2017人教版最新教材七年级数学下册经典易错题
新人教版七年级下册数学典型题、易错题整理
新人教版七年级下册数学典型题、易错题整理1、在下列说法中:(1)0.09是0.81的平方根;(2)-9的平方根是±3;(3)(-5)2的算术平方根是-5;(4)32-是个负数;(5)已知a 是实数,则||2a a =;(6)全体实数和数轴上的点是一一对应,正确的个数是( )A 、1B 、2C 、3D 、42、若方程()()22930m x m x y ----=是关于x y 、的二元一次方程,则m 的值为( ) A. 3± B. 3 C. -3 D. 93、不等式组 的解集表示在数轴上为()4、已知关于x 的不等式组 无解,则a 的取值范围是( )A 、1-≤aB 、1-<a 或2>aC 、21<<-aD 、2≥a5、平面直角坐标系内AB∥y 轴,AB=5,点A 的坐标为(-5,3),则点B 的坐标为( )A .(-5,8)B .(0,3)C .(-5,8)或(-5,-2)D .(0,3)或(-10,3)6、已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=-|a 1+1|,a 3=-|a 2+2|,a 4=-|a 3+3|,…,依此类推,则a 2012的值为()A .-1005B .-1006C .-1007D .-20127、2006年我市有23 000名初中毕业生参加了升学考试,为了解23 000名考生的升学成绩,从中抽取了200名考生的试卷进行统计分析,以下说法正确的是( )A .23 000名考生是总体B .每名考生的成绩是个体C .200名考生是总体的一个样本D .以上说法都不正确8、已知点P 的坐标为(2-a ,3a+6),且点P 到两坐标轴的距离相等,则a= .9、若不等式组⎩⎨⎧>-<+n m x n m x 的解集是53<<-x ,则不等式0<-n mx 的解集为10、16的平方根为 25的立方根为 .11、以下命题中(1)对顶角相等(2)相等的角是对顶角(3)垂直于同一条直线的两直线互相平行(4)平行于同一条直线的两直线互相平行(5)同位角相等,其中真命题的序号为 .12、若不等式组3x x a >⎧⎨>⎩,的解集为x a >,则a 的取值范围是( )-1(D)(C)(B)3322100⎨⎧<+--≤-4325x x ⎪⎩⎪⎨>->a x x 1A.3a < B.3a = C.3a > D.3a ≥13、若不等式组8x x m <⎧⎨>⎩,有解,则m 的取值范围是_____. 14、若不等式组⎩⎨⎧->+<121m x m x 无解,则m 的取值范围是 .。
七年级下册数学易错题50道
七年级下册数学易错题50道一、相交线与平行线1. 判断题:不相交的两条直线叫做平行线。
(错误)解析:必须是在同一平面内不相交的两条直线才叫做平行线,如果不在同一平面内,不相交的直线不一定平行。
2. 若∠1与∠2是同旁内角,∠1 = 50°,则∠2的度数是()A.50°B.130°C.50°或130°D.不能确定答案:D解析:两直线平行,同旁内角互补;两直线不平行,同旁内角的关系不确定,只知道∠1 = 50°,不知道两直线的位置关系,所以∠2的度数不能确定。
3. 如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1 = 72°,求∠2的度数。
解:因为AB∥CD,∠1 = 72°,所以∠BEF = 180°∠1 = 180°-72° = 108°。
因为EG平分∠BEF,所以∠BEG=公式∠BEF=公式。
又因为AB∥CD,所以∠2 = ∠BEG = 54°。
二、实数4. 公式的平方根是()A.2B.±2C.4D.±4答案:B解析:先计算公式,然后求4的平方根,因为公式,所以4的平方根是±2。
5. 下列说法正确的是()A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限不循环小数D.实数包括正实数和负实数答案:C解析:无限循环小数是有理数,A错误;公式是有理数,B错误;无理数是无限不循环小数,C正确;实数包括正实数、0和负实数,D错误。
6. 计算:公式解:公式,公式,公式。
则原式公式。
三、平面直角坐标系7. 点P(m + 3,m + 1)在x轴上,则点P的坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)答案:B解析:因为点P在x轴上,所以P点的纵坐标为0,即m + 1 = 0,解得m=-1。
人教版最新教材七年级数学下册经典易错题初一数学
七年级下册经典易错习题一、填空题1.一个数的平方等于它本身,这个数是;一个数的平方根等于它本身,这个数是;一个数的算术平方根等于它本身,这个数是;一个数的立方等于它本身,这个数是;一个数的立方根等于它本身,这个数是;一个数的倒数是它本身,这个数是;一个数的绝对值等于它本身,这个数是。
2.16的平方根为,=16,16的平方根等于 .3.;,则。
4.已知一个正数的两个平方根分别为3x-5和x-7,则这个正数为 .5.17-1的整数部分为;小数部分为;绝对值为;相反数为 .6. 如图,在数轴上,1的对应点是A、B, A是线段BC的中点,则点C所表示的数是。
7.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为。
8.如果∠1=80°,∠2的两边分别与∠1的两边平行,那么∠2= 。
9.已知点A(1+m,2m+1)在x轴上,则点A坐标为。
10.已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为 .11.点P(a-2,2a+3)到两坐标轴距离相等,则a= .12.将点A(1,-3)向右平移2个单位,再向下平移2个单位后得到点B(a,b),则ab=.13.已知平面直角坐标系内点P的坐标为(-1,3),如果将平面直角坐标系向左平移3个单位,再向下平移2个单位,那么平移后点P的坐标为________.14.在平面直角坐标系中,已知A(2,-2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有个。
15.点P(a+5,a)不可能在第象限。
16.平面直角坐标系内有一点P(x,y),满足x=0y,则点P在17.方程52=+yx在正整数范围内的解是_____ 。
18.已知x=1,y=﹣8是方程mx+y-1=0的解,则m的平方根是。
19.关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是。
20.如果不等式2x-m≤0的正整数解有3个,则m的取值范围是。
人教版七年级数学易错题(含解析)
七年级数学易错题1、a -一定负数吗?错解:一定.剖析:带有负号的数不一定就是正数,关键是确定a 是一个什么数,这就要应用分类讨论的思想进行讨论.解:不一定, a -可能是正数,0,负数 分析:若a 是正数,则a -就是负数, 若a =0则a -=0若a 是负数,则a -就是正数.2、在数轴上点A 表示的数是7.点B ,C 表示的两个数互为相反数且C 与A 之间的距离为2,求点B ,C 对应的数. 错解: 点C 与点A 之间的距离为2, ∴点C 表示的数为5.点B 和点C 表示的数互为相反数, ∴B 表示的数为-5.剖析:点C 与点A 之间的距离为2,则点C 有可能在点A 的左侧也有可能在点A 右侧.故要分情况讨论.正解: 点C 与点A 之间的距离为2,∴点C 在点A 的左侧2个单位长度或点C 在点A 的右侧2个单位长度. ①点C 在点A 的左侧2个单位长度,则点C 表示的数为5. 点B 和点C 表示的数互为相反数, ∴B 表示的数为-5.②点C 在点A 的右侧2个单位长度,则点C 表示的数为9. 点B 和点C 表示的数互为相反数, ∴B 表示的数为-9.3、.计算:200520011171311391951511⨯+⨯+⨯+⨯+⨯错解:原式=2005120011171131131919151511--+-+-+- =200511-=20052004 剖析:由于学生在长期的学习中形成的思维定式,用类似于解200520041200420031431321211⨯+⨯++⨯+⨯+⨯ 方法直接去求解.而忽视本题54511=-, 4549151=-结果中分子是4而不是1.