropriate approach to use, perhaps with formal transformations between the different development stages.2. Virtual reality system This is a system where the requirements will change and there will be an extensive user interface components. Incremental development with, perhaps, some UI prototyping is the most appropriate model. An agile process may be used.3. University accounting system This is a system whose requirements are fairly ell-known and which will be used in an environment in conjunction with lots of other stems such as a research grant management system. Therefore, a reuse-based proach is likely to be appropriate for this.4. Interactive travel planning system System with a complex userinterface but which must be stable and reliable. An incremental development approach is the most appropriate as the system requirements will change as real user experience with the system is gained.2.4Suggest why it is important to make a distinction between developing the user requirements and developing system requirements in the requirements engineering process.Answer:There is a fundamental difference between the user and the system requirements that mean they should be considered separately.1. The user requirements are intended to descri be the system’s functions and features from a user perspective and it is essential that users understand these requirements. They should be expressed in natural language and may not be expressed in great detail, to allow some implementation flexibility. The people involved in the process must be able to understand the user’s environment and application domain.2. The system requirements are much more detailed than the user requirements and are intended to be a precise specification of the system that may be part of a system contract. They may also be used in situations where development is outsourced and the development team need a complete specification of what should be developed. The system requirements are developed after user requirements have been established.Excercises(Homework): P1164.2,*4.44.2Discover ambiguities or omissions in the following statement of requirements for part of a ticket-issuing system:An automated ticket-issuing system sells rail tickets. Users select their destination and input a credit card and a personal identification number.The rail ticket is issued and their credit card account charged. When the user presses the start button, a menu display of potential destinations is activated, along with a message to the user to select a destination. Once a destination has been selected, users are requested to input their credit card.Its validity is checked and the user is then requested to input a personal identifier. When the credit transaction has been validated, the ticket is issued.Answer:Ambiguities and omissions include:●• Can a customer buy several tickets for the same destination togetheror must they be bought one at a time?●• Can customers cancel a request if a mistake has been made?●• How should the system respond if an invalid card is input?●• What happens i f customers try to put their card in before selectinga destination (as they would in ATM machines)?●• Must the user press the start button again if they wish to buy anotherticket to a different destination?●• Should the system only sell tickets between t he station where themachine is situated and direct connections or should it include all possible destinations?4.4Write a set of non-functional requirements for the ticket-issuing system, setting out its expected reliability and response time.Answer:Possible non-functional requirements for the ticket issuing system include:1. Between 0600 and 2300 in any one day, the total system down time should not exceed 5 minutes.2. Between 0600 and 2300 in any one day, the recovery time after a system failure should not exceed 2 minutes.3. Between 2300 and 0600 in any one day, the total system down time should not exceed 20 minutes.All these are availability requirements –note that these vary according to the time of day. Failures when most people are traveling are less acceptable than failures when there are few customers.4. After the customer presses a button on the machine, the display should be updated within 0.5 seconds.5. The ticket issuing time after credit card validation has been received should not exceed 10 seconds.6. When validating credit cards, the display should provide a status message for customers indicating that activity is taking place. This tells the customer that the potentially time consuming activity of validation is still in progress and that the system has not simply failed.7. The maximum acceptable failure rate for ticket issue requests is 1: 10000.Excercises(Homework): P143-1445.2,5.5,5.6,5.75.2How might you use a model of a system that already exists? Explain whyit is not always necessary for such a system model to be complete and correct. Would the same be true if you were developing a model of a new system?Answer:You might create and use a model of a system that already exists for the followingreasons:1. To understand and document the architecture and operation of the existingsystem.2. To act as the focus of discussion about possible changes to that system.3. To inform the re-implementation of the system.You do not need a complete model unless the intention is to completely document the operation of the existing system. The aim of the model in such cases is usually to help you work on parts of the system so only these need to be modelled. Furthermore, if the model is used as a discussion focus, you are unlikely to be interested in details and so can ignore parts of the system in the model.This is true, in general, for models of new systems unless a model-based approach to development is taking place in which case a complete model is required. The other circumstances where you may need a complete model is when there is a contractual requirement for such a model to be produced as part of the system documentation.5.5Develop a sequence diagram showing the interactions involved when a student registers for a course in a university. Courses may have limited enrolment, so the registration process must include checks that places are available. Assume that the student accesses an electronic course catalog to find out about available courses.Answer:A relatively simple diagram is all that is needed here. It is best not to be too fussy about things like UML arrow styles as hardly anyone can remember the differences between them.5.6Look carefully at how messages