最新三视图高考试题集锦

合集下载

高考三视图(含解析)理试题(卷)汇总

高考三视图(含解析)理试题(卷)汇总

专题21三视图SUBA. 2 n B • 3 n C【答案】B【解析】综合三视圄可知』几何体是一个半轻炸1的半个球体.且表面积是底面积与半球面积的和丿其表面枳3=丄敦4“+疋2=31t-故选B.2点睛:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.2.已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧1 •某几何体的三视图如图所示,则其表面积为(【解析】由正视图和俯视图还原几何体如图所示,由正视图和俯视图对应线段可得AB BD AD 2,当BC 平面ABD时,BC=2,ABD的边AB上的高为、3,只有B选项符合,当BC不垂直平面ABD时,没有符合条件的选项,故选 B.点睛:1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. 2•三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据3.某个长方体被一个平面所截,得到几何体的三视图如图所示,则这个几何体的体积为()B【答案】BA. 4 B . 2.2 C . 20 D . 83【答案】D【解析】由三视图可知,该几何体如图所示,其底面为正方形』正方形的边长为2. 口D=3,BF=1,将相同的两个几何体拼在V』构成一个高为斗的长方饥所臥该几何体的体积為煜x仁仪4.如图,正三棱柱ABC ABG的主视图是边长为4的正方形,则此正三棱柱的左视图的面积为()【答案】D【解析】依题意知,此正三棱拄底面定边长为4的正三角形,接柱高为也其侧视囹为矩形,其一边长为2語,一启一边长訶4,故其面积2斗><2曲=8曲;故选D点睛:三视图问题的常见类型及解题策略⑴由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图•先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式•当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.原几何体为组合体;上面是长方体,下面是圆柱的一半(如图所示),A. 16 B 2 3 C . 4 3 D . 8,35.某几何体的三视图如图所示,则该几何体的体积为( )8 8 (C) 16 16 (D) 8 16将三视图还原为原来的几何体,再利用体积公式求解.其体积为V 4 2 2122 4 16 8 .故选A; 26•如图5,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的几条棱中,最长的棱的长度为( )(A) 6,2 (B) 4、2 (C) 6 (D)4【答案】C原几何体为三機锥D-A^C, M 中Aff^BC=i r AC=^D^ = DC=2^ ?QN二旳*叭庁)+4 = 6,故最长的棱的长度为= 选C点睛:对于小方格中的三视图,可以放到长方体,或者正方体里面去找到原图,这样比较好找;7.某几何体的三视图如图所示,则该几何体的表面积为()24 2【解析】如图所示A【解析】由已知三视图得到几何体是一个正方怀割去半轻为2的丄个球」所以表面积为S3 12试4&一亦於+ —><4亦囚・24巧故选:A4S&已知某空间几何体的三视图如图所示,则该几何体的表面积是()iEttffl 博视图A. 12十2&+2后B . 12+ 也+2 后C . 12 + 2辽十曲D . |12 +V2 + .J【答案】A【解析】由三视图知:几何体为四棱锥,且四棱锥的一条侧棱与底面垂直,1=-5< 2*2 = 221 =-X2M4=421S ABCD =~X(2+4)X2=69.一个几何体由多面体和旋转体的整体或一部分组合而成,其三视图如图所示,则该几何体如图,P A丄平面ABCD , 朋=2 , AD = 4,医=2 ,经计算,PD = 2石,P匚=«亍,Dt = 2調,•••可••.,故选A.3D. 35 2.2【答案】A 【解析】试題分析;扌艮据三视图可知几何体是组合体;左边罡直三棱柱、右边是半个圆柱,直三棱柱的底面是等腰 亶角三角形,直角边是1,侧犧长是茶圆柱的底面半径是1,母线长是2,二该几何体的体积V =ixlxlx2十丄芝二臥十1・故选;乩2 2考点:由三视图求体积.10•如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积【答案】C 【解析】A.1 B2C. 2 1的体积是(为(3D. 41 2 体积为—2 2 2 1 4 —3 3试题分析:相当于一个圆锥和一个长方体,故考点:三视图.11. 一个几何体的三视图如图所示,则该几何体的体积为(【解析】试题分析:该几何休的直观團如园所示,连接妙,则该几何体由直三棱柱血D-和四棱锥一吨组合而成,其和易22 +扌心后专詈故应选扎12. 一个几何体的三视图如图所示 ,则该几何体的体积为A.14~316~3D. 6【答案】A考点:三视图.1【答案】-3【解析】本题考查三视图、四棱锥的体积计算等知识,难度中等•由三视图可知该几何体是底1 1面为长和高均为1的平行四边形,高为1的四棱锥,故其体积为V - 1 1 1 - •3 3。

