四川省西充中学高2018级高二上期10月月考考试试题文科数学(无答案)
2018级高二上10月考数学试题 含答案
机密 启用前【考试时间:2019年10月10日上午8:00—10:00】XXXX2018级高二上10月考数学试题(文科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
考试结束后本试卷由学生自行保管,答题卡必须按规定上交。
主观题作答时,不能超过对应的答题卡边框,超出指定区域的答案无效。
第I卷(共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的):1、下列命题中正确命题的个数是()①如果一个几何体的三视图是完全相同的,则这个几何体是正方体;②如果一个几何体的正视图和俯视图都是矩形,则这个几何体是长方体;③如果一个几何体的三视图都是矩形,则这个几何体是长方体;④如果一个几何体的正视图和侧视图都是等腰三角形,则这个几何体是圆锥.A.0B.1C.2D.32.圆C:x2+y2-4x+2y-4=0的,圆心坐标和半径分别是()A.(-2,1),9 B.(-2,1),3 C.(2,-1),9 D.(2,-1),33.下列命题中正确的个数是()①若直线a上有无数个点不在平面α内,则a∥α;②若直线a∥平面α,则a与平面α内的任意一条直线都平行;③若直线a∥直线b,直线b∥平面α,则直线a∥平面α;④若直线a∥平面α,则直线a与平面α内的任意一条直线都没有公共点。
A.0B.1C.2D.34.点P(m,3)与圆(x-2)2+(y-1)2=2的位置关系为()A.点在圆外B.点在圆内C.点在圆上D.与m的值有关5.已知水平放置的△ABC按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=32,那么原△ABC中∠ABC的大小是()A.30°B.45°C.60°D.90°6.若直线3x-4y+12=0与两坐标轴的交点为A、B,则以AB为直径的圆的方程是() A.x2+y2+4x-3y=0B.x2+y2-4x-3y=0C.x2+y2+4x-3y-4=0D.x2+y2-4x-3y+8=07.如图所示是某几何体的三视图,则这个几何体的体积等于()A.12B.8C.6D.48.在如图所示的正方体中,M,N分别为棱BC和CC1的中点,则异面直线MN和A1C1所成的角为()A.30°B.45°C.60°D.90°9.若直线l:y=kx+1(k<0)与圆C:x2+y2+4x-2y+3=0相切,则直线l与圆D:(x-2)2+y2=3的位置关系是()A.相交B.相切C.相离D.不确定10.用斜二测画法画出的矩形OABC的直观图O′A′B′C′是边长为a且邻边O′A′、O′C′分别在x′、y′轴上的菱形,那么原矩形OABC的面积为()A.a22 C.2a2a211.已知直线3x-y-4=0与圆x2+(y-2)2=25交于A,B两点,P为圆上异于A,B 的动点,则△ABP的面积的最大值为()A.8 B.16C.32 D.6412.已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最小值为()A.7 B.6C.5 D.4第Ⅱ卷(共90分)二、填空题(每小题5分共20分):13.空间中共点的三条直线可以确定的平面个数是________;14.若方程2222220x y x y k+--+=表示圆,则实数k的取值范围是________;15.已知实数x 、y 满足方程x 2+y 2-4x +3=0,则d =的最大值为________;16.一个体积为的正三棱柱(底面为正三角形,且侧棱垂直于底面)的三视图如图所示,则侧视图的面积为________。
西充县一中2018-2019学年上学期高三数学10月月考试题
西充县一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( ) A .6 B .3 C .1 D .22. 江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A .10米B .100米C .30米D .20米3. 执行如图所示的程序框图,如果输入的t =10,则输出的i =( )A .4B .5C .6D .74. 若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0D .0<a <1且b <05. 已知直线34110m x y +-=:与圆22(2)4C x y -+=:交于A B 、两点,P 为直线3440n x y ++=:上任意一点,则PAB ∆的面积为( )A .3 B.332C. 33D. 36. 已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,47. 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( )A .120°B .60°C .45°D .30°8. 设函数()()21x f x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的 取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭1111] 9. 已知函数(5)2()e22()2xf x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩,则(2016)f -=( ) A .2e B .e C .1 D .1e【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.10.下列函数中,与函数()3x xe ef x --=的奇偶性、单调性相同的是( )A.(ln y x = B .2y x = C .tan y x = D .xy e = 11.已知向量=(1,),=(,x )共线,则实数x 的值为( )A .1B.C.tan35°D .tan35°12.若()()()()2,106,10x x f x f f x x -≥⎧⎪=⎨+<⎡⎤⎪⎣⎦⎩,则()5f 的值为( ) A .10 B .11 C.12 D .13 二、填空题13.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 . 【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.14.已知过双曲线22221(0,0)x y a b a b-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )A.5- BC.6- D【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.15.设R m ∈,实数x ,y 满足23603260y m x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+y x ,则实数m 的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.16.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________.三、解答题17.(本小题满分12分)已知函数131)(23+-=ax x x h ,设x a x h x f ln 2)(')(-=, 222ln )(a x x g +=,其中0>x ,R a ∈.(1)若函数)(x f 在区间),2(+∞上单调递增,求实数的取值范围; (2)记)()()(x g x f x F +=,求证:21)(≥x F .18.已知函数的图象在y 轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f (x )的解析式;(2)将y=f (x )图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g (x )的图象.写出函数y=g (x )的解析式.19.(本题满分12分)设向量))cos (sin 23,(sin x x x -=,)cos sin ,(cos x x x +=,R x ∈,记函数 x f ⋅=)(.(1)求函数)(x f 的单调递增区间;(2)在锐角ABC ∆中,角C B A ,,的对边分别为c b a ,,.若21)(=A f ,2=a ,求ABC ∆面积的最大值.20.(本小题满分12分)设f (x )=-x 2+ax +a 2ln x (a ≠0). (1)讨论f (x )的单调性;(2)是否存在a >0,使f (x )∈[e -1,e 2]对于x ∈[1,e]时恒成立,若存在求出a 的值,若不存在说明理由.21.已知函数且f (1)=2.(1)求实数k 的值及函数的定义域;(2)判断函数在(1,+∞)上的单调性,并用定义加以证明.22.(本题满分14分)在ABC ∆中,角A ,B ,C 所对的边分别为c b a ,,,已知cos (cos )cos 0C A A B +=. (1)求角B 的大小;(2)若2=+c a ,求b 的取值范围.【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.23.(本小题满分12分)成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从 某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试 成绩(百分制)的茎叶图如图所示.(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)西充县一中2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】A【解析】试题分析:根据与相邻的数是1,4,3,而与相邻的数有1,2,5,所以1,3,5是相邻的数,故“?”表示的数是,故选A.考点:几何体的结构特征.2.【答案】C【解析】解:如图,过炮台顶部A作水平面的垂线,垂足为B,设A处观测小船C的俯角为45°,设A处观测小船D的俯角为30°,连接BC、BDRt△ABC中,∠ACB=45°,可得BC=AB=30米Rt△ABD中,∠ADB=30°,可得BD=AB=30米在△BCD中,BC=30米,BD=30米,∠CBD=30°,由余弦定理可得:CD2=BC2+BD2﹣2BCBDcos30°=900∴CD=30米(负值舍去)故选:C【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离.着重考查了余弦定理、空间线面的位置关系等知识,属于中档题.熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键.3.【答案】【解析】解析:选B.程序运行次序为第一次t=5,i=2;第二次t=16,i=3;第三次t=8,i=4;第四次t=4,i=5,故输出的i=5.4.【答案】B【解析】解:∵函数y=a x﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,∴根据图象的性质可得:a >1,a 0﹣b ﹣1<0,即a >1,b >0, 故选:B5. 【答案】 C【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心C 到直线m 的距离1d =,||AB ==m n 、之间的距离为3d '=,∴PAB ∆的面积为1||2AB d '⋅=,选C . 6. 【答案】A 【解析】考点:1、集合的表示方法;2、集合的补集及交集. 7. 【答案】A【解析】解:根据余弦定理可知cosA=∵a 2=b 2+bc+c 2, ∴bc=﹣(b 2+c 2﹣a 2)∴cosA=﹣ ∴A=120° 故选A8. 【答案】D 【解析】考点:函数导数与不等式.1【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令()0f x =将函数变为两个函数()()()21,x g x e x h x ax a =-=-,将题意中的“存在唯一整数,使得()g t 在直线()h x 的下方”,转化为存在唯一的整数,使得()g t 在直线()h x ax a =-的下方.利用导数可求得函数的极值,由此可求得m 的取值范围.9. 【答案】B【解析】(2016)(2016)(54031)(1)f f f f e -==⨯+==,故选B . 10.【答案】A 【解析】试题分析:()()f x f x -=-所以函数为奇函数,且为增函数.B 为偶函数,C 定义域与()f x 不相同,D 为非奇非偶函数,故选A.考点:函数的单调性与奇偶性. 11.【答案】B【解析】解:∵向量=(1,),=(,x )共线,∴x====,故选:B .【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.12.【答案】B 【解析】考点:函数值的求解.二、填空题13.【答案】41.【解析】14.【答案】B【解析】15.【答案】[3,6]-. 【解析】16.【答案】(,0)(4,)-∞+∞【解析】试题分析:把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可,设关于的函数44)2(24)4(x f(x )y 22+-+-=-+-+==x x a x a x a 对任意的2],[-2a ∈,当-2a =时,044)42(x )2(f(a)y 2>++--+=-==x f ,即086x )2(2>+-=-x f ,解得4x 2x ><或;当2a =时,044)42(x )2(y 2>-+-+==x f ,即02x )2(2>-=x f ,解得2x 0x ><或,∴的取值范围是{x|x 0x 4}<>或;故答案为:(,0)(4,)-∞+∞.考点:换主元法解决不等式恒成立问题.【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简洁,是易错题.把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围.三、解答题17.【答案】(1)]34,(-∞.(2)证明见解析. 【解析】试题解析:解:(1)函数131)(23+-=ax x x h ,ax x x h 2)('2-=,1111] 所以函数x a ax x x a x h x f ln 22ln 2)(')(2--=-=,∵函数)(x f 在区间),2(+∞上单调递增,∴0222ln 2)(')('2≥--=-=x a ax x x a x h x f 在区间),2(+∞上恒成立,所以12+≤x x a 在),2(+∞∈x 上恒成立.令1)(2+=x x x M ,则2222)1(2)1()1(2)('++=+-+=x x x x x x x x M ,当),2(+∞∈x 时,0)('>x M , ∴34)2(1)(2=>+=M x x x M ,∴实数的取值范围为]34,(-∞. (2)]2ln )ln ([22ln ln 22)(222222xx a x x a a x x a ax x x F +++-=++--=,令2ln )ln ()(222xx a x x a a P +++-=,则111]4)ln (4)ln ()2ln (2ln )2ln ()2ln ()(2222222x x x x x x a x x x x x x a a P +≥+-+-=+++-+-=.令x x x Q ln )(-=,则x x x x Q 111)('-=-=,显然)(x Q 在区间)1,0(上单调递减,在区间),1[+∞上单调递增,则1)1()(min ==Q x Q ,则41)(≥a P ,故21412)(=⨯≥x F .考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【方法点晴】本题主要考查导数在解决函数问题中的应用.考查利用导数证明不等式成立.(1)利用导数的工具性求解实数的取值范围;(2)先写出具体函数()x F ,通过观察()x F 的解析式的形式,能够想到解析式里可能存在完全平方式,所以试着构造完全平方式并放缩,所以只需证明放缩后的式子大于等于41即可,从而对新函数求导判单调性求出最值证得成立.18.【答案】 【解析】(本题满分为12分) 解:(1)由题意知:A=2,…∵T=6π,∴=6π得ω=,…∴f (x )=2sin (x+φ), ∵函数图象过(π,2),∴sin (+φ)=1,∵﹣<φ+<,∴φ+=,得φ=…∴A=2,ω=,φ=,∴f (x )=2sin (x+).…(2)∵将y=f (x )图象上所有点的横坐标缩短到原来的(纵坐标不变),可得函数y=2sin (x+)的图象,然后再将新的图象向轴正方向平移个单位,得到函数g(x)=2sin[(x﹣)+]=2sin(﹣)的图象.故y=g(x)的解析式为:g(x)=2sin(﹣).…【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了函数y=Asin(ωx+φ)的图象变换,函数y=Asin(ωx+φ)的解析式的求法,其中根据已知求出函数的最值,周期,向左平移量,特殊点等,进而求出A,ω,φ值,得到函数的解析式是解答本题的关键.19.【答案】【解析】【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,难度为中等.20.【答案】【解析】解:(1)f(x)=-x2+ax+a2ln x的定义域为{x|x>0},f′(x)=-2x+a+a 2x=-2(x+a2)(x-a)x.①当a<0时,由f′(x)<0得x>-a2,由f′(x)>0得0<x<-a2.此时f(x)在(0,-a2)上单调递增,在(-a2,+∞)上单调递减;②当a>0时,由f′(x)<0得x>a,由f′(x)>0得0<x<a,此时f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.(2)假设存在满足条件的实数a,∵x∈[1,e]时,f(x)∈[e-1,e2],∴f(1)=-1+a≥e-1,即a≥e,①由(1)知f(x)在(0,a)上单调递增,∴f(x)在[1,e]上单调递增,∴f(e)=-e2+a e+e2≤e2,即a≤e,②由①②可得a=e,故存在a=e,满足条件.21.【答案】【解析】解:(1)f(1)=1+k=2;∴k=1,,定义域为{x∈R|x≠0};(2)为增函数;证明:设x1>x2>1,则:==;∵x1>x2>1;∴x1﹣x2>0,,;∴f(x1)>f(x2);∴f(x)在(1,+∞)上为增函数.22.【答案】(1)3Bπ=;(2)[1,2).【解析】23.【答案】【解析】【命题意图】本题考查茎叶图的制作与读取,古典概型的概率计算,是概率统计的基本题型,解答的关键是应用相关数据进行准确计算,是中档题.。
西充县第一中学2018-2019学年上学期高三数学10月月考试题含解析
又 M N , a 1 或 a 2 ,故选 D. 考点:交集及其运算. 9. 【答案】C 【解析】解:由已知得 f′(x)=4x3cosx﹣x4sinx+2mx+1, 令 g(x)=4x3cosx﹣x4sinx+2mx 是奇函数, 由 f′(x)的最大值为 10 知:g(x)的最大值为 9,最小值为﹣9, 从而 f′(x)的最小值为﹣9+1=﹣8. 故选 C. 【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大. 10.【答案】A 【解析】解析 : 本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆 C 的方程为 ( x 3) ( y 1) 4 ,直线 l 的普通方程为 y 3 tan ( x 1) ,直线 l 过定点 M (1, 3) ,∵
2 2
第 7 页,共 14 页
| MC | 2 ,∴点 M 在圆 C 的内部.当 | AB | 最小时,直线 l 直线 MC , kMC 1 ,∴直线 l 的斜率为 1 ,∴
4
,选 A.
