2011年全国各地中考数学压轴题专集 2一元二次方程

合集下载

一元二次方程(2011年中考题精选)

一元二次方程(2011年中考题精选)

一元二次方程(2011年中考题精选)一、选择题1、(2011甘肃兰州)下列方程中是关于x 的一元二次方程的是( )A .2210x x+= B .20ax bx c ++= C .(1)(2)1x x -+= D .223250x xy y --= 2、(2011山东济宁)已知关于x 的方程x 2+bx +a =0有一个根是-a (a ≠0),则a -b的值为( )A .-1B .0C .1D .23、(2011山东潍坊)关于x 的方程2210x kx k ++-=的根的情况描述正确的是( )A . k 为任何实数,方程都没有实数根B . k 为任何实数,方程都有两个不相等的实数根C . k 为任何实数,方程都有两个相等的实数根D. 根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种4、(2011山东威海)关于x 的一元二次方程2(2)10x m x m +-++=有两个相等的实数根,则m 的值是( )A .0B .8C .4D .0或85、(2011湖北荆州)关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是A .1B .-1C .1或-1D . 26、(2011福建福州)一元二次方程(2)0x x -=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根 D.没有实数根7、(2011山东滨州)某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是( )A.()22891256x -=B.()22561289x -=C. 289(1-2x)=256D.256(1-2x)=289 8、(2011四川南充市) 方程(x +1)(x -2)=x +1的解是( )(A )2 (B )3 (C )-1,2 (D )-1,39、(2011江西)已知x =1是方程x 2+bx -2=0的一个根,则方程的另一个根是( )A.1B.2C.-2D.-110、(2011四川绵阳)若x 1,x 2(x 1 <x 2)是方程(x -a )(x-b ) = 1(a < b)的两个根,则实数x 1,x 2,a,b 的大小关系为A .x 1<x 2<a <bB .x 1<a <x 2<bC .x 1<a <b <x 2D .a <x 1<b <x 2二、填空题1、(2011山东滨州)若x=2是关于x 的方程2250x x a --+=的一个根,则a 的值为______.2、(2011山东德州)若1x ,2x 是方程210x x +-=的两个根,则2212x x +=__________.3、(2011甘肃兰州)关于x 的方程2()0a x m b ++=的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程2(2)0a x m b +++=的解是 。

2011年全国各地中考数学解答题压轴题解析(1)

2011年全国各地中考数学解答题压轴题解析(1)

2011年全国各地中考数学解答题压轴题解析(1)1.(广西桂林12分)已知二次函数21342y x x=-+的图象如图. (1)求它的对称轴与x 轴交点D 的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x 轴,y 轴的交点分别为A 、B 、C 三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M ,以AB 为直径,D 为圆心作⊙D,试判断直线CM 与⊙D 的位置关系,并说明理由.【答案】解:(1)由21342y x x =-+,得32bx a =-=,∴D(3,0)。

(2)如图1,设平移后的抛物线的解析式为21342y x x k=-++,则C (0,k ),OC=k ,令y =0,即21342x x k -++=,得12349 , 349x k x k =+=+ ∴A ()349 , 0k +,B ()349 , 0k ++,∴22AB 493349 1636k k k =+-++=+,()()2222222AC BC 349 +3492836k k k k k k +=+++++=++。

∵AC2+BC2=AB2,即:21636836k k k +=++,得k 1=4,k 2=0(舍去),∴抛物线的解析式为213442y x x =-++。

(3)如图2,由抛物线的解析式213442y x x =-++可得, A (﹣2,0),B (8,0),C (4,0),D (3,0),M 253 ,4⎛⎫ ⎪⎝⎭, 过C 、M 作直线,连接CD ,过M 作MH 垂直y 轴于H , 则MH=3,∴2225625DM 416⎛⎫==⎪⎝⎭, 2222225225CM MH CH 34416⎛⎫=+=+-=⎪⎝⎭。

在Rt△COD 中,22CD 345AD =+==, ∴点C 在⊙D 上。

∵2225625DM 416⎛⎫==⎪⎝⎭, 222DM CD CM =+, ∴DM2=CM2+CD2。

2011中考数学压轴题选精选

2011中考数学压轴题选精选

10.星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为 30 米的篱笆 围成 .已知墙长为 18 米(如图所示) ,设这个苗圃园垂直于墙的一边的长为 x 米. (1)若平行于墙的一边的长为 y 米,直接写出 y 与 x 之间的函数关系式及其自变量 x 的取值范围; (2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值; (3)当这个苗圃园的面积不小于 88 平方米时,试结合函数图像,直接写出 x 的取值范围. 18 米 墙 苗圃园
a A O
20 40 80
t(h)
7.小华观察钟面(图 1) ,了解到钟面上的分针每小时旋转 360 度,时针毎小时旋转 30 度.他为了进一步 探究钟面上分针与时针的旋转规律,从下午 2 : 00 开始对钟面进行了一个小时的观察.为了探究方便,他 将分针与分针起始位置 OP(图 2)的夹角记为 y1,时针与 OP 的夹角记为 y2 度(夹角是指不大于平角的 角) ,旋转时间记为 t 分钟.观察结束后,利用获得的数据绘制成图象(图 3) ,并求出 y1 与 t 的函数关系 式:
少要留够 0.5 米宽的平直路面,以方便同学们参观学习.当(1)中 S 取得最值时,请问这个设计是否可 行?若可行,求出圆的半径;若不可行,请说明理由. 围墙 A O1 B O2 C D
14.王伟准备用一段长 30 米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为 a 米, 由于受地势限制,第二条边长只能是第一条边长的 2 倍多 2 米. (1)请用 a 表示第三条边长; (2)问第一条边长可以为 7 米吗?请说明理由,并求出 a 的取值范围; (3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,请说 明理由. 15.李明在小岛上的 A 处,上午 8 时测得在 A 的北偏东 60º的 D 处有一艘轮船,9 时 20 分测得该船航行 到北偏西 60º的 C 处,9 时 40 分测得该船到达位于 A 正西方 5 千米的港口 B 处,如果该船始终保持匀速 直线运动,求: 北 (1)A、C 之间的距离; (2)轮船的航行速度. D

2011中考数学真题解析压轴题2(含答案)

2011中考数学真题解析压轴题2(含答案)

2011全国中考真题解析压轴题241.(2011黑龙江大庆,28,8分)二次函数:y=ax 2﹣bx+b (a >0,b >o )图象顶点的纵坐标不大于. (1)求该二次函数图象顶点的横坐标的取值范围;(2)若该二次函数图象与x 轴交于A ,B 两点,求线段AB 长度的最小值. 考点:抛物线与x 轴的交点;二次函数的性质。

分析:(1)先求出y=ax 2﹣bx+b (a >0,b >0)的顶点的纵坐标,根据题意得出≥3,即可得出该二次函数图象顶点的横坐标的取值范围;(2)设A (x 1,0),B (x 2,0)(x 1<x 2),则x 1、x 2是方程ax 2﹣bx+b=0的两根,由求根公式得出x 1、x 2,根据AB =|x 2﹣x 1|求出线段AB 长度的最小值.解答:解:(1)由于y=ax 2﹣bx+b (a >0,b >0)图象的顶点的纵坐标为, 则≤﹣,得≥3,∴该二次函数图象顶点的横坐标的取值范围是不小于3;(2)设A (x 1,0),B (x 2,0)(x 1<x 2)则方程ax 2﹣bx+b=0的两根, 得x 1=,x 2=,从而AB =|x 2﹣x 1|==ab a b⋅-4)(2=4)2(2--ab 由(1)知≥6. 由于当≥6时,随着的增大,4)2(2--ab 也随着增大, 所以=6时,线段AB 长度的最小值为2. 点评:本题是一道综合性的题目,考查了抛物线与x 轴的交点问题以及二次函数的性质,是中考压轴题,难度较大.42. (2011•郴州)如图,在平面直角坐标系中,A 、B 两点的坐标分别是(0,1)和(1,0),P 是线段AB 上的一动点(不与A 、B 重合),坐标为(m ,1﹣m )(m 为常数).(1)求经过O 、P 、B 三点的抛物线的解析式;(2)当P 点在线段AB 上移动时,过O 、P 、B 三点的抛物线的对称轴是否会随着P 的移动而改变;(3)当P 移动到点()时,请你在过O 、P 、B 三点的抛物线上至少找出两点,使每个点都能与P 、B 两点构成等腰三角形,并求出这两点的坐标.考点:二次函数综合题。

2011年全国各地中考数学题分类汇编 压轴题(含答案)

2011年全国各地中考数学题分类汇编 压轴题(含答案)

