高中数学证明公式
高中数学定义、定理、公理、公式证明汇编
高中数学定义、定理、公理、公式证明汇
编
本文档旨在整理高中数学中的定义、定理、公理和公式的证明,以帮助学生更好地理解数学知识和解题技巧。
一、定义
1. 实数:实数是包括有理数和无理数的数的集合。
2. 平面几何:平面几何是研究二维几何图形及其性质的学科。
3. 三角形:三角形是由三条线段组成的闭合图形。
...
二、定理
1. 勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。
2. 中线定理:连接三角形一个顶点与对边中点的线段,称为该三角形的中线,三条中线交于一点。
3. 弧长定理:圆的弧长等于圆心角的弧度数除以2π乘以圆的半径。
...
三、公理
1. 欧几里德公设:一个点可以通过一条直线与其他不在同一直线上的两个点之间的线段而确定。
2. 平行公设:如果直线上的一点与另一直线上的一点之间的线段垂直于直线,则这两条直线相互平行。
3. 鸽巢原理:如果将n+1个物体放入n个集合中,则至少存在一个集合中包含两个以上的物体。
...
四、公式证明
1. 三角函数和恒等变换:
- 余弦和正弦的平方和等于1。
- 一角是另一角的倍数时,它们的正弦、余弦和正切之间有一定的关系。
2. 求根公式:二次方程的解可以通过求根公式来计算。
3. 排列组合公式:
- 排列数公式:从n个不同元素中取出k个元素进行排列的方法数。
- 组合数公式:从n个不同元素中取出k个元素进行组合的方法数。
...
以上仅是文档中的一小部分,希望这份文档对您的学习和理解数学有所帮助。
若有需要,可以继续补充其他数学知识点和公式证明。
高中数学的数学证明方法总结
高中数学的数学证明方法总结数学是一门理论性极强的学科,其中的证明方法更是数学领域中的核心和基石。
高中数学中,数学证明方法的学习和掌握对于学生们的数学素养和逻辑思维能力有着至关重要的影响。
本文将对高中数学中常见的数学证明方法进行总结和概括,帮助读者更好地掌握数学证明的技巧和要点。
一、归纳法归纳法是数学证明中常见的一种方法,它通过递推和归纳的思想来证明一个结论。
归纳法的基本思路是先证明当n=1时结论成立,然后假设当n=k时结论成立,再通过这个假设证明当n=k+1时结论也成立。
归纳法常用于证明数学中的递推关系、等式、不等式等。
例如,证明等差数列前n项和公式Sn=n(a1+an)/2。
首先当n=1时,等式两边都是a1,成立。
假设当n=k时等式成立,即Sk=k(a1+ak)/2。
然后我们通过假设将等式转化为Sk+1=(k+1)(a1+ak+1)/2,最后证明这个式子成立,就可以得出结论:等差数列前n项和公式成立。
二、反证法反证法是一种常用的证明方法,通过对假设进行无效化来证明一个命题的方法。
反证法的基本思路是假设所要证明的结论不成立,然后通过推理推出一个矛盾的结论,从而推翻最初的假设。
常用于证明数学中的存在性、唯一性等问题。
例如,证明根号2是一个无理数。
首先我们假设根号2是一个有理数,可以表示为根号2=p/q(其中p、q互质)。
然后我们将这个假设带入等式2=p^2/q^2,整理得到p^2=2q^2。
这个等式说明p^2是偶数,而偶数的平方必定也是偶数。
于是我们可以推出p也是偶数,设p=2m (其中m是一个整数)。
将这个结果带入原等式中得到4m^2=2q^2,整理得到q^2=2m^2。
这个等式说明q^2也是偶数,从而可以推出q也是偶数。
但是p和q都是偶数与最初的假设矛盾,因此根号2不是一个有理数,即是一个无理数。
三、数学归纳法数学归纳法是一种利用整数的性质来证明数学结论的方法,它是基于“自然数的前n项都满足某个性质,那么对于所有自然数都满足该性质”的基本思想。
高中数学公式的推导与证明方法讲解
高中数学公式的推导与证明方法讲解数学作为一门科学,其独特的语言和逻辑性给人们带来了无限的乐趣和挑战。
高中数学作为数学学科的重要组成部分,其中的公式推导和证明方法更是数学思维和逻辑推理的重要体现。
本文将从几个常见的高中数学公式出发,讲解其推导和证明方法,帮助读者深入理解数学的精髓。
一、勾股定理的推导与证明勾股定理是高中数学中最基础也是最重要的公式之一。
其推导和证明方法有多种,其中最常见的是几何法和代数法。
几何法的推导方法是通过构造直角三角形来证明勾股定理。
首先,我们可以构造一个直角三角形ABC,其中∠B为直角,边长分别为a、b、c。