11.【答案】D 【解析】解:∵P(sinθcosθ,2cosθ)位于第二象限, ∴sinθcosθ<0,cosθ>0, ∴sinθ<0, ∴θ 是第四象限角. 故选:D. 【点评】本题考查了象限角的三角函数符号,属于基础题. 12.【答案】A. 【解析】在 ABC 中 cos 2 B cos 2 A 1 2sin B 1 2sin A sin A sin B sin A sin B
当且仅当 n=1 时,t=1,此时 an 取得最大值;同理 n=2 时,an 取得最小值.
Sn n
na1
n n 1 d d S 2 a1 n 1 ,则 n 为等差数列公差为 , 2 n 2 n
西充县高中2018-2019学年高二上学期第一次月考试卷数学
西充县高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=2相切,则此双曲线的离心率等于( )A .B .C .D .22. 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( ) A .36种 B .38种 C .108种 D .114种3. 459和357的最大公约数( )A .3B .9C .17D .514. 某几何体三视图如下图所示,则该几何体的体积是( )A .1+B .1+C .1+D .1+π5. 已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2πD .23π6. 已知a >0,实数x ,y 满足:,若z=2x+y 的最小值为1,则a=( )A .2B .1C .D .7. 如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为( )A .B .C .D .8. 若a >0,b >0,a+b=1,则y=+的最小值是( )A .2B .3C .4D .59. 若直线L :047)1()12(=--+++m y m x m 圆C :25)2()1(22=-+-y x 交于B A ,两点,则弦长||AB 的最小值为( )A .58B .54C .52D .510.函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是( )A .2B .3C .7D .911.过点(2,﹣2)且与双曲线﹣y 2=1有公共渐近线的双曲线方程是( )A .﹣=1B .﹣=1 C .﹣=1 D .﹣=112.复数i ﹣1(i 是虚数单位)的虚部是( )A .1B .﹣1C .iD .﹣i二、填空题13.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:①若点P 总保持PA ⊥BD 1,则动点P 的轨迹所在曲线是直线;②若点P 到点A 的距离为,则动点P 的轨迹所在曲线是圆;③若P 满足∠MAP=∠MAC 1,则动点P 的轨迹所在曲线是椭圆;④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线; ⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在曲线是抛物丝. 其中真命题是 (写出所有真命题的序号)14.长方体ABCD ﹣A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 为AB 的中点,CE=3,异面直线A 1C 1与CE所成角的余弦值为,且四边形ABB 1A 1为正方形,则球O 的直径为 .15.双曲线x 2﹣my 2=1(m >0)的实轴长是虚轴长的2倍,则m 的值为 .16.已知函数为定义在区间[﹣2a ,3a ﹣1]上的奇函数,则a+b= .17.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .18.设函数f (x )=,则f (f (﹣2))的值为 .三、解答题19.A={x|x 2﹣3x+2=0},B={x|ax ﹣2=0},若B ⊆A ,求a .20.(本小题12分)在多面体ABCDEFG 中,四边形ABCD 与CDEF 是边长均为a 正方形,CF ⊥平面ABCD ,BG ⊥平面ABCD ,且24AB BG BH ==.(1)求证:平面AGH ⊥平面EFG ;(2)若4a =,求三棱锥G ADE -的体积.【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.21.如图1,圆O的半径为2,AB,CE均为该圆的直径,弦CD垂直平分半径OA,垂足为F,沿直径AB将半圆ACB所在平面折起,使两个半圆所在的平面互相垂直(如图2)(Ⅰ)求四棱锥C﹣FDEO的体积(Ⅱ)如图2,在劣弧BC上是否存在一点P(异于B,C两点),使得PE∥平面CDO?若存在,请加以证明;若不存在,请说明理由.22.已知函数f(x)=lg(x2﹣5x+6)和的定义域分别是集合A、B,(1)求集合A,B;(2)求集合A∪B,A∩B.23.已知m∈R,函数f(x)=(x2+mx+m)e x.(1)若函数f(x)没有零点,求实数m的取值范围;(2)若函数f(x)存在极大值,并记为g(m),求g(m)的表达式;(3)当m=0时,求证:f(x)≥x2+x3.24.已知复数z的共轭复数是,且复数z满足:|z﹣1|=1,z≠0,且z在复平面上对应的点在直线y=x上.求z及z的值.西充县高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:由题意可知双曲线的渐近线方程之一为:bx+ay=0,圆(x﹣2)2+y2=2的圆心(2,0),半径为,双曲线﹣=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相切,可得:,可得a2=b2,c=a,e==.故选:B.【点评】本题考查双曲线的简单性质的应用,双曲线的渐近线与圆的位置关系的应用,考查计算能力.2.【答案】A【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法.根据分步计数原理,共有3×2×3=18种分配方案.②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案.由分类计数原理,可得不同的分配方案共有18+18=36种,故选A.【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.3.【答案】D【解析】解:∵459÷357=1…102,357÷102=3…51,102÷51=2,∴459和357的最大公约数是51,故选:D.【点评】本题考查辗转相除法,这是一个算法案例,还有一个求最大公约数的方法是更相减损法,这种题目出现的比较少,但是要掌握题目的解法.本题也可以验证得到结果.4.【答案】A【解析】解:由三视图知几何体的下部是正方体,上部是圆锥,且圆锥的高为4,底面半径为1;正方体的边长为1,∴几何体的体积V=V正方体+=13+××π×12×1=1+.故选:A.【点评】本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状及图中数据所对应的几何量.5.【答案】A【解析】考点:三角函数的图象性质.6.【答案】C【解析】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.7. 【答案】C 【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C .【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题.8. 【答案】C【解析】解:∵a >0,b >0,a+b=1,∴y=+=(a+b )=2+=4,当且仅当a=b=时取等号.∴y=+的最小值是4. 故选:C .【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.9. 【答案】B 【解析】试题分析:直线:L ()()0472=-++-+y x y x m ,直线过定点⎩⎨⎧=-+=-+04072y x y x ,解得定点()1,3,当点(3,1)是弦中点时,此时弦长AB 最小,圆心与定点的距离()()5123122=-+-=d ,弦长545252=-=AB ,故选B.考点:1.直线与圆的位置关系;2.直线系方程.【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是222d R l -=,R 是圆的半径,d 是圆心到直线的距离. 1111]10.【答案】C【解析】解:∵函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f (x )=sin ωx+cos ωx=2sin (ωx+).再根据f ()=2sin (+)=﹣2,可得+=2k π+,k ∈Z ,∴ω=12k+7,∴k=0时,ω=7,则ω的可能值为7, 故选:C .【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.11.【答案】A【解析】解:设所求双曲线方程为﹣y 2=λ,把(2,﹣2)代入方程﹣y 2=λ,解得λ=﹣2.由此可求得所求双曲线的方程为.故选A .【点评】本题考查双曲线的渐近线方程,解题时要注意公式的灵活运用.12.【答案】A【解析】解:由复数虚部的定义知,i ﹣1的虚部是1, 故选A .【点评】该题考查复数的基本概念,属基础题.二、填空题13.【答案】 ①②④【解析】解:对于①,∵BD 1⊥面AB 1C ,∴动点P 的轨迹所在曲线是直线B 1C ,①正确;对于②,满足到点A的距离为的点集是球,∴点P应为平面截球体所得截痕,即轨迹所在曲线为圆,②正确;对于③,满足条件∠MAP=∠MAC1的点P应为以AM为轴,以AC1为母线的圆锥,平面BB1C1C是一个与轴AM平行的平面,又点P在BB1C1C所在的平面上,故P点轨迹所在曲线是双曲线一支,③错误;对于④,P到直线C1D1的距离,即到点C1的距离与到直线BC的距离比为2:1,∴动点P的轨迹所在曲线是以C1为焦点,以直线BC为准线的双曲线,④正确;对于⑤,如图建立空间直角坐标系,作PE⊥BC,EF⊥AD,PG⊥CC1,连接PF,设点P坐标为(x,y,0),由|PF|=|PG|,得,即x2﹣y2=1,∴P点轨迹所在曲线是双曲线,⑤错误.故答案为:①②④.【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.14.【答案】4或.【解析】解:设AB=2x,则AE=x,BC=,∴AC=,由余弦定理可得x2=9+3x2+9﹣2×3××,∴x=1或,∴AB=2,BC=2,球O的直径为=4,或AB=2,BC=,球O的直径为=.故答案为:4或.15.【答案】4.【解析】解:双曲线x2﹣my2=1化为x2﹣=1,∴a2=1,b2=,∵实轴长是虚轴长的2倍,∴2a=2×2b,化为a2=4b2,即1=,解得m=4.故答案为:4.【点评】熟练掌握双曲线的标准方程及实轴、虚轴的定义是解题的关键.16.【答案】2.【解析】解:∵f(x)是定义在[﹣2a,3a﹣1]上奇函数,∴定义域关于原点对称,即﹣2a+3a﹣1=0,∴a=1,∵函数为奇函数,∴f(﹣x)==﹣,即b•2x﹣1=﹣b+2x,∴b=1.即a+b=2,故答案为:2.17.【答案】a≤0或a≥3.【解析】解:∵A={x|x≤1或x≥3},B={x|a≤x≤a+1},且A∩B=B,∴B⊆A,则有a+1≤1或a≥3,解得:a≤0或a≥3,故答案为:a≤0或a≥3.18.【答案】﹣4.【解析】解:∵函数f(x)=,∴f(﹣2)=4﹣2=,f(f(﹣2))=f()==﹣4.故答案为:﹣4.三、解答题19.【答案】【解析】解:解:集合A={x|x2﹣3x+2=0}={1,2}∵B⊆A,∴(1)B=∅时,a=0(2)当B={1}时,a=2(3))当B={2}时,a=1故a值为:2或1或0.20.【答案】【解析】(1)连接FH,由题意,知CD BC⊥,CD CF⊥,∴CD⊥平面BCFG.又∵GH⊂平面BCFG,∴CD⊥GH.又∵EF CD,∴EF GH⊥……………………………2分由题意,得14BH a=,34CH a=,12BG a=,∴2222516GH BG BH a=+=,22225()4FG CF BG BC a=-+=,22222516FH CF CH a=+=,则222=+,∴GH FGFH FG GH⊥.……………………………4分=,GH⊥平面EFG.……………………………5分又∵EF FG F∵GH⊂平面AGH,∴平面AGH⊥平面EFG.……………………………6分21.【答案】【解析】解:(Ⅰ)如图1,∵弦CD垂直平分半径OA,半径为2,∴CF=DF,OF=,∴在Rt△COF中有∠COF=60°,CF=DF=,∵CE为直径,∴DE⊥CD,∴OF∥DE,DE=2OF=2,∴,图2中,平面ACB⊥平面ADE,平面ACB∩平面ADE=AB,又CF⊥AB,CF⊂平面ACB,∴CF⊥平面ADE,则CF是四棱锥C﹣FDEO的高,∴.(Ⅱ)在劣弧BC上是存在一点P(劣弧BC的中点),使得PE∥平面CDO.