2011年全国各地数学中考题汇编——压轴题(黄冈市2011)24.(14分)如图所示,过点F (0,1)的直线y =kx +b 与抛物线214y x =交于M (x 1,y 1)和N (x 2,y 2)两点(其中x 1<0,x 2<0).⑴求b 的值. ⑵求x 1?x 2的值⑶分别过M 、N 作直线l :y =-1的垂线,垂足分别是M 1、N 1,判断△M 1FN 1的形状,并证明你的结论.⑷对于过点F 的任意直线MN ,是否存在一条定直线m ,使m 与以MN 为直径的圆相切.如果有,请法度出这条直线m 的解析式;如果没有,请说明理由.答案:24.解:⑴b =1⑵显然11x x y y =⎧⎨=⎩和22x x y y =⎧⎨=⎩是方程组2114y kx y x =+⎧⎪⎨=⎪⎩的两组解,解方程组消元得21104x kx --=,依据“根与系数关系”得12x x =-4⑶△M 1FN 1是直角三角形是直角三角形,理由如下:由题知M 1的横坐标为x 1,N 1的横坐标为x 2,设M 1N 1交y 轴于F 1,则F 1M 1?F 1N 1=-x 1?x 2=4,而FF 1=2,所以F 1M 1?F 1N 1=F 1F 2,另有∠M 1F 1F =∠FF 1N 1=90°,易证Rt △M 1FF 1∽Rt △N 1FF 1,得∠M 1FF 1=∠FN 1F 1,故∠M 1FN 1=∠M 1FF 1+∠F 1FN 1=∠FN 1F 1+∠F 1FN 1=90°,所以△M 1FN 1是直角三角形.⑷存在,该直线为y =-1.理由如下: 直线y =-1即为直线M 1N 1. 如图,设N 点横坐标为m ,则(黄石市2011年)24.(本小题满分9分)已知⊙1O 与⊙2O 相交于A 、B 两点,点1O 在⊙2O 上,C 为⊙2O 上一点(不与A ,B ,1O 重合),直线CB 与⊙1O 交于另一点D 。

2011中考数学试题分类汇编(150套) 一元二次方程专题

2011中考数学试题分类汇编(150套) 一元二次方程专题

2011中考数学试题分类汇编(150套)一元二次方程专题一、选择题1.(2011年某某某某)已知方程20x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是() A .ab B .abC .a b +D .a b - 【答案】D.2.(2011某某某某)若12,x x 是方程2x =4的两根,则12x x +的值是( )【答案】D3.(2011 某某滨州) 一元二次方程x 2+kx-3=0的一个根是x=1,则另一个根是( )【答案】C4.(2011某某潍坊)关于x 的一元二次方程x2-6x +2k =0有两个不相等的实数根,则实数k 的取值X 围是( ). A .k ≤92B .k <92C .k ≥92D .k >92【答案】B5.(2011某某某某)方程2560x x --=的两根为()A . 6和-1B .-6和1C .-2和-3D .2和3【答案】A6.(2011某某某某)一元二次方程x 2-4=0的解是( )A .x 1=2,x 2=-2B .x =-2C .x =2D . x 1=2,x 2=0 【答案】A7.(2011某某)方程230x -=的根是 (A)3x =(B)123,3x x ==-(C)x =(D )12x x ==【答案】D8.(2011某某某某)一元二次方程220x x +-=的两根之积是( )A .-1B .-2C .1D .2【答案】B9.(2011某某内江)方程x (x -1)=2的解是A .x =-1B .x =-2C .x 1=1,x 2=-2D .x 1=-1,x 2=2 【答案】D10.(2011某某某某)下列四个说法中,正确的是A .一元二次方程2452x x ++=有实数根;B .一元二次方程2452x x ++=C .一元二次方程2453x x ++=有实数根; D .一元二次方程x 2+4x+5=a(a ≥1)有实数根. 【答案】D11.(2011某某某某)关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足() A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5 【答案】A12.(10某某某某)一元二次方程)0(02≠=++a c bx ax 有两个不相等...的实数根,则ac b 42-满足的条件是A.ac b 42-=0 B.ac b 42->0C.ac b 42-<0 D.ac b 42-≥0 【答案】B13.(2011某某日照)如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是(A )-3,2(B )3,-2(C )2,-3(D )2,3 【答案】A14.(2011某某眉山)已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅的值为A .7-B .3-C .7D .3 【答案】D15.(2011某某)若a 为方程式(x -17)2=100的一根,b 为方程式(y -4)2=17的一根, 且a 、b 都是正数,则a -b 之值为何? (A) 5(B) 6 (C) 83(D) 10-17。

2011全国中考数学真题(一元二次方程【附答案】)

2011全国中考数学真题(一元二次方程【附答案】)

2011全国各省市中考数学真题分类汇编- 一元二次方程(附答案)一、选择题1.(2011广东中考)一元二次方程()22x x x -=-的根是………………【 】A.-1B. 2C. 1和2D. -1和22.(2011武汉市中考)若x 1,x 2是一元二次方程x 2+4x+3=0的两个根,则x 1x 2的值是( ) A.4. B.3. C.-4. D.-3.3.(2011A .2=x4.(2011A. 2210x x+= C. (1)(2)x x -+5.(2011送了2070A. (1)x x -= C. 2(1)x x +7.(2011·济宁A.-1 B.08.(2011成都市中考)已知关于的一元二次方程有两个实数根,则下列关于判别式 24n mk-的判断正确的是( )(A) 240n mk -< (B)240n mk -= (C)240n mk -> (D)240n mk -≥9.(2011威海市中考)关于x 的一元二次方程x 2+(m -2)x +m +1=0有两个相等的实数根,则m 的值是( )A .0B .8C .4±D . 0或810.(2011舟山市中考)一元二次方程0)1(=-x x 的解是( ▲ ) (A )0=x (B )1=x(C )0=x 或1=x(D )0=x 或1-=x11.(2011台湾中考)關於方程式95)2(882=-x 的兩根,下列判斷何者正確?( ) (A)一根小於1,另一根大於3 (B)一根小於-2,另一根大於2(C)兩根都小於12.(2011b 4+之值为何?((A) 2 (B) 513.(2011黄石β满足( )A. 1α<<14.(2011毕节是( )A 、1(160+C 、1(160-15.(2011泉州A. 416.(2011福州A.C.17.(2011(A )218.(2011湘潭市中考)一元二次方程0)5)(3(=--x x 的两根分别为( ) A. 3, -5 B. -3,-5 C. -3,5 D.3,5二、填空题1.(2011苏州市中考)已知a 、b 是一元二次方程2210x x --=的两个实数根,则代数式()()2a b a b ab -+-+的值等于 .2.(2011德州市中考)若1x ,2x 是方程210x x +-=的两个根,则2212x x +=__________.3.(2011泰安市中考)方程03522=++x x 的解是 。

2011全国中考数学真题解析120考点汇编 一元二次方程的概念

2011全国中考数学真题解析120考点汇编 一元二次方程的概念

(2012年1月最新最细)2011全国中考真题解析120考点汇编☆一元二次方程的概念一、选择题1.(2011某某乌鲁木齐,8,4)关于x的一元二次方程(a-1)x2+x+|a|-1=0的一个根是0,则实数a的值为()A、-1B、0C、1D、-1或1考点:一元二次方程的解;一元二次方程的定义。

专题:常规题型。

分析:先把x=0代入方程求出a的值,然后根据二次项系数不能为0,把a=1舍去.解答:解:把x=0代入方程得:|a|-1=0,∴a=±1,∵a-1≠0,∴a=-1.故选A.点评:本题考查的是一元二次方程的解,把方程的解代入方程得到a的值,再由二次项系数不为0,确定正确的选项.2.(2011某某,20,4分)若一元二次方程式ax(x+1)+(x+1)(x+2)+bx(x+2)=2的两根为0.2,则|3a+4b|之值为何()A.2 B.5 C.7 D.8考点:解二元一次方程组;绝对值。

分析:先根据一元二次方程式ax(x+1)+(x+1)(x+2)+bx(x+2)=2的根确定a.b 的关系式.然后根据a.b的关系式得出3a+4b=-5.用求绝对值的方法求出所需绝对值.解答:解:将两根0.2分别代入ax(x+1)+(x+1)(x+2)+bx(x+2)=2中计算得3a+4b=-5,所以|3a+4b|=5.故选B.点评:此题考查了一元二次方程和二元一次方程及绝对值的运用.3.(2011•某某31,4分)关于方程式88(x﹣2)2=95的两根,下列判断何者正确()A、一根小于1,另一根大于3B、一根小于﹣2,另一根大于2C 、两根都小于0D 、两根都大于2考点:估算一元二次方程的近似解;解一元二次方程-直接开平方法。

