2016年电大《经济数学基础12》考试题及答案

合集下载

国家开放大学电大专科《经济数学基础12》形考网络课单项选择题题库及答案(第一套)

国家开放大学电大专科《经济数学基础12》形考网络课单项选择题题库及答案(第一套)

国家开放大学电大专科《经济数学基础12》形考网络课单项选择题题库及答案(第一套)国家开放大学电大专科《经济数学基础12》形考网络课单项选择题题库及答案(第一套) 单项选择题题目1 函数的定义域为(). 选择一项:题目2 下列函数在指定区间上单调增加的是(). 选择一项:题目3 设,则=().选择一项:题目4 当时,下列变量为无穷小量的是(). 选择一项:题目5 下列极限计算正确的是(). 选择一项:题目6 (). 选择一项:A. 1B. 0C. 2D. -1 题目7 . 选择一项:A. 5B. -5 题目8 . 选择一项:题目9 题目10 选择一项:D. 2 题目11 当时,函数. 选择一项:题目12 曲线的切线方程是(). 选择一项:题目13 若函数处可导,则()是错误的.选择一项:题目14 题目15 题目16 题目17 题目18 题目19 题目20 题目21 题目22 题目23 题目24 题目25 题目1 题目2 题目3 题目4 题目5 题目6 题目7 题目8 题目9 题目10 题目11 题目12 题目13 题目14 题目15 题目16题目17 题目18 题目19 题目20 题目1 题目2 题目3 题目4 题目5 题目6 题目7 题目8 题目9 题目10 题目11 题目12 题目13 题目14 题目15 题目16 题目17 题目18 题目19 题目20 题目1 形考任务中共有()次学习活动。

选择一项:A. 4B. 8C. 2D. 12 题目 2 形考任务中的作业四有()次答题机会。

选择一项:A. 2B. 3C. 1D. 无限题目 3 考核说明中规定形成性考核占课程综合成绩的()。

选择一项:A. 70%B. 50%C. 30%D. 100% 题目4 微分学第3章任务三的名称是()。

选择一项:A. 微分方程的基本概念B. 两个重要极限C. 函数的单调性D. 函数最值题目5 每个学习任务一般由知识讲解、典型例题、()和测试四个环节构成。

2016年最新电大《经济数学基础12》考试题(卷)与答案

2016年最新电大《经济数学基础12》考试题(卷)与答案

经济数学基础形成性考核册及参考答案作业(一)(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( )答案:D A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =lg2,则d y =( ).答案:B A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x(3)2111lim0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim22=--→x x x 2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。