证明:分别连接PE,CP,OP,∵点P为劣弧BC弧的中点,∴,∵∠COF=60°,∴∠COP=60°,则△COP为等边三角形,∴CP∥AB,且,又∵DE∥AB且DE=,∴CP∥DE且CP=DE,∴四边形CDEP为平行四边形,∴PE∥CD,又PE⊄面CDO,CD⊂面CDO,∴PE∥平面CDO.【点评】本题以空间几何体的翻折为背景,考查空间几何体的体积,考查空间点、线、面的位置关系、线面平行及线面垂直等基础知识,考查空间想象能力,求解运算能力和推理论证能力,考查数形结合,化归与数学转化等思想方法,是中档题.22.【答案】【解析】解:(1)由x2﹣5x+6>0,即(x﹣2)(x﹣3)>0,解得:x>3或x<2,即A={x|x>3或x<2},由g(x)=,得到﹣1≥0,当x>0时,整理得:4﹣x≥0,即x≤4;当x<0时,整理得:4﹣x≤0,无解,综上,不等式的解集为0<x≤4,即B={x|0<x≤4};(2)∵A={x|x>3或x<2},B={x|0<x≤4},∴A∪B=R,A∩B={x|0<x<2或3<x≤4}.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.23.【答案】【解析】解:(1)令f(x)=0,得(x2+mx+m)e x=0,所以x2+mx+m=0.因为函数f(x)没有零点,所以△=m2﹣4m<0,所以0<m<4.(2)f'(x)=(2x+m)e x+(x2+mx+m)e x=(x+2)(x+m)e x,令f'(x)=0,得x=﹣2,或x=﹣m,当m>2时,﹣m<﹣2.列出下表:x (﹣∞,﹣m)﹣m (﹣m,﹣2)﹣2 (﹣2,+∞)f'(x)+0 ﹣0 +f(x)↗me﹣m↘(4﹣m)e﹣2↗当x=﹣m时,f(x)取得极大值me﹣m.当m=2时,f'(x)=(x+2)2e x≥0,f(x)在R上为增函数,所以f(x)无极大值.当m<2时,﹣m>﹣2.列出下表:x (﹣∞,﹣2)﹣2 (﹣2,﹣m)﹣m (﹣m,+∞)f'(x)+0 ﹣0 +f(x)↗(4﹣m)e﹣2↘me﹣m↗当x=﹣2时,f(x)取得极大值(4﹣m)e﹣2,所以(3)当m=0时,f(x)=x2e x,令ϕ(x)=e x﹣1﹣x,则ϕ'(x)=e x﹣1,当x>0时,φ'(x)>0,φ(x)为增函数;当x<0时,φ'(x)<0,φ(x)为减函数,所以当x=0时,φ(x)取得最小值0.所以φ(x)≥φ(0)=0,e x﹣1﹣x≥0,所以e x≥1+x,因此x2e x≥x2+x3,即f(x)≥x2+x3.【点评】本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键.24.【答案】【解析】解:∵z在复平面上对应的点在直线y=x上且z≠0,∴设z=a+ai,(a≠0),∵|z﹣1|=1,∴|a﹣1+ai|=1,即=1,则2a2﹣2a+1=1,即a2﹣a=0,解得a=0(舍)或a=1,即z=1+i,=1﹣i,则z=(1+i)(1﹣i)=2.【点评】本题主要考查复数的基本运算,利用复数的几何意义利用待定系数法是解决本题的关键.。
西充县第二中学2018-2019学年上学期高三数学10月月考试题
西充县第二中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在ABC ∆中,b =3c =,30B =,则等于( )AB. CD .22. 已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥+≤-5342y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则实数m 的取值范围是( )A .1-<mB .10<<mC .1>mD .1≥m【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.3. 棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( ) A.=B.0S = C .0122S S S =+ D .20122S S S =4. 若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+, 则当14x y+取最小值时,CM CN ⋅=( ) A .6 B .5 C .4 D .3 5. 过点(﹣1,3)且平行于直线x ﹣2y+3=0的直线方程为( )A .x ﹣2y+7=0B .2x+y ﹣1=0C .x ﹣2y ﹣5=0D .2x+y ﹣5=06. 已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( )A .﹣2B .2C .﹣98D .987.以的焦点为顶点,顶点为焦点的椭圆方程为( )A. B. C.D.8. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )A.B.C.D.9.已知函数()2sin()f x xωϕ=+(0)2πϕ<<与y轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t+--+=成立的t的最小值为()1111]A.6πB.3πC.2πD.23π10.=()A.﹣i B.i C.1+i D.1﹣i11.已知集合{}{2|5,x|y,A y y xB A B==-+===()A.[)1,+∞B.[]1,3C.(]3,5D.[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.12.已知函数f(x)是(﹣∞,0)∪(0,+∞)上的奇函数,且当x<0时,函数的部分图象如图所示,则不等式xf(x)<0的解集是()A.(﹣2,﹣1)∪(1,2)B.(﹣2,﹣1)∪(0,1)∪(2,+∞)C.(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D.(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)二、填空题13.空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.①若AC=BD,则四边形EFGH是;②若AC⊥BD,则四边形EFGH是.14.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.15.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .16.要使关于x 的不等式2064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.17.已知实数x ,y 满足2330220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,目标函数3z x y a =++的最大值为4,则a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.三、解答题18.(本题满分12分) 已知数列{a n }满足a 1=1,a n+1=2a n +1. (1)求数列{a n }的通项公式;(2)令b n=n (a n +1),求数列{b n }的前n 项和T n .19.(本小题满分12分)已知12,F F 分别是椭圆C :22221(0)x y a b a b +=>>的两个焦点,(1,2P 是椭圆上1122|,||PF F F PF 成等差数列.(1)求椭圆C 的标准方程;、(2)已知动直线l 过点F ,且与椭圆C 交于A B 、两点,试问x 轴上是否存在定点Q ,使得716QA QB ⋅=-恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.20.已知命题p :不等式|x ﹣1|>m ﹣1的解集为R ,命题q :f (x )=﹣(5﹣2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.21.(本小题满分13分) 已知函数32()31f x ax x =-+, (Ⅰ)讨论()f x 的单调性;(Ⅱ)证明:当2a <-时,()f x 有唯一的零点0x ,且01(0,)2x ∈.22.如图,在四棱柱中,底面,,,.(Ⅰ)求证:平面;(Ⅱ)求证:; (Ⅲ)若,判断直线与平面是否垂直?并说明理由.23.(本小题满分10分)选修4-1:几何证明选讲如图,直线PA 与圆O 相切于点A ,PBC 是过点O 的割线,CPE APE ∠=∠,点H 是线段ED 的中 点.(1)证明:D F E A 、、、四点共圆; (2)证明:PC PB PF ⋅=2.西充县第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】C 【解析】考点:余弦定理. 2. 【答案】C【解析】画出可行域如图所示,)3,1(A ,要使目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则需直线l 过点A 时截距最大,即z 最大,此时1>l k 即可.3. 【答案】A 【解析】试题分析:不妨设棱台为三棱台,设棱台的高为2h 上部三棱锥的高为,根据相似比的性质可得:220()2()a S a hS a S a hS '⎧=⎪+⎪⎨'⎪=+⎪⎩,解得=A . 考点:棱台的结构特征. 4. 【答案】D 【解析】试题分析:由题知(1)CB BM CM CB xCA y =-=+-,BA CA CB =-;设BM k B A =,则,1x k y k =-=-,可得1x y +=,当14x y +取最小值时,()141445x yx y x y x y y x⎛⎫+=++=++ ⎪⎝⎭,最小值在4y x x y =时取到,此时21,33y x ==,将()1,CN 2CM xCA yCB CA CB =+=+代入,则()22111233322233x y CM CN xCA yCB CA CB x y +⎛⎫⋅=++⋅=+=+= ⎪⎝⎭.故本题答案选D.考点:1.向量的线性运算;2.基本不等式. 5. 【答案】A 【解析】解:由题意可设所求的直线方程为x ﹣2y+c=0∵过点(﹣1,3) 代入可得﹣1﹣6+c=0 则c=7∴x ﹣2y+7=0 故选A . 【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x ﹣2y+c=0.6. 【答案】A【解析】解:因为f (x+4)=f (x ),故函数的周期是4 所以f (7)=f (3)=f (﹣1), 又f (x )在R 上是奇函数,所以f (﹣1)=﹣f (1)=﹣2×12=﹣2,故选A .【点评】本题考查函数的奇偶性与周期性.7. 【答案】D【解析】解:双曲线的顶点为(0,﹣2)和(0,2),焦点为(0,﹣4)和(0,4).∴椭圆的焦点坐标是为(0,﹣2)和(0,2),顶点为(0,﹣4)和(0,4).∴椭圆方程为.故选D .【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.8. 【答案】A 【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D 不正确;中间的棱在侧视图中表现为一条对角线,故C 不正确; 而对角线的方向应该从左上到右下,故B 不正确故A 选项正确. 故选:A . 【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键.9. 【答案】A 【解析】考点:三角函数的图象性质. 10.【答案】 B【解析】解: ===i .故选:B .【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力.11.【答案】D【解析】{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5A B ∴=,故选D.12.【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图则不等式xf (x )<0的解为:或解得:x ∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞) 故选:D .二、填空题13.【答案】菱形;矩形.【解析】解:如图所示:①∵EF∥AC,GH∥AC且EF=AC,GH=AC∴四边形EFGH是平行四边形又∵AC=BD∴EF=FG∴四边形EFGH是菱形.②由①知四边形EFGH是平行四边形又∵AC⊥BD,∴EF⊥FG∴四边形EFGH是矩形.故答案为:菱形,矩形【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题.14.【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】正方体中,BC 中点为E ,CD 中点为F ,则截面为即截去一个三棱锥其体积为:所以该几何体的体积为:故答案为:15.【答案】4π 【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是︒180,消去多余的变量,从而解出B 角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷( )中以选择题的压轴题出现.16.【答案】±.