分析:本题需先根据一元二次方程的解法,对方程进行计算,分别解出x 1和x 2的值,再进行估算即可得出结果. 解答:解:∵88(x ﹣2)2=95,(x ﹣2)2=8895,x ﹣2=±8895,∴x=±8895+2, ∴x 1=8895+2,∴x 1>3,∴x 2=-8895+2,∴x 2<1.故选A .点评:本题主要考查了对一元二次方程的近似解的估算,解题时要注意在开方的时候不要漏掉方程根,这是解题的关键.4.6.某品牌服装原价173元,连续两次降价00x 后售价价为127元,下面所列方程中正确的是( )A .()2001731127x += B .()0017312127x -= C .()2001731127x -= D .()2001271173x += 考点:由实际问题抽象出一元二次方程. 专题:增长率问题.分析:根据降价后的价格=原价(1-降低的百分率),本题可先用173(1-x %)表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程. 解答:解:当商品第一次降价x %时,其售价为173-173x %=173(1-x %); 当商品第二次降价x%后,其售价为173(1-x %)-173(1-x %)x %=173(1-x %)2. ∴173(1-x %)2=127. 故选C .点评:本题主要考查一元二次方程的应用,要根据题意列出第一次降价后商品的售价,再根据题意列出第二次降价后售价的方程,令其等于127即可.5. (2011某某某某,19,4分)关于x 的方程2()0a x m b ++=的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程2(2)0a x m b +++=的解是.考点:一元二次方程的解.分析:直接由向左平移加,向右平移减可得出x 1=﹣2﹣2=﹣4,x 2=1﹣2=﹣1. 解答:解:∵关于x 的方程a (x +m )2+b =0的解是x 1=﹣2,x 2=1,(a ,m ,b 均为常数,a ≠0),∴则方程a (x+m +2)2+b =0的解是x 1=﹣2﹣2=﹣4,x 2=1﹣2=﹣1.故答案为:x 1=﹣4,x 2=﹣1.点评:此题主要考查了方程解的定义.注意由两个方程的特点进行简便计算.6.(2011•某某某某,5,3)已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是( ) A 、1B 、﹣1C 、0D 、无法确定考点:一元二次方程的解;一元二次方程的定义。

一元二次方程及应用[2011年中考数学真题集锦]

一元二次方程及应用[2011年中考数学真题集锦]

一元二次方程及应用一、选择题1. (2011贵州毕节,10,3分)广州亚运会期间,某纪念品原价168元,连续两次降价%a 后售价为128元,下列所列方程正确的是( )A .128%)1(1602=+aB .128%)1(1602=-aC .128%)21(160=-aD .128%)1(160=-a 【答案】B2. (2011黑龙江省哈尔滨市,5,3分)若x=2是关于x 的一元二次方程08mx x 2=+-的一个解,则m 的值是( )A .6B .5C .2D .-6【答案】A3. (湖南湘西,12,3分)小华在解一元二次方程20x x -=时,只得出一个根x=1,则被漏掉的一个根是( )A.x=4 B.x=3 C.x=2 D.x=0【答案】D4. (2011黑龙江省哈尔滨市,5,3分)若x=2是关于x 的一元二次方程08mx x 2=+-的一个解,则m 的值是( )A .6 B .5 C .2 D .-6 【答案】A5. (2011湖北省随州市,7,4分)下列说法中正确命题有① 一个角的两边分别垂直于另一个角的两边,则这两个角相等 ② 数据5,2,7,1,2,4的中位数是3,众数是2 ③ 等腰梯形既是中心对称图形,又是轴对称图形 ④ Rt △ABC 中,∠C =90°,两直角边a 、b 分别是方程x 2-7x +7=0的两个根,则AB 边上的中线长为2135( )A .0个B .1个C .2个D .3个【答案】C6. (2011吉林,14,3分)某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x 米,则可列方程为( )(A )x (x -10)= 200 (B )2x +2(x -10)= 200 (C )x (x +10)= 200 (D )2x +2(x +10)= 200【答案】C7. (2011湖北鄂州,11,3分)下列说法中①一个角的两边分别垂直于另一个角的两边,则这两个角相等 ②数据5,2,7,1,2,4的中位数是3,众数是2 ③等腰梯形既是中心对称图形,又是轴对称图形④Rt △ABC 中,∠C=90°,两直角边a ,b 分别是方程x 2-7x +7=0的两个根,则AB正确命题有( ) A .0个 B .1个 C .2个 D .3个【答案】C8. (2011云南省昆明市,5,3分)若x 1,x 2是一元二次方程2x 2-7x +4=0的两根,则x 1+x 2与x 1·x 2的值分别是( )A .-72,-2B . -72,2C .72,2D .72,-2【答案】C9. (2011昭通,7,3)由于国家出台对房屋的限购令,我省某地的房屋价格原价为2400元/米2,通过连续两次降价%a 后,售价变为2000元/米2,下列方程中正确的是( ) A .2000)1(24002=-a B .2400)1(20002=-aC .2000)1(24002=+a D .2000)1(24002=-a 【答案】D 10.(2011内蒙古包头,3,3分)一元二次方程0412=++x x 的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定【答案】B11. (2011四川自贡,4,3分)已知1x 、2x 是方程2630x x ++=的两个实数根,则2112x x x x +的值等于 ( )A. 6 B.-6 C. 10 D. -10【答案】C 12. (2011山东淄博,10,3分)已知a 是方程012=-+x x 的一个根,则aa a ---22112的值为( )A.12- B .251±- C .-1D .1【答案】D13. (2011年青海,17,3分)关于x 的一元二次方程x 2+4x +k =0有实数解,则k 的取值范围是( ) A . k ≥4 B. k ≤4 C. k >4 D . k =4【答案】B14. (2011广西柳州,3,3分)方程x ²-4=0的解是A.x=2B.x=-2C.x=±2D.x=±4【答案】C15. (2011广西百色,11,3分)某工厂今年元月份的产量是50万元,3月份的产值达到了72万元。

2011年各地中考数学压轴题精选21-30(解析版)

2011年各地中考数学压轴题精选21-30(解析版)

2011年各地中考数学压轴题精选21-30解析版2011广东广州4、(2011•广州)已知关于x的二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0)(1)求c的值;(2)求a的取值范围;(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△PCD的面积为S1,△PAB的面积为S2,当0<a<1时,求证:S1﹣S2为常数,并求出该常数.考点:二次函数综合题;解一元一次方程;解二元一次方程组;根的判别式;根与系数的关系;待定系数法求一次函数解析式;二次函数图象上点的坐标特征;待定系数法求二次函数解析式;抛物线与x轴的交点;相似三角形的判定与性质。

专题:计算题。

分析:(1)把C(0,1)代入抛物线即可求出c;(2)把A(1,0)代入得到0=a+b+1,推出b=﹣1﹣a,求出方程ax2+bx+1=0,的b2﹣4ac的值即可;(3)设A(a,0),B(b,0),由根与系数的关系得:a+b=,ab=,求出AB=,把y=1代入抛物线得到方程ax2+(﹣1﹣a)x+1=1,求出方程的解,进一步求出CD过P作MN⊥CD于M,交X轴于N,根据△CPD∽△BPA,得出=,求出PN、PM的长,根据三角形的面积公式即可求出S1﹣S2的值即可.解答:(1)解:把C(0,1)代入抛物线得:0=0+0+c,解得:c=1,答:c的值是1.(2)解:把A(1,0)代入得:0=a+b+1,∴b=﹣1﹣a,ax2+bx+1=0,b2﹣4ac=(﹣1﹣a)2﹣4a=a2﹣2a+1>0,∴a≠1且a>0,答:a的取值范围是a≠1且a>0;(3)证明:∵0<a<1,∴B在A的右边,设A(a,0),B(b,0),∵ax2+(﹣1﹣a)x+1=0,由根与系数的关系得:a+b=,ab=,∴AB=b﹣a==,把y=1代入抛物线得:ax2+(﹣1﹣a)x+1=1,解得:x1=0,x2=,∴CD=,过P作MN⊥CD于M,交X轴于N,则MN⊥X轴,∵CD∥AB,∴△CPD∽△BPA,∴=,∴=,∴PN=,PM=,∴S1﹣S2=••﹣••=1,即不论a为何只,S1﹣S2的值都是常数.答:这个常数是1.点评:本题主要考查对用待定系数法求一次函数、二次函数的解析式,解二元一次方程组,解一元一次方程,相似三角形的性质和判定,根的判别式,根与系数的关系,二次函数图象上点的坐标特征,二次函数与X轴的交点等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键,此题是一个综合性比较强的题目,题型较好,难度适中.2011广东广州25、(2011•广州)如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE 是直角,点D在线段AC上.(1)证明:B、C、E三点共线;(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=OM;(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=OM1是否成立?若是,请证明;若不是,说明理由.考点:圆周角定理;全等三角形的判定与性质;等腰直角三角形;三角形中位线定理;旋转的性质。