《经济数学基础12》综合练习及参考答案概要

《经济数学基础12》综合练习及参考答案概要

《经济数学基础12》综合练习及参考答案第一部分 微分学一、单项选择题1.函数()1lg +=x xy 的定义域是( ).A .1->xB .0≠xC .0>xD .1->x 且0≠x2.若函数)(x f 的定义域是[0,1],则函数)2(x f 的定义域是( ).A .1],0[B .)1,(-∞C .]0,(-∞D )0,(-∞ 3.下列各函数对中,()中的两个函数相等.A .2)()(x x f =,x x g =)( B .11)(2--=x x x f ,x x g =)(+ 1C .2ln x y =,x x g ln 2)(=D .x x x f 22cos sin )(+=,1)(=x g4.设11)(+=xx f ,则))((x f f =( ).A .11++x xB .x x +1C .111++xD .x+11 5.下列函数中为奇函数的是( ).A .x x y -=2B .x x y -+=e eC .11ln+-=x x y D .x x y sin = 6.下列函数中,()不是基本初等函数.A .102=y B .xy )21(= C .)1ln(-=x y D .31xy = 7.下列结论中,( )是正确的. A .基本初等函数都是单调函数 B .偶函数的图形关于坐标原点对称 C .奇函数的图形关于坐标原点对称 D .周期函数都是有界函数8. 当x →0时,下列变量中( )是无穷大量.A .001.0x B . x x 21+ C . x D . x-29. 已知1tan )(-=xxx f ,当( )时,)(x f 为无穷小量. A . x →0 B . 1→x C . -∞→x D . +∞→x10.函数sin ,0(),0xx f x x k x ⎧≠⎪=⎨⎪=⎩ 在x = 0处连续,则k = ( ).A .-2B .-1C .1D .211. 函数⎩⎨⎧<-≥=0,10,1)(x x x f 在x = 0处( ).A . 左连续B . 右连续C . 连续D . 左右皆不连续 12.曲线11+=x y 在点(0, 1)处的切线斜率为( ).A .21-B .21C .3)1(21+x D .3)1(21+-x13. 曲线y = sin x 在点(0, 0)处的切线方程为( ). A . y = x B . y = 2x C . y = 21x D . y = -x 14.若函数x xf =)1(,则)(x f '=( ).A .21x B .-21x C .x 1 D .-x 115.若x x x f cos )(=,则='')(x f ( ).A .x x x sin cos +B .x x x sin cos -C .x x x cos sin 2+D .x x x cos sin 2-- 16.下列函数在指定区间(,)-∞+∞上单调增加的是( ).A .sin xB .e xC .x 2D .3 - x 17.下列结论正确的有( ).A .x 0是f (x )的极值点,且f '(x 0)存在,则必有f '(x 0) = 0B .x 0是f (x )的极值点,则x 0必是f (x )的驻点C .若f '(x 0) = 0,则x 0必是f (x )的极值点D .使)(x f '不存在的点x 0,一定是f (x )的极值点18. 设需求量q 对价格p 的函数为p p q 23)(-=,则需求弹性为E p =( ).A .p p32- B .--pp32 C .32-ppD .--32pp二、填空题1.函数⎩⎨⎧<≤-<≤-+=20,105,2)(2x x x x x f 的定义域是. 2.函数x x x f --+=21)5ln()(的定义域是.3.若函数52)1(2-+=+x x x f ,则=)(x f. 4.设函数1)(2-=u u f ,xx u 1)(=,则=))2((u f.5.设21010)(xx x f -+=,则函数的图形关于对称.6.已知生产某种产品的成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品的平均成本为 .7.已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) = .8. =+∞→xxx x sin lim.9.已知xxx f sin 1)(-=,当 时,)(x f 为无穷小量.10. 已知⎪⎩⎪⎨⎧=≠--=1111)(2x a x x x x f ,若f x ()在),(∞+-∞内连续,则=a .11. 函数1()1exf x =-的间断点是 . 12.函数)2)(1(1)(-+=x x x f 的连续区间是 .13.曲线y 在点)1,1(处的切线斜率是.14.函数y = x 2 + 1的单调增加区间为.15.已知x x f 2ln )(=,则])2(['f = . 16.函数y x =-312()的驻点是 . 17.需求量q 对价格p 的函数为2e 100)(p p q -⨯=,则需求弹性为E p =.18.已知需求函数为p q 32320-=,其中p 为价格,则需求弹性E p = .三、计算题1.423lim 222-+-→x x x x 2.231lim 21+--→x x x x 3.0x → 4.2343lim sin(3)x x x x →-+-5.113lim21-+--→x xx x 6.2)1tan(lim 21-+-→x x x x ; 7. ))32)(1()23()21(lim 625--++-∞→x x x x x x 8.20sin e lim()1x x x x x →++ 9.已知y xx x--=1cos 2,求)(x y ' .10.已知)(x f xx x x+-+=11ln sin 2,求)(x f ' .11.已知2cos ln x y =,求)4(πy ';12.已知y =32ln 1x +,求d y . 13.设 y x x x x ln +=,求d y .14.设x x y 22e 2cos -+=,求y d . 15.由方程2e e )1ln(=++xy x y 确定y 是x 的隐函数,求)(x y '.16.由方程0e sin =+yx y 确定y 是x 的隐函数,求)(x y '.17.设函数)(x y y =由方程y x y e 1+=确定,求0d d =x x y.18.由方程x y x y=++e )cos(确定y 是x 的隐函数,求y d .四、应用题1.设生产某种产品x 个单位时的成本函数为:x x x C 625.0100)(2++=(万元), 求:(1)当10=x 时的总成本、平均成本和边际成本; (2)当产量x 为多少时,平均成本最小?2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q p =-100010(q 为需求量,p 为价格).试求:(1)成本函数,收入函数; (2)产量为多少吨时利润最大?3.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元.又已知需求函数p q 42000-=,其中p 为价格,q 为产量,这种产品在市场上是畅销的,问价格为多少时利润最大?并求最大利润.4.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),问产量为多少时可使利润达到最大?最大利润是多少.5.某厂每天生产某种产品q 件的成本函数为9800365.0)(2++=q q q C (元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少?6.已知某厂生产q 件产品的成本为C q q q ()=++25020102(万元).问:要使平均成本最少,应生产多少件产品?试题答案一、 单项选择题1.D 2.C 3.D 4.A 5.C 6.C 7.C 8. B 9. A 10. C 11. B 12.A 13. A 14. B 15. D 16. B 17. A 18. B 二、填空题1.[-5,2]2. (-5, 2 )3. 62-x 4.43-5. y 轴6.3.67. 45q – 0.25q 28. 19. 0→x 10. 2 11.0x = 12.)1,(--∞,)2,1(-,),2(∞+ 13.(1)0.5y '= 14.(0, +∞) 15. 0 16.x =1 17.2p - 18. 10-p p三、极限与微分计算题1.解 423lim 222-+-→x x x x =)2)(2()1)(2(lim 2+---→x x x x x = )2(1lim 2+-→x x x = 412.解:231lim21+--→x x x x =)1)(2)(1(1lim1+---→x x x x x =21)1)(2(1lim1-=+-→x x x3.解0l i x →=x →=xxx x x 2sin lim )11(lim 00→→++=2⨯2 = 44.解 2343lim sin(3)x x x x →-+-=3(3)(1)lim sin(3)x x x x →---= 333lim lim(1)sin(3)x x x x x →→-⨯--= 25.解 )13)(1()13)(13(lim 113lim2121x x x x x x x x x x x x ++--++-+--=-+--→→ )13)(1()1(2lim )13)(1())1(3(lim 2121x x x x x x x x x x x ++----=++--+--=→→ )13)(1(2lim 1x x x x ++-+-=→221-=6.解 )1)(2()1tan(lim 2)1tan(lim 121-+-=-+-→→x x x x x x x x1)1tan(lim 21lim 11--⋅+=→→x x x x x 31131=⨯=7.解:))32)(1()23()21(lim 625--++-∞→x x x x x x =))32)(11()213()21(lim 625xx x x x x --++-∞→ =2323)2(65-=⨯-8.解 20s i n e l i m ()1x x x x x →++=000sin e lim limsin lim 1xx x x x x x x →→→++ =0+ 1 = 19.解 y '(x )=)1cos 2('--x x x=2)1(cos )1(sin )1(2ln 2x x x x x ------ =2)1(sin )1(cos 2ln 2x xx x x----10.解 因为)1ln()1ln(sin 2)(x x x x f x +--+= 所以 x x x x x f xx+---+⋅='1111cos 2sin 2ln 2)( 212]cos sin 2[ln 2xx x x --+⋅= 11.解 因为 2222tan 22)sin (cos 1)cos (ln x x x x xx y -=-='=' 所以 )4(πy '=ππππ-=⨯-=-1)4tan(42212.解 因为 )ln 1()ln 1(312322'++='-x x y=x x x ln 2)ln 1(31322-+ =x x x ln )ln 1(32322-+所以 x x x xy d ln )ln 1(32d 322-+=13.解 因为 y x x ln 47+=xx y 14743-='所以 d y = (xx 14743-)d x14.解:因为 xx x y 222e 2)2(2s i n --'-='x x x 22e 22s i n ---=所以 y d x x x xd )e 22s i n (22---=15.解 在方程等号两边对x 求导,得 )e ()e (])1ln([2'='+'+xyx y 0)(e 1)1ln(='+++++'y x y xyx y xy xy xyy xyy x x e 1]e )1[ln(-+-='++ 故 ]e )1)[ln(1(e )1(xy xyx x x y x y y +++++-='16.解 对方程两边同时求导,得 0e e cos ='++'y x y y yyyyy x y e )e (cos -='+)(x y '=yyx y ecos e +-. 17.解:方程两边对x 求导,得 y x y y y '+='e e yy x y e 1e -='当0=x 时,1=y所以,d d =x xye e01e 11=⨯-=18.解 在方程等号两边对x 求导,得 )()e (])[cos('='+'+x y x y1e ]1)[sin(='+'++-y y y x y )sin(1)]sin(e [y x y y x y ++='+- )sin(e )sin(1y x y x y y +-++='故 x y x y x y yd )sin(e )sin(1d +-++=四、应用题1.解(1)因为总成本、平均成本和边际成本分别为:x x x C 625.0100)(2++=625.0100)(++=x xx C ,65.0)(+='x x C所以,1851061025.0100)10(2=⨯+⨯+=C5.1861025.010100)10(=+⨯+=C , 116105.0)10(=+⨯='C(2)令 025.0100)(2=+-='xx C ,得20=x (20-=x 舍去)因为20=x 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当=x 20时,平均成本最小.2.解 (1)成本函数C q ()= 60q +2000.因为 q p =-100010,即p q =-100110, 所以 收入函数R q ()=p ⨯q =(100110-q )q =1001102q q -. (2)因为利润函数L q ()=R q ()-C q () =1001102q q --(60q +2000) = 40q -1102q -2000 且 'L q ()=(40q -1102q -2000')=40- 0.2q 令'L q ()= 0,即40- 0.2q = 0,得q = 200,它是L q ()在其定义域内的唯一驻点. 所以,q = 200是利润函数L q ()的最大值点,即当产量为200吨时利润最大.3.解 C (p ) = 50000+100q = 50000+100(2000-4p ) =250000-400pR (p ) =pq = p (2000-4p )= 2000p -4p 2 利润函数L (p ) = R (p ) - C (p ) =2400p -4p 2 -250000,且令 )(p L '=2400 – 8p = 0得p =300,该问题确实存在最大值. 所以,当价格为p =300元时,利润最大. 最大利润 1100025000030043002400)300(2=-⨯-⨯=L (元). 4.解 由已知201.014)01.014(q q q q qp R -=-==利润函数22202.0201001.042001.014q q q q q q C R L --=----=-=则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q . 因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大, 且最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元) 5. 解 因为 C q ()=C q q ()=05369800.q q++ (q >0) q ()=(.)05369800q q ++'=0598002.-q令'C q ()=0,即0598002.-q =0,得q 1=140,q 2= -140(舍去). q 1=140是C q ()在其定义域内的唯一驻点,且该问题确实存在最小值.所以q 1=140是平均成本函数C q ()的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为C ()140=0514*******140.⨯++=176 (元/件)6.解 (1) 因为 C q ()=C q q ()=2502010q q++'C q ()=()2502010q q ++'=-+2501102q 令'C q ()=0,即-+=25011002q ,得q 1=50,q 2=-50(舍去),q 1=50是C q ()在其定义域内的唯一驻点.所以,q 1=50是C q ()的最小值点,即要使平均成本最少,应生产50件产品.。