【解析】分析题意得,问题等价于264x ax ++≤只有一解,即220x ax ++≤只有一解,∴280a a ∆=-=⇒=±,故填:±. 17.【答案】3-【解析】作出可行域如图所示:作直线0l :30x y +=,再作一组平行于0l 的直线l :3x y z a +=-,当直线l 经过点5(,2)3M 时,3z a x y -=+取得最大值,∴max 5()3273z a -=⨯+=,所以max 74z a =+=,故3a =-.三、解答题18.【答案】解:(1)∵a n+1=2a n +1,∴a n+1+1=2(a n +1),又∵a 1=1,∴数列{a n +1}是首项、公比均为2的等比数列,∴a n +1=2n ,∴a n =﹣1+2n ; 6分(2)由(1)可知b n =n (a n +1)=n •2n =n •2n ﹣1, ∴T n =1•20+2•2+…+n •2n ﹣1,2T n =1•2+2•22…+(n ﹣1)•2n ﹣1+n •2n ,错位相减得:﹣T n =1+2+22…+2n ﹣1﹣n •2n=﹣n •2n=﹣1﹣(n ﹣1)•2n ,于是T n =1+(n ﹣1)•2n . 则所求和为12nn 6分19.【答案】【解析】【命题意图】本题考查椭圆的定义及方程、直线与椭圆的位置关系、平面向量数量积等基础知识,意在考查学生逻辑思维能力、运算求解能力、探索能力,以及分类讨论思想、待定系数法、设而不求法的应用.下面证明54m =时,716QA QB ⋅=-恒成立. 当直线l 的斜率为0时,结论成立;当直线l 的斜率不为0时,设直线l 的方程为1x ty =+,()11,A x y ,()22,B x y ,由1x ty =+及2212x y +=,得22(2)210t y ty ++-=, 所以0∆>,∴12122221,22t y y y y t t +=-=-++. 111x ty =+,221x ty =+, ∴112212125511(,)(,)()()4444x y x y ty ty y y -⋅-=--+=2(1)t +121211()416y y t y y -++= 22222211212217(1)242162(2)1616t t t t t t t t --+-++⋅+=+=-+++.综上所述,在x 轴上存在点5(,0)4Q 使得716QA QB ⋅=-恒成立. 20.【答案】 【解析】解:不等式|x ﹣1|>m ﹣1的解集为R ,须m ﹣1<0,即p 是真 命题,m <1f (x )=﹣(5﹣2m )x 是减函数,须5﹣2m >1即q 是真命题,m <2,由于p 或q 为真命题,p 且q 为假命题,故p 、q 中一个真,另一个为假命题因此,1≤m <2.【点评】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键.属中档题.21.【答案】(本小题满分13分)解:(Ⅰ)2()363(2)f x ax x x ax '=-=-, (1分)①当0a >时,解()0f x '>得2x a >或0x <,解()0f x '<得20x a<<, ∴()f x 的递增区间为(,0)-∞和2(,)a+∞,()f x 的递减区间为2(0,)a . (4分) ②当0a =时,()f x 的递增区间为(,0)-∞,递减区间为(0,)+∞. (5分)③当0a <时,解()0f x '>得20x a<<,解()0f x '<得0x >或2x a < ∴()f x 的递增区间为2(,0)a ,()f x 的递减区间为2(,)a-∞和(0,)+∞. (7分) (Ⅱ)当2a <-时,由(Ⅰ)知2(,)a -∞上递减,在2(,0)a上递增,在(0,)+∞上递减. ∵22240a f a a -⎛⎫=> ⎪⎝⎭,∴()f x 在(,0)-∞没有零点. (9分) ∵()010f =>,11(2)028f a ⎛⎫=+< ⎪⎝⎭,()f x 在(0,)+∞上递减, ∴在(0,)+∞上,存在唯一的0x ,使得()00f x =.且01(0,)2x ∈ (12分) 综上所述,当2a <-时,()f x 有唯一的零点0x ,且01(0,)2x ∈. (13分) 22.【答案】【解析】【知识点】垂直平行 【试题解析】(Ⅰ)证明:因为,平面,平面, 所以平面. 因为,平面,平面,所以平面.又因为,所以平面平面.又因为平面,所以平面.(Ⅱ)证明:因为底面,底面,所以.又因为,,所以平面.又因为底面,所以.(Ⅲ)结论:直线与平面不垂直.证明:假设平面,由平面,得.由棱柱中,底面,可得,,又因为,所以平面,所以.又因为,所以平面,所以.这与四边形为矩形,且矛盾,故直线与平面不垂直.23.【答案】(1)证明见解析;(2)证明见解析.【解析】1111]试题解析:解:(1)∵PA 是切线,AB 是弦,∴C BAP ∠=∠,CPE APD ∠=∠,∴CPE C APD BAP ∠+∠=∠+∠,∵CPE C AED APD BAP ADE ∠+∠=∠∠+∠=∠,∴AED ADE ∠=∠,即ADE ∆是等腰三角形又点H 是线段ED 的中点,∴ AH 是线段ED 垂直平分线,即ED AH ⊥又由CPE APE ∠=∠可知PH 是线段AF 的垂直平分线,∴AF 与ED 互相垂直且平分,∴四边形AEFD 是正方形,则D F E A 、、、四点共圆. (5分)(2由割线定理得PC PB PA ⋅=2,由(1)知PH 是线段AF 的垂直平分线, ∴PF PA =,从而PC PB PF ⋅=2 (10分)考点:与圆有关的比例线段.。
10月月考科数学答案.doc
高2018届高三10月月考数学(文科)答案、选择题题号123456789101112答案C B C A B A B D D C B D二、填空题13、2 14、2 15、」一16、V33三、解答题V317、解:(I)•・・/?= QCOS C ------- a sin C3、、J3・•・由正弦定理得,sin B = sin A cos C H - sin A sin CV3sin A cos C + cos Asin C = sin A cos C--- sin Asin C3BP tan A = V3 , X v Ae(0, TT)F A = y(II)由余弦定理得,3 = Z?2 + c2 -2bccos—,3即(b + c『-3bc = 3,又・"c = 2, ・・・b + c = 3, AABC的周长为3+V?18、证明:(I)如图,取丹中点必连结伽MN.・.・测是△附的中位线、:Ml空BC,且奶2处/ /— / /依题意得,血尸2BC,则有AD= MN四边形必忆是平行四边形,:.ND//AM•.•泗面刊S力〃u面昭.•.櫛〃面PAB(II)•.•"是PC的中点,到面ABCD的距离等于P到面ABCD的距离的一半,且刊丄面ABCD, 04=4, 三棱锥AUCZ?的高是2.在等腰中,A(=AB=3, B(=4, BC边上的高为^32-22=^5 .BC//AD, :.C到AD的距离为亦,—X2X V5=A/5・•・ S\AD: 2-X V5X2=-A/5三棱锥N-ACD的体积是3 3 .19、(1)由于图中所有小矩形的面积之和等于1,所以10X (0. 005+0. 01+0. 02+a+0. 025+0. 01)=1.解得a=0. 03(2)根据频率分布直方图,成绩不低于60分的频率为1-10X (0. 005+0. 01) =0. 85由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级数学成绩不低于60 分的人数约为640X0. 85=544人(3)成绩在[40,50)分数段内的人数为40X0. 05=2人,分别记为A,B,成绩在[90, 100]分数段内的人数为40X0. 1=4人,分别记为C, D, E, F.若从数学成绩在[40, 50)与[90,100]两个分数段内的学生中随机选取两名学生,则所有的基本事件有:(A, B), (A, C), (A, D), (A, E), (A, F), (B, C), (B, D), (B, E), (B, F), (C, D), (C, E), (C, F), (D, E),( D, F), (E,F)共15 种.-(9 分)如果两名学生的数学成绩都在[40, 50)分数段内或都在[90, 100]分数段内,那么这两名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40, 50)分数段内,另一个成绩在[90, 100]分数段内,那么这两名学生的数学成绩之差的绝对值一定大于10.记“这两名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有:2_(A, B), (C, D), (C, E), (C, F), (D, E), (D, F), (E, F)共7 种.所以所求概率为P (M) = 15 .20.解:(1) e2 = -^-7 = —~ = —cr = 4Z?2a_ a~ 4•.•椭圆过点(2血,0)/ = &b2 = 22 28 2(2)设啲方程为y = ^x + m代入椭圆方程中整理得兀2 +2nvc + 2m2 -4 = 0兀]+ 兀2 = -2m, XjX2 = 2m2 - 4□ = 4m2—4(2加2 —4) > 0 m2 < 4则|4B|=j5(4—m?)P点到直线1的距离d = ^V5°PAB 2 V5 2当且仅当m2=2,即m=±V2Ht取得最大值221、解:(I) /(x)的定义域为(0卄),f,(x)=--a.X若a MO,则f(x) > 0 ,所以/(x)在(0, + 8)单调递增.若a>0,则当xe| 0,-| 时,f(x) > 0 :当x/丄,+J 时,f(x) < 0 .所以/(x)在〔0丄]单丿\a )\ a)调递增,在G,+:|单调递减.(II )由(I )知,当aWO时,/(兀)在(0, + oo)无最大值;当a>0时,/(兀)在x =—取得a最大值,最大值为/(丄) = ln- + fl| 1--U-lno + fl-1.a a \ a)因此f(-)>2a-2等价于In a + a — 1 v 0.a令g(a) = lna + Q-l ,则g(a)在(0, + oo)单调递增,g(l) = 0.于是,当0<a<l 时,g(a)<0;当<7>1 时,g(a)>0.因此,a的取值范围是(0,1).22、解:(I)由曲线C的极坐标方程得:p2 + 2p2sin2^ = 3,2...曲线C的直角坐标方程为:—+v2=l,3 '直线/的普通方程为:y-x = 6.(II)设曲线C上任意一点戸为(A/3cossincr),则JI|V3cosa-sincr + 6| 2cos(a + -) + 6点P到直线l的距离为d = J ---- r ------- = ------ F——V2 A/2九=2近23> 解析:(I )当a=3 时,f (x) =|x-3| + |x - 1|,^4-2x, x<l即有 f (x) =< 2, ,2x - 4,不等式f (x) W4即为(x<l或(x>3或4~2x<4 [2x-4<4 [2<4即有OWxVl 或3WxW4 或 1 WxV3,则为0WxW4,则解集为[0, 4];(II )依题意知,f (x) =|x - a| + |x - 11 ^2 恒成立,・・.2Wf(X)min;由绝对值三角不等式得:f (x) = | x - a| +1x - 11 | (x - a) + (1 - x) | = | 1 - a|, 即 f (x) mi n=| 1 - a|,11 - a| 2,即a - 1 ^2 或a - 1W - 2,解得a^3或a,W - 1.•I实数a的取值范围是[3, +8)u ( - 8, - 1].。
2017-2018学年高二上学期10月月考数学试题(文科)(解析版)17