故这样做是错的.正解:原式=41⎪⎭⎫ ⎝⎛--+-+-+-⨯2005120011171131131919151511=41)200511(-⨯ =2005501.4、计算: 17391326-⨯.【错解】原式17391313261750721515.2=-⨯+⨯=-+=-【错解剖析】本题错误原因是把173926-看成173926-与的和,而它应是39-与1726-的和. 【正确解答】原式171713913135075152622=-⨯-⨯=--=-. 5、计算:(1)[]24)3(2611--⨯--; 【错解】错解一:原式=1-16×(2-9)=1-16×(-7)=1+76=136. 错解二:原式=-1-16×(2-9)=-1-16×(-7)=-1-76=-136. 【错解剖析】错解一中是将41-计算成1得到136,错解二中是去括号符号出错得到136-.【正确答案】原式=-1-16×(2-9)=-1-16×(-7)=-1+76=-16(2)42221(1)32()2--÷⨯-.【错解】原式=1-9÷1=-8.【错解剖析】没有按照运算顺序计算,而是先计算2212()2⨯-.【正确答案】原式=1-9×14×14=1-916 =716. 6、用代数式表示下列语句:(1)比x 与y 的和的平方小x 与y 的和的数;(2)a 的2倍与b 的31的差除以a 与b 的差的立方.错解:(1)()()y x y x +-+22 (2)()3312b a b a -÷⎪⎭⎫ ⎝⎛-.剖析:(1)要表示的是“比x 与y 的和的平方小x 与y 的和的数”,应该先求和再求平方即应该是)()(2y x y x +-+,而不应该是()()y x y x +-+22.(2)是书写不规范,除号要用分数线代替,即应该写成3)(312b a ba --. 正解:(1))()(2y x y x +-+ (2)3)(312b a ba -- 7、用代数式表示下列语句:(1)比x 与y 的和的平方小x 与y 的和的数;(2)a 的2倍与b 的31的差除以a 与b 的差的立方.错解:(1)()()y x y x +-+22 (2)()3312b a b a -÷⎪⎭⎫ ⎝⎛-.剖析:(1)要表示的是“比x 与y 的和的平方小x 与y 的和的数”,应该先求和再求平方即应该是)()(2y x y x +-+,而不应该是()()y x y x +-+22.(2)是书写不规范,除号要用分数线代替,即应该写成3)(312b a ba --. 正解:(1))()(2y x y x +-+ (2)3)(312b a ba -- 8、已知方程24)3(2-=+--m x m m 是关于x 的一元一次方程.求:(1)m 的值;(2)写出这个关于x 的一元一次方程. 【错解】m =±3.【剖析】忘记m -3≠0这个条件.【正解】(1)由⎩⎨⎧≠-=-0312m m 得m =-3.(2)-6x +4=-5.9、解方程7x -112(1)(1)223x x x ⎡⎤--=-⎢⎥⎣⎦. 【错解】 7x -)1(32)1(2121-=--x x x .)1(4)1(3342-=---x x x x . 4433342-=+--x x x x . 32x =-7.x =327- .【剖析】 去中括号时)1(21--x 漏乘系数21,另外,同样在这一步去括号时忘记了考虑符号问题.【正解】第一次去分母,得42x -13(1)4(1)2x x x ⎡⎤--=-⎢⎥⎣⎦.第一次去括号,得 42x -44)1(233-=-+x x x .第二次去分母,得 84x -6x +3x -3=8x -8. 移项,合并同类项,得 73x =-5.把系数化为1,得 x =735-. 10. 解方程1-x =5.【错解】由1-x =5得到x -1=5.∴x =6.【剖析】去绝对值符号必须考虑正负性x -1=5或x -1=-5. 【正解】由1-x =5得到x -1=5或x -1=-5. ∴x =6或x =-4.11、某水果批发市场香蕉的价格如下表:强第一次、第二次分别购买香蕉多少千克?【错解】⑴当第一次购买香蕉少于20千克,第二次购买香蕉20千克以上但不超过40千克时,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +5(50-x )=264, 解得:x =14.50-14=36(千克).∴第一次购买14千克香蕉,第二次购买36千克香蕉.⑵当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +4(50-x )=264, 解得:x =32.∴第一次购买32千克香蕉,第二次购买18千克香蕉.【剖析】本题是一道分类讨论题,分类讨论的关键是第二次的购买量,关键得考虑第二次多于第一次,解题时应该重点考虑.【正解】⑴当第一次购买香蕉少于20千克,第二次香蕉20千克以上但不超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +5(50-x )=264, 解得:x =14.50-14=36(千克).∴第一次购买14千克香蕉,第二次购买36千克香蕉.⑵当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +4(50-x )=264,解得:x =32(不符合题意,舍去).答:第一次购买14千克香蕉,第二次购买36千克香蕉.12、下列哪些空间图形是柱体?错解:A 、B 、C 、D 都是柱体.错解剖析:柱体的主要特征是上下两个底面形状、大小完全一样且互相平行.此题错误 地认为C 、D 也是柱体.图形C 因为上下底面不平行,所以不是柱体;图形D 上下底面大小不等,所以也不是柱体.正确答案:A 和B 是柱体(A 是圆柱,B 是棱柱).13、已知点B 在直线AC 上,AB =6,AC =10,P 、Q 分别是AB 、AC 的中点,求PQ 的长.错解: PQ =2.错解分析:这是一道典型的数形结合题,用几何的思想,代数的方法进行计算,重点要画出符合条件的两种图形,注重分类的完备性.正确答案:本题B 点有在线段AC 上或在射线CA 上两种可能.由P 、Q 分别为AB 、AC 的中点可知AP=21AB =3,AQ =21AC =5,所以PQ =AQ -AP =2或PQ =AQ +AP =8.所以PQ 的长为2或8.14、(1)计算14°41′25″×5;(2)把26.29°转化为度、分、秒表示的形式. 错解一:(1)14°41′25″×5=70°205′125″=72°6′25″; (2)26.29°=26°29′.错解二:(1)14°41′25″×5=70°205′125″=91°7′5″; (2)26.29°=26°2′9″.剖析:角的度量单位度、分、秒之间是六十进制(即满60进1),而不是百进制或十进制,在由大单位化成下一级小单位时应乘以60,由小单位化成上一级大单位时应除以60,上述错解均因单位间的进制关系不清而致错.正解:(1)14°41′25″×5=70°205′125″=73°27′5″; (2)26.29°=26°+0.29°=26°+0.29×60′ =26°+17.4′=26°+17′+0.4×60″=26°17′24″.15、如图,已知∠AOC =∠BOC =∠DOE =90°,问图中是否有与∠COE 互补的角?A BC PQ APQCB错解:观察图形可知,图中没有与∠COE互补的角.剖析:图中真的没有与∠COE互补的角吗?还是让我们分析后再下结论吧!由∠AOC =90°可知:∠AOD与∠COD互为余角;由∠DOE=90°可知:∠COE与∠COD互为余角,根据“同角的余角相等”得∠COE=∠AOD.可见,要找与∠COE互补的角,可转化为找与∠AOD互补的角,观察图形知:∠BOD与∠AOD互为补角,因此与∠COE互补的角是∠BOD.由上可知,在识图时,我们不单单要认真观察图形,而且还要仔细分析题设条件,这样才能作出正确的判断.正解:图中有与∠COE互补的角,它是∠BOD.思考:图中有没有与∠COD互补的角?。
新人教版七年级数学下册易错题例析(汇编)
新人教七年级下数学易错题第五单元平行线与相交线
第六单元实数
1.不能识别有关概念
1.下面几个数:0.23,1.010010001…,,3π,,,其中,
无理数的个数有()
A、1
B、2
C、3
D、4
★判断下列说法是否正确
(1)的算术平方根是-3;(2)的平方根是±15.