电大经济数学基础12全套试题及答案汇总(供参考)

电大经济数学基础12全套试题及答案汇总(供参考)

电大经济数学基础12全套试题及答案一、填空题(每题3分,共15分)6.函数()f x =的定义域是 (,2](2,)-∞-+∞U .7.函数1()1xf x e=-的间断点是 0x = .8.若()()f x dx F x C =+⎰,则()xx ef e dx --=⎰()x F e c --+.9.设10203231A a ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,当a = 0 时,A 是对称矩阵。

10.若线性方程组12120x x x x λ-=⎧⎨+=⎩有非零解,则λ= -1 。

6.函数()2x xe ef x --=的图形关于 原点 对称.7.已知sin ()1xf x x=-,当x → 0时,()f x 为无穷小量。

8.若()()f x dx F x C =+⎰,则(23)f x dx -=⎰1(23)2F x c -+ .9.设矩阵A 可逆,B 是A 的逆矩阵,则当1()T A -= TB 。

10.若n 元线性方程组0AX =满足()r A n <,则该线性方程组 有非零解 。

6.函数1()ln(5)2f x x x =++-的定义域是 (5,2)(2,)-+∞U . 7.函数1()1xf x e=-的间断点是 0x = 。

8.若2()22x f x dx x c =++⎰,则()f x =2ln 24x x +.9.设111222333A ⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦,则()r A = 1 。

10.设齐次线性方程组35A X O ⨯=满,且()2r A =,则方程组一般解中自由未知量的个数为 3 。

6.设2(1)25f x x x -=-+,则()f x =x2+4 .7.若函数1sin 2,0(),0x x f x xk x ⎧+≠⎪=⎨⎪=⎩在0x =处连续,则k= 2 。