2011年中考数学压轴题精选10答案

2011年中考数学压轴题精选10答案

2011年中考数学压轴题精选(91-100题)答案n=2+c,解:法1:由题意得【091】(1) 1分 2n-1=2+c.解得……2分 1 法2:∵抛物线y=x2-x+c的对称轴是x=,211 且-(-1) =2-,∴ A、B两点关于对称轴对称. 22 ∴ n=2n-11分∴ n=1,c=-1. 2分 15 ∴有 y=x2-x-1 3分=(x-)2-. 245 ∴二次函数y=x2-x-1的最小值是-. ……4分4 (2)解:∵点P(m,m)(m>0),∴PO=2m.∴22≤2m ≤2+2. ∴2≤m≤1+2. ……5分法1:∵点P(m,m)(m>0)在二次函数y=x2-x+c的图象上,∴ m=m2-m+c,即c=-m2+2m. ∵开口向下,且对称轴m=1,∴当2≤m≤1+2 时,有-1≤c≤0. (6)分法2:∵2≤m≤1+2,∴1≤m-1≤2. ∴1≤(m-1)2≤2.∵点P(m,m)(m>0)在二次函数y=x2-x+c的图象上,∴m=m2-m+c,即1-c=(m-1)2. ∴1≤1-c≤2.∴-1≤c≤0. ……6分∵点D、E关于原点成中心对称,法1:∴ x2=-x1,y2=-y1. y1=x12-x1+c, ∴∴2y1=-2x1,y1=-x1. -y1=x12+x1+c. 设直线DE:y=kx. 有-x1=kx1. 由题意,存在x1≠x2. ∴存在x1,使x1≠0. 7分∴ k=-1. ∴直线DE: y=-x. 8分法2:设直线DE:y=kx. 则根据题意有 kx=x2-x+c,即x2-(k+1) x+c=0. ∵-1≤c≤0,∴(k+1)2-4c≥0.∴方程x2-(k+1) x+c=0有实数根. 7分∵ x1+x2=0,∴ k+1=0. ∴ k=-1. ∴直线DE: y=-x. 8分 y=-x, 33 若则有 x2+c+=0.即 x2=-c-. 3 88 y=x2-x+c+. 8333 ① 当-c-=0时,即c=-时,方程x2=-c-有相同的实数根,8883 即直线y=-x与抛物线y=x2-x+c+有唯一交点. ……9分8333 ② 当-c->0时,即c<-时,即-1≤c<-时,888 13 方程x2=-c-有两个不同实数根,83 即直线y=-x与抛物线y=x2-x+c+有两个不同的交点. ……10分83333 ③ 当-c-<0时,即c>-时,即-<c≤0时,方程x2=-c-没有实数根,88883 即直线y=-x与抛物线y=x2-x+c+没有交点. ……11分8【092】解:(1)如图,在坐标系中标出O,A,C三点,连接OA,OC.y∵∠AOC≠90°,∴∠ABC=90°,327 A B 12故BC⊥OC, BC⊥AB,∴B(,1).(1分,)xO-112345 C 7-12即s=,t=1.直角梯形如图所画.(2分)(大致说清理由即可)(2)由题意,得,y=x2+mx-m与 y=1(线段AB)相交,2 y=x mx m, y=1.由(x-1)(x+1+m)=0,(3分)∴1=x2+mx-m,x 1,x m 1得.123x2∵=1<,不合题意,舍去.(4分)1x∴抛物线y=x2+mx-m与AB边只能相交于(,1),23759 m 2222∴≤-m-1≤,∴.①(5分)2mm 4m, 24又∵顶点P()是直角梯形OABC的内部和其边上的一个动点,m70 7 m 022∴,即.② (6分)442∵,(或者抛物线22m 4m2) 4m(m 2 1 1( 1)y=x2+mx-m顶点的纵坐标最大值是1)∴点P一定在线段AB的下方.(7分)又∵点P在x轴的上方,2m 4m 0m(m 4) 0,4∴, 2或者 m 4 0m 4 0 .(*8分)m 0,m 0,∴ 4 m(9分) 0. ③(9分)2m 4m2m2 ( )m(3m 8) 0.3432又∵点P在直线y=x的下方,∴,(10分)即或者 3m 8 03m 8 0.(*8分处评分后,m 0,m 0,分),或m 0.3 ④ 8m此处不重复评分)8 m (113 4 .(12分)由①②③④ ,得说明:解答过程,全部不等式漏写等号的扣1分,个别漏写的酌情处理.BOACOABCPDPHH【093】解:(1)连结与交于点,则当点运动到点时,直线平分矩形的面积.理由如下: H ∵矩形是中心对称图形,且点为矩形的对称中心. OABCDP又据经过中心对称图形对称中心的任一直线平分此中心对称图形的面积,因为直线过矩形OABCDPH的对称中心点,所以直线平分矩形的面积.…………2分 3P(,2)2P 由已知可得此时点的坐标为. y kx bDP, 3420k b 2.k b 设直线的函数解析式为. 5k b 021313,.则有解得420y x 1313DP所以,直线的函数解析式为:. 5分△△DOMABCM(2)存在点使得与相似. yM(0,y)DP如图,不妨设直线与轴的正半轴交于点.m OMBCOMAB.因为,若△DOM与△ABC相似,则有或 DOM ABCODABODBC,)m144ODAB54.所以点满足条件.当时,y3OMBC1515m y M(0即,解得 3,)m233ODBC53.所以点满足条件.当y4OMAB2020m y M(0时,即,解得15M(0, )34也满足条件.由对称性知,点152015M(0,)M(0,)M(0, )123△△DOMABC434M、、.综上所述,满足使与相似的点有3个,分别为9分5 P2(3)如图,过D作DP⊥AC于点P,以P为圆心,半径长为画圆,过点D分别作的切线DE、DF,5 P2点E、F是切点.除P点外在直线AC上任取一点P1,半径长为画圆,过点D分别作的切线DE1、DF1,点E1、F1是切点.在△DEP和△DFP中,∠PED=∠PFD,PF=PE,PD=PD,22∴S四边形DEPF=2S∴△DPE≌△DPF.15 DE PE DE PE DE△DPE=2×.∴当DE取最小值时,S四边形DEPF的值最小.y∵,,222DE DP PE222DE DP PE∴.11P22DE DE 0 DPDP,1111F2222DE DE DP DPCB∴.∵11E DE DEP x∴.由点的任意性知:DE是11A DOFD点与切点所连线段长的最小值.……12分1在△ADP与△AOC中,∠DPA=∠AOC,P1∠DAP=∠CAO,∴△ADP∽△AOC.DPCODP432 DP.∴E55DACA8.∴.∴,即1102425347122DE DP PE 25410 3471347144∴S四边形DEPF=,即S=. 14分(注:本卷中所有题目,若由其它方法得出正确结论,请参照标准给分.)2y ax bx c,则【094】解:(1)令二次函数16a 4b c 0 a b c 0 c 2 1分 42 c 2 2分 132y x x 21 a23 bA,B,C22 过三点的抛物线的解析式为4分3 O,022 5分2 AB(2)以为直径的圆圆心坐标为53 OC OO为圆切线6分 OCD DCO 90° CDO OC CDCOO OCO 90 COO DCO°△OCO∽△CDOOO/OC OC/OD 8分38/2 2/OD OD 23坐标为 9分(3)存在 10分 3X 2抛物线对8 0, 3 D称轴为 33( r,r)F( r,r)r22E设满足条件的圆的半径为,则的坐标为或132y x x 222E而点在抛物线上2222 2929r 1 r 1 2122 13332 r ( r) ( r) 22929 1 1 x22EF故在以为直径的圆,恰好与轴相切,该圆的半径为,12分 5注:解答题只要方法合理均可酌情给分C0(,2) B【095】(1)(4,0),. 2分132y x x 222. 4分△ABC(2)是直角三角形.5分132x x 2 0y 022证明:令,则. x 1,x 4.12 A( 1,0). 6分 AB 5,AC 5,BC 25解法一:. 7. △ABC是直角三角形.8分分222 AC BC 5 20 25 ABCOAO1 AO 1,CO 2,BO 4, BOOC2解法二:, △AOC∽△COB.7分AOC COB 90°ACO CBO. CBO BCO 90°,.即. △ABC是直角三角形.8ACO BCO 90° ACB 90°分 ①COGFAB H (3)能.当矩形两个顶点在上时,如图1,交于. y GF ∥AB , E D △CGF ∽△CAB . O A B x F H GFCH G C ABCO . 9分 图1 62CH x GF xDE x5解法一:设,则,, 2DG OH OC CH 2 x 5. 22 2 S ·2 x xx 2x 矩形DEFG55 2255 x 522 =. 10分 5x S2当时,最大. 5 DE ,DG 1 2. △ADG ∽△AOC , ADDG11 , AD , OD ,OE 2 AOOC22. 1 D ,0 E(2,0)2 ,. 11分 10 5xDE GF DG x2解法二:设,则. 10 5x55522 S x · x 5x (x 1) 矩形DEFG2222.10分 x 1S 当时,最大. 5 DG 1,DE 2. △ADG ∽△AOC , ADDG11 , AD , OD ,OE 2 AOOC22. 1 D ,0 E(2,0)2 ,. 11分 y 7 D O A B x G G C②CABF 当矩形一个顶点在上时,与重合,如图2, GDAG DG ∥BC △AGD ∽△ACBBCAF ,.. AC 5,BC 25GD x 解法一:设,, x1 x 2S x ·5 x 5x GF AC AG 5 矩形DEFG 22 2 . 15 2 x 5 22=. 12分 x 5S 当时,最大. 3 535 D ,0 22 AD AG GD OD GD 5,AG 2 222,. 13分 AC 5BC 25AG 5 x GD 25 2xDE x GC x 解法二:设,,,,.. 