(3)当x=0或2时,(4)是分数
2.数形混乱
2. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______
★如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().
A-1 B .1-C.2-D.-2
3.实数绝对值的应用
3.化简下列各式:
(1) |-1.4|(2) |π-3.142|
(3) |-| (4) |x-|x-3|| (x≤3)
(5) |x2+6x+10|
★已知:=0,求实数a, b的值。
第七单元平面直角坐标系
第八单元二元一次方程组
第九单元不等式和不等式组
利用不等式的性质解不等式–5x+5<--10
第十单元数据的收集整理与描述。
七年级下册数学易错题整理附答案(超好)
七年级数学下易错题练习答案第五章相交线与平行线1.如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14° B.16° C.90°﹣α D.α﹣44°【解答】解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得∠3=∠1+30°,∴∠1=44°﹣30°=14°,故选:A.2.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14° B.15° C.16° D.17°【解答】解:如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选:C.3.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70° C.80° D.110°【解答】∴∠2=180°﹣50°﹣50°=80°.故选:C.4.如图把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20°B.30° C.40° D.50°【解答】解:∵直尺对边互相平行,故选:C.∴∠3=∠1=50°,∴∠2=180°﹣50°﹣90°=40°.5.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°【解答】解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得,∠DGH=∠DGE=74°,∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°,故选:D.6.如图,AB∥CD,点E在线段BC上,∠CDE=∠CED.若∠ABC=30°,则∠D为()A.85°B.75° C.60° D.30°【解答】故选:B.7.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31° B.28° C.62° D.56°【解答】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°﹣∠BDC=90°﹣62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选:D.8.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25° B.35° C.45° D.65°【解答】解:如图,过点C作CD∥a,则∠1=∠ACD.∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°.故选:A.9.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补二、填空题1.如图,把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在B ′M 或B ′M 的延长线上,则∠EMF = 90°2.如图,把长方形ABCD 沿EF 对折,若∠1=500,则∠AEF= 115度.3 将长方形纸片ABCD 沿过A 点的直线折叠,折痕为线段AE ,得到图8所示的图形,已知∠CED ′=50º,则∠AED = 65 度.4、改写成如果…那么…形式1、改写:如果三个角是一个三角形的内角,那么这三个角的和是180°。
人教版七年级下册数学易错题.docx
D A CE B 易错题:1.将一副直角三角尺如图放置,已知AE BC ∥,求AFD ∠2.如图④,AB ∥CD ,∠BAE = 120º,∠DCE = 30º,则∠3.如图所示,是用一张长方形纸条折成的.如果∠1=100°,2=___ ___°.4.下面的四个命题中,真命题有( ) ○1 两条直线被第三条直线所截,同位角相等 ○2 任何n 边的内角和都为)2(1800n ○3三角形的外角大于三角形的每个内角 ○4 三角形的中线将三角形的面积平分A 1个B 2个C 3个D 4个5.阅读下列语句:①对顶角相等;②同位角相等;③画∠AOB 的平分线OC ;④这个角等于30°吗?在这些语句中,属于真命题的是_____ _____(填写序号)6.如图,已知直线AB 、CD 交于点O ,且∠1∶∠2 = 2∶3,∠AOC = 60°,求∠2的度数。
E D CB 0A217.已知:如图,∠ABD=∠DBC ,∠ACD=∠DCE.⑴若∠A=50°,求 ∠D 的度数;⑵猜想∠D 与∠A 的关系,并说明理由;⑶若CD ∥AB ,判断∠ABC 与∠A 的关系。
8.下列四个命题中,真命题的是 ( )A.同位角相等B.相等的角是对顶角C.邻补角相等D. a ,b ,c 是同一平面上的三条直线,且a ∥b ,b ∥c ,则a ∥c.9.如图,直线a ,b 被直线c 所截,当a ∥b 时,下列说法正确的是 ( )A.一定有∠1=∠2B.一定有∠1+∠2=90°C.一定有∠1+∠2=100°D.一定有∠1+∠2=180° 10. 如图,小明从A 处出发沿北偏东60°方向行走至B 向调整到与出发时一致,则方向的调整应是 A.右转80° B.左转80° C.右转100°11. (7分)如图,AB ∥DC,∠B=55°,∠2=40°,∠3=85°. (1)求∠D 的度数; (2)求∠1的度数; (3)能否得到DA ∥CB,请说明理由.12.四边形ABCD 中,∠A=140°,∠D=80°.(1)如图①,若∠B=∠C ,试求出∠C 的度数;(2)如图②,若∠ABC 的角平分线交DC 于点E ,且BE ∥AD ,试求出∠C 的度数;(3)如图③,若∠ABC 和∠BCD 的角平分线交于点E ,试求出∠BEC 的度数.初中数学试卷(第10题图) (第19题图)桑水出品。
七年级下册数学错题笔记
七年级下册数学错题笔记一、有理数1.错题:计算-3 - (-5)。
-错误答案:-8。
-正确答案:2。
-错误原因:去括号时没有变号。
-总结:减去一个负数等于加上这个数的相反数。
2.错题:比较大小-2/3 和-3/4。
-错误答案:-2/3 > -3/4。
-正确答案:-2/3 < -3/4。
-错误原因:对于两个负数比较大小,绝对值大的反而小理解不深刻。
-总结:比较两个负数大小,先求绝对值,绝对值大的反而小。
二、整式的运算1.错题:(2a + 3b)(2a - 3b)。
-错误答案:4a² + 9b²。
-正确答案:4a² - 9b²。
-错误原因:对平方差公式掌握不熟练。
-总结:(a + b)(a - b)=a² - b²。
2.错题:化简3x²y - (2xy² - x²y)。
-错误答案:3x²y - 2xy² - x²y = 2x²y - 2xy²。
-正确答案:3x²y - 2xy² + x²y = 4x²y - 2xy²。
-错误原因:去括号时符号出错。
-总结:去括号时,括号前是负号,括号内各项要变号。
三、一元一次方程1.错题:解方程3x - 5 = 2x + 7。
-错误答案:x = 2。
-正确答案:x = 12。
-错误原因:移项时符号出错。
-总结:移项要变号。
2.错题:一个数的3 倍比这个数大6,求这个数。