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析1.一个多面体的三视图如图所示,则该多面体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图,正方体棱长为2,正三棱锥侧棱互相垂直,侧棱长为1,故几何体的体积为:V正方体-2V棱锥侧2×2×2−2×.故选:A.【考点】三视图求解几何体的体积.2.在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积..3.某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为()A.92+14πB.82+14πC.92+24πD.82+24π【答案】A【解析】由几何体的三视图,知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.长方体中EH=4,HG=4,GK=5,所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π,选A.4.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【答案】D【解析】由题目所给的几何体的正视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示,可知左视图为等腰三角形,且轮廓线为实线,故选D.5.一个正方体截去两个角后所得几何体的正视图、侧视图如图所示,则其俯视图为()【答案】C【解析】依题意可知该几何体的直观图如图所示,故其俯视图应为C.6.某几何体的三视图如图所示,则该几何体的体积为A.12B.18C.24D.30【答案】C【解析】由三视图可知该几何体是一个底面为直角三角形的直三棱柱的一部分,其直观图如上图所示,其中,侧面是矩形,其余两个侧面是直角梯形,由于,平面平面,所以平面,所以几何体的体积为:故选C.【考点】1、空间几何体的三视图;2、空间几何体的体积.7.一块石材表示的几何体的三视图如图2所示,将石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4【答案】B【解析】由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径,则,故选B.【考点】三视图内切圆球三棱柱8. [2013·四川高考]一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台【答案】D【解析】由正视图和侧视图可知,该几何体不可能是圆柱,排除选项C;又由俯视图可知,该几何体不可能是棱柱或棱台,排除选项A、B.故选D.9.[2013·宁波质检]如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥平面A1B1C1,正视图是正方形,俯视图是正三角形,该三棱柱的侧视图面积为()A.2B.C.2D.4【答案】A【解析】由题意可知,该三棱柱的侧视图应为矩形,如图所示.在该矩形中,MM1=CC1=2,CM=C1M1=·AB=.所以侧视图的面积为S=2.10.某几何体的三视图如图所示,则该几何体的体积的最大值为 .【答案】【解析】该几何体是类似墙角的三棱锥,假设一条直角的棱长为x,则三条直角棱长分别为.所以体积为.当且仅当时取等号.【考点】1.三视图.2.函数最值问题.3.空间想象能力.11.(2012•广东)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π【答案】C【解析】由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱故它的体积是5×π×32+π×32×=57π故选C12. (2014·咸宁模拟)某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )A.92+14πB.82+14πC.92+24πD.82+24π【答案】A【解析】由几何体的三视图知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π. 13.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为【答案】D【解析】条件对应的几何体是由底面棱长为r的正四棱锥沿底面对角线截出的部分与底面为半径为r的圆锥沿对称轴截出的部分构成的。

三视图习题50道(含答案)

三视图习题50道(含答案)

三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是()(A)2(B)1(C)23(D)132、一个几何体的三视图如图,该几何体的表面积是()(A)372 (B)360 (C)292 (D)2803、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(A)3523cm3(B)3203cm3 (C)2243cm3(D)1603cm34、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为:()5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( )AB.2 C..66、图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm第2题第5题7、一个几何体的三视图如图所示,则这个几何体的体积为 。

8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )10、一空间几何体的三视图如图所示,则该几何体的体积为( ).A.2π+B. 4π+C. 2π+D. 4π11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .B .C .D .9π10π11π12π第7题侧(左)视图正(主)视图俯视图俯视图正(主)视图侧(左)视图12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为 ()(A )(B )(C )(D )13、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .14、设某几何体的三视图如上图所示。

三视图新课标历届高考题(文理通用)

三视图新课标历届高考题(文理通用)

三视图新课标历届高考题的体积是( B )A.34000cm 3B.38000cm 3C.32000cmD.34000cm2、(2008年理12)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a + b 的最大值为( C ) A. 22B. 32C. 4D. 523、(2009年理11文11)一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )为 A(A )48122+ (B )48242+ (C )36122+ (D )36242+4、(2010年文15)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的______ _(填入所有可能的几何体前的编号)① 三棱锥 ②四棱锥 ③三棱柱 ④四棱柱 ⑤圆锥 ⑥圆柱5、(2010年理14)正视图为一个三角形的几何体能够是______(写出三种)2020正视图20侧视图10 1020俯视图6、(2011年理6文8)在一个几何体的三视图中,正视图和俯视图如右图所示,则相对应的侧视图能够为( D )7、(2012年文7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为B(A)6 (B)9 (C)12 (D)188、(2013课标全国Ⅱ,理7文9)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图能够为( A ).9、(2013年新课标Ⅰ理8文11)某几何体的三视图如图所示,则该几何体的体积为A16+(A)8π8+(B)8π16+(C)π618+(D)16π10、(2014年新课标Ⅱ理6文6)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6c m的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为 C(A)1727(B)59(C)1027(D)1311、(2014年新课标Ⅰ理12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为BA.62B.42C.6D.412、(2014年新课标Ⅰ文8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( B )A.三棱锥B.三棱柱C.四棱锥D.四棱柱高考题参考答案:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B C A ①②③⑤三棱锥、三棱柱、圆锥 D B A A C B B。

高三专项训练:三视图练习题(一)

高三专项训练:三视图练习题(一)