然后,利用勾股定理的假设条件,即a² + b² = c²,我们可以通过几何推理得出结论。
例如,我们可以通过画两个辅助线,将三角形ABC分成两个直角三角形ACD和BCD,利用这两个直角三角形的几何关系来证明勾股定理。
代数法的推导方法是通过代数运算来证明勾股定理。
首先,我们可以假设直角三角形的两条直角边的长度分别为a和b,斜边的长度为c。
然后,我们可以利用勾股定理的假设条件,即a² + b² = c²,通过代数运算来证明这个等式。
例如,我们可以将a²和b²分别展开为(a + b)²和(a - b)²,然后将这两个展开式相加,得到c²。
通过这样的代数运算,我们可以证明勾股定理成立。
二、二次函数的顶点坐标推导与证明二次函数是高中数学中的重要内容,其顶点坐标的推导和证明方法可以通过几何法和代数法来进行。
几何法的推导方法是通过几何图形来证明二次函数的顶点坐标。
首先,我们可以将二次函数表示为y = ax² + bx + c的形式,其中a、b、c为常数。
然后,我们可以通过几何图形的性质,如对称性和切线垂直于曲线等,来推导出二次函数的顶点坐标。
例如,我们可以通过画出二次函数的图像,并找出曲线的对称轴,进而确定顶点坐标。
高中数学数列的通项公式及证明
高中数学数列的通项公式及证明数列是高中数学中常见的概念之一,它是由一系列有序的数按照一定规律排列而成。
数列的通项公式是指能够通过数列中的项数n来表示第n项的公式,它是数列的核心内容之一。
在解题过程中,掌握数列的通项公式及其证明方法是非常重要的。
一、等差数列的通项公式及证明等差数列是指数列中相邻两项之间的差值恒定的数列。
常见的等差数列通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
例如,已知等差数列的首项为3,公差为2,求第10项的值。
根据等差数列的通项公式,可得an = 3 + (10-1)2 = 3 + 18 = 21。
等差数列的通项公式可以通过数学归纳法进行证明。
首先,假设当n=k时,等差数列的通项公式成立,即ak = a1 + (k-1)d。
然后,考虑当n=k+1时,即求第k+1项的值。
根据等差数列的定义,第k+1项可以表示为ak+1 = ak + d。
代入假设的通项公式,可得ak+1 = a1 + (k-1)d + d = a1 + kd。
因此,根据数学归纳法,等差数列的通项公式成立。
二、等比数列的通项公式及证明等比数列是指数列中相邻两项之间的比值恒定的数列。
常见的等比数列通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数。
例如,已知等比数列的首项为2,公比为3,求第5项的值。
根据等比数列的通项公式,可得an = 2 * 3^(5-1) = 2 * 3^4 = 162。
等比数列的通项公式可以通过数学归纳法进行证明。
首先,假设当n=k时,等比数列的通项公式成立,即ak = a1 * r^(k-1)。
然后,考虑当n=k+1时,即求第k+1项的值。
根据等比数列的定义,第k+1项可以表示为ak+1 = ak * r。
代入假设的通项公式,可得ak+1 = a1 * r^(k-1) * r = a1 * r^k。
因此,根据数学归纳法,等比数列的通项公式成立。
高三数学公式归纳大全
数学考试主要考察大家的公式运用情况,所以要想数学考出好成绩,一定要牢牢记住数学公式。
今天老师就给大家总结了整个高中都会用到的数学公式,一共有五十条,大家一定要熟背哦~1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。
高中数学证明公式.doc
[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S 正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b) S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于。
高中数学常用证明方法归纳(比较法、综合法、分析法、反证法、数学归纳法、放缩法)
高中数学常用证明方法(比较法、综合法、分析法、反证法、数学归纳法、放缩法)江西省永丰中学陈保进高中数学证明题是学生学习的一个难点,学生对基本的数学证明方法不熟悉,证明题过程书写不规范,条理不清晰,为此有必要归纳一些常见的数学证明方法。