and mailboxes are represented in the email system that you use. Model the object classes that might be used in the system implementation to represent a mailbox and an e-mail message. Answer:5.7Based on your experience with a bank ATM, draw an activity diagram that models the data processing involved when a customer withdraws cash from the machine.Answer:Notice that I have not developed the activities representing other services or failed authentication.Excercises(Homework): P173-1746.1,6.3,6.96.1When describing a system, explain why you may have to design the system architecture before the requirements specification is complete.Answer:The architecture may have to be designed before specifications are written to provide a means of structuring the specification and developing different subsystem specifications concurrently, to allow manufacture of hardware by subcontractors and to provide a model for system costing.6.3Explain why design conflicts might arise when designing an architecture for which both availability and security requirements are the most important non-functional requirements.Answer:Fundamentally, to provide availability, you need to have (a) replicated components in the architecture so that in the event of one component failing, you can switch immediately to a backup component. You also need to have several copies of the data that is being processed. Security requires minimizing the number of copies of the data and, wherever possible, adopting an architecture where each component only knows as much as it needs to, to do its job. This reduces the chance of intrudersaccessing the data.Therefore, there is a fundamental architectural conflict between availability (replication, several copies) and security (specialization, minimal copies). The system architect has to find the best compromise between these fundamentally opposing requirements.6.9Using the basic model of an information system as presented in Figure 6.16, suggest the components that might be part of an information system thatallows users to view information about flights arriving and departing from a particular airport.Answer:Students should consider the levels in the information system and should identify components that might be included at each level. Examples of these componentsmight be:Level 1 (Database level)Flight database; Flight status database; Airport information; Level 2: (Information retrieval level)Status management; Flight management; Search;Level 3: (User interaction level)Authentication; session management; forms processing () Level 4 (User interface)Input checking (Javascript), browserExcercises(Homework): P202-2037.1, 7.37.17.1 Using the structured notation shown in Figure 7.3, specify the weather station use cases for Report status and Reconfigure. You should make reasonable assumptions about the functionality that is required here.Answer:7.37.3 Using the UML graphical notation for object classes, design the following object classes, identifying attributes and operations. Use your own experience to decide on the attributes and operations that should be associated with these objects.• a teleph one• a printer for a personal computer• a personal stereo system• a bank account• a library catalogueAnswer:There are many possible designs here and a great deal of complexity can be added to the objects. However, I am only really looking for simple objects which encapsulate the principal requirements of these artefacts. Possible designs are shown in the above diagram.。
随机过程课后习题答案
标准教材:随机过程基础及其应用/赵希人,彭秀艳编著索书号:O211.6/Z35-2备用教材:(这个非常多,内容一样一样的)工程随机过程/彭秀艳编著索书号:TB114/P50历年试题(页码对应备用教材)2007一、习题0.7(1)二、习题1.4三、例2.5.1—P80四、例2.1.2—P47五、习题2.2六、例3.2.2—P992008一、习题0.5二、习题1.4三、定理2.5.1—P76四、定理2.5.6—P80五、1、例2.5.1—P802、例2.2.2—P53六、例3.2.3—P992009(回忆版)一、习题1.12二、例2.2.3—P53三、例1.4.2与例1.5.5的融合四、定理2.5.3—P76五、习题0.8六、例3.2.22010一、习题0.4(附加条件给出两个新随机变量表达二、例1.2.1三、例2.1.4四、例2.2.2五、习题2.6六、习题3.3引理1.3.1 解法纠正 许瓦兹不等式()222E XY E X E Y ⎡⎤⎡⎤≤⎡⎤⎣⎦⎣⎦⎣⎦证明:()()()()222222222220440E X Y E X E XY E Y E XY E X E Y E XY E X E Y λλλ +⎡⎤⎡⎤=++≥⎣⎦⎣⎦∴∆≤⎡⎤⎡⎤∴-≤⎡⎤⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤∴≤⎡⎤⎣⎦⎣⎦⎣⎦例1.4.2 解法详解已知随机过程(){},X t t T ∈的均值为零,相关函数为()121212,,,,0a t t t t et t T a --Γ=∈>为常数。
求其积分过程()(){},t Y t X d t T ττ=∈⎰的均值函数()Y m t 和相关函数()12,Y t t Γ。
解:()0Y m t =不妨设12t t >()()()()()()1212222112121122122100,,Y t t t t t t t t t EY t Y t E X d X d d d τττττττττΓ===Γ⎰⎰⎰⎰()()()()()222121122221222112222212221212121212000220022002200222211||111111||211ττττττττττττττττττττττττ--------------=+-=+=---=+-+⎡=++--⎣⎰⎰⎰⎰⎰⎰⎰⎰t t t a a t t a a a a t t t a a at a t a at t a t t at at ed d ed de d e d a ae d e d a a t t e e a a a a t e e e a a⎤⎦同理当21t t >时()()2112112221,1a t t at at Y t t t e e e a a----⎡⎤Γ=++--⎣⎦ (此处书上印刷有误)例1.5.5解法同上例1.5.6 解法详解 普松过程公式推导:(){}()()()()()()()()()()()1lim !lim 1!!!1lim 1!!lim 1lim !lim lim !第一项可看做幂级数展开:第二项将分子的阶乘进行变换:→∞-→∞-→∞---∆-→∞→∞-→∞→∞===-∆∆-⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦⎡⎤⎡⎤-∆==⎢⎥⎣⎦⎣⎦⎡⎤⋅∆=∆⎢⎥--⎣⎦N k N N kkN N k kN N kN kq t qtN N k N kk k N N P X t k C P N q t q t k N k N q t q t N k k q t e e N N N q t q t N k N ()()()()()!lim 1!-→∞⎡⎤⎢⎥⎣⎦⎡⎤⎡⎤=∆⋅=⋅=⎢⎥⎣⎦-⎣⎦N k k k k kN k N q t N qt qt N k (){}()()()()!1lim 1!!!N kkN kqt P X t k N q t q t N k k qt ek -→∞-∴=⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦=例2.1.2 解法详解设(){},X t t -∞<<+∞为零均值正交增量过程且()()2212121,E X t X t t t t t -=->⎡⎤⎣⎦,令()()()1Y t X t X t =--,试证明(){},Y t t -∞<<+∞为平稳过程。
应用随机过程课后习题解答 毛用才 胡奇英
第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===L 。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解 0()()jtxjtkk X k f t E eepq ∞===∑Q()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑Q222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)W2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 1(())x p p e x dx ∞--Γ=⎰Q (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ: 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+:同理可得:()()iiP X b f t b jt∑=∑- W3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
应用随机过程课后习题解答 毛用才 胡奇英
第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===L 。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解 0()()jtxjtkk X k f t E eepq ∞===∑Q()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑Q222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)W2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 1(())x p p e x dx ∞--Γ=⎰Q (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ: 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+:同理可得:()()iiP X b f t b jt∑=∑- W3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。