高三专项训练:三视图练习题(一)(带答案)一、选择题1.如图是某几何体的三视图,则此几何体的体积是( )A .36B .108C .72D .1802.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A 、球B 、三棱锥C 、正方体D 、圆柱3.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A 、9πB 、10πC 、11πD 、12π4.有一个几何体的三视图及其尺寸如图(单位cm ),则该几何体的表面积及体积为( )A.3212,24cm cm ππB. 3212,15cm cm ππC. 3236,24cm cm ππD.以上都不正确5.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.A. B. CD .36.一空间几何体的三视图如图所示,则该几何体的体积为.A. B. C D. [7. 若某空间几何体的三视图如图所示,则该几何体的体积是A .13 B .23C .1D .28.右图是某几何体的三视图,则该几何体的体积为( )A . B.C. D.1362942π+3618π+9122π+9182π+正视图俯视图9.已知一个几何体的三视图如图所示,则该几何体外接球的表面积为( )A .43π B . 163π C .1912π D . 193π 10.某几何体的正视图如图所示,则该几何体的俯视图不可能的是11.已知某个几何体的三视图如图(主视图中的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )cm 3.A .π+8B .328π+C .π+12D .3212π+侧视图主视俯视第8题图俯视图侧视图 正视图12.已知正六棱柱的底面边长和侧棱长均为2cm ,其三视图中的俯视图如图所示,则其左视图的面积是( )(A )243cm (B )223cm (C )28cm (D )24cm13.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .6πB .7πC .8πD .9π14.如右图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为 ( )A .π3B .π2C .π23 D .π4 15.如图是一个几何体的三视图,若它的体积是33,则图中正视图所标a=( )A .1B 3C 3D .316.已知某几何体的三视图如图所示(单位:cm ),其中正视图、侧视图都是等腰直角三角形,则这个几何体的体积是( )A .338cmB .3316cm C .33216cm D . 3332cm17.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .B .C .D .18.若某空间几何体的三视图如图所示,则该几何体的体积是 ( )A.13 B. 23C. 1D. 2 俯视图侧视图正视图22119.某物体是空心的几何体,其三视图均为右图,则其体积为( )A 、8B 、43π C 、483π+ D 、483π- π12π34π3π312正视图 侧视图俯视图 正视第9题22 4 2侧视图 22俯视20.如图,水平放置的三棱柱ABC-A 1B 1C 1中,侧棱AA 1⊥平面A 1B 1C 1,其正视图是边长为a 的正方形.俯视图是边长为a 的正三角形,则该三棱柱的侧视图的面积为A .a 2B .a 2C a 2D 221.右图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3π B .24+3π C .20+4π D .24+4π22.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .12πB .π34C .3πD .π312.23.如右图为一个几何体的三视图,其中俯视图为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为( )12正视图 侧视图 俯视图 AC A 11正视图 侧视图俯视图24.图1是设某几何体的三视图,则该几何体的体积为()A.942π+B.3618π+C.9122π+D.9182π+、25.已知某几何体的三视图如图所示,根据图中标注的尺寸(单位cm)可得该几何体的体积是()A.313cm B.323cmC.343cm D.383cm26.小红拿着一物体的三视图(如图所示)给小明看,并让小明猜想这个物件的形状是A. 长方形 B. 圆柱 C. 立方体 D. 圆锥27.一个几何体的三视图如图所示,则这个几何体的体积为()正视图侧视图俯视图332正视图俯视图图1AB .12C .32 D1+28.一个空间几何体的三视图如图(1)所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积和表面积分别为 ( )A 、64,48+B 、32,48+ C 、643,32+D 、332,48+29.若某多面体的三视图(单位: cm )如图所示,则此多面体的体积是( ) A .21cm 3 B .32cm 3 C .65cm 3 D .87cm 3正视图俯视图图(1)侧(左)视图 1111130.一个空间几何体的正视图、侧视图均是长为2、高为3的矩形,俯视图是直径为2的圆(如右图),则这个几何体的表面积为A .12π+B .7πC . π8D .π2031.(一空间几何体的三视图如图所示,则该几何体的体积为( ).A. B.C.D. 32.已知几何体其三视图(如图),若图中圆半径为1,等腰三角形腰为3,则该几何体表面积为 ( ) A .6π B .5π C.4π D.3π2π+4π+2π4π+正视侧视俯视俯视..A .2,23B .22,2D .2,434.如图,有一个几何体的正视图与侧视图都是底为6cm ,腰为5cm 的等腰三角形,俯视图是直径为6cm 的圆,则该几何体的体积为 ( )A .12πcm 3B .24πcm 3C .36πcm 3D .48πcm 335 (A )348cm (B )324cm (C )332cm (D )328cm36. 如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为 ( )A .4B .3C .32D .237.某四面体的三视图如下图所示,则该四面体的四个面中,直角三角形的面积和是_______.二、填空题 正视图 左视图俯视图正视图侧视图 俯视图 第6题 ·38.一个几何体的三视图如右图所示,主视图与俯视图都是一边长为3cm 的矩形,左视图是一个边长为2cm 的等边三角形,则这个几何体的体积为________.39.如图所示是一个几何体的三视图(单位:cm ),主视图和左视图是底边长为4cm ,腰长为22的等腰三角形,俯视图是边长为4的正方形,则这个几何体的表面积是-__________40.某几何体的三视图如图所示,则该几何体的体积的最大值为 .41.一正多面体其三视图如图所示,该正多面体的体积为___________.主视图 左视图俯视图3主视图 俯视图 侧视图42.若某几何体的三视图(单位:cm )如右图所示,则该几何体的体积为 cm 2.43.已知某几何体的三视图如图所示,其中侧视图是等腰直角三角形,正视图是直角三角形,俯视图ABCD 是直角梯形,则此几何体的体积为 ;44.某四面体的三视图如上图所示,该四面体四个面的面积中最大的是1正视图俯视图左视图45.一个几何体的三视图如右图所示(单位:),则该几何体的体积为__________46.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则球的表面积是_____.47.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为的正三角形,其俯视图轮廓为正方形,则其体积是_________.48. 某几何体的三视图如图所示,则它的体积是___________俯视图m 3m 249.设某几何体的三视图如图所示,则该几何体表面积是50.一个几何体的三视图如右图所示,正视图是一个边长为2的正三角形,侧视图是一个等腰直角三角形,则该几何体的体积为.三视图练习题(一)参考答案1.B【解析】此几何体是一个组合体,下面是一个正四棱柱上面是一个四棱锥.其体积为166********V =⨯⨯+⨯⨯⨯=.2.D【解析】圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆; 三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆。