1.比较法比较法包括作差比较、作商比较,比如要证a >b ,只需证a -b >0;若b >0,要证a >b ,只需证a b >1。
例1:已知b a ,是正数,用比较法证明:b a a b b a +≥+22证明:0))((11)(()(222222222≥-+=--=-+-=+-+ab b a b a a b b a a a b b b a b a a b b a 所以b a ab b a +≥+222.综合法(由因导果法)利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出要证明的结论成立。
例2:已知.9111111,,≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+∈+b a b a R b a 求证:证明:由ab b a 2≥+,1=+b a ,得41≤ab ,111111211 11111189119.a b a b a b ab ab ab ab a b +⎛⎫⎛⎫⎛⎫⎛⎫++=+++=++=+≥+=∴++≥ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭而3.分析法(执果索因法)从要证明的结论出发,逐步寻求使它成立的充分条件,直到把要证明的结论归结为一个显然成立的条件(已知条件、定理、定义、公理等)为止。
书写格式:要证……只需证……即证……例3:若a ,b ∈(1,+∞),证明:a +b <1+ab .证明:要证a +b <1+ab ,只需证(a +b )2<(1+ab )2,只需证a +b -1-ab <0,即证(a -1)(1-b )<0.因为a >1,b >1,所以a -1>0,1-b <0,即(a -1)(1-b )<0成立,所以原不等式成立.4.反证法当命题从正面出发不好证明时,可以从反面入手,用反证法,正所谓"正难则反"。
高中数学基本定理证明
1三角函数的定义证明•已知锐角厶ABC中,AB=c , AC=b,BC=a,利用三角函数的定义证明:c=acosB+bcosA解:作CD丄AB于点D在Rt△ BCD 中,由cosB=BD/BC,得BD=acosB,在Rt△ ACD 中,由cosA=AD/AC,得AD=bcosA,所以c=AB=BD+AD=acosB+bcosA 逐步提示:1、根据待证明的条件中存在三角函数,而题目本身图形为锐角三角形,所以要在原图形中通过添加辅助线来构造直角三角形。
2、根据求【c的表达式,既是求AB的三角函数表达式】,因此添加辅助线时考虑【将AB 线段变为直角三角形的边】,可以作【CD丄AB于点D ,】接下来考虑如何在在直角三角形中利用直角三角形三角函数来求解边角关系。
3、接下来分别在Rt△ ACD和Rt△ BCD中利用三角函数来表示AD的长度向待证靠近2点P ABC内任意一点,求证点P到厶ABC距离和为定值点P ABC外时,上述结论是否成立,若成立,请证明。
若不成立h1,h2,h3 与上述定值间有何关系【设点p 到AB,BC,CA三边距离为h1,h2,h3】证明:连接PA、PE、PC,过C作AE上的高AD,交AE于G。
过P作AE、EC、CA 的重线交AE、EC、CA 于D、E、F 三角形ABC面积=AE*CG/2三角形ABC面积=三角形ABP+BCP+CAP面积=AB*PD/2+BC*PE/2+CA*PF/2 =AB(PD+PE+PF)/2故: AB*CG/2=AB*(PD+PE+PF)/2CG=PD+PE+PF即:点P到厶ABC距离和为三角形的高,是定值。
(2)若P在三角形外,不妨设h1>h3,h2>h3 ,则有:h1+h2-h3=三角形边上的高3棱长为的正四面体内任意一点到各面距离之和为定值,则这个定值等于多少?简证如下:设M为正四面体P -ABC内任一点,M到面ABC,面PAB,面PAC,面PBC的距离分别为h 1,h 2 , h 3 , h 4 .由于四个面面积相等,则VP - ABC = VM - ABC + VM - PAB + VM -PAC + VM - PBC=(1/3 ) -S^ABC • (h 1 + h 2 +h 3+h 4).而S^ABC= (V 3/4)a A2 ,VP -ABC= (V2/12归人3 ,故h 1 +h 2 +h 3 +h 4 = V3/3a (定值).4正弦定理的证明过程步骤1.在锐角△ ABC中,设BC=a,AC=b,AB=c。