8.若()()f x dx F x c =+⎰,则(23)f x dx -=⎰1/2F(2x-3)+c.9.若A 为n 阶可逆矩阵,则()r A = n 。

经济数学基础12--国家开放大学电大学习网形考作业题目答案

经济数学基础12--国家开放大学电大学习网形考作业题目答案

经济数学基础12一、单项选择题1.函数的定义域为().A.B.C.D.正确答案:A2.下列函数在指定区间上单调增加的是().A.B.C.D.正确答案:C3.设,则().A.B.D.正确答案:B4.当时,下列变量为无穷小量的是().A.B.C.D.正确答案:A5.下列极限计算正确的是().A.B.C.D.正确答案:B6.().A.-1B.0D.2正确答案:B7.().A.B.C.5D.-5正确答案:A8.().A.B.C.D.正确答案:A9.().A.1B.0D.2正确答案:C10.设在处连续,则().A.-1B.0C.D.1正确答案:D11.当(),()时,函数在处连续.A.B.C.D.正确答案:D12.曲线在点的切线方程是().A.B.C.D.正确答案:A13.若函数在点处可导,则()是错误的.A.函数在点处有定义B.函数在点处连续C.,但D.函数在点处可微正确答案:C14.若,则().A.B.C.D.正确答案:D15.设,则().A.B.C.D.正确答案:B16.设函数,则().A.B.C.D.正确答案:C17.设,则().A.B.C.D.正确答案:D18.设,则().A.B.C.D.正确答案:A19.设,则().A.B.C.D.正确答案:B20.设,则().A.B.C.D.正确答案:C21.设,则().A.B.C.D.正确答案:A22.设,方程两边对求导,可得().A.B.C.D.正确答案:C23.设,则().A.1B.C.D.-1正确答案:B24.函数的驻点是().A.B.C.D.正确答案:C25.设某商品的需求函数为,则需求弹性().A.B.C.D.正确答案:A26.下列函数中,()是的一个原函数.A.B.C.D.正确答案:B27.若,则().A.B.C.D.正确答案:B28.().A.B.C.D.正确答案:A29.().A.B.C.D.正确答案:A30.下列等式成立的是().A.B.C.D.正确答案:B31.若,则().A.B.C.D.正确答案:B32.用第一换元法求不定积分,则下列步骤中正确的是().A.B.C.D.正确答案:D33.下列不定积分中,常用分部积分法计算的是().A.B.C.D.正确答案:D34.用分部积分法求不定积分,则下列步骤中正确的是().A.B.C.D.正确答案:C35.().A.B.C.1D.0正确答案:D36.设,则().A.B.C.D.正确答案:C37.下列定积分计算正确的是().A.B.C.D.正确答案:A38.下列定积分计算正确的是().A.B.C.D.正确答案:B39.计算定积分,则下列步骤中正确的是().A.B.C.D.正确答案:C40.用第一换元法求定积分,则下列步骤中正确的是().A.B.C.D.正确答案:A41.用分部积分法求定积分,则下列步骤正确的是().A.B.C.D.正确答案:D42.下列无穷积分中收敛的是().A.B.C.D.正确答案:C43.求解可分离变量的微分方程,分离变量后可得().A.B.C.D.正确答案:A44.根据一阶线性微分方程的通解公式求解,则下列选项正确的是().A.B.C.D.正确答案:D45.微分方程满足的特解为().A.B.C.D.正确答案:C46.设矩阵,则的元素().A.1B.2C.3D.-2正确答案:C47.设,,则().A.B.C.D.正确答案:A48.设A为矩阵,B为矩阵,且乘积矩阵有意义,则为()矩阵.A.B.C.D.正确答案:A49.设,为单位矩阵,则A T–I=().A.B.C.D.正确答案:D50.设均为阶矩阵,则等式成立的充分必要条件是().A.B.C.D.正确答案:D51.下列关于矩阵的结论正确的是().A.若均为零矩阵,则有B.若,且,则C.对角矩阵是对称矩阵D.若,,则正确答案:C52.设,,则().A.2B.0C.-2D.4正确答案:B53.设均为阶可逆矩阵,则下列等式成立的是().A.B.C.D.正确答案:A54.下列矩阵可逆的是().A.B.C.D.正确答案:A55.设矩阵,则().A.B.C.D.正确答案:C56.设均为阶矩阵,可逆,则矩阵方程的解().A.B.C.D.正确答案:B57.矩阵的秩是().A.0B.1C.2D.3正确答案:D58.设矩阵,则当()时,最小.A.12B.8C.4D.-12正确答案:D59.对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.A.B.C.D.正确答案:B60.设线性方程组有非0解,则().A.-1B.0C.1D.2正确答案:A61.设线性方程组,且,则当()时,方程组有无穷多解.A.t=2B.C.t=0D.正确答案:B62.线性方程组无解,则().A.B.C.D.正确答案:C63.设线性方程组,则方程组有解的充分必要条件是().A.B.C.D.正确答案:C64.对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组无解.A.且B.且C.且D.且正确答案:B65.若线性方程组有唯一解,则线性方程组().A.只有零解B.有无穷多解C.无解D.解不能确定正确答案:A二、计算题1.设,求.解:=−x2'·e−x2−2sin2x=−2xe−x2−2sin2x综上所述,2.已知,求.解:方程两边关于求导:,3.计算不定积分.解:原式=。

电大经济数学基础12全套试题及答案汇总演示教学

电大经济数学基础12全套试题及答案汇总演示教学

电大经济数学基础12全套试题及答案一、填空题(每题3分,共15分)T 1设矩阵A 可逆,B 是A 的逆矩阵,则当(A )10 •若n 元线性方程组 AX 0满足r(A) n ,则该线性方程组 —有非零解 ___________________16 .函数 f(x) — ln(x 5)的定义域是 ______________ ( 5,2) U (2,) ____ .x 21 、 7 .函数f ( X ) -的间断点是 x 0 __________ 。

1 e x—&若 f(x)dx 2X 2x 2 c ,则 f(x)= _____________ 2X ln2 4x ___________ .1 1 19. 设A2 2 2 , 则 r(A)1。

33310 .设齐次线性方程组A 35XO 满,且r(A) 2 , 则方程组一般解中自由未知量的个数为3 。

6. 设 f(x 1) x 22x 5,则 f(x)= x2+4 .xsin12,x0亠 0处连续,则x在Xk= 2 。

函数 f(x)—4的定义域是(,2]U(2,)x 2函数 f(x)1丄的间断点是1 e xf (x)dx F(x) C ,则 e x f(e x )dxF(e x ) cio .若线性方程组X i X i函数 f (x)已知 f (x)f (x)dx ,当a时,A 是对称矩阵。

X 2 X 2有非零解,则x-的图形关于 _____ 原点 ’ sin x r,当xx对称.0 __ 时,f (x)为无穷小量。

F(x) C ,则 f (2x 3)dx12F(2x 3) cB T7.若函数f(x) k,x 09.若A 为n 阶可逆矩阵,则r(A)n。

11 2 310.齐次线性方程组 AXO 的系数矩阵经初等行变换化为A0 1 0 2 ,则此方程组的一0 0般解中自由未知量的个数为2。

1.下列各函数对中,(D )中的两个函数相等.A.C. y(x) =lnx s 4 =21rLisin x 小----- x 02 .函数f (x) X ' 在x 0处连续,则k ( C . 1 )。

2016年最新电大《经济数学基础12》考试题及答案

2016年最新电大《经济数学基础12》考试题及答案

经济数学基础形成性考核册及参考答案作业(一)(一)填空题 1。

___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:13.曲线x y =在)1,1(的切线方程是 。

答案:2121+=x y 4。

设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5。

设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1。

函数212-+-=x x x y 的连续区间是( )答案:D A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2。

下列极限计算正确的是( )答案:B A.1lim=→xx x B 。

1lim 0=+→xx xC 。

11sinlim 0=→x x x D.1sin lim =∞→xxx3。

设y x =lg2,则d y =( ).答案:B A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4。

若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5。

当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x(3)2111lim 0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim 22=--→x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。

【标准答案】经济数学基础12-2017年1月-专科-国家开放大学2016年秋季学期期未考试

【标准答案】经济数学基础12-2017年1月-专科-国家开放大学2016年秋季学期期未考试

)矩阵.
A. s X n
B. n X s
C. t X m
D.m X t
5. 线性方程组
xl+x2=1
解的情况是( Xl + 工 2=0
A. 有唯一解
B. 只有 O 解
c.有元穷多解
10
D. 无解
得分|评卷人
二、填空题{每小题 3 分,共 15 分}
6. 已知生产某种产品的成本函数为 C(q)=80+ 句,则当产量 q=50 时,该产品的平均成
1 1.设 y =3x 十 cos与,求 dy.
sm -一
12 计算不定积分 J Xz三dx
得分|评卷人
四、线性代数计算题(每小题 15 分,共 30 分)
13 设矩阵 AJ2 :; :;|J: :|, I 是 3 阶单位矩阵,求。 -A)-lB
一 3 -4 -8
-3 0
14. 当 A 取何值时,线性方程组
= - (3% ln3 - 5sinx cos4 x )dx
12. 解 z 由换元积分法得
2017 年 1 月
5. D
… 10 分
f SI:三dx= 十infd中 =cost+c
.•. ... ...10 分 13
四、结性代数计算题{每小题 15 分,共 30 分)
13. 解:由矩阵减法运算得
1 0 ()
本为
.
7. 曲线 y= .,fx 在(1,1)处的切线斜率是