2 55 5 2x x 2 x·25 2x 2x 25x S22 S2 矩形DEFG= 12分当时,最大, 3,AG 535D,022 AD AG GD OD . GD 52 222 .. 13分 1 ,0 2 AB综上所述:当矩形两个顶点在上时,坐标分别为,(2,0); 3 ,0 2 AB当矩形一个顶点在上时,坐标为14分【096】(1)因所求抛物线的顶点M的坐标为故可设其关系式为………………(1分) (2,4), 2 y ax 2 4又抛物线经过O(0,0),于是得,………………(2分) 解2 a0 2 4 0得a=-1 ………………(3分) 2 y x 2 4∴所求函数关系式为,即. ……………(4分)2y x 4x(2)① 点P不在直线ME上. ………………(5分) 根据抛物线的对称性可知E点的坐标为(4,0),又M的坐标为(2,4),设直线ME的于是得,关系式为y=kx+b. 4k b 0k 2 2k b 4b 8 解得 8所以直线ME的关系式为y=-2x+8. ……(6分) 55 55 P, 22 22由已知条件易得,当t ……………(7分) 时,OA=AP,∵ P点的坐标不满足直线ME的关系式y=-2x+8. 5 2∴当t时,点P不在直线ME 上. ………………(8分) ② S存在最大值. 理由如下:………………(9分) ∵点A在x轴的非负半轴上,且N在抛物线上,∴ OA=AP=t. ∴点P,N的坐标分别为(t,t)、(t,-t 2+4t) ∴ AN=-t 2+4t (0≤t≤3) , ∴ AN-AP=(-t 2+4 t)- t=-t 2+3 t=t(3-t)≥0 , ∴ PN=-t 2+3 t …(10分) (ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD,∴1122S=DC·AD=×3×2=3. ………………(11分) (ⅱ)当PN≠0时,以点P,N,C,D为顶点的多边形是四边形∵4222 PN∥CD,AD⊥CD,2213 11 t∴S=(CD+PN)·AD=[3+(-t 2+3 t)]×2=-t 2+3 t+3=321S 最大24. …………(12分) 其中(0<t<3),由a=-1,0<<3,此时3 2时,以点P,N,C,D为顶点的多边形面积有最大值,综上所述,当t214这个最大值为. ………………(13分) 说明:(ⅱ)中的关系式,当t=0和t=3时也适合. 3)(4,D.【097】解:(1)点的坐标为(2分)392y x x84(2)抛物线的表达式为.(4分)Px(3)抛物线的对称轴与轴的交点符合条件.1yO x ∴.1 M P OA∥CB∵, P A 6 POM CDO3B OPM DCO 90°C D ,∵13y x 4Rt△POM∽Rt△CDO∴.(6分)1 9x 3∵抛物线的对称轴,P(3,0)P∴点的坐标为.(7分)11POOD过点作的垂线交抛物线的对称轴于点.2y∵对称轴平行∴.2 POM DCO 90°∵,于轴, PMO DOC∴点也符合条2Rt△PMO∽Rt△DOC∴.(8分)21 OPM ODCP∴,件,.22PO CO 3, PPO DCO 90°121Rt△PPO≌Rt△DCO∴.(9分)21PP CD 4∴.12P∵点在第一象限,2PP(3,4)∴点的坐标为,22P(3,0)P(3,4)P∴符合条件的点有两个,分别是,.(11分)12【098】解:(1)当t=4时,B(4,0) 设直线AB的解析式为y= kx+b . 把 A(0,6),B(4,0) 代入得:3 b=6k =- 2 , 解得: , 4k+b=0 b=63∴直线AB的解析式为:y=-x+6.………………………………………4分 2 (2) 过点C作CE⊥x轴于点E 由∠AOB=∠CEB=90°,∠ABO=∠BCE,得△AOB∽△BEC. BE CE BC1 AOBOAB2∴,11t∴BE= OB= AO=3,CE= ,222t∴点C的坐标为(t+3,).…………………………………………………………2分2方法一:1011t115 y S梯形AOEC= OE·(AO+EC)= (t+3)(6+)=t2+t+9,22244 A 11 D S△ AOB= AO·OB= ×6·t=3t,22 C 11t3S△ BEC= BE·CE= ×3×= t,2224 B x O E ∴S△ ABC= S梯形AOEC- S△AOB-S△ BEC 11531 = t2+t+9-3t-t = t2+9. 4444方法二:1∵AB⊥BC,AB=2BC,∴S△ABC= AB·BC= BC2. 21在Rt△ABC 中,BC2= CE2+ BE2 = t2+9,41即S△ABC= t2+9.…………………………………………………………2分4(3)存在,理由如下:y ①当t≥0时. Ⅰ.若AD=BD.又∵BD∥y轴 A D ∴∠OAB=∠ABD,∠BAD=∠ABD,∴∠OAB=∠BAD. C 又∵∠AOB=∠ABC,∴△ABO∽△ACB,OBBC1 t1 B O x E AOAB2,∴= ,∴t=3,即B(3,0). ∴62Ⅱ.若AB=AD.延长AB 与CE交于点G, 1 C 又∵BD∥CG∴AG=AC过点A画AH⊥CG 于H.∴CH=HG= CG y D 2GEAO18由△AOB∽△GEB,得=,∴GE= . BEOBt A H t181t18 E 又∵HE=AO=6,CE=∴+6=×(+)2t22t x O B G ∴t2-24t-36=0 解得:t=12±65. 因为t≥0,所以t=12+65,即B(12+65,0). Ⅲ.由已知条件可知,当0≤t<12时,∠ADB为钝角,故BD ≠ AB. D 当t≥12时,BD≤CE<BC<AB. ∴当t≥0时,不存在BD=AB的情况. ②当-3≤t<0时,如图,∠DAB是钝角.设AD=AB, y 过点C分别作CE⊥x轴,CF⊥y轴于点E,点F. tt A 可求得点C的坐标为(t+3,),∴CF=OE=t+3,AF=6-,22由BD∥y轴,AB=AD得,∠BAO=∠ABD,∠FAC=∠BDA,∠ABD=∠ADB∴∠BAO=∠FAC, E O 又∵∠AOB=∠AFC=90°,∴△AOB∽△AFC, x B C F 11t6 BOAO tt 3 6 CFAF2 ,∴,∴∴t2-24t-36=0 解得:t=12±65.因为-3≤t<0,所以t=12-65,即B (12-65,0). ③当t<-3时,如图,∠ABD是钝角.设AB=BD, y 过点C分别作CE⊥x轴,CF⊥y轴于点E,点F, A tt可求得点C的坐标为(t+3,),∴CF= -(t+3),AF=6-,22∵AB=BD,∴∠D=∠BAD. E B xO 又∵BD∥y轴,∴∠D=∠CAF,∴∠BAC=∠CAF. 又∵∠ABC=∠AFC=90°,AC=AC,∴△ABC≌△AFC,∴AF=AB,CF=BC, F C t∴AF=2CF,即6- =-2(t+3),解得:t=-8,即B(-8,0). 2综上所述,存在点B使△ABD为等腰三角形,此时点B坐标为: D B1 (3,0),B2 (12+65,0),B3 (12-65,0),B4(-8,0). ...........................4分【099】解:(1) 弦(图中线段AB)、弧(图中的ACB弧)、弓形、求弓形的面积(因为是封闭图形)等. (写对一个给1分,写对两个给2分) (2) 情形1 如图21,AB为弦,CD为垂直于弦AB 的直径. ..............................3分结论:(垂径定理的结论之一). (4)分证明:略(对照课本的证明过程给分). ……………………………………………………………7分情形2 如图22,AB为弦,CD为弦,且AB与CD在圆内相交结论:. D 证明:略. mn 于点P. PA PB PC PD n情形3 (图略)AB为弦,CD为弦,且与在圆外相交于结论:. m 证明:略. A B P 点P. PA PB PC PD OC 情形4 如图23,AB为弦,CD为弦,且AB∥CD. 第25题图结论: = . BC AD 证明:略. (上面四种情形中做一个即可,图1分,结论1分,证明3分;其它正确的情形参照给分;若提出的是错误的结论,则需证明结论是错误的)(3) 若点C和点E重合,则由圆的对称性,知点C和点D关于直径AB对称. …………………………………………8分 BAC x BAD x ABC 90 x设,则,.…………………………………………9分ABC又D是的中D 180 ABC2 CAD CAD AC点,所以,2 2x 180 (90 x)即 (10)分x BAC 30 解得.………………………………………………………………………………………11分3AB AC AF 3 FB2(若求得或等也可,评分可参照上面的标准;也可以先直觉猜测点B、C是圆12 n E C D C D n G m B A O O F OB的十二等分点,然后说明)【100】解:(1)令得2 (2b) 4(m a)(m a) 0222a b m由勾股定理的逆定理和抛物线的对称性知a b△ABM是一个以、为直角边的等腰直角三角形2y a(x 2) 1(2)设,∵△ABM是等腰直角三角形∴斜边上的中线等于斜边的一半,又顶点M(-2,-1) 1AB 12∴,即AB=2,∴A(-3,0),B(-1,0) 2y a(x 2) 1a 1将B(-1,0) 代入中得∴抛物线的解析式为,即y k x(3)设22y (x 2) 1y x 4x 3平行于轴的直线为y k 2解方程组得,(21y x 4x 3k 1)x 2 k 1x 2 k 1k 1 k2k 1x∴线段CD的长为,∵以CD为直径的圆与轴相切,据题意得,1 51 51 5k ( 2,)( 2,)2k k 1222∴,解得,∴圆心坐标为和 13。