高三数学空间几何体的三视图与直观图试题

高三数学空间几何体的三视图与直观图试题

高三数学空间几何体的三视图与直观图试题1.若一个四棱锥的三视图如图所示,其中正视图与侧视图都是边长为2的等边三角形,则该四棱锥的四条侧棱长之和等于_____________【答案】【解析】由三视图可知该四棱锥的四个侧面是底边长为2,高为2的全等的等腰三角形,所以每条侧棱长都等于,所以四条侧棱长之和为.【考点】三视图.2.已知某几何体的三视图如图所示,则该几何体的表面积等于________.【答案】【解析】据三视图可知,该几何体是一个正方体(棱长为2)去掉一角(左前上角)而得,直观图如图所示,其中DA=DB=DC=1,∴△ABC是边长为的等边三角形,∴其表面积为S=6×22-3××12+×()2×=.3.一个多面体的直观图及三视图如图所示:(其中M、N分别是AF、BC的中点)(1)求证:MN∥平面CDEF;(2)求多面体A-CDEF的体积.【答案】(1)见解析(2)【解析】解:由三视图可知,AB=BC=BF=2,DE=CF=2,∠CBF=.(1)证明:取BF的中点G,连接MG、NG,由M、N分别为AF、BC的中点可得,NG∥CF,MG∥EF,∴平面MNG∥平面CDEF,又MN⊂平面MNG,∴MN∥平面CDEF.(2)取DE的中点H.∵AD=AE,∴AH⊥DE,在直三棱柱ADE-BCF中,平面ADE⊥平面CDEF,平面ADE∩平面CDEF=DE.∴AH⊥平面CDEF.∴多面体A-CDEF是以AH为高,以矩形CDEF为底面的棱锥,在△ADE中,AH=.S矩形=DE·EF=4,CDEF∴棱锥A-CDEF的体积为V=·S·AH=×4×=.矩形CDEF4.一个几何体的主视图和俯视图如图所示,主视图是边长为的正三角形,俯视图是边长为的正六边形,则该几何体左视图的面积是【答案】【解析】左视图的面积为.【考点】三视图.5.一空间几何体的三视图如图所示,该几何体的体积为12π+,则正视图中x的值为( )A.5B.4C.3D.2【答案】C【解析】三视图,由正四棱锥和圆柱组成,故选C.6.三棱柱的直观图和三视图如下图所示,其侧视图为正三角形(单位cm)⑴当x=4时,求几何体的侧面积和体积⑵当x取何值时,直线AB1与平面BB1C1C和平面A1B1C1所成角大小相等。

高中三视图练习(含答案

高中三视图练习(含答案

俯视侧(左)视24主(正)视图三视图专题练习:1.一个几何体的三视图如图所示,其中俯视图为正三角形,则该几何体的表面积为___________.2.一个几何体的三视图如下图所示, 则该几何体的表面积为______.3.如右图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为( ) A . π3 B . π2 C . π23 D . π44.右图是一个几何体的三视图,则该几何体 的体积为 ( ) A .6 B .8 C .16D .24正视图侧视图俯视图1223112231第3题图主视图俯视图左视图5.一空间几何体的三视图如图所示,则该几何体的体积为( ). A.223π+ B. 423π+ C. 323π+ D. 2343π+6.一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为(A )2 (B )2 (C )2 (D )27.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是3cm .2 2 2 正(主)视图 22侧(左)视图俯视图8.设某几何体的三视图如下(尺寸的长度单位为m)。

则该几何体的体积为3m 9.如图是一个几何体的三视图,若它的体积是33,则a_______10.如右图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12。

则该集合体的俯视图可以是11.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 (A)9π (B )10π (C)11π (D)12π答案:1. 243+ 2. 2412π+ 3.A. 4.B 5.C. 6.A. 7.18. 8.4. 9. 310.C 11.D注意第6题二项分布与超几何分布辨析山东 韩文文二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析.例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫⎪⎝⎭,.3031464(0)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭∴;12131448(1)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭; 21231412(2)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭;3033141(3)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭.因此,X 的分布列为22,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C PY C ===.因此,Y 的分布列为辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.超几何分布和二项分布都是离散型分布 超几何分布和二项分布的区别:超几何分布需要知道总体的容量,而二项分布不需要; 超几何分布是不放回抽取,而二项分布是放回抽取(独立重复)当总体的容量非常大时,超几何分布近似于二项分布.........。