高二(上)10月月考数学试卷(文科)一.选择题:(本大题共12个小题,每小题5分,共60分,在每小题所给出的四个选项中只有一项是符合题目要求的).1.(5分)圆(x+2)2+y2=5关于原点(0,0)对称的圆的方程为()A.(x﹣2)2+y2=5B.x2+(y﹣2)2=5 C.(x+2)2+(y+2)2=5 D.x2+(y+2)2=52.(5分)设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)椭圆的左右焦点为F1,F2,一直线过F1交椭圆于A,B两点,则△ABF2的周长为()A.32 B.16 C.8 D.44.(5分)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q5.(5分)已知点P(a,b)(ab≠0)是圆x2+y2=r2内的一点,直线m是以P为中点的弦所在直线,直线l的方程为ax+by=r2,那么()A.m∥l,且l与圆相交 B.m⊥l,且l与圆相切C.m∥l,且l与圆相离 D.m⊥l,且l与圆相离6.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.7.(5分)已知P为椭圆上的一点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最小值为()A.5 B.7 C.13 D.158.(5分)平面内到点(1,1)的距离为1且到点(1,4)的距离为2的直线有()条.A.1 B.2 C.3 D.49.(5分)若关于x的方程﹣kx﹣3+2k=0有且只有两个不同的实数根,则实数k的取值范围是()A.B.C.D.10.(5分)设椭圆的离心率为,右焦点为F(c,0),方程ax2+bx﹣c=0的两个实根分别为x1和x2,则点P(x1,x2)()A.必在圆x2+y2=2内B.必在圆x2+y2=2上C.必在圆x2+y2=2外D.以上三种情形都有可能11.(5分)已知椭圆T:+=1(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线与T相交于A,B两点,若=3,则k=()A.1 B.C.D.212.(5分)已知椭圆C:=1,点M1,M2...M5为其长轴AB 的 6 等分点,分别过这五点作斜率为k(k≠0)的一组平行线,交椭圆C于P1,P2 (10)则10条直线AP1,AP2…AP10的斜率乘积为()A.B.C.D.二、填空题:(本大题共4个小题,每小题5分,共20分,把答案填在答题卷上的相应位置).13.(5分)若点P(2,﹣1)为圆(x﹣1)2+y2=25的弦AB的中点,则直线AB 的方程是.14.(5分)若命题“∃x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值范围为.15.(5分)在平面直角坐标系xOy中,已知△ABC顶点A(﹣3,0)和C(3,0)顶点B在椭圆上,则=.16.(5分)已知以T=4为周期的函数f(x)=,其中m >0.若方程3f(x)=x恰有5个实数解,则m的取值范围为.三、解答题:(本大题共6个小题,共70分,解答应写出文字说明、证明过程和演算步骤)17.(10分)已知m>0,p:(x+1)(x﹣5)≤0,q:1﹣m≤x≤1+m.(1)若p是q 的充分条件,求实数m的取值范围;(2)若m=5,“p∨q”为真命题,“p∧q”为假命题,求实数x的取值范围.18.(12分)已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.求:(1)顶点C的坐标;(2)直线BC的方程.19.(12分)椭圆ax2+by2=1与直线x+y﹣1=0相交于A,B两点,C是AB的中点,若|AB|=2,OC的斜率为,求椭圆的方程.20.(12分)平面上两点A(﹣1,0),B(1,0),在圆C:(x﹣3)2+(y﹣4)2=4上取一点P,(Ⅰ)x﹣y+c≥0恒成立,求c的范围(Ⅱ)从x+y+1=0上的点向圆引切线,求切线长的最小值(Ⅲ)求|PA|2+|PB|2的最值及此时点P的坐标.21.(12分)求过两圆x2+y2+2x+8y﹣8=0,x2+y2﹣4x﹣4y﹣2=0的交点且面积最小的圆的方程.22.(12分)已知椭圆,四点中恰有三点在椭圆上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A、B两点,若直线P1A与P2B直线的斜率的和为﹣1,证明:l过定点.高二(上)10月月考数学试卷(文科)参考答案与试题解析一.选择题:(本大题共12个小题,每小题5分,共60分,在每小题所给出的四个选项中只有一项是符合题目要求的).1.(5分)圆(x+2)2+y2=5关于原点(0,0)对称的圆的方程为()A.(x﹣2)2+y2=5 B.x2+(y﹣2)2=5 C.(x+2)2+(y+2)2=5 D.x2+(y+2)2=5【分析】求出对称圆的圆心坐标即可求得结果.【解答】解:圆(x+2)2+y2=5的圆心(﹣2,0),关于(0,0)对称的圆心坐标(2,0)所求圆的方程是(x﹣2)2+y2=5.故选A.【点评】本题考查圆和圆的位置关系,对称问题,是基础题.2.(5分)设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】由“x≥2且y≥2”推出“x2+y2≥4”可证明充分性;由满足“x2+y2≥4”可举出反例推翻“x≥2且y≥2”,则证明不必要性,综合可得答案.【解答】解:若x≥2且y≥2,则x2≥4,y2≥4,所以x2+y2≥8,即x2+y2≥4;若x2+y2≥4,则如(﹣2,﹣2)满足条件,但不满足x≥2且y≥2.所以“x≥2且y≥2”是“x2+y2≥4”的充分而不必要条件.故选A.【点评】本题主要考查充分条件与必要条件的含义.3.(5分)椭圆的左右焦点为F1,F2,一直线过F1交椭圆于A,B两点,则△ABF2的周长为()A.32 B.16 C.8 D.4【分析】先由椭圆方程求得长半轴,而△ABF2的周长为AB+BF2+AF2,由椭圆的定义求解即可.【解答】解:∵椭圆∴a=4,b=,c=3根据椭圆的定义∴AF1+AF2=2a=8∴BF1+BF2=2a=8∵AF1+BF1=AB∴△ABF2的周长为4a=16故选B【点评】本题主要考查椭圆的定义的应用,应用的定义的基本特征,是与焦点有关.4.(5分)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】由对数函数的性质可知命题p为真命题,则¬p为假命题,命题q是假命题,则¬q是真命题.因此p∧¬q为真命题.【解答】解:命题p:∀x>0,ln(x+1)>0,则命题p为真命题,则¬p为假命题;取a=﹣1,b=﹣2,a>b,但a2<b2,则命题q是假命题,则¬q是真命题.∴p∧q是假命题,p∧¬q是真命题,¬p∧q是假命题,¬p∧¬q是假命题.故选B.【点评】本题考查命题真假性的判断,复合命题的真假性,属于基础题.5.(5分)已知点P(a,b)(ab≠0)是圆x2+y2=r2内的一点,直线m是以P为中点的弦所在直线,直线l的方程为ax+by=r2,那么()A.m∥l,且l与圆相交 B.m⊥l,且l与圆相切C.m∥l,且l与圆相离 D.m⊥l,且l与圆相离【分析】由P在圆内,得到P到圆心距离小于半径,利用两点间的距离公式列出不等式a2+b2<r2,由直线m是以P为中点的弦所在直线,利用垂径定理得到直线OP与直线m垂直,根据直线OP的斜率求出直线m的斜率,再表示出直线l 的斜率,发现直线m与l斜率相同,可得出两直线平行,利用点到直线的距离公式表示出圆心到直线l的距离,利用得出的不等式变形判断出d大于r,即可确定出直线l与圆相离.【解答】解:∵点P(a,b)(ab≠0)在圆内,∴a2+b2<r2,∵k OP=,直线OP⊥直线m,∴k m=﹣,∵直线l的斜率k l=﹣=k m,∴m∥l,∵圆心O到直线l的距离d=>=r,∴l与圆相离.故选C.【点评】此题考查了直线与圆的位置关系,涉及的知识有:两点间的距离公式,点到直线的距离公式,两直线垂直、平行时直线斜率满足的关系,直线与圆的位置关系由d与r的大小来判断,当d>r时,直线与圆相离;当d<r时,直线与圆相交;当d=r时,直线与圆相切(其中d为圆心到直线的距离,r为圆的半径).6.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.【分析】以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,可得原点到直线的距离=a,化简即可得出.【解答】解:以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,∴原点到直线的距离=a,化为:a2=3b2.∴椭圆C的离心率e===.故选:A.【点评】本题考查了椭圆的标准方程及其性质、直线与圆相切的性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.7.(5分)已知P为椭圆上的一点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最小值为()A.5 B.7 C.13 D.15【分析】由题意可得:椭圆的焦点分别是两圆(x+3)2+y2=1和(x﹣3)2+y2=4的圆心,再结合椭圆的定义与圆的有关性质可得答案.【解答】解:依题意可得,椭圆的焦点分别是两圆(x+3)2+y2=1和(x﹣3)2+y2=4的圆心,所以根据椭圆的定义可得:(|PM|+|PN|)min=2×5﹣1﹣2=7,故选B.【点评】本题考查圆的性质及其应用,以及椭圆的定义,解题时要认真审题,仔细解答,注意公式的合理运用.8.(5分)平面内到点(1,1)的距离为1且到点(1,4)的距离为2的直线有()条.A.1 B.2 C.3 D.4【分析】在坐标平面内,与点A(1,1)距离为1的直线为圆(x﹣1)2+(y﹣1)2=1的切线,同理可得在坐标平面内,与点B(1,4)距离为2的直线为圆(x﹣1)2+(y﹣4)2=4的切线,故所求直线为两圆的公切线.【解答】解:在坐标平面内,与点A(1,1)距离为1的直线为圆(x﹣1)2+(y ﹣1)2=1的切线,同理可得在坐标平面内,与点B(1,4)距离为2的直线为圆(x﹣1)2+(y﹣4)2=4的切线,故所求直线为两圆的公切线,∵|AB|==3=1+2,∴两圆外切,公切线由3条,故选:C.【点评】本题考查了圆的标准方程及其位置关系、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.9.(5分)若关于x的方程﹣kx﹣3+2k=0有且只有两个不同的实数根,则实数k的取值范围是()A.B.C.D.【分析】先将方程根的情况转化为一个半圆与一条直线交点的情况,再用数形结合,先求出相切时的斜率,再得到有两个交点的情况.【解答】解:将方程转化为:半圆,与直线y=kx+3﹣2k有两个不同交点.当直线与半圆相切时,有k=∴半圆与直线y=kx+3﹣2k有两个不同交点时.直线y=kx+3﹣2k=k(x﹣2)+3,一定过(2,3),由图象知直线过(﹣2,0)时直线的斜率k取最大值为k∈故选D【点评】本题主要考查用解析几何法来解决方程根的情况,关键是能够转化为一些特定的曲线才能用数形结合求解.10.(5分)设椭圆的离心率为,右焦点为F(c,0),方程ax2+bx﹣c=0的两个实根分别为x1和x2,则点P(x1,x2)()A.必在圆x2+y2=2内B.必在圆x2+y2=2上C.必在圆x2+y2=2外D.以上三种情形都有可能【分析】由题意可求得c=a,b=a,从而可求得x1和x2,利用韦达定理可求得+的值,从而可判断点P与圆x2+y2=2的关系.【解答】解:∵椭圆的离心率e==,∴c=a,b==a,∴ax2+bx﹣c=ax2+ax﹣a=0,∵a≠0,∴x2+x﹣=0,又该方程两个实根分别为x1和x2,∴x1+x2=﹣,x1x2=﹣,∴+=﹣2x1x2=+1<2.∴点P在圆x2+y2=2的内部.故选A.【点评】本题考查椭圆的简单性质,考查点与圆的位置关系,求得c,b与a的关系是关键,属于中档题.11.(5分)已知椭圆T:+=1(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线与T相交于A,B两点,若=3,则k=()A.1 B.C.D.2【分析】设A(x1,y1),B(x2,y2),根据求得y1和y2关系根据离心率设,b=t,代入椭圆方程与直线方程联立,消去x,根据韦达定理表示出y1+y2和y1y2,进而根据y1和y2关系求得k.【解答】解:A(x1,y1),B(x2,y2),∵,∴y1=﹣3y2,∵,设,b=t,∴x2+4y2﹣4t2=0①,设直线AB方程为,代入①中消去x,可得,∴,,解得,故选B【点评】本题主要考查了直线与圆锥曲线的综合问题.此类题问题综合性强,要求考生有较高地转化数学思想的运用能力,能将已知条件转化到基本知识的运用.12.(5分)已知椭圆C:=1,点M1,M2...M5为其长轴AB 的 6 等分点,分别过这五点作斜率为k(k≠0)的一组平行线,交椭圆C于P1,P2 (10)则10条直线AP1,AP2…AP10的斜率乘积为()A.B.C.D.【分析】解法一:设直线P1P2的方程为x=my+t,代入椭圆方程,利用韦达定理及直线的斜率公式,当t 分别取、、0、、时,代入即可求得10条直线AP1,AP2…AP10的斜率乘积;解法二:利用椭圆的性质可得得•=•=﹣=﹣.及其椭圆的对称性可得=,=,进而得出答案.【解答】解(法一):设其中的任一等分点为M(t,0),过M(t,0)的直线交椭圆于点P1(x1,y1)、P2(x2,y2),不妨设直线P1P2的方程为x=my+t,则与椭圆方程联立可得:,整理后可得(m2+2)y2+2mty+t2﹣2=0.从中可以得到,所以.当t 分别取、、0、、时,算出斜率的乘积为=(﹣)5=﹣.故选D.解法二::如图所示,由椭圆的性质可得•=•=﹣=﹣.由椭圆的对称性可得=,=,∴•=﹣,同理可得k AP3•=•=•=•=﹣.∴直线AP1,AP2,…,AP10这10条直线的斜率乘积=(﹣)5=﹣.故选D.【点评】本题考查椭圆的标准方程,直线与椭圆的位置,椭圆的性质,直线的斜率公式,考查计算能力,属于中档题.二、填空题:(本大题共4个小题,每小题5分,共20分,把答案填在答题卷上的相应位置).13.(5分)若点P(2,﹣1)为圆(x﹣1)2+y2=25的弦AB的中点,则直线AB 的方程是x﹣y﹣3=0.【分析】求出圆心C的坐标,得到PC的斜率,利用中垂线的性质求得直线AB 的斜率,点斜式写出AB的方程,并化为一般式.【解答】解:圆(x﹣1)2+y2=25的圆心C(1,0),点P(2,﹣1)为弦AB的中点,PC的斜率为=﹣1,∴直线AB的斜率为1,点斜式写出直线AB的方程y+1=1×(x﹣2),即x﹣y﹣3=0,故答案为:x﹣y﹣3=0.【点评】本题考查直线和圆相交的性质,线段的中垂线的性质,用点斜式求直线的方程的方法.14.(5分)若命题“∃x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值范围为﹣1≤a≤3.