8 若 Jf(x)dx =F(x) +c , 则 Je-Xf(e-X ) ←

9. 矩阵 12 2 21 的秩为

333
பைடு நூலகம்

2016年电大《经济数学基础12》考试题及答案

2016年电大《经济数学基础12》考试题及答案

经济数学基础形成性考核册及参考答案作业(一)(一)填空题 1.___________________sin lim 0=-→xxx x .答案:0 2.设,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是.答案:4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则.答案:2π- (二)单项选择题1. 函数的连续区间是( )答案:DA .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A. B. C. D.3. 设y x =lg2,则d y =( ).答案:B A .B .C .D .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:B A .函数 f (x )在点x 0处有定义 B .A x f xx =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x 2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限 (1) (2) (3) (4) (5) (6) 2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。

经济数学基础12-国家开放大学电大易考通考试题目答案

经济数学基础12-国家开放大学电大易考通考试题目答案

经济数学基础12【填空题】若,则=1/3&三分之一。

【知识点】凑微分【填空题】若,则=1/2&二分之一。

【知识点】凑微分【填空题】若,则=-1。

【知识点】凑微分【填空题】若,则=-1/2&负二分之一。

【知识点】凑微分【单选题】若,则f(x)=。

A.B.C.D.【答案】C【单选题】下列给出了四个等式中,正确的是。

A.B.C.D.【答案】A【单选题】若=。

A.4sin2xB.-4sin2xC.2cos2xD.-2cos2x【答案】B【单选题】若f(x)是可导函数,则下列等式中不正确的是。

A.B.C.D.【答案】D【单选题】微分=。

A.B.C.D.【答案】B【单选题】若f(x)可微,则=。

A.f(x)B.C.D.f(x)+c【答案】B【单选题】若,则f(x)=。

A.B.C.D.【答案】C【单选题】以下结论正确的是。

A.方程的个数小于未知量的个数的线性方程组一定有无穷多解B.方程的个数等于未知量的个数的线性方程组一定有唯一解C.方程的个数大于未知量的个数的线性方程组一定有无解D.A,B,C都不对【答案】D【单选题】若线性方程组AX=O只有零解,则线性方程组AX=b。