高三专项训练:三视图练习题

高三专项训练:三视图练习题

高三专项训练:三视图练习题(一)(带答案)一、选择题1.如图是某几何体的三视图,则此几何体的体积是( )A .36B .108C .72D .1802.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A 、球B 、三棱锥C 、正方体D 、圆柱3.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A 、9πB 、10πC 、11πD 、12π4.有一个几何体的三视图及其尺寸如图(单位cm ),则该几何体的表面积及体积为( )A.3212,24cm cm ππB. 3212,15cm cm ππC. 3236,24cm cm ππD.以上都不正确5.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.A .23B .22C .5D .36.一空间几何体的三视图如图所示,则该几何体的体积为.A. 1B. 3 C 6 D. 2[7. 若某空间几何体的三视图如图所示,则该几何体的体积是A .13 B .23C .1D .28.右图是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+C.9122π+ D.9182π+9.已知一个几何体的三视图如图所示,则该几何体外接球的表面积为( )332正视图俯视图A .43πB . 163πC .1912πD . 193π 10.某几何体的正视图如图所示,则该几何体的俯视图不可能的是11.已知某个几何体的三视图如图(主视图中的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )cm 3.A .π+8B .328π+C .π+12D .3212π+12.已知正六棱柱的底面边长和侧棱长均为2cm ,其三视图中的俯视图如图所示,则侧视图主视俯视22 312第8题图2俯视图 332 1侧视图 正视图1 1 1其左视图的面积是( ) (A )243cm (B )223cm (C )28cm (D )24cm13.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .6πB .7πC .8πD .9π14.如右图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为 ( )A .π3B .π2C .π23 D .π4 15.如图是一个几何体的三视图,若它的体积是33,则图中正视图所标a=( )A .1B 3C 3D .316.已知某几何体的三视图如图所示(单位:cm ),其中正视图、侧视图都是等腰直角三角形,则这个几何体的体积是( )A .338cmB .3316cm C .33216cm D . 3332cm17.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π12B .π34C .π3D .π31218.若某空间几何体的三视图如图所示,则该几何体的体积是 ( )A.13 B. 23C. 1D. 2 俯视图侧视图正视图22119.某物体是空心的几何体,其三视图均为右图,则其体积为( )A 、8B 、43π C 、483π+ D 、483π-正视图 侧视图俯视图 正视第9题22 4 2侧视图 22俯视20.如图,水平放置的三棱柱ABC-A 1B 1C 1中,侧棱AA 1⊥平面A 1B 1C 1,其正视图是边长为a 的正方形.俯视图是边长为a 的正三角形,则该三棱柱的侧视图的面积为A .a 2B .12a 2C .32a 2 D .3a 221.右图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3πB .24+3πC .20+4πD .24+4π22.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .12πB .π34C .3πD .π312. 23.如右图为一个几何体的三视图,其中俯视图为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为( )A. 6+3B. 24+3C. 24+23D. 32正视图 侧视图 俯视图 AC A 11正视图 侧视图俯视图24.图1是设某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+ C.9122π+ D.9182π+ 、25.已知某几何体的三视图如图所示,根据图中标注的尺寸(单位cm )可得该几何体的体积是( )A .313cmB .323cm C .343cm D .383cm26.小红拿着一物体的三视图(如图所示)给小明看,并让小明猜想这个物件的形状是A. 长方形B. 圆柱C. 立方体D. 圆锥27.一个几何体的三视图如图所示,则这个几何体的体积为( )A 32B .12C .32D 312+ 正视图侧视图俯视图 332正视图俯视图图128.一个空间几何体的三视图如图(1)所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积和表面积分别为 ( )A 、64,48+B 、32,48+C 、643,32+ D 、332,48+29.若某多面体的三视图(单位: cm )如图所示,则此多面体的体积是 ( )A .21cm 3B .32cm 3C .65cm 3 D .87cm 3 30.一个空间几何体的正视图、侧视图均是长为2、高为3的矩形,俯视图是直径为2的圆(如右图),则这个几何体的表面积为正视侧视俯视正视图俯视图图(1)侧(左)视图 11111A .12π+B .7πC . π8D .π2031.(一空间几何体的三视图如图所示,则该几何体的体积为( ). A.223π+ B. 423π+C. 2323π+D. 2343π+ 32.已知几何体其三视图(如图),若图中圆半径为1, 等腰三角形腰为3,则该几何体表面积为 ( )A .6πB .5πC .4πD .3π33.若一个正三棱柱的三视图如下图所示,则这个正三棱柱的高和底面边长分别为( )A .2,23B .22,2 D .2,434.如图,有一个几何体的正视图与侧视图都是底为6cm ,腰为5cm 的等腰三角形,俯视图是直径为6cm 的圆,则该几何体的体积为 ( )A .12πcm 3B .24πc m 3C .36πcm 3D .48πcm 3正视图 2 32 左视图俯视图正视图 侧视图俯视35.一个多面体的三视图分别是正方形、等腰三角形和矩形, 其尺寸如图,则该多面体的体积为(A )348cm (B )324cm(C )332cm (D )328cm36. 如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为 ( )A .4B .3C .32D .237.某四面体的三视图如下图所示,则该四面体的四个面中,直角三角形的面积和是_______.38.一个几何体的三视图如右图所示,主视图与俯视图都是一边长为3cm 的矩形,左视图是一个边长为2cm 的等边三角形,则这个几何体的体积为________.二、填空题3主视图 俯视图 侧视图39.如图所示是一个几何体的三视图(单位:cm ),主视图和左视图是底边长为4cm ,腰长为22的等腰三角形,俯视图是边长为4的正方形,则这个几何体的表面积是-__________40.某几何体的三视图如图所示,则该几何体的体积的最大值为 .41.一正多面体其三视图如图所示,该正多面体的体积为___________.42.若某几何体的三视图(单位:cm )如右图所示,则该几何体的体积为 cm 2.31正视图俯视图左视图主视图 左视图俯视图43.已知某几何体的三视图如图所示,其中侧视图是等腰直角三角形,正视图是直角三角形,俯视图ABCD是直角梯形,则此几何体的体积为;44.某四面体的三视图如上图所示,该四面体四个面的面积中最大的是45.一个几何体的三视图如右图所示(单位:m),则该几何体的体积为__________3m 46.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则球的表面积是_____.47.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是_________.主视图左视图俯视图48.某几何体的三视图如图所示,则它的体积是___________49.设某几何体的三视图如图所示,则该几何体表面积是50.一个几何体的三视图如右图所示,正视图是一个边长为2的正三角形,侧视图是一个等腰直角三角形,则该几何体的体积为.三视图练习题(一)参考答案1.B【解析】此几何体是一个组合体,下面是一个正四棱柱上面是一个四棱锥.其体积为166********V =⨯⨯+⨯⨯⨯=.2.D【解析】圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆; 三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆。