-错误答案:设这个数为x,3x = x + 6,解得x = 3。
-正确答案:设这个数为x,3x - x = 6,解得x = 3。
-错误原因:对“一个数的3 倍比这个数大6”这句话的理解有误。
-总结:认真分析题目中的数量关系,准确列出方程。
四、几何图形初步1.错题:已知∠AOB = 60°,OC 平分∠AOB,则∠AOC 的度数是多少?-错误答案:30°。
人教版七年级数学易错题(含解析)
七年级数学易错题1、a一定负数吗?错解:一定.剖析:带有负号的数不一定就是正数,关键是确定a是一个什么数,这就要应用分类讨论的思想进行讨论.解:不一定,a 可能是正数,0,负数分析:若a 是正数,则a就是负数,若a=0 则a=0 若a 是负数,则a 就是正数.2、在数轴上点A表示的数是7.点B,C表示的两个数互为相反数且C与A之间的距离为2,求点B,C 对应的数.错解:点C与点A 之间的距离为2,点C 表示的数为5.点B 和点C 表示的数互为相反数,B 表示的数为-5.剖析:点C与点A之间的距离为2,则点C有可能在点A的左侧也有可能在点A右侧.故要分情况讨论.正解:点C与点A 之间的距离为2,点C在点A的左侧2个单位长度或点C在点A的右侧2个单位长度.① 点C在点A的左侧2个单位长度,则点C表示的数为5.点B 和点C 表示的数互为相反数,B 表示的数为-5.② 点C在点A的右侧2个单位长度,则点C表示的数为9.点B 和点C 表示的数互为相反数,B 表示的数为-9.1 1 1 13、.计算:1 5 5 9 9 13 13 17 2001 2005错解:原式=1 1 1 1 1 1 1 1 1 15 5 9 9 13 13 17 2001 20051=120052004=2005剖析:由于学生在长期的学习中形成的思维定式,用类似于解1 1 1 1 11 1 1 1 1方法直接去求解.而忽视本12 23 34 2003 2004 2004 20051 4 1 1 4413 13 17 20011 2005题1 1 4,1 1 4结果中分子是4而不是1.故这样做是错的.5 5 5 9 451正解:原式=55991 1 1 156= (1 )4 2005 = 501.=2005174、计算: 391713 . 2617错解】原式 39 13 17 1326 17 507 21 515 .2错解剖析】本题错误原因是把 3917 看成 39与17 的和,而它应是 39与26 2617 17的和. 26正确解答】原式 39 13 17 13 507 17 5151 .26 2 25、计算:1) 14 61 2 ( 3)2 ;错解剖析】错解一中是将 14计算成 1得到163,错解二中是去括号符号出错解】错解一:原式 =1- 16 =1-16 =1+76=13.=6.错解二:原式 =-1- 1 × 6 =-1- 1 ×6 =-1-76 13 =- . 62-9) -7)2-9) -7)13错得到7正确答案】原式 =-1- 1×( 2-9)6 1=-1- 1 ×(-7)6=- 1+ 76 162) ( 1)4 32 22 ( 1)2.2错解】原式 =1- 9÷ 1=-8.错解剖析】没有按照运算顺序计算,而是先计算 22 ( 3)2 .2正确答案】原式 =1-9× 1 × 144=1-916 7=16.1)要表示的是“比 x 与 y 的和的平方小 x 与 y 的和的数”,应该先求和再求平方即应该是 (x y)2 (x y) ,而不应该是 x 2y7、用代数式表示下列语句:1)比 x 与 y 的和的平方小 x 与 y 的和的数;a 的 2倍与b 的1 的差除以 a 与b 的差的立方 .32) 错解: 1) x 2y 2x y 2) 2a 13b a b 3. 6、 用代数式表示下列语句:1) 比 x 与 y 的和的平方小 x 与 y 的和的数;剖析: 2)是书写不规范,除号要用分数线代替,即应该写成1 2a b3 (a b)3正解:(1)(x y) 2 (x y) (2)12a b3 (a b) 3222)a的2倍与b的1的差除以a与b的差的立方.37373剖析:(1)要表示的是“比 x 与 y 的和的平方小 x 与 y 的和的数”,应该先求和 再求平方即应该是 (x y)2 (x y) ,而不应该是 x 2 y 2x y .2a1b正解:(1)(x y)2 (x y) (2)33(a b) 38、已知方程 (m 3)x 4 m 2是关于 x 的一元一次方程. 求:(1) m 的值; (2) 写出这个关于 x 的一元一次方程. 【错解】 m=±3. 【剖析】忘记 m-3≠0 这个条件.m 2 1 【正解】(1)由 m 2 1得 m=-3.m 3 0 (2)-6x +4=-5.9、解方程 7x -1 x 1(x 1) 2(x 1).2 23 1 1 2【错解】 7 x - 1 x 1(x 1) 2(x 1).2 2 342x 3x 3(x 1) 4(x 1) . 42x 3x 3x 3 4x 4 . 32x=-7.7x= .3211 【剖析】 去中括号时 1(x 1)漏乘系数 1 ,另外,同样在这一步去括号时忘 22记了考虑符号问题. 【正解】第一次去分母,得142 x - 3 x (x 1) 4(x 1).2第一次去括号,得 42 x - 3x 3(x 1) 4x 4 .2 第二次去分母,得 84 x- 6x + 3x -3=8x-8. 移项,合并同类项,得 73 x =- 5. 把系数化为 1,得x =10. 解方程 x 1 = 5.错解:(1) x 2 y 2x y2) 2a 1b a b 3.32)是书写不规范,除号要用分数线代替,即应该写成1 2a b3 (a b)3【错解】由x 1=5 得到x- 1=5.∴ x=6.【剖析】去绝对值符号必须考虑正负性x-1=5 或x-1=-5.【正解】由x 1=5得到x- 1=5或x- 1=- 5.∴ x=6 或x=-4.11、某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付264元,请问张强第一次、第二次分别购买香蕉多少千克?【错解】⑴当第一次购买香蕉少于20千克,第二次购买香蕉20 千克以上但不超过40千克时,设第一次购买x 千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+5(50-x)=264,解得:x=14.50-14=36(千克).∴第一次购买14 千克香蕉,第二次购买36 千克香蕉.⑵当第一次购买香蕉少于20 千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+4(50-x)=264,解得:x=32.∴第一次购买32 千克香蕉,第二次购买18 千克香蕉.【剖析】本题是一道分类讨论题,分类讨论的关键是第二次的购买量,关键得考虑第二次多于第一次,解题时应该重点考虑.【正解】⑴当第一次购买香蕉少于20千克,第二次香蕉20 千克以上但不超过40 千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+5(50-x)=264,解得:x=14.50-14=36(千克).∴第一次购买14 千克香蕉,第二次购买36 千克香蕉.⑵当第一次购买香蕉少于20 千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+4(50-x)=264,解得:x=32(不符合题意,舍去).答:第一次购买14 千克香蕉,第二次购买36 千克香蕉.12、下列哪些空间图形是柱体?错解:A 、B 、C 、D 都是柱体. 错解剖析:柱体的主要特征是上下两个底面形状、大小完全一样且互相平行.此题错误 地认为 C 、D 也是柱体.图形 C 因为上下底面不平行,所以不是柱体;图形 D 上下底面 大小不等,所以也不是柱体.正确答案: A 和B 是柱体( A 是圆柱, B 是棱柱).13、已知点 B 在直线 AC 上,AB =6,AC =10,P 、Q 分别是 AB 、AC 的中点,求PQ 的长. 错解: PQ=2.错解分析: 这是一道典型的数形结合题, 用几何的思想, 代数的方法进行计算,重点要画 出符合条件的两种图形 ,注重分类的完备性.