高中数学中的数学证明方法详细总结与演绎
高中数学中的数学证明方法详细总结与演绎数学作为一门精密的科学,其证明方法的运用和掌握是学习数学的核心能力之一。
在高中数学中,学生们常常需要运用不同的证明方法来解决问题,这不仅帮助他们深入理解数学概念和定理,还培养了他们的逻辑思维和推理能力。
本文将详细总结和演绎高中数学中常见的数学证明方法,帮助读者更好地掌握这些方法并应用于数学问题的解决。
一、直接证明法直接证明法是最常见的证明方法之一,它通过逻辑推理直接证明一个命题。
该方法通常分为两步:首先是列出前提条件,然后根据这些前提条件推导出结论。
例如,要证明直角三角形中斜边的平方等于两直角边的平方和,可以假设直角三角形的两个直角边分别为a和b,斜边为c,在此基础上利用勾股定理进行推导,最终得出c²=a²+b²,从而证明了所要证明的结论。
二、间接证明法间接证明法是通过假设命题不成立,推导出矛盾的结果来证明一个命题。
该方法通常有两个步骤:第一步是假设所要证明的结论不成立,第二步则是根据这个假设推导出一个矛盾的结果。
例如,要证明无理数根号2是一个无理数,可以采用间接证明法。
假设根号2是一个有理数,即可以表示为两个整数的比值。
然后利用有理数的定义进行推导,将根号2表示为两个整数的比值,并得出一个矛盾的结果,即根号2不是一个有理数,从而间接证明了根号2是一个无理数。
三、归纳法归纳法通常用于证明关于正整数的命题,在高中数学中应用较为广泛。
归纳法分为两个步骤:首先证明当n=1时命题成立,然后假设当n=k时命题成立,再证明当n=k+1时命题仍然成立。
例如,要证明等差数列的通项公式,可以使用归纳法。
首先证明当n=1时等差数列的通项公式成立,即a₁=a₁。
然后假设当n=k时等差数列的通项公式成立,即aₖ=a₁+(k-1)d。
再证明当n=k+1时等差数列的通项公式仍然成立,即aₖ₊₁=a₁+kd。
通过归纳法就可以证明等差数列的通项公式对于任意正整数n都成立。
高中数学数列的求和公式及证明
高中数学数列的求和公式及证明在高中数学学习中,数列是一个重要的概念。
数列的求和公式是数学中的基础知识之一,它能够帮助我们快速计算数列的和,解决一些复杂的问题。
本文将介绍数列的求和公式及其证明,并通过具体的例题来说明这些公式的应用和解题技巧。
一、等差数列的求和公式等差数列是指数列中相邻两项之差都相等的数列。
对于等差数列,我们可以使用求和公式来计算其前n项的和。
求和公式如下:Sn = (a1 + an) * n / 2其中,Sn表示等差数列的前n项和,a1表示首项,an表示末项,n表示项数。
例如,对于等差数列1, 3, 5, 7, 9,我们可以使用求和公式来计算前5项的和:S5 = (1 + 9) * 5 / 2 = 25这个公式的证明可以通过数学归纳法来完成。
首先,我们可以证明当n=1时,公式成立;然后,假设当n=k时,公式也成立,即Sk = (a1 + ak) * k / 2;接下来,我们来证明当n=k+1时,公式也成立:Sk+1 = (a1 + a(k+1)) * (k+1) / 2= (a1 + ak + d) * (k+1) / 2 (其中d为等差)= (a1 + ak) * k / 2 + d * (k+1) / 2= Sk + d * (k+1) / 2由于等差数列中相邻两项之差都相等,所以d * (k+1) / 2可以表示为等差数列的公差乘以项数,即d * (k+1) / 2 = (k+1) * d / 2。
因此,Sk+1 = Sk + (k+1) * d / 2,公式成立。
二、等比数列的求和公式等比数列是指数列中相邻两项之比都相等的数列。
对于等比数列,我们可以使用求和公式来计算其前n项的和。
求和公式如下:Sn = a1 * (1 - r^n) / (1 - r)其中,Sn表示等比数列的前n项和,a1表示首项,r表示公比,n表示项数。
例如,对于等比数列2, 4, 8, 16, 32,我们可以使用求和公式来计算前5项的和:S5 = 2 * (1 - 2^5) / (1 - 2) = 62这个公式的证明可以通过等比数列的性质来完成。
高中数学部分定理和公式的证明两角差的余弦公式
[证明] 一方面,设有排好顺序的 m 个空位(如图),从 n 个不同元素 a1,a2,…,an 中任 取 m 个元素去填空,一个空位填 1 个元素,每一种填法就对应一个排列.因此,所有不同的 填法的种数就是排列数 Am n.