三视图高考题选答案版

三视图高考题选答案版

三视图高考题选一.知识点1.三视图的名称几何体的三视图包括:主视图、左视图、俯视图・2、三视图的画法①在画三视图时,重叠的线只画一条,档住的线要画成虚线•②三视图的主视图、左视图、俯视图分别是从几何体的正前方、正左方.正上方观察几何体的正投彩图.【题型一】空间几何体的三视图1、若某几何体的三视图如图7—1 — 4所示,则这个几何体的直观图可以是()图7-1-4【解析】根据主视图与俯视图可排除A、C,根据左视图可排除D.故选B.2、(2012 •高考)将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的左视图为()3、[2014 •卷]某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱[解析]A由空间几何体的三视图可知,圆柱的正视图、侧视图、俯视图都不可能是三角形.4J2014 •卷]一几何体的直观图如图1・1所示,下列给出的四个俯视图中正确的是()图1・2[解析]B易知该几何体的俯视图为选项B中的图形.主視图左视图俯视图⑴ ⑵ 图7-1-7主施)视图1- 1【题型二】三视图与面积U (2013 •高考)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧(左)视图是一个面积为边的矩形,则该正方体的正(主)视图的面积等于()B. 1C.牢1D.返【解析】由于该正方体的俯视图是面积为1的正方形,侧视图是一个面积为花的矩形,因此该几何体的主视图是一个长为电,宽为1的矩形,其面积为【答案】D2、[2014 •卷]一个多面体的三视图如图1・2所示,则该多面体的表面积为()A. 21+书B. 8+^2C.21D. 18正(主)视图侧(左)视图图2[解析]A如图,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其表面积S=6X4-|X6+2X|X-72X^=21+V3.3. [2014 •卷]几何体的三视图(单位:cm)如图1所示,则此几何体的表面积是()[解析]• D此几何体是由长方体与三棱柱组合而成的,其直观图如图,所以该几何体的表面积为 2(4X3 + 6X3 + 6X4)+2X|X3X4+4X3 + 3X5-3X3 = 138(cm 2),故选 D ・4、[2014•卷]某几何体的三视图如图2所示,则该几何体的表面积为()1 r51 T■ % % ■ % ■ ■ %4 -► « 3-> 正视图 左视图俯视图图1・2A. 54B. 60C. 66 D ・ 72[解析]B 由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥所得,三棱柱的底面 是一个两直角边长分别为3和4的直角三角形,高为5,截去的锥体的底面是两直角边的边 长分别为3和4的直角三角形,高为3,所以表面积为S=*X3X4+竽+学X4+于X 5+3X5=60 ・【题型三】三视图与体积U (2013 •高考)某三棱锥的三视图如图7-1-8所示,则该三棱锥的体积是( )俯视图图 7-1-8c -l如图,三棱锥的底面是一个直角边长为1的等腰直角三角形,有一条侧棱和 底面垂直,且其长度为2,故三棱锥的高为2,故其体积r=^x|x 1X1X2=!,故选【答案】B【解析】 正(卞)视图 侧(左)视图2、[2014 •卷]某几何体三视图如图1・1所示,则该几何体的体积为(n n A. 8—2 n B ・ 8— n C ・ 8—— D ・ 8——俯視图 图1- 1[解析]B 根据三视图可知,该几何体是正方体减去两个体积相等的圆柱的一部分 (占圆柱的》后余下的部分,故该几何体体积为2X2X2-2X^X n X2=8- n.3, [2014 •卷]一个儿何体的三视图如图1- 3所示(单位:m ),则该几何体的体积为 3 ________ m ■ 图1・3[解析]由三视图可得,该几何体为圆柱与圆锥的组合体,其体积r=nXl 2X4+^X 2叹2罟.4、(2013年高考新课标1 (湮))某几何体的三视图如图所示•则该几何体的体积为 1~~ 1 —:1 ------- --------2正视图 侧视图俯视图A. 16 + 8/rB ・ 8 + 8/rC ・ 16 + 16/r D. 8 + 16”【答案】A 5、(2013年(理))某四棱台的三视图如图所「示•则该四棱台的体积是 ( )【答案】BA. 414B. 316 C. 3 D. 6 第5题图。

三视图高考试题集锦

三视图高考试题集锦

立体几何——三视图高考试题集锦1。

(14福建卷)某空间几何体的正视图是三角形,则该几何体不可能是 ( A ) A .圆柱 B.圆锥 C.四面体 D 。

三棱柱2。

(10年海南卷)正视图是一个三角形的几何体可以是_______(写出三种) 3(11山东卷)右图是长和宽分别相等的两个矩形,给定下列三个命题: ①存在三棱柱,其正(主)视图、俯视图如右图; ②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是 (A) 3 (B) 2 (C) 1 (D) 0 4.(14辽宁)7。

某几何体三视图如图所示,则该几何体的体积 为( )A .82π- B .8π- C .82π-D .84π-5.(12海南卷)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 186.(14天津卷)已知一个几何体的三视图如图所示(单位:m ),则该几何体的体积为____3m 。

(第4题) (第5题) (第6题)7。

(13海南卷)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分 别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四 面体三视图中的正视图时,以zOx 平面为投影面,则得到正视 图可以为( )244242俯视图侧视图正视图俯视图正(主)视图(A )(B )(C)(D )8。

(14湖北卷)在如图所示的空间直角坐标系xyz O 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A 。