正确答案:本题 B 点有在线段 AC 上或在射线 CA 上两种可能.由 P 、Q 分别为 AB 、AC 的 11 中点可知 AP = AB =3,AQ = AC =5,所以 PQ =AQ -AP =2 或 PQ =AQ + AP =8.22AP Q B CB P A Q C所以 PQ 的长为 2 或 8.14、 (1)计算 14° 41′ 25;″×5(2)把 26.29 °转化为度、分、秒表示的形式. 错解一 :( 1) 14°41′25″=×750°205′12=5″72°6′2;5″( 2) 26 . 29°= 26°29.′错解二 :( 1) 14°41′25″=×750°205′12=5″91°7′;5″ ( 2) 26 . 29°= 26°2′.9″剖析:角的度量单位度、分、秒之间是六十进制(即满 60 进1),而不是百进制或十进 制,在由大单位化成下一级小单位时应乘以 60,由小单位化成上一级大单位时应除以 60 ,上述错解均因单位间的进制关系不清而致错.正解:( 1)14°41′25″=×750°205′12=5″73°27′;5″ ( 2) 26 . 29°= 26°+0.29°=26°+0.29×60′ =26°+17.4′=26°+ 17′+0.4×60″=26°17′2.4″15、如图,已知∠ AOC =∠ BOC =∠ DOE =90°,问图中是否有与∠ COE 互补的角?错解:观察图形可知,图中没有与∠ COE 互补的角.剖析:图中真的没有与∠ COE 互补的角吗?还是让我们分析后再下结论吧!由∠ AOC =90°可知:∠AOD 与∠COD 互为余角;由∠ DOE=90°可知:∠ COE与∠ COD 互为余角,根据“同角的余角相等”得∠ COE=∠ AOD.可见,要找与∠ COE 互补的角,可转化为找与∠AOD 互补的角,观察图形知:∠ BOD 与∠ AOD 互为补角,因此与∠ COE 互补的角是∠ BOD .由上可知,在识图时,我们不单单要认真观察图形,而且还要仔细分析题设条件,这样才能作出正确的判断.正解:图中有与∠ COE 互补的角,它是∠ BOD .思考:图中有没有与∠ COD 互补的角?。
7年级数学易错题整理及解析
7年级数学易错题整理及解析一、有理数运算部分1. 计算:公式解析:首先计算指数运算,根据运算法则,先算乘方。
对于公式,这里要注意指数运算优先级高于负号,所以公式。
对于公式,公式。
然后进行除法运算:公式。
最后进行减法运算:公式。
2. 计算:公式解析:先计算括号内的式子:公式。
再计算除法:公式。
接着计算乘方:公式。
然后计算乘法:公式。
最后计算加法:公式。
二、整式加减部分1. 化简:公式解析:合并同类项,对于公式的同类项公式和公式,公式。
对于公式的同类项公式和公式,公式。
所以化简结果为公式。
2. 先化简,再求值:公式,其中公式解析:先去括号:公式。
然后合并同类项:公式。
当公式时,代入式子得:公式。
三、一元一次方程部分1. 解方程:公式解析:首先去分母,方程两边同时乘以公式(公式和公式的最小公倍数),得到:公式。
然后去括号:公式。
接着移项:公式。
合并同类项:公式。
最后系数化为公式:公式。
2. 某班有学生公式人,会下象棋的人数是会下围棋人数的公式倍,两种棋都会及两种棋都不会的人数都是公式人,求只会下围棋的人数。
解析:设会下围棋的有公式人,则会下象棋的有公式人。
根据全班人数可列方程:公式。
这里公式是会下棋的人数(其中两种棋都会的人算了两次,所以要减去一次),再加上两种棋都不会的人数就是全班人数。
合并同类项得公式,解得公式。
只会下围棋的人数为会下围棋的人数减去两种棋都会下的人数,即公式人。
初中数学七年级下册易错题汇总大全附答案带解析汇编
初中数学七年级下册易错题相交线与平行线1. 未正确理解垂线的定义1 •下列判断错误的是().A. —条线段有无数条垂线;B. 过线段AB中点有且只有一条直线与线段AB垂直;C. 两直线相交所成的四个角中,若有一个角为90 °,则这两条直线互相垂直;D. 若两条直线相交,则它们互相垂直.错解:A或B或C.解析:本题应在正确理解垂直的有关概念下解题,知道垂直是两直线相交时有一角为90 °的特殊情况,反之,若两直线相交则不一定垂直正解:D.2. 未正确理解垂线段、点到直线的距离2•下列判断正确的是().A. 从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B. 过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C. 画出已知直线外一点到已知直线的距离;D. 连接直线外一点与直线上各点的所有线段中垂线段最短错解:A或B或C.解析:本题错误原因是不能正确理解垂线段的概念及垂线段的意义A. 这种说法是错误的,从直线外一点到这条直线的垂线段的长度叫做点到直线的距离.仅仅有垂线段,没有指明这条垂线段的长度是错误的B. 这种说法是错误的,因为垂线是直线,直线没有长短,它可以无限延伸,所以说“垂线的长度”就是错误的;C. 这种说法是错误的,“画”是画图形,画图不能得到数量,只有“量”才能得到数量,这句话应该说成:画出已知直线外一点到已知直线的垂线段,量出垂线段的长度.正解:D.3. 未准确辨认同位角、内错角、同旁内角A.2 组;B.3 组;C.4 组;错解:A.解析:图中的内错角有/ AGF 与/ GFD ,/ BGF 与/ GFC ,/ HGF 与/ GFC 三组.其中 / HGF 与/ GFC 易漏掉正解:B.4. 对平行线的概念、平行公理理解有误4 •下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行.其中正确的有错解:C 或D.解析:平行线的定义必须强调“在同一平面内”的前提条件,所以②是错误的,平行公理中 的“过一点”必须强调“过直线外一点”,所以④是错误的,①③是正确的.正解:B.5. 不能准确识别截线与被截直线,从而误判直线平行①因为/ 1 = 2 4,所以BC II AD ;②因为/ 2=2 3,所以AB II CD ;③因为/ BCD +2 ADC = 180°,所以 AD II BC ;④因为2 1 + 2 2 + 2 C = 180 °,所以 BCII AD.A.1 个;B.2 个;C.3 个;D.4 个.3•如图所示,图中共有内错角( ().A.1 个;B.2 个;C.3 个;D.4 个.错解:D.解析:解与平行线有关的问题时,对以下基本图形要熟悉: 有③推理正确.正解:A.6. 混淆平行线的判定和性质、忽略平行线的性质成立的前提条件•如图所示,直线- ,2 1 = 70°,求2 2的度数.错解:由于 L ,根据内错角相等,两直线平行,可得2 以/ 2 = 70° .解析:造成这种错误的原因主要是对平行线的判定和性质混淆 判定是不知道直线平行,是根据某些条件来判定两条直线是否平行; 是根据两直线平行得到其他关系正解:因为- | (已知),所以2 1 =2 2 (两直线平行,内错角相等), 又因为2 1 = 70°(已知), 所以2 2 = 70° .7. 对命题这一概念的理解不透彻7•判断下列语句是否是命题 .如果是,请写岀它的题设和结论 .(1)内错角相等;(2)对顶角相等;(3)画一个60°的角. 错解:(1) ( 2)不是命题,(3)是命题. 解析:对于命题的概念理解不透彻,往往认为只有存在因果关系的关联词才是命题,正确认识命题这一概念,关键要注意两点,其一必须是一个语句,是一句话;其二必须存在判断关系, 即“是”或“不是”.正解:(1)是命题.这个命题的题设是:两条直线被第三条直线所截;结论是:内错角相等 .这个命题是一“匕…卜d …匚”,1 =2 2,又因为/ 1 = 70°,所.在运用的时候要注意:(1) (2)性质是知道两直线平行,个错误的命题,即假命题 .(2)是命题.这个命题的题设是:两个角是对顶角;结论是:这两个角相等 .这个命题是个正确的命题,即真命题.(3) 不是命题,它不是判断一件事情的语句8. 忽视平移的距离的概念B '。
初中数学七年级下册易错题汇总大全附答案带解析
.