【分析】先求出命题的否定,再用恒成立来求解【解答】解:命题“∃x∈R,使x2+(a﹣1)x+1<0”的否定是:““∀x∈R,使x2+(a﹣1)x+1≥0”即:△=(a﹣1)2﹣4≤0,∴﹣1≤a≤3故答案是﹣1≤a≤3【点评】本题通过逻辑用语来考查函数中的恒成立问题.15.(5分)在平面直角坐标系xOy中,已知△ABC顶点A(﹣3,0)和C(3,0),顶点B在椭圆上,则=.【分析】由正弦定理和椭圆的定义可知=,即可.【解答】解:由椭圆方程得:a=5,b=4,c=3.∵三角形ABC顶点A(﹣3,0)和C(3,0),顶点B在椭圆上,∴BC+AB=2a=10,∴由正弦定理可知=故答案为:.【点评】本题考查正弦定理和椭圆的定义,考查学生分析解决问题的能力,正确运用正弦定理和椭圆的定义是关键.属于中档题.16.(5分)已知以T=4为周期的函数f(x)=,其中m>0.若方程3f(x)=x恰有5个实数解,则m的取值范围为.【分析】根据对函数的解析式进行变形后发现当x∈(﹣1,1],[3,5],[7,9]上时,f(x)的图象为半个椭圆.根据图象推断要使方程恰有5个实数解,则需直线y=与第二个椭圆相交,而与第三个椭圆不公共点.把直线分别代入椭圆方程,根据△可求得m的范围.【解答】解:∵当x∈(﹣1,1]时,将函数化为方程x2+=1(y≥0),∴实质上为一个半椭圆,其图象如图所示,同时在坐标系中作出当x∈(1,3]得图象,再根据周期性作出函数其它部分的图象,由图易知直线y=与第二个椭圆(x﹣4)2+=1(y≥0)相交,而与第三个半椭圆(x﹣8)2+=1 (y≥0)无公共点时,方程恰有5个实数解,将y=代入(x﹣4)2+=1 (y≥0)得,(9m2+1)x2﹣72m2x+135m2=0,令t=9m2(t>0),则(t+1)x2﹣8tx+15t=0,由△=(8t)2﹣4×15t (t+1)>0,得t>15,由9m2>15,且m>0得m,同样由y=与第三个椭圆(x﹣8)2+=1 (y≥0)由△<0可计算得m<,综上可知m∈(,)故答案为:(,)【点评】本题主要考查了函数的周期性.采用了数形结合的方法,很直观.三、解答题:(本大题共6个小题,共70分,解答应写出文字说明、证明过程和演算步骤)17.(10分)已知m>0,p:(x+1)(x﹣5)≤0,q:1﹣m≤x≤1+m.(1)若p是q 的充分条件,求实数m的取值范围;(2)若m=5,“p∨q”为真命题,“p∧q”为假命题,求实数x的取值范围.【分析】(1)求出p的范围,根据集合的包含关系得到关于m的不等式组,求出m的范围即可;(2)求出q为真时的x的范围,通过讨论p,q的真假,得到关于x的不等式组,解出即可.【解答】解:(1)由题知p:﹣1≤x≤5.因为p 是q 的充分条件,所以[﹣1,5]是[1﹣m,1+m]的子集,所以解得m≥4.所以实数m 的取值范围是[4,+∞).(2)当m=5 时,q:﹣4≤x≤6,依题意得,p 与q 一真一假.当p 真q 假时,有无解;当p 假q 真时,有解得﹣4≤x<﹣1 或5<x≤6.所以实数x 的取值范围为[﹣4,﹣1)∪(5,6].【点评】本题考查了集合的包含关系,考查充分必要条件以及分类讨论思想,是一道中档题.18.(12分)已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.求:(1)顶点C的坐标;(2)直线BC的方程.【分析】(1)设C(m,n),利用点与直线的位置关系、相互垂直的直线斜率之间的关系即可得出;(2)利用中点坐标公式、点斜式即可得出.【解答】解:(1)设C(m,n),∵AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.∴,解得.∴C(4,3).(2)设B(a,b),则,解得.∴B(﹣1,﹣3).∴k BC==∴直线BC的方程为y﹣3=(x﹣4),化为6x﹣5y﹣9=0.【点评】本题考查了点与直线的位置关系、相互垂直的直线斜率之间的关系、中点坐标公式、点斜式,考查了计算能力,属于基础题.19.(12分)椭圆ax2+by2=1与直线x+y﹣1=0相交于A,B两点,C是AB的中点,若|AB|=2,OC的斜率为,求椭圆的方程.【分析】方法一:利用点差法,求得=k OC=,代入b=a.利用弦长公式求得()2﹣4•=4.则a=,∴b=;方法二:将直线方程代入椭圆方程利用弦长公式=1.①OC的斜率为,∴=.代入①,即可求得a和b的值,求得椭圆方程.【解答】解:方法一:设A(x1,y1),B(x2,y2),代入椭圆方程并作差,得a(x1+x2)(x1﹣x2)+b(y1+y2)(y1﹣y2)=0.而=﹣1,=k OC=,代入上式可得b=a.再由|AB|=|x2﹣x1|=|x2﹣x1|=2,其中x1,x2是方程(a+b)x2﹣2bx+b﹣1=0的两根.故()2﹣4•=4.将b=a代入,得a=,∴b=.∴所求椭圆的方程是;方法二:由,整理得(a+b)x2﹣2bx+b﹣1=0.设A(x1,y1),B(x2,y2),则|AB|==•.∵|AB|=2,∴=1.①设C(x,y),则x==,y=1﹣x=.∵OC的斜率为,∴=.代入①,得a=,b=.∴椭圆方程为.【点评】本题考查椭圆的标准方程的求法,直线与椭圆的位置关系,弦长公式,考查计算能力,属于中档题.20.(12分)平面上两点A(﹣1,0),B(1,0),在圆C:(x﹣3)2+(y﹣4)2=4上取一点P,(Ⅰ)x﹣y+c≥0恒成立,求c的范围(Ⅱ)从x+y+1=0上的点向圆引切线,求切线长的最小值(Ⅲ)求|PA|2+|PB|2的最值及此时点P的坐标.(Ⅰ)由x﹣y+c≥0,得c≥y﹣x,由圆的参数方程得c≥4+2sinθ﹣3﹣2cosθ,【分析】即可求c的范围;(Ⅱ)求出圆心C到直线x+y+1=0的距离为,利用勾股定理求切线长的最小值;(Ⅲ)设出的是PP(a,b),使要求的式子转化为求圆上的点到原点的距离问题,利用数形结合法求最值.【解答】解:(Ⅰ)由x﹣y+c≥0,得c≥y﹣x,由圆的参数方程得c≥4+2sinθ﹣3﹣2cosθ,所以(Ⅱ)圆心C到直线x+y+1=0的距离为,切线长的最小值为(Ⅲ)设P(a,b),则|PA|2+|PB|2=2a2+2b2+2,a2+b2为圆C:(x﹣3)2+(y﹣4)2=4上的点到原点的距离平方,所以最小值为20,;最大值为100,.【点评】本题考查圆的参数方程,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.21.(12分)求过两圆x2+y2+2x+8y﹣8=0,x2+y2﹣4x﹣4y﹣2=0的交点且面积最小的圆的方程.【分析】求出圆x2+y2+2x+8y﹣8=0和x2+y2﹣4x﹣4y﹣2=0的圆心和半径,写出两圆圆心所在直线方程,再求出公共弦所在直线方程,两直线交点为面积最小的圆的圆心,再求出该圆的半径即可.【解答】解:圆x2+y2+2x+8y﹣8=0化为(x+1)2+(y+4)2=25,圆心坐标为(﹣1,﹣4),半径为5;圆x2+y2﹣4x﹣4y﹣2=0化为(x﹣2)2+(y﹣2)2=10,圆心坐标为(2,2),半径为;两圆圆心所在直线方程为,化为一般式是2x﹣y﹣2=0,…①公共弦所在直线方程为x+2y﹣1=0,…②解①②组成的方程组,得,∴面积最小的圆的圆心坐标为(1,0);又点(1,0)到(﹣1,﹣4)的距离为d==,∴该圆的半径为r=,∴所求圆系中面积最小的圆的方程为(x﹣1)2+y2=5.【点评】本题考查了两圆的位置关系应用问题,也考查了求圆的方程应用问题,是综合题.22.(12分)已知椭圆,四点中恰有三点在椭圆上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A、B两点,若直线P1A与P2B直线的斜率的和为﹣1,证明:l过定点.【分析】(1)根据椭圆的对称性,得到P2,P3,P4三点在椭圆C上.把P2,P3代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+b,(b≠1),与椭圆方程联立,得(1+4k2)x2+8kbx+4b2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,﹣1).【解答】解:(1)根据椭圆的对称性,得到P2,P3,P4三点在椭圆C上.把P2,P3代入椭圆C,得,得出a2=4,b2=1,由此椭圆C的方程为.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,=﹣1解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+b,(b≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8kbx+4b2﹣4=0,…①∵直线P2A与P2B直线的斜率的和为﹣1,∴==…②①代入②得:又b≠1,∴b=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.21。
最新-2018年秋季上学期高二2018月考试数学试题 精品
2018年秋季上学期高二10月考试数 学 试 题一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1、若0,0,0a b a b <>+<,则下列不等式中成立的是:( )A .b a b a -<<<- B. b a a b -<<-< C. a b b a <-<<- D.a b a b <-<-<2、直线2x -y -4=0绕着它与x 轴的交点,按逆时针方向旋转4π后,所得的直线方程是( )A.x -3y -2=0B.3x +y -6=0C.3x -y +6=0D.x -y -2=0 3、若直线10ax y +-=与直线4(3)40x a y +-+=平行,则实数a 的值等于( )A .4B .4或1-C .35D .32- 4、在如图所示的坐标平面的可行域(阴影部分且包括边界)内,目标函数ay x z -=2取得最大值的最优解有无数个,则a 为( )A .-2B .2C .-6D .65、直线0323=-+y x 截圆422=+y x 得劣弧所对的圆心角为( )A .6πB .4π C .3π D .2π 6、已知直线1l 的方向向量(1,3)a =,直线2l 的方向向量(1,)b k =-。
若直线2l 过(0,5)且12l l ⊥,则直线2l 的方程为 ( )A . 3150x y -+=B .3150x y +-=C .350x y -+=D .350x y +-=7、曲线422=+y x 与曲线))2,0[(sin 22cos 22πθθθ∈⎩⎨⎧+=+-=参数y x 关于直线l 对称,则直线l 的方程为( )A .02=+-y xB .0=-y xC .02=-+y xD .2-=x y8、若直线1ax by +=与圆C :221x y +=相交,则点(,)P a b 的位置是( ) A .在圆C 外 B . 在圆C 内 C .在圆C 上 D . 以上都可能9、已知关于x 的不等式0652≥+--x x ax 的解集是(]()+∞,3,2 a , 则a 的取值范围是( )A ()2,∞-B ()3,2C ()+∞,3D []3,210、直线l :032=-+y x 与圆C :0622=+-++m y x y x 有两个交点A 、B ,O 为坐标原点,若OB OA ⊥,则m 的值是( )A .2B .3C . -1D .22 11、若过定点M ( -1 , 0 )且斜率为k 的直线与圆22450x x y ++-=在第一象限内的部分有交点,则k 的取值范围是 ( )A.05k << B.0k < C.0k <<0k <<12. 若直线220ax by -+=(0a >,0b >)被圆222410x y x y ++-+=截得的弦长为4,则11a b+的最小值为( )A .14 B .12C .2D .4 二、填空题(本题共4小题,每小题3分,共12分)13、过点P ()45--,且倾斜角的正弦值是54的直线方程为______ _____.14、给出下列4个命题:①若、a b R ∈,则2a b+≥;②若a b R ⋅∈,则||||||a b a b +≤+;③若x R ∈,则21x x +>;④若x R ∈且0x ≠,则12x x+≥,其中真命题的序号为________________.15、已知集合(){,|P x y y =,(){,|}Q x y y x m ==-+,若P ∩Q ≠∅,则实数m 的取值范围是 _________ ____.16.设1(,0)2A ,1(0,)3B ,已知点(P x ,)y 在线段AB (不含端点)上运动,则yx 11+的最小值是_______ __.三.解答题: 本大题共4个小题,共40分,解答应写出文字说明、证明过程或演算步骤.17、已知两个定点O(0,0)、A(3,0),动点P 满足:21||||=AP OP . (1).求动点P 轨迹C 的方程;(2).过点A 作轨迹C 的切线,求此切线的方程.18、已知1(0)()1(0)1xf xxx≥⎧⎪=⎨-<⎪+⎩,解不等式3(62)()4x x f x++≤19、如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?20、已知与圆C :012222=+--+y x y x 相切的直线l 交x 轴、y 轴于A 、B 两点,O 为坐标原点,且|OA|=a ,)2,2(||>>=b a b OB 。