①和②B 。

③和① C. ④和③ D 。

④和②9。

(2014•浙江)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( ) A . 90cm 2 B . 129cm 2 C . 132cm 2 D . 138cm 2 10.(07海南文理)已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )A .334000cmB .338000cm C .20003cm D .40003cm(第9题) (第10题)201010202020正视图侧视图俯视图11.(07山东文理)下列几何体各自的三视图中,有且仅有两个视图相同的是 ( )A .①②B .①③C .①④D .②④12.(08海南理)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 的b 的线段,则b a +的最大值为( )A .22B .32C .4D .5213.(09海南文理)一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )为( )A .21248+ B .22448+ C .21236+ D .22436+ 14.(09山东文理)一空间几何体的三视图如图所示,则该几何体的体积为( ) A .223π+ B .423π+ C .2323π+ D .2343π+(第13题) (第14题)15.(11海南文理)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )15.(10安徽文理)一个几个何体的三视图如图,该几何体的表面积为( )A .280B .292C .360D .372 16.(11湖南文理)如图是某几何体的三视图,则该几何体的体积为( )A .9122π+B .9182π+ C .942π+ D .3618π+(第15题) (第16题)20.(09辽宁文理)设某几何体的三视图如下(尺寸的长度单位为m )。

最新高考三视图(含解析)理试题汇总

最新高考三视图(含解析)理试题汇总

专题21 三视图1.某几何体的三视图如图所示,则其表面积为()A.2π B.3π C.4π D.5π【答案】B点睛:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.2.已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为( )A. B. C. D.【答案】B【解析】由正视图和俯视图还原几何体如图所示,由正视图和俯视图对应线段可得2AB BD AD ===,当BC ABD ⊥平面时, BC=2, ABD ∆的边AB 上的高为3,只有B 选项符合,当BC 不垂直平面ABD 时,没有符合条件的选项,故选B .点睛:1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据3.某个长方体被一个平面所截,得到几何体的三视图如图所示,则这个几何体的体积为( )A . 4B . 22C .203D . 8 【答案】D4.如图,正三棱柱111ABC A B C -的主视图是边长为4的正方形,则此正三棱柱的左视图的面积为( )A . 16B . 23C . 43D . 83【答案】D点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.5.某几何体的三视图如图所示,则该几何体的体积为 ( )(A) 168π+ (B) 88π+ (C) 1616π+ (D) 816π+【答案】A【解析】将三视图还原为原来的几何体,再利用体积公式求解.原几何体为组合体;上面是长方体,下面是圆柱的一半(如图所示),其体积为21422241682V ππ=⨯⨯+⨯⨯=+.故选A;6.如图5,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的几条棱中,最长的棱的长度为( )(A) 62 (B) 42 (C) 6 (D)4【答案】C【解析】如图所示点睛:对于小方格中的三视图,可以放到长方体,或者正方体里面去找到原图,这样比较好找;7.某几何体的三视图如图所示,则该几何体的表面积为( )A . 24π-B . 24π+C . 20π-D . 20π+【答案】A8.已知某空间几何体的三视图如图所示,则该几何体的表面积是()A. B. C. D.【答案】A【解析】由三视图知:几何体为四棱锥,且四棱锥的一条侧棱与底面垂直,如图,平面,,,,,经计算,,,,∴,∴,,,,∴,故选A.9.一个几何体由多面体和旋转体的整体或一部分组合而成,其三视图如图所示,则该几何体的体积是( )A .1π+B .2π+C .21π+D .3522π++【答案】A【解析】考点:由三视图求体积.10.如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积为( )A .263π+B .83π+C .243π+D .43π+【答案】C【解析】试题分析:相当于一个圆锥和一个长方体,故体积为122221433ππ⋅+⋅⋅=+.考点:三视图.11.一个几何体的三视图如图所示,则该几何体的体积为()A.143B. 5 C.163D.6【答案】A【解析】考点:三视图.12.一个几何体的三视图如图所示,则该几何体的体积为____.【答案】1 3【解析】本题考查三视图、四棱锥的体积计算等知识,难度中等.由三视图可知该几何体是底面为长和高均为1的平行四边形,高为1的四棱锥,故其体积为1111133V=⨯⨯⨯=.业主在物业管理中的权利和义务《物业管理条例》规定业主在物业管理中享有的10项权利:一、是按照物业服务合同的约定,接受物业管理企业提供的服务。