A.有唯一解B.有无穷多解C.无解D.解不能确定【答案】D【单选题】齐次线性方程组。

A.有非零解B.只有零解C.无解D.可能有解也可能无解【答案】A【单选题】线性方程组一定。

A.有无穷多解B.有唯一解C.只有零解D.无解【答案】B【单选题】线性方程组一定。

A.有唯一解B.有无穷多解C.无解D.有是一个解【答案】C【单选题】线性方程组的解的情况是。

A.无解B.只有零解C.有唯一解D.有无穷多解【答案】A【单选题】线性方程组解的情况是。

A.有无穷多解B.只有零解C.有唯一解D.无解【答案】D【单选题】线性方程组解的情况是。

A.有唯一解B.只有零解C.有无穷多解D.无解【答案】C【单选题】设线性方程组AX=b有唯一解,则相应的齐次方程组AX=O解的情况是。

《经济数学基础12》综合练习及参考答案

《经济数学基础12》综合练习及参考答案

《经济数学基础12》综合练习及参考答案第一部分 微分学一、单项选择题1.函数()1lg +=x xy 的定义域是( ).A .1->xB .0≠xC .0>xD .1->x 且0≠x2.若函数)(x f 的定义域是[0,1],则函数)2(x f 的定义域是( ). A .1],0[ B .)1,(-∞ C .]0,(-∞ D )0,(-∞3.下列各函数对中,()中的两个函数相等.A .2)()(x x f =,x x g =)( B .11)(2--=x x x f ,x x g =)(+ 1C .2ln x y =,x x g ln 2)(= D .x x x f 22cos sin )(+=,1)(=x g4.设11)(+=xx f ,则))((x f f =( ).A .11++x xB .x x +1C .111++xD .x+115.下列函数中为奇函数的是( ).A .x x y -=2B .xxy -+=ee C .11ln+-=x x y D .x x y sin = 6.下列函数中,()不是基本初等函数.A .102=y B .xy )21(= C .)1ln(-=x y D .31xy = 7.下列结论中,( )是正确的. A .基本初等函数都是单调函数 B .偶函数的图形关于坐标原点对称 C .奇函数的图形关于坐标原点对称 D .周期函数都是有界函数8. 当x →0时,下列变量中( )是无穷大量.A .001.0x B . x x 21+ C . x D . x-29. 已知1tan )(-=xxx f ,当( )时,)(x f 为无穷小量.A . x →0B . 1→xC . -∞→xD . +∞→x10.函数sin ,0(),0xx f x x k x ⎧≠⎪=⎨⎪=⎩ 在x = 0处连续,则k = ( ).A .-2B .-1C .1D .211. 函数⎩⎨⎧<-≥=0,10,1)(x x x f 在x = 0处( ).A . 左连续B . 右连续C . 连续D . 左右皆不连续 12.曲线11+=x y 在点(0, 1)处的切线斜率为( ).A .21-B .21C .3)1(21+x D .3)1(21+-x13. 曲线y = sin x 在点(0, 0)处的切线方程为( ). A . y = x B . y = 2x C . y = 21x D . y = -x 14.若函数x xf =)1(,则)(x f '=( ).A .21x B .-21x C .x 1 D .-x 115.若x x x f cos )(=,则='')(x f ( ).A .x x x sin cos +B .x x x sin cos -C .x x x cos sin 2+D .x x x cos sin 2-- 16.下列函数在指定区间(,)-∞+∞上单调增加的是( ).A .sin xB .e xC .x 2D .3 - x 17.下列结论正确的有( ).A .x 0是f (x )的极值点,且f '(x 0)存在,则必有f '(x 0) = 0B .x 0是f (x )的极值点,则x 0必是f (x )的驻点C .若f '(x 0) = 0,则x 0必是f (x )的极值点D .使)(x f '不存在的点x 0,一定是f (x )的极值点18. 设需求量q 对价格p 的函数为p p q 23)(-=,则需求弹性为E p =( ).A .p p32- B .--pp32 C .32-ppD .--32pp二、填空题1.函数⎩⎨⎧<≤-<≤-+=20,105,2)(2x x x x x f 的定义域是. 2.函数x x x f --+=21)5ln()(的定义域是.3.若函数52)1(2-+=+x x x f ,则=)(x f. 4.设函数1)(2-=u u f ,xx u 1)(=,则=))2((u f.5.设21010)(xx x f -+=,则函数的图形关于对称.6.已知生产某种产品的成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品的平均成本为 .7.已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) = .8. =+∞→xxx x sin lim.9.已知xxx f sin 1)(-=,当 时,)(x f 为无穷小量.10. 已知⎪⎩⎪⎨⎧=≠--=1111)(2x a x x x x f ,若f x ()在),(∞+-∞内连续,则=a .11. 函数1()1exf x =-的间断点是 . 12.函数)2)(1(1)(-+=x x x f 的连续区间是 .13.曲线y =)1,1(处的切线斜率是.14.函数y = x 2 + 1的单调增加区间为.15.已知x x f 2ln )(=,则])2(['f = . 16.函数y x =-312()的驻点是 . 17.需求量q 对价格p 的函数为2e 100)(p p q -⨯=,则需求弹性为E p =.18.已知需求函数为p q 32320-=,其中p 为价格,则需求弹性E p= .三、计算题1.423lim 222-+-→x x x x 2.231lim 21+--→x x x x 3.0x → 4.2343lim sin(3)x x x x →-+-5.113lim21-+--→x x x x 6.2)1tan(lim21-+-→x x x x ; 7. ))32)(1()23()21(lim 625--++-∞→x x x x x x 8.20sin e lim()1x x x x x →++ 9.已知y xx x--=1cos 2,求)(x y ' .10.已知)(x f xx x x+-+=11ln sin 2,求)(x f ' .11.已知2cos ln x y =,求)4(πy ';12.已知y =32ln 1x +,求d y . 13.设 y x x x x ln +=,求d y .14.设x x y 22e 2cos -+=,求y d . 15.由方程2e e )1ln(=++xy x y 确定y 是x 的隐函数,求)(x y '.16.由方程0e sin =+yx y 确定y 是x 的隐函数,求)(x y '.17.设函数)(x y y =由方程y x y e 1+=确定,求0d d =x x y.18.由方程x y x y=++e )cos(确定y 是x 的隐函数,求y d .四、应用题1.设生产某种产品x 个单位时的成本函数为:x x x C 625.0100)(2++=(万元), 求:(1)当10=x 时的总成本、平均成本和边际成本; (2)当产量x 为多少时,平均成本最小?2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q p =-100010(q 为需求量,p 为价格).试求:(1)成本函数,收入函数; (2)产量为多少吨时利润最大?3.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元.又已知需求函数p q 42000-=,其中p 为价格,q 为产量,这种产品在市场上是畅销的,问价格为多少时利润最大?并求最大利润.4.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),问产量为多少时可使利润达到最大?最大利润是多少.5.某厂每天生产某种产品q 件的成本函数为9800365.0)(2++=q q q C (元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少?6.已知某厂生产q 件产品的成本为C q q q ()=++25020102(万元).问:要使平均成本最少,应生产多少件产品?试题答案一、 单项选择题1.D 2.C 3.D 4.A 5.C 6.C 7.C 8. B 9. A 10. C 11. B 12.A 13. A 14. B 15. D 16. B 17. A 18. B 二、填空题1.[-5,2]2. (-5, 2 )3. 62-x 4.43-5. y 轴6.3.67. 45q – 0.25q 28. 19. 0→x 10. 2 11.0x = 12.)1,(--∞,)2,1(-,),2(∞+ 13.(1)0.5y '= 14.(0, +∞) 15. 0 16.x =1 17.2p- 18.10-p p三、极限与微分计算题1.解 423lim 222-+-→x x x x =)2)(2()1)(2(lim 2+---→x x x x x = )2(1lim 2+-→x x x = 412.解:231lim21+--→x x x x =)1)(2)(1(1lim 1+---→x x x x x =21)1)(2(1lim1-=+-→x x x3.解0x →x →=xxx x x 2sin lim )11(lim 00→→++=2⨯2 = 44.解 2343lim sin(3)x x x x →-+-=3(3)(1)lim sin(3)x x x x →---= 333limlim(1)sin(3)x x x x x →→-⨯--= 2 5.解 )13)(1()13)(13(lim113lim2121x x x x x x x x x x x x ++--++-+--=-+--→→ )13)(1()1(2lim )13)(1())1(3(lim 2121x x x x x x x x x x x ++----=++--+--=→→)13)(1(2lim 1x x x x ++-+-=→221-=6.解 )1)(2()1tan(lim 2)1tan(lim 121-+-=-+-→→x x x x x x x x1)1tan(lim 21lim 11--⋅+=→→x x x x x 31131=⨯=7.解:))32)(1()23()21(lim 625--++-∞→x x x x x x =))32)(11()213()21(lim 625xx x x x x --++-∞→ =2323)2(65-=⨯-8.解 20sin e lim()1x x x x x →++=000sin e lim limsin lim 1xx x x x x x x →→→++ =0+ 1 = 19.解 y '(x )=)1cos 2('--xx x=2)1(cos )1(sin )1(2ln 2x x x x x ------=2)1(sin )1(cos 2ln 2x x x x x----10.解 因为)1ln()1ln(sin 2)(x x x x f x+--+= 所以 x x x x x f xx+---+⋅='1111cos 2sin 2ln 2)( 212]cos sin 2[ln 2xx x x --+⋅= 11.解 因为 2222tan 22)sin (cos 1)cos (ln x x x x xx y -=-='=' 所以 )4(πy '=ππππ-=⨯-=-1)4tan(42212.解 因为 )ln 1()ln 1(312322'++='-x x y=x x x ln 2)ln 1(31322-+ =x x x ln )ln 1(32322-+ 所以 x x x xy d ln )ln 1(32d 322-+= 13.解 因为 y x x ln 47+=xx y 14743-='所以 d y = (xx 14743-)d x14.解:因为 xx x y 222e 2)2(2sin--'-='x x x 22e 22sin ---= 所以 y d x x x x d )e 22sin (22---= 15.解 在方程等号两边对x 求导,得 )e ()e (])1ln([2'='+'+xyx y 0)(e 1)1ln(='+++++'y x y xyx y xy xy xyy xyy x x e 1]e )1[ln(-+-='++ 故 ]e )1)[ln(1(e )1(xy xyx x x y x y y +++++-='16.解 对方程两边同时求导,得 0e e cos ='++'y x y y yyyyy x y e )e (cos -='+)(x y '=yyx y ecos e +-. 17.解:方程两边对x 求导,得 y x y y y '+='e e yy x y e 1e -='当0=x 时,1=y所以,d d =x xye e01e 11=⨯-=18.解 在方程等号两边对x 求导,得 )()e (])[cos('='+'+x y x y1e ]1)[sin(='+'++-y y y x y)sin(1)]sin(e [y x y y x y++='+- )sin(e )sin(1y x y x y y +-++='故 x y x y x y yd )sin(e )sin(1d +-++=四、应用题1.解(1)因为总成本、平均成本和边际成本分别为:x x x C 625.0100)(2++=625.0100)(++=x xx C ,65.0)(+='x x C所以,1851061025.0100)10(2=⨯+⨯+=C5.1861025.010100)10(=+⨯+=C ,116105.0)10(=+⨯='C(2)令 025.0100)(2=+-='xx C ,得20=x (20-=x 舍去)因为20=x 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当=x 20时,平均成本最小.2.解 (1)成本函数C q ()= 60q +2000.因为 q p =-100010,即p q =-100110, 所以 收入函数R q ()=p ⨯q =(100110-q )q =1001102q q -.(2)因为利润函数L q ()=R q ()-C q () =1001102q q --(60q +2000)= 40q -1102q -2000 且 'L q ()=(40q -1102q -2000')=40- 0.2q 令'L q ()= 0,即40- 0.2q = 0,得q = 200,它是L q ()在其定义域内的唯一驻点. 所以,q = 200是利润函数L q ()的最大值点,即当产量为200吨时利润最大.3.解 C (p ) = 50000+100q = 50000+100(2000-4p ) =250000-400pR (p ) =pq = p (2000-4p )= 2000p -4p 2 利润函数L (p ) = R (p ) - C (p ) =2400p -4p 2 -250000,且令 )(p L '=2400 – 8p = 0得p =300,该问题确实存在最大值. 所以,当价格为p =300元时,利润最大. 最大利润 1100025000030043002400)300(2=-⨯-⨯=L (元). 4.解 由已知201.014)01.014(q q q q qp R -=-==利润函数22202.0201001.042001.014q q q q q q C R L --=----=-=则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q . 因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大, 且最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元) 5. 解 因为 C q ()=C q q ()=05369800.q q++ (q >0) 'C q ()=(.)05369800q q ++'=0598002.-q令'C q ()=0,即0598002.-q =0,得q 1=140,q 2= -140(舍去). q 1=140是C q ()在其定义域内的唯一驻点,且该问题确实存在最小值.所以q 1=140是平均成本函数C q ()的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为C ()140=0514*******140.⨯++=176 (元/件) 6.解 (1) 因为 C q ()=C q q ()=2502010q q++ 'C q ()=()2502010q q ++'=-+2501102q 令'C q ()=0,即-+=25011002q ,得q 1=50,q 2=-50(舍去),q 1=50是C q ()在其定义域内的唯一驻点.所以,q 1=50是C q ()的最小值点,即要使平均成本最少,应生产50件产品.。