2018届高三数学10月月考试题 文
2018届高三文科数学10月月考试题一、选择题:本大题共12小题,每题5分,共60分1、已知集合()(){}|210M x x x =+-<,{}|10N x x =+<,则MN =(A )()1,1-(B )()2,1-(C )()2,1--(D ) ()1,22、设复数z 满足()12z i +=,i 为虚数单位,则复数z 的虚部是(A )1 (B )1- (C )i (D )i - 3、若复数z 满足34iz i =+,则复数z 的共轭复数z 对应的点位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限4、已知U R =,函数)1ln(x y -=的定义域为M ,}0|{2<-=x x x N ,则下列结论正确的是 (A )M N M = (B )()U MC N U =(C )()U MC N φ= (D )N C M U ⊆5、从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是(A )12 (B )13 (C )14 (D )166、已知平行四边形ABCD 中,)1,7(),7,3(==B A D A,对角线AC 与BD 交于点O ,则O C 是(A )3 (B )41 (C )4 (D )57、已知命题p :“3x >”是“29x >”的充要条件,命题q :“22a b >”是“a b >”的充要条件, 则 (A )p ∨q 为真 (B )p ∧q 为真 (C )p 真q 假 (D )p ∨q 为假8、已知,x y 满足约束条件30260102x y y x y x ⎧⎪+-≥⎪-+≥⎨⎪⎪-≤⎩,则z x y =-的最小值为(A )1 (B )-1 (C )3 (D )-3 9、某程序框图如图2所示,则输出的结果S =(A )26 (B )57 (C )120 (D )24710、某组合体的三视图如图1所示,则此组合体的表面积是(A)(8π+ (B)(12π+(C)(16π+ (D)(24π+11、在棱长为1的正方体1111ABCD A B C D -中,ACBD O =,E 是线段1B C (含端点)上的一动点, 则①1OE BD ⊥; ②11//OE AC D 面; ③三棱锥1A BDE -的体积为定值; ④OE 与11A C 所成的最大角为90︒. 上述命题中正确的个数是(A )1 (B )2 (C )3 (D )412、当实数,x y 满足不等式组0022x y x y ≥⎧⎪≥⎨⎪+≤⎩时,3ax y +≤恒成立,则实数a 的取值范围是(A )0a ≤ (B )0a ≥ (C )02a ≤≤ (D )3a ≤ 二、填空题:本大题共4小题,每小题5分 13、命题“,cos 1x R x ∀∈≤”的否定是________ 14、执行如图3所示的程序框图,输出的结果为120,则判断框①中应填入的条件为_________15、设向量(1,2),(1,1),k ===+a b c a b ,若()//a +b c ,则实数k 的值等于_________1A16、若当2>x 时,不等式22-+≤x x a 恒成立,则a 的取值范围是_________ 三、解答题:解答应写出文字说明、证明过程或演算步骤 17、(10分)在直角坐标系xOy 中,曲线1C 的参数方程为22cos 2sin x y θθ=-+⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是224sin =⎪⎭⎫⎝⎛+πθρ. (Ⅰ)直接写出1C 的普通方程和极坐标方程,直接写出2C 的普通方程; (Ⅱ)点A 在1C 上,点B 在2C 上,求AB 的最小值.18、(12分)下表是某位文科生连续5次月考的历史、政治的成绩,结果如下:19、(12分)已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中(0,)2πθ∈.(1)求θsin 和θcos 的值; (2)若sin()2πθϕϕ-=<<,求cos ϕ的值.20、(12分)某家具厂有不锈钢方料390 m ,高密度板2600 m ,准备加工成饭桌和物橱出售.已知生产每张饭桌需要不锈钢方料30.1 m 、高密度板22 m ;生产每个物橱需要不锈钢方料30.2 m 、高密度板21 m . 出售一张饭桌可获利润80元,出售一个物橱可获利润120元.(Ⅰ)如果只安排生产饭桌或物橱,各可获利润多少? (Ⅱ)怎样安排生产可使所得利润最大?21、(12分)在极坐标系中,圆C 的方程为2cos (0)a a ρθ=≠,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,设直线l 的参数方程为31(43x t t y t =+⎧⎨=+⎩为参数).(Ⅰ)求圆C 的直角坐标方程和直线l 的普通方程; (Ⅱ)若直线l 与圆C 恒有公共点,求实数a 的取值范围.22、(12分)如图,在四棱锥ABCD P -中,底面A B C D 是矩形.已知60,22,2,2,3=∠====PAB PD PA AD AB .M 是PD 的中点.(Ⅰ)证明PB ∥平面MAC(Ⅱ);证明平面PAB ⊥平面ABCD ; (Ⅲ)求四棱锥p —ABCD 的体积。
西充县高级中学2018-2019学年高二上学期第一次月考试卷数学
西充县高级中学2018-2019学年高二上学期第一次月考试卷数学班级__________ 姓名__________ 分数__________ 一、选择题1.已知,则f{f[f(﹣2)]}的值为()A.0 B.2 C.4 D.82.已知函数f(x)=x4cosx+mx2+x(m∈R),若导函数f′(x)在区间[﹣2,2]上有最大值10,则导函数f′(x)在区间[﹣2,2]上的最小值为()A.﹣12 B.﹣10 C.﹣8 D.﹣63.点P是棱长为1的正方体ABCD﹣A1B1C1D1的底面A1B1C1D1上一点,则的取值范围是()A.[﹣1,﹣] B.[﹣,﹣] C.[﹣1,0] D.[﹣,0]4.已知F1、F2是椭圆的两个焦点,满足=0的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1)B.(0,] C.(0,)D.[,1)5.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为()A.11 B.11.5 C.12 D.12.56.已知变量,x y满足约束条件20170x yxx y-+≤⎧⎪≥⎨⎪+-≤⎩,则yx的取值范围是()A.9[,6]5B.9(,][6,)5-∞+∞C.(,3][6,)-∞+∞D.[3,6]7.已知a∈R,复数z=(a﹣2i)(1+i)(i为虚数单位)在复平面内对应的点为M,则“a=0”是“点M在第四象限”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.已知在△ABC中,a=,b=,B=60°,那么角C等于()A.135°B.90°C.45°D.75°9.若,,且,则λ与μ的值分别为()A.B.5,2 C.D.﹣5,﹣210.设m,n是正整数,多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为﹣16,则含x2项的系数是()A.﹣13 B.6 C.79 D.3711.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.12.函数y=a x+1(a>0且a≠1)图象恒过定点()A.(0,1)B.(2,1)C.(2,0)D.(0,2)二、填空题13.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为小时.14.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.15.已知三棱锥ABC D -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在的平面互相垂直,3=AB ,3=AC ,32===BD CD BC ,则球O 的表面积为 .16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sinA ,sinB ,sinC 依次成等比数列,c=2a 且•=24,则△ABC 的面积是 .17.计算:×5﹣1= .18.若函数()f x 的定义域为[]1,2-,则函数(32)f x -的定义域是 .三、解答题19.火车站北偏东方向的处有一电视塔,火车站正东方向的处有一小汽车,测得距离为31,该小汽车从处以60的速度前往火车站,20分钟后到达处,测得离电视塔21,问小汽车到火车站还需多长时间?20.如图,在边长为a 的菱形ABCD 中,∠ABC=60°,PC ⊥面ABCD ,E ,F 是PA 和AB 的中点. (1)求证:EF ∥平面PBC ; (2)求E 到平面PBC 的距离.21.一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分,现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD(如图所示,其中O为圆心,C,D在半圆上),设∠BOC=θ,直四棱柱木梁的体积为V(单位:m3),侧面积为S(单位:m2).(Ⅰ)分别求V与S关于θ的函数表达式;(Ⅱ)求侧面积S的最大值;(Ⅲ)求θ的值,使体积V最大.22.已知曲线C的极坐标方程为4ρ2cos2θ+9ρ2sin2θ=36,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系;(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)若P(x,y)是曲线C上的一个动点,求3x+4y的最大值.23.已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.24.(本题满分12分)如图1在直角三角形ABC中,∠A=90°,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将△CDE沿DE折起,使点A在平面CDE内的射影恰好为M.(I)求AM的长;(Ⅱ)求面DCE与面BCE夹角的余弦值.西充县高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:∵﹣2<0∴f(﹣2)=0∴f(f(﹣2))=f(0)∵0=0∴f(0)=2即f(f(﹣2))=f(0)=2∵2>0∴f(2)=22=4即f{f[(﹣2)]}=f(f(0))=f(2)=4故选C.2.【答案】C【解析】解:由已知得f′(x)=4x3cosx﹣x4sinx+2mx+1,令g(x)=4x3cosx﹣x4sinx+2mx是奇函数,由f′(x)的最大值为10知:g(x)的最大值为9,最小值为﹣9,从而f′(x)的最小值为﹣9+1=﹣8.故选C.【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大.3.【答案】D【解析】解:如图所示:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,建立空间直角坐标系.则点A(1,0,0),C1(0,1,1),设点P的坐标为(x,y,z),则由题意可得0≤x≤1,0≤y≤1,z=1.∴=(1﹣x,﹣y,﹣1),=(﹣x,1﹣y,0),∴=﹣x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y=+﹣,由二次函数的性质可得,当x=y=时,取得最小值为﹣;故当x=0或1,且y=0或1时,取得最大值为0,则的取值范围是[﹣,0],故选D.【点评】本题主要考查向量在几何中的应用,两个向量的数量积公式,两个向量坐标形式的运算,属于中档题.4.【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.5.【答案】C【解析】解:由题意,0.06×5+x×0.1=0.5,所以x为2,所以由图可估计样本重量的中位数是12.故选:C.6.【答案】A【解析】试题分析:作出可行域,如图A B C内部(含边界),yx 表示点(,)x y与原点连线的斜率,易得59(,)22A,(1,6)B,992552O A k ==,661O B k ==,所以965y x ≤≤.故选A .考点:简单的线性规划的非线性应用.7. 【答案】A【解析】解:若a=0,则z=﹣2i (1+i )=2﹣2i ,点M 在第四象限,是充分条件,若点M 在第四象限,则z=(a+2)+(a ﹣2)i ,推出﹣2<a <2,推不出a=0,不是必要条件; 故选:A .【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题.8. 【答案】D【解析】解:由正弦定理知=,∴sinA==×=,∵a <b , ∴A <B , ∴A=45°,∴C=180°﹣A ﹣B=75°,故选:D.9.【答案】A【解析】解:由,得.又,,∴,解得.故选:A.【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题.10.