(完整word版)高考三视图强化训练30题

(完整word版)高考三视图强化训练30题

高考三视图强化训练30题三视图之间的关系。

正视图的是几何体的高,长;侧视图的是几何体的高,宽。

俯视图的是几何体的长,宽;1.(2014新课标全国卷Ⅰ,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6 2 B.4 2 C.6 D.42.(2014安徽,5分)一个多面体的三视图如图所示,则该多面体的体积为()A.233 . B476 C. 6 D.73.(2014重庆,5分)某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18 C.24 D.304.【2015高考新课标2,理6】一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )D.51A.81B.71C.615.(2014重庆,5分)某几何体的三视图如图所示,则该几何体的表面积为( )A .54B .60C .66D .726.(2014辽宁,5分)某几何体三视图如图所示,则该几何体的体积为( )A .8-π4B .8-π2C .8-πD .8-2π7.(2014四川,5分)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是 ( )A .3B .2 C. 3 D .18.(2014浙江,5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A .90 cm 2B .129 cm 2C .132 cm 2D .138 cm 29.(2013浙江,5分)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .108 cm 3B .100 cm 3C .92 cm 3D .84 cm 310.(2013新课标全国Ⅰ,5分)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π11.【2015高考新课标1,文理11】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r=( )(A)1(B)2(C)4(D)812.【2015高考新课标2,理9】已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )A.36π B.64π C.144π D.256π13.(2015•北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A .2+B.4+C.2+2D.5 14.(2015•重庆)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.15.(2015•北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B.C.D.216.(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.217.(2015•重庆)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.18.(2015•泉州模拟)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm319.(2015•衢州一模)如图是某几何体的三视图,则该几何体的体积为()A.1 B.C.D.20.(2015•西宁校级模拟)某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x 的值是()A.2 B.C.D.321.(2015•金华一模)某三棱锥的三视图如图所示,该三棱锥的体积为()A .80 B.40 C.D.22.(201 1(2016文理).某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.23.(2016年北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.124.(2016年山东高考)有一个半球和四棱锥组成的几何体,其三视图如右图所示,则该几何体的体积为(A)π32+31(B)π32+31(C)π62+31(D)π62+125.(2016年四川高考)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是__________.26.(2016年天津高考)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为_______m3.27.(2016年全国II 高考)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π28..(2016年全国III 高考)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )185+(B )545+(C )90 (D )8129.[2014·湖北卷] 在如图1-1所示的空间直角坐标系O ­ xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为( )1A .①和②B .①和③C .③和②D .④和②30.沿一个正方体三个面的对角线截得的几何体如图所示, 则该几何体的左视图为( )(A ) (B ) (C ) (D )单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何——三视图高考试题集锦
1.(14福建卷)某空间几何体的正视图是三角形,则该几何体不可能是 ( A ) A .圆柱 B.圆锥 C.四面体 D.三棱柱
2.(10年海南卷)正视图是一个三角形的几何体可以是_______(写出三种) 3(11山东卷)右图是长和宽分别相等的两个矩形,给定下列三个命题: ①存在三棱柱,其正(主)视图、俯视图如右图; ②存在四棱柱,其正(主)视图、俯视图如右图;
③存在圆柱,其正(主)视图、俯视图如右图。

其中真命题的个数是 (A) 3 (B) 2 (C) 1 (D) 0 4.(14辽宁)7.某几何体三视图如图所示,则该几何体的体积 为( )A .82π- B .8π- C .82
π
-
D .84
π
-
5.(12海南卷)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )
()A 6 ()B 9 ()C 12 ()D 18
6.(14天津卷)已知一个几何体的三视图如图所示(单位:m ),则该几何体的体积为____3
m .
(第4题) (第5题) (第6题)
7.(13海南卷)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分 别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四 面体三视图中的正视图时,以zOx 平面为投影面,则得到正视 图可以为( )
2
4
4
24
2
俯视图
侧视图
正视图俯视图
正(主)视图
(A) (B) (C) (D)
8.(14湖北卷)在如图所示的空间直角坐标系xyz
O 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()
A.①和②
B.③和①
C. ④和③
D.④和②
9.(2014•浙江)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()
A.90cm2B.129cm2C.132cm2D.138cm2
10.(07海南文理)已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()
A.3
3
4000
cm B.3
3
8000
cm C.20003
cm D.40003
cm
(第9题)(第10题)
20
10
10
20
20
20
正视图侧视图
俯视图
11.(07山东文理)下列几何体各自的三视图中,有且仅有两个视图相同的是 ( )
A .①②
B .①③
C .①④
D .②④
12.(08海南理)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 的b 的线段,则b a +的最大值为( )
A .22
B .32
C .4
D .52
13.(09海南文理)一个棱锥的三视图如图,则该棱锥的全面积(单位:2
cm )为( )A .21248+ B .22448+ C .21236+ D .22436+
14.(09山东文理)一空间几何体的三视图如图所示,则该几何体的体积为( ) A .223π+ B .423π+ C .232π+ D .23
4π+
(第13题) (第14题)
15.(11海南文理)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )
15.
(10
安徽文理)一个几个何体的三视图如图,该几何体的表面积为()A.280 B.292 C.360 D.372
16.(11湖南文理)如图是某几何体的三视图,则该几何体的体积为()A.
9
12
2
π+B.
9
18
2
π+C.942
π+D.3618
π+
(第15题)(第16题)
20.(09辽宁文理)设某几何体的三视图如下(尺寸的长度单位为m)。

则该几何体的体积为3
m
18.(本小题满分12分)三棱锥A BCD
-及其侧视图、俯视图如图所示。

设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN NP
⊥。

⑴证明:P为线段BC的中点;⑵求二面角A NP M
--的余弦值。

广通博达售前工作职责和流程
在IT界,成功的完
侧视图俯视图
11
22
2
2
1
1
M
N
P
D
B
C
A
成一个项目的需要销售人员、售前人员、项目实施人员(开发人员)、售后服务人员等密切协作。

本文从售前技术支持人员的角度,对售前技术支持工作的过程进行了描述,根据作者在售前的经验,提出了各环节的应该注意的要点,希望能对售前人员的工作有一定的助。

1. 售前人员需要具备的素质
售前人员应该是项目开发人员与业务销售人员的桥梁,在业务销售人员眼中,售前人员扮演的是技术人员或技术专家的角色,而在项目实施中的开发人员眼中,售前人员是专注技术的销售人员,在用户眼中,售前人员,是代表公司技术水平的技术专家。

在一个具体的售前技术支持活动中,售前人员协调销售人员、用户、后期开发人员间的关系,将公司的技术实力向用户展现,听取用户的初步需求,与用户讨论项目系统的初步框架,协助销售人员将公司的产品和技术优势推荐给用户,为后期开发人员屏蔽用户不合理的、给项目实施带来技术风险的需求,是项目的技术框架的最初设计者。

售前人员要求具备一个技术人员和销售人员两方面的素质,具体如下:。

相关文档
最新文档