国家开放大学电大专科《经济数学基础12》形考网络课学习活动试题及答案-

国家开放大学电大专科《经济数学基础12》形考网络课学习活动试题及答案-

国家开放大学电大专科《经济数学基础12》形考网络课学习活动试题及答案:国家开放大学电大专科《经济数学基础12》形考课学习活动试题及答案学习活动(总40分)活动一:问卷答题(占形考总分的10% 题目1 形考任务中共有()次学习活动。

选择一项: A. 4 B. 8 C. 2 D. 12 题目 2 形考任务中的作业四有()次答题机会。

选择一项: A. 2 B. 3 C. 1 D. 无限题目3 考核说明中规定形成性考核占课程综合成绩的()。

选择一项: A. 70% B. 50% C. 30% D. 100% 题目4 微分学第3章任务三的名称是()。

选择一项: A. 微分方程的基本概念 B. 两个重要极限 C. 函数的单调性 D. 函数最值题目5 每个学习任务一般由知识讲解、典型例题、()和测试四个环节构成。

选择一项: A. 小结 B. 导学 C. 学习目标 D. 跟我练习题目6 积分学第2章任务四的典型例题共有()道题。

选择一项: A. 4 B. 3 C. 1 D. 2 题目7 线性代数第2章任务五的知识讲解中,目标二的题目是()。

选择一项: A. 逆矩阵的概念 B. 特殊矩阵 C. 伴随矩阵 D. 可逆矩阵的性质题目8 “模拟练习”在“考试复习”栏目的()部分。

选择一项: A. 各章练习汇总及模拟 B. 考试常见问题 C. 复习指导 D. 教学活动题目9 “基尼系数”是案例库中()的案例。

选择一项: A. 第一篇第二章 B. 第二篇第一章 C. 第一篇第一章 D. 第二篇第二章题目10 “知识拓展”栏目中“学科进展”里的第5个专题是().选择一项: A. 什么是数学模型 B. 数学三大难题 C. 1名数学家=10个师的由来 D. 2007年诺贝尔经济学奖活动二:单调性—函数属性研究的实际意义(占形考总分的10%)讨论区 1.怎样描述函数的单调性? 2.在实际生活中,你都遇到过哪些单调性的例子? 3.在你遇到的实际单调性例子中,你会采取什么相应的措施?答案如下: 1. 函数的单调性也可以叫做函数的增减性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经济数学基础形成性考核册及参考答案作业(一)(一)填空题 1.___________________sin lim 0=-→xxx x .答案:0 2.设,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是.答案:4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则.答案:2π- (二)单项选择题1. 函数的连续区间是( )答案:DA .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A. B. C. D.3. 设y x =lg2,则d y =( ).答案:B A .B .C .D .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:B A .函数 f (x )在点x 0处有定义 B .A x f xx =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x 2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限 (1) (2) (3) (4) (5) (6) 2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。