2011年山东省中考数学试题分类汇编之“一元二次方程”题目汇编

2011年山东省中考数学试题分类汇编之“一元二次方程”题目汇编

2011年中考数学中考中的“一元二次方程”题目汇编一.选择题1. (2011·济宁)已知关于x 的方程x 2+bx+a=0的一个根是-a (a ≠0),则a-b 值为A.-1B.0C.1D.2考点:一元二次方程的根专题:整体计算分析:把已知的根代入原方程从而获得一个关a,b 的关系式,从而求出a-b .解答:解:把—a 代入原方程得:20a ab a -+=(1)0a a b -+=0,10a a b =-+=则1a b -=-故选答A .点评:本题考查的是一元二次方程的根,及整体计算的思想.2..关于x 的一元二次方程x 2+(m -2)x +m +1=0有两个相等的实数根,则m 的值是A .0B .8C .4±22D . 0或8考点:一元二次方程根的判别式.专题:计算题分析:方程有两个相等的实数根,则0∆=解答:解:2(2)4(1)m m ∆=--+=24444m m m -+--=2m=0m=0故选A点评:这是一道一元二次方程根的判别式的题目,利用方程有两个相等的根,则判别式等于0这一个知识点即可解出.3.(2008•滨州)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确的是( )A 、289(1﹣x )2=256B 、256(1﹣x )2=289C 、289(1﹣2x )2=256D 、256(1﹣2x )2=289考点:由实际问题抽象出一元二次方程。

专题:增长率问题。

分析:增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可参照增长率问题进行计算,如果设平均每次降价的百分率为x,可以用x表示两次降价后的售价,然后根据已知条件列出方程.解答:解:根据题意可得两次降价后售价为289(1﹣x)2,∴方程为289(1﹣x)2=256.故选答A.点评:本题考查一元二次方程的应用,解决此类两次变化问题,可利用公式a(1+x)2=c,其中a是变化前的原始量,c是两次变化后的量,x表示平均每次的增长率.本题的主要错误是有部分学生没有仔细审题,把答题案错看成B.4.(2011•潍坊)已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1,x2满足x1+x2=4和x1•x2=3,那么二次函数ax2+bx+c(a>0)的图象有可能是()A、B、C、D、考点:抛物线与x轴的交点;二次函数的图象。

2011全国各省市中考数学压轴题精选精析

2011全国各省市中考数学压轴题精选精析
四边形 AMNP
﹣S△PAM=S△DPN+S
梯形 NDAM
﹣S△PAM,即可求得关于 t 的二次函数,列方程
即可求得 t 的值; (3)根据图形,即可直接求得答案. 解答:解: (1)把 x=0,y=0 代入 y=x2+bx+c,得 c=0, 再把 x=t,y=0 代入 y=x2+bx,得 t2+bt=0, ∵t>0, ∴b=﹣t;
在 Rt△DOB 中,由勾股定理得,BD= ∵AE∥BF,

∴两条射线 AE、BF 所在直线的距离为

(2)当一次函数 y=x+b 的图象与图形 C 恰好只有一个公共点时,b 的取值范围是 b= ﹣1<b<1;

当一次函数 y=x+b 的图象与图形 C 恰好只有两个公共点时,b 的取值范围是 1<b< (3)假设存在满足题意的平行四边形 AMPQ,根据点 M 的位置,分以下四种情况讨论: ①当点 M 在射线 AE 上时,如图 2. ∵AMPQ 四点按顺时针方向排列, ∴直线 PQ 必在直线 AM 的上方, ∴PQ 两点都在弧 AD 上,且不与点 A、D 重合,
1 (x >0)的最小值. x

解决问题:⑵用上述方法解决“问题情境”中的问题,直接写 答案.
【答案】 解:⑴① x …… y ……
1 4 17 4
1 3 10 3
1 2 5 2
1 2
2
3
4
…… ……
5 2
10 3
17 4
函数 y x
1 ( x 0) 的图象如图. x
②本题答案不唯一,下列解法供参考. 当 0 x 1 时, y 随 x 增大而减小;当 x 1 时, y 随 x 增大而增大;当 x 1 时函数

2011年中考题-一元二次方程

2011年中考题-一元二次方程

2011年中考题—一元二次方程一、选择题1. (2011湖北荆州,9,3分)关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是A .1B .-1C .1或-1D . 22. (2011福建福州,7,4分)一元二次方程(2)0x x -=根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3. (2011山东滨州,3,3分)某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是( )A. ()22891256x -=B. ()22561289x -=C.289(1-2x)=256D.256(1-2x)=2894. (2011山东威海,9,3分)关于x 的一元二次方程2(2)10x m x m +-++=有两个相等的实数根,则m 的值是( )A .0B .8C .4±D .0或85. (2011四川南充市,6,3分) 方程(x +1)(x -2)=x +1的解是( )(A )2 (B )3 (C )-1,2 (D )-1,36. (2011浙江省嘉兴,2,4分)一元二次方程0)1(=-x x 的解是( )(A )0=x (B )1=x (C )0=x 或1=x(D )0=x 或1-=x 7. (2011江西,6,3分)已知x =1是方程x 2+bx -2=0的一个根,则方程的另一个根是( )A.1B.2C.-2D.-18. (2011福建泉州,4,3分)已知一元二次方程x 2-4x +3=0两根为x 1、x 2, 则x 1·x 2=( ).A. 4B. 3C. -4D. -39. (2011甘肃兰州,1,4分)下列方程中是关于x 的一元二次方程的是A .2210x x+= B .20ax bx c ++= C .(1)(2)1x x -+= D .223250x xy y --= 10. (2011甘肃兰州,10,4分)用配方法解方程2250x x --=时,原方程应变形为A .2(1)6x +=B .2(2)9x +=C .2(1)6x -=D .2(2)9x -= 11. (2011江苏苏州,8,3分)下列四个结论中,正确的是A.方程x +x 1=-2有两个不相等的实数根B.方程x +x1=1有两个不相等的实数根C.方程x +x 1=2有两个不相等的实数根D.方程x +x1=a (其中a 为常数,且|a|>2)有两个不相等的实数根 12. (2011江苏泰州,3,3分)一元二次方程x 2=2x 的根是A .x=2B .x=0C .x 1=0, x 2=2D .x 1=0, x 2=-213. (2011山东济宁,5,3分)已知关于x 的方程x 2+bx +a =0有一个根是-a (a≠0),则a -b 的值为A .-1B .0C .1D .214. (2011山东潍坊,7,3分)关于x 的方程2210x kx k ++-=的根的情况描述正确的是( )A . k 为任何实数,方程都没有实数根B . k 为任何实数,方程都有两个不相等的实数根C . k 为任何实数,方程都有两个相等的实数根D. 根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种15. (2011四川成都,6,3分)已知关于x 的一元二次方程)0(02≠=++m k nx mx 有两个实数根,则下列关于判别式 mk x 42-的判断正确的是 C (A) 042<-mk n (B) 042=-mk n(C) 042>-mk n (D) 042≥-mk n16.( 2011重庆江津, 9,4分)已知关于x 的一元二次方程(a -1)x 2-2x+1=0有两个不相等的实数根,则a 的取值范围是( )A.a<2 B,a>2 C.a<2且a ≠1 D.a<-2·17. (2011江西南昌,6,3分)已知x =1是方程x 2+bx -2=0的一个根,则方程的另一个根是( )A.1B.2C.-2D.-118. (2011四川绵阳12,3)若x 1,x 2(x 1 <x 2)是方程(x -a )(x-b ) = 1(a < b)的两个根,则实数x 1,x 2,a,b的大小关系为A .x 1<x 2<a <bB .x 1<a <x 2<bC .x 1<a <b <x 2D .a <x 1<b <x 219. (2011四川凉山州,6,4分)某品牌服装原价173元,连续两次降价00x 后售价价为127元,下面所列方程中正确的是( )A ()2001731127x +=B ()0017312127x -=C ()2001731127x -=D .()2001271173x +=20. (2011湖北武汉市,5,3分)若x 1,x 2是一元二次方程x 2+4x +3=0的两个根,则x 1x 2的值是A .4.B .3.C .-4.D .-3.21. (2011湖北黄石,9,3分)设一元二次方程(x -1)(x -2)=m(m >0)的两实根分别为α,β,则α,β满足A. 1<α<β<2B. 1<α<2 <βC. α<1<β<2D.α<1且β>222. (2011安徽,8,4分)一元二次方程x (x -2)=2-x 的根是( )A .-1B .2C .1和2D .-1和2 23. (2011湖南湘潭市,7,3分)一元二次方程0)5)(3(=--x x 的两根分别为A. 3, -5B. -3,-5C. -3,5D.3,524. (2011浙江省舟山,2,3分)一元二次方程0)1(=-x x 的解是( )(A )0=x(B )1=x (C )0=x 或1=x (D )0=x 或1-=x二、填空题1. (2011江苏扬州,14,3分)某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是2. (2011山东泰安,21 ,3分)方程2x 2+5x -3=0的解是 。