[证明] 如图,设 AB∩l=B,在平面β内过 B 作 BC⊥l.因为 AB⊥l,所以∠ABC 是二面角 α l
β的平面角.因为α⊥β,所以∠ABC=90°,即 AB⊥BC.又 AB⊥l,BC∩l=B,l⊂β,
BC⊂β,所以 AB⊥β. 8.空间两点间的距离公式 在空间直角坐标系中,已知点 P1(x1,y1,z1),P2(x2,y2,z2),则 P1,P2 两点间的距离为 |P1P2|= (x2-x1)2+(y2-y1)2+(z2-z1)2.
高中数学部分定理和公式的证明 1.两角差的余弦公式 cos(α-β)=cos αcos β+sin αsin β [证明] 如图,在平面直角坐标系 xOy 内作单位圆 O,以 Ox 为始边作角α,β,它们的终 → → 边与单位圆 O 的交点分别为 A,B.则OA=(cos α,sin α),OB=(cos β,sin β). → → OB=(cos α, 由向量数量积的坐标表示, 有OA· sin α)·(cos β, sin β)=cos αcos β +sin αsin β.
n 则 Sn= a1(1-q ),q≠1. 1-q
n(a1+an) n[a1+a1+(n-1)d] . 又 an = a1 + (n - 1)d , 所 以 Sn = = na1 + 2 2
[证明] 当 q=1 时,an=a1,所以 Sn=na1. 当 q≠1 时,Sn=a1+a2+a3+…+an-1+an,① 所以 q·Sn=a1q+a2q+a3q+…+an-1q+anq =a2+a3+…+an+anq.② ①-②得(1-q)Sn=a1-qan, 所以 Sn= a1-qan a1-a1qn a1(1-qn) = = . 1-q 1-q 1- q na1,q=1,
高中数学公式推导
三角函数公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot (π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot (-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot (π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)※规律总结※上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
高二数学知识点及公式总结(通用10篇)
高二数学知识点及公式总结(通用10篇)高二数学公式总结篇一1、不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)2、不等式的证明方法(1)比较法:要证明ab(a0(a-b0),这种证明不等式的方法叫做比较法。
用比较法证明不等式的步骤是:作差——变形——判断符号。
(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法。
(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法。
证明不等式除以上三种基本方法外,还有反证法、数学归纳法等。
高二数学知识点及公式总结篇二圆与圆的位置关系1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论。
高二数学公式总结篇三1、辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法。
2、所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数。
若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数。
3、更相减损术是一种求两数公约数的方法。
其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数。
4、秦九韶算法是一种用于计算一元二次多项式的值的方法。
5、常用的排序方法是直接插入排序和冒泡排序。
高中数学公式大全几何证明中常用的定理与公式
高中数学公式大全几何证明中常用的定理与公式在高中数学学习中,几何证明是一个重要的内容。
几何证明需要运用到各种定理和公式,下面将介绍一些高中几何证明中常用的定理与公式。
一、三角形的定理与公式1. 三角形的内角和定理三角形的三个内角之和等于180度。
2. 三角形的外角和定理三角形的外角之和等于360度。
3. 三角形的角平分线定理三角形内角的平分线所构成的角相等。
4. 三角形的中位线定理三角形的中位线平行于第三边,并且长度等于第三边的一半。
5. 三角形的高定理三角形的高相互垂直。
6. 三角形的面积公式三角形的面积等于底边长乘以高的一半。
7. 三角形的余弦定理对于任意一个三角形ABC,其边长分别为a、b、c,其中角A对应边长a,角B对应边长b,角C对应边长c,则有:c^2 = a^2 + b^2 - 2ab*cosC。
二、四边形的定理与公式1. 平行四边形的性质平行四边形的对边相等并且平行。
2. 矩形的性质矩形的对角线相等,并且互相垂直。
3. 正方形的性质正方形的四条边相等,并且互相垂直。
4. 菱形的性质菱形的对边相等,并且两条对角线互相垂直。
5. 梯形的性质梯形的两底边平行且不相等,并且两个底角和两个顶角互补。
6. 梯形的面积公式梯形的面积等于上底和下底之和乘以高的一半。
三、圆的定理与公式1. 圆的面积公式圆的面积等于π乘以半径的平方。
2. 圆的周长公式圆的周长等于2π乘以半径。
3. 圆的弧长公式圆的弧长等于圆心角度数与圆的半径的乘积。
4. 切线定理切线与半径垂直,并且切线上的点到圆心的距离等于半径的长度。
以上是高中几何证明中常用的一些定理与公式,通过合理运用这些定理与公式,可以帮助我们更好地解决几何证明问题。
在实际的数学学习中,还需要根据不同的几何问题,综合运用这些定理与公式,灵活进行推理与证明,从而得到准确的结论。
高中数学几何证明公式定理
高中数学几何证明相关定理公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。
(1)判定直线在平面内的依据(2)判定点在平面内的方法公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线(1)判定两个平面相交的依据(2)判定若干个点在两个相交平面的交线上公理3:经过不在一条直线上的三点,有且只有一个平面。
(1)确定一个平面的依据(2)判定若干个点共面的依据推论1:经过一条直线和这条直线外一点,有且仅有一个平面。