答:高至少为 1.2m 时才够用 .
解析:最后取解时,没有考虑到问题的实际意义,水箱
存水量不得小于 1m3 ,如果水箱的高为 时正好够,少一
点就不够了 . 故最后取近似值一定要大于
,即取近似值时
只能入而不能舍 .
正解:设高为 m时才够用,根据题意得
. 由于
,而要精确到 0.1 ,所以
.
答:水箱的高至少为 1.3m 时才够用 .
要注意两点,其一必须是一个语句,是一句话;其二必须存
在判断关系,即“是”或“不是” .
正解:
( 1)是命题 . 这个命题的题设是:两条直线被第三条
直线所截;结论是:内错角相等 . 这个命题是一
个错误的命题,即假命题 .
( 2)是命题 . 这个命题的题设是:两个角是对顶角;
结论是:这两个角相等 . 这个命题是一个正确的
命题,即真命题 .
( 3)不是命题,它不是判断一件事情的语句 .
8. 忽视平移的距离的概念
8.“如图所示,△ A′B′ C′是△ ABC平移得到的,
-------
---WORD格式 -- 可编辑 --
在这个平移中,平移的距离是线段 AA′”这句话对吗?
错解:正确 .
解析:平移的距离是指两个图形中对应点连线的长度,
悉:“ ”“ ”“ ”,只有③推理正确 .
正解: A.
-------
---WORD格式 -- 可编辑 --
6. 混淆平行线的判定和性质、忽略平行线的性质成立的前提 条件
6.如图所示, 直线 ,∠ 1= 70°,求∠ 2 的度数 .
错解:由于
,根据内错角相等,两直线平行,可得
∠ 1=∠ 2,又因为∠ 1=70°,所以∠ 2= 70° .
七年级下册数学易错题
七年级下册10大高频易错题型汇总,含答案解析易错点一:书写不规范,抄写错误刚开始接触有理数计算,有的同学往往将-1+(-5)写成-1+-5,-x写成-1x,这些基本的书写规范要注意。
甚至有同学常犯“抄错”的毛病,上行到下行、卷子到答题卡抄错,这些都属于我们熟悉的“低级”错误。
例如,下面是某同学答题过程,你们有没有中枪呢?针对这种情况,提示:做题时,要细心;眼盯住,手别慌(一定要认真)易错点二:跳步,不愿意多写步骤有些同学计算时,喜欢跳跃思维,不按“套路”解题,往往导致结果错误。
做题时,一定要按步骤去计算,不能急于求成,要循序渐进,在保证正确率的前提下、熟练之后,才可以省略一些非关键的步骤。
针对这种情况,提示:做题时,按步骤,不着急,不跳步!易错点三:顺序出错,法则不熟悉下面这位同学,没有按照运算法则的顺序进行计算,导致了失分。
运算顺序:括号优先,先乘方,再乘除,最后加减。
加减法为一级运算,乘除为二级运算,乘方、开方(以后会学到)为三级运算同级运算从左到右,不同级运算,应该先三级运算,然后二级运算,最后一级运算如果有括号,先算括号里的,先算小括号,再算中括号,最后大括号。
以上运算顺序可以简记为:“从小(括号)到大(括号),从高(级)到低(级),(同级)从左到右”。
针对这种情况,提示:牢记口诀多练习,认真计算没问题!易错点四:去括号,注意系数符号变化对于计算题,老师发现同学们去括号时,最容易犯错!同学们去括号时,一定要注意括号前面的系数和符号。
去括号时,当括号前面有“-”,括号内的符号要发生改变;当括号前面有系数时,括号内的每一项都要与其相乘。
例如,同学们在去括号时,经常会出现将5-(4-3)去括号变成5-4-3(应是5-4+3),将5(x+6)去括号变成5x+6(少乘一项)。
这类问题很常见,不知道你是否中招了呢?针对这种情况,提示:去括号要两看,一看系数,二看符号!易错点五:去分母时,漏乘无分母项解方程和不等式时,经常涉及到去分母,等号两边同时乘以分母的最小公倍数时,同学们一定要注意不要漏乘!大家经常犯的错误是忘记漏乘常数项。
初中数学七年级下册易错题汇总大全附答案带解析
初中数学七年级下册易错题相交线与平行线1.未正确理解垂线的定义1.下列判断错误的是().A.一条线段有无数条垂线;B.过线段AB中点有且只有一条直线与线段AB垂直;C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;D.若两条直线相交,则它们互相垂直.错解:A或B或C.解析:本题应在正确理解垂直的有关概念下解题,知道垂直是两直线相交时有一角为90°的特殊情况,反之,若两直线相交则不一定垂直.正解:D.2.未正确理解垂线段、点到直线的距离2.下列判断正确的是().A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C.画出已知直线外一点到已知直线的距离;D.连接直线外一点与直线上各点的所有线段中垂线段最短.错解:A或B或C.解析:本题错误原因是不能正确理解垂线段的概念及垂线段的意义.A.这种说法是错误的,从直线外一点到这条直线的垂线段的长度叫做点到直线的距离. 仅仅有垂线段,没有指明这条垂线段的长度是错误的.B.这种说法是错误的,因为垂线是直线,直线没有长短,它可以无限延伸,所以说“垂线的长度”就是错误的;C.这种说法是错误的,“画”是画图形,画图不能得到数量,只有“量”才能得到数量,这句话应该说成:画出已知直线外一点到已知直线的垂线段,量出垂线段的长度.正解:D.3.未准确辨认同位角、内错角、同旁内角3.如图所示,图中共有内错角().A.2组;B.3组;C.4组;D.5组.错解:A.解析:图中的内错角有∠AGF与∠GFD,∠BGF与∠GFC,∠HGF与∠GFC三组.其中∠HGF与∠GFC易漏掉。
正解:B.4.对平行线的概念、平行公理理解有误4.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有().A.1个;B.2个;C.3个;D.4个.错解:C或D.解析:平行线的定义必须强调“在同一平面内”的前提条件,所以②是错误的,平行公理中的“过一点”必须强调“过直线外一点”,所以④是错误的,①③是正确的.正解:B.5.不能准确识别截线与被截直线,从而误判直线平行5.如图所示,下列推理中正确的有().①因为∠1=∠4,所以BC∥AD;②因为∠2=∠3,所以AB∥CD;③因为∠BCD+∠ADC=180°,所以AD∥BC;④因为∠1+∠2+∠C=180°,所以BC ∥AD.A.1个;B.2个;C.3个;D.4个.错解:D.解析:解与平行线有关的问题时,对以下基本图形要熟悉:“”“”“”,只有③推理正确.正解:A.6.混淆平行线的判定和性质、忽略平行线的性质成立的前提条件6.如图所示,直线,∠1=70°,求∠2的度数.错解:由于,根据内错角相等,两直线平行,可得∠1=∠2,又因为∠1=70°,所以∠2=70°.解析:造成这种错误的原因主要是对平行线的判定和性质混淆. 在运用的时候要注意:(1)判定是不知道直线平行,是根据某些条件来判定两条直线是否平行;(2)性质是知道两直线平行,是根据两直线平行得到其他关系.正解:因为(已知),所以∠1=∠2(两直线平行,内错角相等),又因为∠1=70°(已知),所以∠2=70°.7.对命题这一概念的理解不透彻7.判断下列语句是否是命题. 如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.错解:(1)(2)不是命题,(3)是命题.解析:对于命题的概念理解不透彻,往往认为只有存在因果关系的关联词才是命题,正确认识命题这一概念,关键要注意两点,其一必须是一个语句,是一句话;其二必须存在判断关系,即“是”或“不是”.正解:(1)是命题. 这个命题的题设是:两条直线被第三条直线所截;结论是:内错角相等. 这个命题是一个错误的命题,即假命题.(2)是命题. 