2011年中考数学试题汇编之压轴题(2)

2011年中考数学试题汇编之压轴题(2)

2011年中考数学试题汇编之压轴题(2)(盐城市二○一一年)27.(本题满分12分) 情境观察将矩形ABCD 纸片沿对角线AC 剪开,得到△ABC 和△A′C ′D ,如图1所示.将△A′C ′D 的顶点A′与点A 重合,并绕点A 按逆时针方向旋转,使点D 、A (A′)、B 在同一条直线上,如图2所示.观察图2可知:与BC 相等的线段是 ▲ ,∠CAC ′= ▲ °.问题探究如图3,△ABC 中,AG ⊥BC 于点G ,以A 为直角顶点,分别以AB 、AC 为直角边,向△ABC 外作等腰Rt △ABE 和等腰Rt △ACF ,过点E 、F 作射线GA 的垂线,垂足分别为P 、Q . 试探究EP 与FQ 之间的数量关系,并证明你的结论.拓展延伸如图4,△ABC 中,AG ⊥BC 于点G ,分别以AB 、AC 为一边向△ABC 外作矩形ABME 和矩形ACNF ,射线GA 交EF 于点H . 若AB = k AE ,AC = k AF ,试探究HE 与HF 之间的数量关系,并说明理由.27.解:情境观察 AD (或A′D ),90图4M NG F EC B AH图3A B C E F G P Q 图1 图2C'A'B A D C A B C D BC D A (A')C'问题探究结论:EP =FQ .证明:∵△ABE 是等腰三角形,∴AB =AE ,∠BAE=90°.∴∠BAG +∠EAP =90°.∵AG ⊥BC ,∴∠BAG +∠ABG =90°,∴∠ABG =∠EAP . ∵EP ⊥AG ,∴∠AGB =∠EP A =90°,∴Rt △ABG ≌Rt △EAP . ∴AG =EP . 同理AG =FQ . ∴EP =FQ . 拓展延伸结论: HE =HF .理由:过点E 作EP ⊥GA ,FQ ⊥GA ,垂足分别为P 、Q.∵四边形ABME 是矩形,∴∠BAE =90°,∴∠BAG +∠EAP =90°.AG ⊥BC ,∴∠BAG +∠ABG =90°, ∴∠ABG =∠EAP . ∵∠AGB =∠EP A =90°,∴△ABG ∽△EAP ,∴AG EP = AB EA .同理△ACG ∽△F AQ ,∴AG FP = ACF A .∵AB = k AE ,AC = k AF ,∴AB EA = AC F A = k ,∴AG EP = AGFP. ∴EP =FQ . ∵∠EHP =∠FHQ ,∴Rt △EPH ≌Rt △FQH . ∴HE =HF(盐城市二○一一年)28.(本题满分12分)如图,已知一次函数y = - x +7与正比例函数y = 43x 的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒. ①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.Q P H ABCEFGNM(备用图)28.解:(1)根据题意,得⎩⎨⎧y =-x +7y=43x,解得 ⎩⎨⎧x =3y =4,∴A (3,4) .令y =-x +7=0,得x =7.∴B (7,0). (2)①当P 在OC 上运动时,0≤t <4. 由S △APR =S 梯形COBA -S △ACP -S △POR -S △ARB =8,得 12(3+7)³4-12³3³(4-t )- 12t(7-t )- 12t ³4=8 整理,得t 2-8t +12=0, 解之得t 1=2,t 2=6(舍) 当P 在CA 上运动,4≤t <7.由S △APR = 12³(7-t ) ³4=8,得t =3(舍)∴当t =2时,以A 、P 、R 为顶点的三角形的面积为8. ②当P 在OC 上运动时,0≤t <4. ∴AP=(4-t )2+32,AQ=2t ,PQ=7-t 当AP =AQ 时, (4-t )2+32=2(4-t )2, 整理得,t 2-8t +7=0. ∴t =1, t =7(舍) 当AP=PQ 时,(4-t )2+32=(7-t )2, 整理得,6t =24. ∴t =4(舍去) 当AQ=PQ 时,2(4-t )2=(7-t )2整理得,t 2-2t -17=0 ∴t =1±3 2 (舍)当P 在CA 上运动时,4≤t <7. 过A 作AD ⊥OB 于D ,则AD =BD =4.设直线l 交AC 于E ,则QE ⊥AC ,AE =RD=t -4,AP =7-t . 由cos ∠OAC= AE AQ = AC AO ,得AQ = 53(t -4).当AP=AQ 时,7-t = 53(t -4),解得t = 418.当AQ=PQ 时,AE =PE ,即AE = 12AP得t -4= 12(7-t ),解得t =5.当AP=PQ 时,过P 作PF ⊥AQ 于F AF = 12AQ = 12³53(t -4).在Rt △APF 中,由cos ∠P AF =AF AP = 35,得AF = 35AP 即 12³53(t -4)= 35³(7-t ),解得t= 22643. ∴综上所述,t=1或418或5或 22643时,△APQ 是等腰三角形.(2011²济宁)如图,第一象限内半径为2的⊙C 与y 轴相切于点A ,作直径AD ,过点D 作⊙C 的切线l 交x 轴于点B ,P 为直线l 上一动点,已知直线PA 的解析式为:y=kx+3。

2011中考数学真题解析压轴题1(含答案)

2011中考数学真题解析压轴题1(含答案)

2011全国中考真题解析压轴题1一、选择题1. (2011•台湾34,4分)如图1,有两全等的正三角形ABC ,DEF ,且D ,A 分别为△ABC ,△DEF 的重心.固定D 点,将△DEF 逆时针旋转,使得A 落在上,如图2所示.求图1与图2中,两个三角形重迭区域的面积比为何( )A 、2:1B 、3:2C 、4:3D 、5:4考点:旋转的性质;等边三角形的性质。

分析:设三角形的边长是x ,则(1)中阴影部分是一个内角是60°的菱形,图(2)是个角是30°的直角三角形,分别求得两个图形的面积,即可求解. 解答:解:设三角形的边长是x ,则高长是x 23. 图(1)中,阴影部分是一个内角是60°的菱形,AD=×x 23=x 33. 另一条对角线长是:2×21×x 33sin30°=31x . 则阴影部分的面积是:21×31x•63x=363x 2; 图(2)中,AD=×x 23=x 33. 是一个角是30°的直角三角形.则阴影部分的面积=21AD•sin30°•AD•cos30°=21×x•××x•23=363x 2. 两个三角形重迭区域的面积比为:363x 2:363x 2=4:3. 故选C .点评:本题主要考查了三角形的重心的性质,以及菱形、直角三角形面积的计算,正确计算两个图形的面积是解决本题的关键.2. (2011台湾,34,4分)如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,且当钟面显示3点30分时,分针垂直于桌面,A 点距桌面的高度为10公分.如图2,若此钟面显示3点45分时,A 点距桌面的高度为16公分,则钟面显示3点50分时,A 点距桌面的高度为多少公分( )A .3322B .16+πC .18D .19考点:解直角三角形的应用;钟面角。