(1)判定若干条直线共面的依据(2)判断若干个平面重合的依据(3)判断几何图形是平面图形的依据推论2:经过两条相交直线,有且仅有一个平面。
推论3:经过两条平行线,有且仅有一个平面。
立体几何直线与平面空间二直线平行直线公理4:平行于同一直线的两条直线互相平行等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。
异面直线空间直线和平面位置关系(1)直线在平面内——有无数个公共点(2)直线和平面相交——有且只有一个公共点(3)直线和平面平行——没有公共点立体几何直线与平面直线与平面所成的角(1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角(2)一条直线垂直于平面,定义这直线与平面所成的角是直角(3)一条直线和平面平行,或在平面内,定义它和平面所成的角是00的角三垂线定理在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直三垂线逆定理在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直空间两个平面两个平面平行判定性质(1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行(2)垂直于同一直线的两个平面平行(1)两个平面平行,其中一个平面内的直线必平行于另一个平面(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行(3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面相交的两平面二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角平面角是直角的二面角叫做直二面角两平面垂直判定性质如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直(1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面(2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内立体几何多面体、棱柱、棱锥多面体定义由若干个多边形所围成的几何体叫做多面体。
高中数学证明公式
高中数学证明公式数学公式抛物线:y = ax *+ bx + c就是y等于ax 的平方加上 bx再加上 ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式椭圆面积公式: S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^21*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦-公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 || a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积 =长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形 a—边长 C=4aS=a2长方形 a和b-边长 C=2(a+b)S=ab三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2 s=l×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
点斜式公式证明
点斜式公式证明点斜式公式是一种表示直线方程的公式,它是高中数学中经常出现的知识点。
在解直线的问题中,点斜式公式被广泛地应用。
但是在数学学习的过程中,很多同学对这个公式的证明理解起来有困难。
今天,我们来看一下点斜式公式的证明。
点斜式公式的形式为:y - y1 = k(x - x1),其中(x1, y1)为直线上的一点,k为直线的斜率。
这个公式说明了直线的斜率和一点在直线上的坐标可以确定直线的方程。
下面我们来证明它的有效性。
一、点到直线的距离公式首先,我们需要掌握点到直线的距离公式,这个公式很简单,就是点(x0, y0)到直线Ax + By + C = 0的距离d是:d = |Ax0 + By0 + C| / √(A² + B²)通过这个公式,我们可以推导出点斜式公式。
二、证明点斜式公式我们设直线斜率为k,过点(x1, y1),则直线方程可以表示为:y - y1 = k(x - x1)化简后得到:kx - y + (y1 - kx1) = 0设Ax + By + C = 0,则有:A = k,B = -1,C = (y1 - kx1)由于直线过点(x1, y1),所以它的值满足:kx1 - y1 + (y1 - kx1) = 0解出k,得到:k = (y - y1) / (x - x1)将k代入Ax + By + C = 0中,得到:(y - y1) x + (x1 - x) y + y1(x - x1) = 0化简后得到:(x1 - x) y + (y - y1) x + y1x1 - y1x = 0将y1x1 - y1x看作常数c,则上式可以表示为:Ax + By + C = 0,其中A = x1 - x,B = y - y1,C = c这个式子恰好是直线的一般式方程,证毕。
结论:点斜式公式和一般式方程是等价的,它们描述同一个直线。
三、点斜式公式的应用了解了点斜式公式的证明,我们会更好地理解它在实践中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学证明公式数学公式抛物线:y = ax *+ bx + c就是y等于ax 的平方加上 bx再加上 ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+c osA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^21*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦-公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积 =长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形 a—边长 C=4aS=a2长方形 a和b-边长 C=2(a+b)S=ab三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。