这个命题的题设是:两个角是对顶角;结论是:这两个角相等. 这个命题是一个正确的命题,即真命题.(3)不是命题,它不是判断一件事情的语句.8.忽视平移的距离的概念8.“如图所示,△A′B′C′是△ABC平移得到的,在这个平移中,平移的距离是线段AA′”这句话对吗?错解:正确.解析:平移的距离是指两个图形中对应点连线的长度,而不是线段,所以在这个平移过程中,平移的距离应该是线段AA′的长度.正解:错误.第六章平面直角坐标系1.不能确定点所在的象限1.点A的坐标满足,试确定点A所在的象限.错解:因为,所以,,所以点A在第一象限.解析:本题出错的原因在于漏掉了当,时,的情况,此时点A在第三象限.正解:因为,所以为同号,即,或,. 当,时,点A在第一象限;当,时,点A在第三象限.2.点到x轴、y轴的距离易混淆2.求点A(-3,-4)到坐标轴的距离.错解:点A(-3,-4)到轴的距离为3,到轴的距离为4.解析:错误的原因是误以为点A()到轴的距离等于,到轴的距离等于,而事实上,点A()到轴的距离等于,到轴的距离等于,不熟练时,可结合图形进行分析.正解:点A(-3,-4)到轴的距离为4,到轴的距离为3.第八章二元一次方程组1.不能正确理解二元一次方程组的定义1.已知方程组:①,②,③,④,正确的说法是().A.只有①③是二元一次方程组;B.只有③④是二元一次方程组;C.只有①④是二元一次方程组;D.只有②不是二元一次方程组.错解:A或C.解析:方程组①④是二元一次方程组,符合定义,方程组③是二元一次方程组,符合定义,而且是最简单、最特殊的二元一次方程组.正解:D.2.将方程相加减时弄错符号2.用加减法解方程组.错解:①-②得,所以,把代入①,得,解得.所以原方程组的解是.错解解析:在加减消元时弄错了符号而导致错误.正解:①-②得,所以,把代入①,得,解得.所以原方程组的解是.3.将方程变形时忽略常数项3.利用加减法解方程组.错解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是.错解解析:在①×2+②这一过程中只把①左边各项都分别与2相乘了,而忽略了等号右边的常数项4.正解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是.4.不能正确找出实际问题中的等量关系4.两个车间,按计划每月工生产微型电机680台,由于改进技术,上个月第一车间完成计划的120%,第二车间完成计划的115%,结果两个车间一共生产微型电机798台,则上个月两个车间各生产微型电机多少台?若设两车间上个月各生产微型电机台和台,则列方程组为().A.;B.;C..D..错解:B或D.解析:错误的原因是等量关系错误,本题中的等量关系为:(1)第一车间实际生产台数+第二车间实际生产台数=798台;(2)第一车间计划生产台数+第二车间计划生产台数=680台.正解:C.第九章不等式与不等式组1.在运用不等式性质3时,未改变符号方向1.利用不等式的性质解不等式:.错解:根据不等式性质1得,即. 根据不等式的性质3,在两边同除以-5,得.解析:在此解答过程中,由于对性质3的内容没记牢,没有将“<”变为“>”,从而得出错误结果.正解:根据不等式的性质1,在不等式的两边同时减去5,得,根据不等式的性质3,在不等式的两边同时除以-5,得.2.利用不等式解决实际问题时,忽视问题的实际意义,取值时出现错误2.某小店每天需水1m³,而自来水厂每天只供一次水,故需要做一个水箱来存水. 要求水箱是长方体,底面积为0.81㎡,那么高至少为多少米时才够用?(精确到0.1m)错解:设高为m时才够用,根据题意得. 由. 要精确到0.1,所以.答:高至少为1.2m时才够用.解析:最后取解时,没有考虑到问题的实际意义,水箱存水量不得小于1m³,如果水箱的高为时正好够,少一点就不够了. 故最后取近似值一定要大于,即取近似值时只能入而不能舍.正解:设高为m时才够用,根据题意得. 由于,而要精确到0.1,所以.答:水箱的高至少为1.3m时才够用.3.解不等式组时,弄不清“公共部分”的含义3.解不等式组.错解:由①得,由②得,所以不等式组的解集为.错解解析:此题错在对“公共部分”的理解上,误认为两个数之间的部分为“公共部分”(即解集). 实质上,和没有“公共部分”,也就是说此不等式组无解. 注意:“公共部分”就是在数轴上两线重叠的部分.正解:由①得,由②得,所以不等式组无解.第十章数据的收集、整理与描述1.全面调查与抽样调查选择不当1.调查一批药物的药效持续时间,用哪种调查方式?错解:全面调查.解析:此调查若用全面调查具有破坏性,不宜采用全面调查.正解:抽样调查.2.未正确理解定义2.2006年4月11日《文汇报》报道:据不完全统计,至今上海自愿报名去西部地区工作的专业技术人员和管理人员已达3600多人,其中硕士、博士占4%,本科生占79%,大专生占13%. 根据上述数据绘制扇形统计图表示这些人员的学历分布情况.错解:如下图所示:解析:漏掉其他人员4%,扇形表示的百分比之和不等于1,正确的扇形统计图表示的百分比之和为1.正解:如下图所示:3.对频数与频率的意义的理解错误3.某班组织25名团员为灾区捐款,其中捐款数额前三名的是10元5人,5元10人,2元5人,其余每人捐1元,那么捐10元的学生出现的频率是__________.错解:捐10元的5人,.解析:该题的错误是因为将5+10+5作为总次数,实际上应是25为总次数,这其实是对频率概念错误理解的结果. 正解:0.2二元一次方程组应用探索二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x ,个位上的数为y ,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027x y x y y x x y +=++⎧⎨+=++⎩,得14x y =⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x ,或只设十位上的数为x ,那将很难或根本就想象不出关于x 的方程.一般地,与十位上的数个位上的数对应的两位数相等关系 原两位数 x y 10x+y 10x+y=x+y+9 新两位数yx10y+x10y+x=10x+y+27数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x 元,进价为y 元,则打九折时的卖出价为0.9x 元,获利(0.9x-y)元,因此得方程0.9x-y=20%y ;打八折时的卖出价为0.8x 元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y yx y -=⎧⎨-=⎩,解得200150x y =⎧⎨=⎩,因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b=甲产品数乙产品数;(2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数.四、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例 6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.。
人教版七年级下册易错点集锦