2011年中考数学压轴题精选集

2011年中考数学压轴题精选集

2011年中考数学压轴题精选(21-30题)【021】如图,点P 是双曲线11(00)k yk x x=<<,上一动点,过点P 作x 轴、y轴的垂线,分别交x 轴、y 轴于A 、B 两点,交双曲线y =xk 2 (0<k 2<|k 1|)于E 、F 两点.(1)图1中,四边形PEOF 的面积S 1= ▲ (用含k 1、k 2的式子表示); (2)图2中,设P 点坐标为(-4,3).①判断EF 与AB 的位置关系,并证明你的结论; ②记2PEF OEFS S S ∆∆=-,S 2是否有最小值?若有,求出其最小值;若没有,请说明理由。

【022】一开口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点为C,且AC⊥BC.(1)若m为常数,求抛物线的解析式;(2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?(3)设抛物线交y轴正半轴于D点,问是否存在实数m,使得△BCD为等腰三角形?若存在,求出m的值;若不存在,请说明理由.【023】如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是A D 的中点, MBC △是等边三角形.(1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60M PQ =︒∠保持不变.设PC x M Q y ==,,求y与x 的函数关系式;(3)在(2)中:①当动点P 、Q 运动到何处时,以点P 、M 和点A 、B 、C 、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当y 取最小值时,判断PQ C △的形状,并说明理由.ADCBP MQ60°【024】如图,已知ABC=,点A、C在x∠=︒,AC BCACB∆为直角三角形,90轴上,点B坐标为(3,m)(0m>),线段A B与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示);(2)求抛物线的解析式;(3)设点Q为抛物线上点P至点B之间的一动点,连结P Q并延长交BC于点E,连结B Q并延长交AC于点F,试证明:(FC【025】如图,直线4+-=xy与两坐标轴分别相交于A、B点,点M是线段AB 上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为)40<<aa(,正方形OCMD与△AOB重叠部分的面积为S.试求S与a的函数关系式并画出该函数的图象.图(1)图(2)图(3)【026】如图11,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH (HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH∶AC=2∶3(1)延长HF交AB于G,求△AHG的面积.(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图12).探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系.【027】阅读材料:如图12-1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ahS ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图12-2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆;(3)是否存在一点P ,使S △P AB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.图12-2xC Oy ABD 1 1【028】如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。

2011中考压轴题

2011中考压轴题

2011年全国各地中考数学解答题压轴题解析1.(广西桂林12分)已知二次函数21342y x x=-+的图象如图. (1)求它的对称轴与x 轴交点D 的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x 轴,y 轴的交点分别为A 、B 、C 三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M ,以AB 为直径,D 为圆心作⊙D,试判断直线CM 与⊙D 的位置关系,并说明理由.【答案】解:(1)由21342y x x =-+,得32bx a =-=,∴D(3,0)。

(2)如图1,设平移后的抛物线的解析式为21342y x x k=-++,则C (0,k ),OC=k ,令y =0,即21342x x k -++=,得12349 , 349x k x k =+=+ ∴A ()349 , 0k +,B ()349 , 0k ++,∴22AB 493349 1636k k k =+-++=+,()()2222222AC BC 349 +3492836k k k k k k +=++++=++。

∵AC2+BC2=AB2,即:21636836k k k +=++,得k 1=4,k 2=0(舍去),∴抛物线的解析式为213442y x x =-++。

(3)如图2,由抛物线的解析式213442y x x =-++可得, A (﹣2,0),B (8,0),C (4,0),D (3,0),M 253 ,4⎛⎫ ⎪⎝⎭, 过C 、M 作直线,连接CD ,过M 作MH 垂直y 轴于H , 则MH=3,∴2225625DM 416⎛⎫==⎪⎝⎭, 2222225225CM MH CH 34416⎛⎫=+=+-=⎪⎝⎭。

在Rt△COD 中,22CD 345AD =+==, ∴点C 在⊙D 上。

∵2225625DM 416⎛⎫==⎪⎝⎭, 222DM CD CM =+, ∴DM2=CM2+CD2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年全国各地中考数学压轴题专集:2一元二次方程
1.已知△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边长为5.
(1)当k为何值时,△ABC是以BC为斜边的直角三角形;
(2)当k为何值时,△ABC是等腰三角形,并求△ABC的周长.
2.已知△ABC的三边长为a、b、c,关于x的方程x2-2(a+b)x+c2+2ab=0有两个相等的实数根,又sin A、sin B是关于x的方程(m+5)x2-(2m-5)x+m-8=0的两个实数根.
(1)求m的值;
(2)若△ABC的外接圆面积为25π,求△ABC的内接正方形的边长.
3.已知关于x的方程x2-(m+n+1)x+m=0(n≥0)的两个实数根为α、β,且α≤β.
(1)试用含有α、β的代数式表示m和n;
(2)求证:α≤1≤β;
(3)若点P(α,β)在△ABC的三条边上运动,且△ABC顶点的坐标分别为A(1,2),B(1
2
,1),C
(1,1),问是否存在点P,使m+n=5
4
?若存在,求出点P的坐标;若不存在,请说明理由.
4.请阅读下列材料:
问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则y=2x,所以x=y
2

把x=y
2
代入已知方程,得(
y
2
)2+
y
2
-1=0.
化简,得y2+2y-4=0.
故所求方程为y2+2y-4=0.
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式);
(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为:___________________;
(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.
5.已知关于x的一元二次方程x2-2x-a2-a=0(a>0).
(1)证明这个方程的一个根比2大,另一个根比2小;
(2)如果当a=1,2,3,…,2011时,对应的一元二次方程的两个根分别为α1、β1,α2、β2,α3、
β3,…,α2011、β2011,求
1
α 1

1
β 1

1
α2

1
β 2

1
α3

1
β 3
+…+
1
α2011

1
β2011
的值.
6.已知关于x的一元二次方程x2-(a+b+c)x+ab+bc+ca=0,且a>b>c>0.
(1)若方程有实数根,求证:a,b,c不能构成一个三角形的三边长;
(2)若方程有实数根x0,求证:b+c<x0<a;
(3)若方程的实数根为6和9,求正整数a,b,c的值.
7.已知方程x2+2ax+a-4=0有两个不同的实数根,方程x2+2ax+k=0也有两个不同的实数根,且其两根介于方程x2+2ax+a-4=0的两根之间,求k的取值范围.
8.已知关于x的方程x2-4|x|+3=k.
(1)当k为何值时,方程有4个互不相等的实数根?
(2)当k为何值时,方程有3个互不相等的实数根?
(3)当k为何值时,方程有2个互不相等的实数根?
(4)是否存在实数k,使得方程只有1个实数根?若存在,求k的值和方程的根;若不存在,请说明理由.
9.已知x1,x2是关于x的一元二次方程4x2+4(m-1)x+m2=0的两个非零实数根,则x1与x2能否同号?若能同号,请求出相应的m的取值范围;若不能同号,请说明理由.
10.已知α、β为关于x的方程x2-2mx+3m=0的两个实数根,且(α-β)2=16,如果关于x的另一个方程x2-2mx+6m-9=0的两个实数根都在α和β之间,求m的值.
11.已知a为实数,且关于x的二次方程ax2+(a2+1)x-a=0的两个实数根都小于1,求这两个实数根的最大值.
12.求实数a的取值范围,使关于x的方程x2+2(a-1)x+2a+6=0
(1)有两个实根x1、x2,且满足0<x1<1<x2<4;
(2)至少有一个正根.
13.已知x1、x2是方程x2-mx-1=0的两个实数根,满足x1<x2,且x2≥2.(1)求m的取值范围;
(2)若x2+m
x1-m

x1+m
x2-m
=2,求m的值.
14.已知关于x的方程x2-(m-2)x-m2
4
=0(m≠0)
(1)求证:这个方程总有两个异号实根;
(2)若这个方程的两个实根x1、x2满足|x2|=|x1|+2,求m的值及相应的x1、x2.
15.已知△ABC的一边长为5,另两边长恰是方程2x2-12x+m=0的两个根,求m的取值范围.
16.已知:α,β(α>β)是一元二次方程x2-x-1=0的两个实数根,设s1=α+β,s2=α2+β2,…,s n=αn+βn.根据根的定义,有α2-α-1=0,β2-β-1=0,将两式相加,得(α2+β2)-(α+β)-2=0,于是,得s2-s1-2=0.
根据以上信息,解答下列问题:
(1)利用配方法求α,β的值,并直接写出s1,s2的值;
(2)猜想:当n≥3时,s n,s n-1,s n-2之间满足的数量关系,并证明你的猜想的正确性;
(3)根据(2)中的猜想,求(1+5
2
)
8
+(
1-5
2
)
8
的值.
17.已知方程(x-1)(x2-2x+m)=0的三个实数根恰好构成△ABC的三条边长.(1)求实数m的取值范围;
(2)当△ABC为直角三角形时,求m的值和△ABC的面积.。

相关文档
最新文档