3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x ,求y ' 答案:2ln 12ln 22x x y x ++=' (2),求y ' 答案: (3),求y ' 答案: (4)x x x y e -=,求y '答案:(5)bx y ax sin e =,求y d 答案:dx bx b bx a dy ax )cos sin (e += (6)x x y x+=1e ,求y d答案:y d(7)2e cos x x y --=,求y d答案:y d(8)nx x y n sin sin +=,求y ' 答案:)cos cos (sin 1nx x x n y n +='- (9))1ln(2x x y ++=,求y ' 答案: (10)xxx y x212321cot -++=,求y '答案:652321cot61211sin2ln 2--+-='x x xx y x4.下列各方程中y 是x 的隐函数,试求y '或y d (1)1322=+-+x xy y x ,求y d 答案:(2)x e y x xy 4)sin(=++,求y '答案:)cos(e )cos(e 4y x x y x y y xyxy +++--=' 5.求下列函数的二阶导数: (1))1ln(2x y +=,求y '' 答案:(2),求y ''及)1(y '' 答案:,1)1(=''y作业(二)(一)填空题 1.若cx x x f x++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2.⎰='x x d )sin (________.答案:c x +sin3.若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2.答案:4.设函数___________d )1ln(d d e 12=+⎰x x x.答案:0 5.若,则__________)(='x P .答案: (二)单项选择题1. 下列函数中,()是x sin x 2的原函数. A .21cos x 2B .2cos x 2C .-2cos x 2D .-21cos x 2答案:D2. 下列等式成立的是( ). A .)d(cos d sin x x x =B .C .D . 答案:C3. 下列不定积分中,常用分部积分法计算的是( ). A .⎰+x x c 1)d os(2,B .⎰-x x x d 12C .⎰x x x d 2sin D .答案:C4. 下列定积分计算正确的是().A .2d 211=⎰-x xB .15d 161=⎰-xC .0)d (32=+⎰-x x x ππD .0d sin =⎰-x x ππ 答案:D5. 下列无穷积分中收敛的是( ).A .B .C .⎰∞+0d e x xD .⎰∞+1d sin x x 答案:B (三)解答题1.计算下列不定积分 (1) 答案: (2) 答案: (3) 答案: (4) 答案: (5)⎰+x x x d 22答案: (6) 答案:c x +-cos 2(7) 答案:(8)⎰+x x 1)d ln(答案:c x x x +-++)1ln()1( 2.计算下列定积分 (1)x x d 121⎰-- 答案:25 (2) 答案:e e -(3) 答案:2 (4) 答案:21-(5)x x x d ln e 1⎰ 答案:(6)x x x d )e 1(40⎰-+ 答案:4e 55-+ 作业三 (一)填空题1.设矩阵,则A 的元素__________________23=a .答案:32.设B A ,均为3阶矩阵,且3-==B A ,则T AB 2-=________. 答案:72-3.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是.答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵X BX A =+的解______________=X .答案:A B I 1)(--5.设矩阵,则__________1=-A .答案: (二)单项选择题1. 以下结论或等式正确的是( ).A .若B A ,均为零矩阵,则有B A = B .若AC AB =,且O A ≠,则C B = C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠答案C2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则T C 为( )矩阵. A .42⨯B .24⨯C .53⨯D .35⨯答案A 3. 设BA ,均为n阶可逆矩阵,则下列等式成立的是( ). `A .111)(---+=+B A B A ,B .111)(---⋅=⋅B A B AC .BA AB =D .BA AB =答案C 4. 下列矩阵可逆的是(). A .B .C .D .答案A5. 矩阵的秩是( ). A .0 B .1 C .2 D .3 答案B三、解答题1.计算 (1)= (2) (3)=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。

解 因为B A AB =22122)1()1(01021123211011113232=--=-=--=+A01101-1-0321110211321B ===所以002=⨯==B A AB4.设矩阵,确定λ的值,使)(A r 最小。

答案:当时,2)(=A r 达到最小值。

5.求矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=32114024713458512352A 的秩。

答案:2)(=A r 。

6.求下列矩阵的逆矩阵: (1) 答案(2)A =. 答案A -1= 7.设矩阵⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=3221,5321B A ,求解矩阵方程B XA =. 答案:X = 四、证明题1.试证:若21,B B 都及A 可交换,则21B B +,21B B 也及A 可交换。

提示:证明)()(2121B B A A B B +=+,2121B AB A B B =2.试证:对于任意方阵A ,T A A +,A A AA T T ,是对称矩阵。

提示:证明T TT )(A A A A +=+,A A A A AA AA T T T T T T )(,)(==3.设B A ,均为n 阶对称矩阵,则AB 对称的充分必要条件是:BA AB =。

提示:充分性:证明AB AB =T)(必要性:证明BA AB =4.设A 为n 阶对称矩阵,B 为n 阶可逆矩阵,且T B B =-1,证明AB B 1-是对称矩阵。

提示:证明T 1)(AB B -=AB B 1- 作业(四) (一)填空题1.函数在区间___________________内是单调减少的.答案:)1,0()0,1(⋃-2.函数2)1(3-=x y 的驻点是________,极值点是,它是极值点.答案:1,1==x x ,小3.设某商品的需求函数为2e 10)(pp q -=,则需求弹性=p E .答案:p 2-4.行列式____________111111111=---=D .答案:45.设线性方程组b AX =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→010********1t A ,则__________t 时,方程组有唯一解.答案:1-≠ (二)单项选择题1. 下列函数在指定区间(,)-∞+∞上单调增加的是( ).A .sin xB .e xC .x 2D .3 –x 答案:B2. 已知需求函数p p q 4.02100)(-⨯=,当10=p 时,需求弹性为( ). A .2ln 244p -⨯ B .2ln 4 C .2ln 4- D .2ln 24-4p -⨯ 答案:C3. 下列积分计算正确的是( ).A .B .C .0d sin 11=⎰x x x -D .0)d (3112=+⎰x x x -答案:A4. 设线性方程组b X A n m =⨯有无穷多解的充分必要条件是( ). A .m A r A r <=)()( B .n A r <)( C .n m < D .n A r A r <=)()( 答案:D5. 设线性方程组,则方程组有解的充分必要条件是().A .0321=++a a aB .0321=+-a a aC .0321=-+a a aD .0321=++-a a a答案:C三、解答题1.求解下列可分离变量的微分方程:(1) y x y +='e答案:c x y +=--e e(2)答案:c x y x x +-=e e 32. 求解下列一阶线性微分方程:(1) 答案:)21()1(22c x x x y +++=(2)答案:)2cos (c x x y +-=3.求解下列微分方程的初值问题:(1)y x y -='2e ,0)0(=y答案:(2)0e =-+'x y y x ,0)1(=y答案:4.求解下列线性方程组的一般解:(1)⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x答案:(其中21,x x 是自由未知量)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=000011101201111011101201351223111201A 所以,方程的一般解为(其中21,x x 是自由未知量)(2)⎪⎩⎪⎨⎧=+-+=+-+=++-5114724212432143214321x x x x xx x x x x x x答案:(其中21,x x 是自由未知量)5.当λ为何值时,线性方程组⎪⎪⎩⎪⎪⎨⎧=+--=+--=-+-=+--λ43214321432143211095733223132245x x x x x x x x x x x x x x x x有解,并求一般解。

相关文档
最新文档