008号——易混、易错重要考点汇编一、填空题1、已知点P (3,1-a )到两坐标轴的距离相等,则a 的值为2、下列说法中:①点),1(a -一定在第四象限;②坐标轴上的点不属于任一象限;③横坐标为零的点在y 轴上,纵坐标为零的点在x 轴上;④直角坐标系中,在y 轴上的点到原点的距离为5的点的坐标是(0,5),正确的有 个3、点P ),(b a 在第二象限内,则Q ),(2b a b +--在第 象限4、若某点向右平移2个单位,再点向下平移3个单位,所得点是坐标原点,则这个点的坐标为5、若平面上4条直线两两相交,且无三线共点,则一共有 对同旁内角。
6、如图,平行直线AB ,CD 与相交直线EF,GH 相交,则图中的同旁内角共有 .7、如图,若直线AB//CD ,则∠1+∠3-∠2的度数等于 。
8、如图,两条直线AB,CD 平行,则∠1+∠2+∠3+∠4+∠5+∠6= 。
9、若36.25=5.036,6.253=15.906,则253600= ________________.10、已知()05463422=-+-+-z y x ,求322263-++z y x 的值 11. 若53+的小数部分是a,5-3的小数部分是b,则a+b 的值为12、关于x 的不等式2x-a ≥-213、已知3(2x-1)=2-3x 的解与关于x 的方程6-2k=2(x+3)的解相同,则k=_______。
0 2 4 1314、某品牌商品,按标价8折出售,仍可以获得20%的利润,若该商品的标价为30元,则进价为 元。
15、已知关于x 的不等式0)6(|5|<--a x a 是一元一次不等式,则a=_______16、已知z y x z y x 342{=+=+,则代数式zy x z y x +-++52=_______ 17、商店为了对某种商品促销,将定价为3元的商品按以下方式优惠,若购买不超过5件按原价付款,若一次性购买5件以上,超过部分8折,如果用27.1元钱,最多可购买该商品______件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册经典易错习题
一、填空题
1.一个数的平方等于它本身,这个数是;一个数的平方根等于它本身,这个数是;一个数的算术平方根等于它本身,这个数是;一个数的立方等于它本身,这个数是;一个数的立方根等于它本身,这个数是;一个数的倒数是它本身,这个数是;一个数的绝对值等于它本身,这个数是。
2.16的平方根为,=
16,16的平方根等于 .
3.
;,
则。
4.已知一个正数的两个平方根分别为3x-5和x-7,则这个正数为 .
5.17-1的整数部分为;小数部分为;绝对值为;相反数为 .
6. 如图,在数轴上,1
的对应点是A、B, A是
线段BC的中点,则点C所表示的数是。
7.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为。
8.如果∠1=80°,∠2的两边分别与∠1的两边平行,那么∠2= 。
9.已知点A(1+m,2m+1)在x轴上,则点A坐标为。
10.已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为 .
11.点P(a-2,2a+3)到两坐标轴距离相等,则a= .
12.将点A(1,-3)向右平移2个单位,再向下平移2个单位后得到点B(a,b),则ab=.
13.已知平面直角坐标系内点P的坐标为(-1,3),如果将平面直角坐标系向左平移3个单位,再向下平移2个单位,那么平移后点P的坐标为________.
14.在平面直角坐标系中,已知A(2,-2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有个。
15.点P(a+5,a)不可能在第象限。
16.平面直角坐标系内有一点P(x,y),满足x
=0
y,则点P在
17.方程5
2=
+y
x在正整数范围内的解是_____ 。
18.已知x=1,y=﹣8是方程mx+y-1=0的解,则m的平方根是。
19.关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是。
20.如果不等式2x-m≤0的正整数解有3个,则m的取值范围是。
21.一元一次不等式组
x a
x b
⎧
⎨
⎩
>
>
的解集是x>a,则a与b的关系是。
x
22.若不等式组
x m
x m
⎧
⎨
⎩
≤+1
≥2-1
无解,则m的取值范围是。
23.若不等式组
x a
b x
⎧
⎨
⎩
-<2
-2>0
解集是﹣1<x<1,则(a+b)2017= 。
24.如果不等式组
x
x a
⎧
⎨
⎩
<3
≥
的整数解有4个,则a的取值范围是。
25.若不等式2x<4的解都能使关于x的一次不等式(a-1)x<a+5成立,则a的取值范围是。
26.某市出租车的收费标准是:起步价7元,超过3km时,每增加1km加收2.4元(不足1km按1km计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km,那么x的最大值是( ).
27.某种品牌的电脑的进价为5000元,按物价局定价的9折销售时,利润不低于700元,则此电脑的定价最少为___________元(保留整数)。
28. 有一组数据共60个,最小的数为29,最大的数为98,现在需要做这组数据的频数分布直方图,假若把它们分成7组,则组距应该为。
29.如下图,为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了株黄瓜,并可估计出这个新品种黄瓜平均每株结根黄瓜
30.下图是市统计局公布的“十五”时期重庆市农村居民人均收入每年比上一年增长率的统计图,下列说法正确的有:
①2003年农村居民人均收入低于2002年;②农村居民人均收入比上年增长率低于9%的有2年;③农村居民人均收入最多时2004年;④农村居民人均收入每年比上一年的增长率有大有小,但农村居民人均收入在持续增加。
第29题图
第30题图
31.某养鱼塘专业户为了估计鱼塘鱼的总数,第一次捞出300条,将每条鱼做上记号后放入水中,当它们完全混于鱼群中后,又捞出200条鱼,发现带有记号的鱼有10条,问该养鱼专业户家的鱼塘中估计有鱼条。
再放入水中使其完全混于鱼群,第三次又捞出500条鱼,估计发现带有记号的鱼有条。
二、解答题:
1.解方程:2(1-x)2=18
2.当m为何值时,方程组
x+y=m+2
4x+5y=6m+3
⎧
⎨
⎩
的解x,y均为正数?
3.学校为家远的同学安排住宿,现有房间若干间,若每间住5人,则还有14人安排不下,若每间住7人,则有一间房不空也不满,问学校可能有几间房可以安排住宿?可能有多少学生住宿?
4.车站有待运的甲种货物1530吨,乙种货物1150吨,现计划用50节A,B两种型号的车厢将这批货物运至北京,已知每节A型车厢的运费是0.5万元,每节B车厢的运费是0.8万元;甲种货物35吨和乙种货物15吨可装满一节A型车厢,甲种货物25吨可装满一节B型车厢,按此要求安排A,B两种车厢的节数,共有几种方案?请你设计出来,并说明哪种方案的运费最少?
5.图①、图②反映是某综合商场今年1-5月份的商品销售额统计情况.观察图①和图②,解答下面问题:
(1)来自商场财务部的报告表明,商场1-5月份的销售总额一共是370万元,请你根据这一信息补全图①,并写出两条由上两图获得的信息;
(2)商场服装部5月份的销售额是多少万元?
(3)小华观察图②后认为,5月份服装部的销售额比4月份减少了.你同意他的看法吗?为什么?
图①
商场各月销售总额统计图
销售总额(万元)月份
9080706050403020100
5月
4月
3月2月
1月
服装部各月销售额占商场当月销售总额的百分比
图②
1月2月
3月4月5月
5%月份
百分比。