【答案】D【解析】二项式系数的性质.【专题】二项式定理.【分析】由含x一次项的系数为﹣16利用二项展开式的通项公式求得2m+5n=16 ①.,再根据m、n为正整数,可得m=3、n=2,从而求得含x2项的系数.【解答】解:由于多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为(﹣2)+(﹣5)=﹣16,可得2m+5n=16 ①.再根据m、n为正整数,可得m=3、n=2,故含x2项的系数是(﹣2)2+(﹣5)2=37,故选:D.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.11.【答案】【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A所以BD⊥平面PAC(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)所以=(1,,﹣2),设PB与AC所成的角为θ,则cosθ=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC⊥平面PDC,所以=0,即﹣6+=0,解得t=,所以PA=.【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力12.【答案】D【解析】解:令x=0,则函数f(0)=a0+3=1+1=2.∴函数f(x)=a x+1的图象必过定点(0,2).故选:D.【点评】本题考查了指数函数的性质和a0=1(a>0且a≠1),属于基础题.二、填空题13.【答案】0.9【解析】解:由题意,=0.9,故答案为:0.914.【答案】【解析】由y =x 2+3x 得y ′=2x +3, ∴当x =-1时,y ′=1,则曲线y =x 2+3x 在点(-1,-2)处的切线方程为y +2=x +1, 即y =x -1,设直线y =x -1与曲线y =ax +ln x 相切于点(x 0,y 0),由y =ax +ln x 得y ′=a +1x(x >0),∴⎩⎪⎨⎪⎧a +1x 0=1y 0=x 0-1y 0=ax 0+ln x,解之得x 0=1,y 0=0,a =0. ∴a =0. 答案:015.【答案】16π【解析】如图所示,∵222A B A CB C+=,∴C A B ∠为直角,即过△A B C 的小圆面的圆心为B C 的中点O ',A B C △和D B C △所在的平面互相垂直,则球心O 在过D B C △的圆面上,即D B C △的外接圆为球大圆,由等边三角形的重心和外心重合易得球半径为2R=,球的表面积为24π16πSR==16.【答案】4 .【解析】解:∵sinA ,sinB ,sinC 依次成等比数列,∴sin 2B=sinAsinC ,由正弦定理可得:b 2=ac ,∵c=2a ,可得:b=a , ∴cosB===,可得:sinB==,∵•=24,可得:accosB=ac=24,解得:ac=32,∴S △ABC=acsinB==4.故答案为:4.17.【答案】 9 .【解析】解:×5﹣1=×=×=(﹣5)×(﹣9)×=9,∴×5﹣1=9,故答案为:9.18.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】试题分析:依题意得11322,,22x x ⎡⎤-≤-≤∈⎢⎥⎣⎦.考点:抽象函数定义域.三、解答题19.【答案】【解析】 解:由条件=,设,在中,由余弦定理得.=.在中,由正弦定理,得()(分钟)答到火车站还需15分钟.20.【答案】【解析】(1)证明:∵AE=PE ,AF=BF , ∴EF ∥PB又EF⊄平面PBC,PB⊂平面PBC,故EF∥平面PBC;(2)解:在面ABCD内作过F作FH⊥BC于H∵PC⊥面ABCD,PC⊂面PBC∴面PBC⊥面ABCD又面PBC∩面ABCD=BC,FH⊥BC,FH⊂面ABCD∴FH⊥面PBC又EF||平面PBC,故点E到平面PBC的距离等于点F到平面PBC的距离FH.在直角三角形FBH中,∠FBC=60°,FB=,FH=FBsin∠FBC=a,故点E到平面PBC的距离等于点F到平面PBC的距离,等于a.21.【答案】【解析】解:(Ⅰ)木梁的侧面积S=10(AB+2BC+CD)=10(2+4sin+2cosθ)=20(cosθ+2sin+1),θ∈(0,),梯形ABCD的面积S ABCD=﹣sinθ=sinθcosθ+sinθ,θ∈(0,),体积V(θ)=10(sinθcosθ+sinθ),θ∈(0,);(Ⅱ)木梁的侧面积S=10(AB+2BC+CD)=10(2+4sin+2cosθ)=20(cos+1),θ∈(0,),设g(θ)=cos+1,g(θ)=﹣2sin2+2sin+2,∴当sin=,θ∈(0,),即θ=时,木梁的侧面积s最大.所以θ=时,木梁的侧面积s最大为40m2.(Ⅲ)V′(θ)=10(2cos2θ+cosθ﹣1)=10(2cosθ﹣1)(cosθ+1)令V′(θ)=0,得cosθ=,或cosθ=﹣1(舍)∵θ∈(0,),∴θ=.当θ∈(0,)时,<cosθ<1,V′(θ)>0,V(θ)为增函数;当θ∈(,)时,0<cosθ<,V′(θ)>0,V(θ)为减函数.∴当θ=时,体积V最大.22.【答案】【解析】解:(Ⅰ)由4ρ2cos2θ+9ρ2sin2θ=36得4x2+9y2=36,化为;(Ⅱ)设P(3cosθ,2sinθ),则3x+4y=,∵θ∈R,∴当sin(θ+φ)=1时,3x+4y的最大值为.【点评】本题考查了椭圆的极坐标方程、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.23.【答案】【解析】解:(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣,=×(+)﹣=.(2)f(x)=cosx(sinx+cosx)﹣.=sinxcosx+cos2x﹣=sin2x+cos2x=sin(2x+),∴T==π,由2kπ﹣≤2x+≤2kπ+,k∈Z,得kπ﹣≤x≤kπ+,k∈Z,∴f(x)的单调递增区间为[kπ﹣,kπ+],k∈Z.24.【答案】解:(I)由已知可得AM⊥CD,又M为CD的中点,∴;3分(II)在平面ABED内,过AD的中点O作AD的垂线OF,交BE于F点,以OA为x轴,OF为y轴,OC为z轴建立坐标系,可得,∴,,5分设为面BCE的法向量,由可得=(1,2,﹣),∴cos<,>==,∴面DCE与面BCE夹角的余弦值为4分。
西充县第一中学2018-2019学年上学期高三数学10月月考试题
1 上无零点,求 a 的最小值; 2
(Ⅲ)若对任意给定的 x0∈(0,e],在(0,e]上总存在两个不同的 xi(i=1,2),使得 f(xi)=g(x0)成立, 求 a 的取值范围.
18.(本小题满分 10 分)选修 41:几何证明选讲. 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于 E, 过E的 (1)求证:CD=DA; (2)若 CE=1,AB= 2,求 DE 的长. 切线与 AC 交于 D.
f x 是周期函数,其周期为,要使函数 y f x log a x 1 在 0, 上至少有三个零点,等价于函数 f x 的
第 8 页,共 18 页
∴ 又∵根据椭圆的定义,得 2a=PF1+PF2=3t ∴此椭圆的离心率为 e= 故选 A = = =
【命题意图】本题考查集合的交集运算,意在考查计算能力. 5. 已知定义域为 R 的偶函数 f ( x) 满足对任意的 x R ,有 f ( x 2) f ( x) f (1) ,且当
x [2,3] 时, f ( x) 2 x 2 12 x 18 .若函数 y f ( x) log a ( x 1) 在 (0,) 上至少有三个零点,则
20.(本小题满分 12 分)已知函数 f ( x) m ln x (4 2m) x (1) 当 m 2 时,求函数 f ( x) 的单调区间;
1 (m R ) . x
(2)设 t , s 1,3 ,不等式 | f (t ) f ( s ) | ( a ln 3)(2 m) 2 ln 3 对任意的 m 4, 6 恒成立,求实数 a 的 取值范围. 【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、 等价转化能力、分析与解决问题的能力、运算求解能力.
西充县实验中学2018-2019学年上学期高三数学10月月考试题
西充县实验中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ;③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α;其中正确命题的序号是()A .①②③④B .①②③C .②④D .①③2. 对于复数,若集合具有性质“对任意,必有”,则当时,等于 ( )A1B-1C0D 3. 已知直线与圆交于两点,为直线上任意34110m x y +-=:22(2)4C x y -+=:A B 、P 3440n x y ++=:一点,则的面积为()PAB ∆A . B. C. D.4. 方程x=所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分5. 已知函数f (x )是(﹣∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图所示,则不等式xf (x )<0的解集是()A .(﹣2,﹣1)∪(1,2)B .(﹣2,﹣1)∪(0,1)∪(2,+∞)C .(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D .(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)6. 函数f (x )=有且只有一个零点时,a 的取值范围是( )A .a ≤0B .0<a <C .<a <1D .a ≤0或a >17. 如图,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )A .B .C .D .8. 设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是()A .10B .40C .50D .809. 某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x 的值是( )A .2B .C .D .310.下列关系式中,正确的是( )A .∅∈{0}B .0⊆{0}C .0∈{0}D .∅={0}二、填空题11.已知过球面上 ,,A B C 三点的截面和球心的距离是球半径的一半,且2AB BC CA ===,则球表面积是_________.12.分别在区间、上任意选取一个实数,则随机事件“”的概率为_________.[0,1][1,]e a b 、ln a b ≥13.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角是 .14.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)15.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集为___________.16.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=,对任意的m ∈[﹣2,2],f (mx ﹣3x x +2)+f (x )<0恒成立,则x 的取值范围为_____.三、解答题17.(本小题满分10分)选修4-1:几何证明选讲如图,四边形外接于圆,是圆周角的角平分线,过点的切线与延长线交于点,ABCD AC BAD ∠C AD E 交于点.AC BD F (1)求证:;BD CE A (2)若是圆的直径,,,求长AB 4AB =1DE =AD18.(本小题满分12分)某市拟定2016年城市建设三项重点工程,该市一大型城建公司准备参加这,,A B C三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对三项重点工程竞标成功的概率分,,A B C 别为,,,已知三项工程都竞标成功的概率为,至少有一项工程竞标成功的概率为.a b 14()a b 12434(1)求与的值;a b (2)公司准备对该公司参加三个项目的竞标团队进行奖励,项目竞标成功奖励2万元,项目竞,,A B C A B 标成功奖励4万元,项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.C 【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.19.如图,在四棱锥O ﹣ABCD 中,底面ABCD 四边长为1的菱形,∠ABC=,OA ⊥底面ABCD ,OA=2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小;(Ⅲ)求点B 到平面OCD 的距离.20.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点.(1)证明:EF∥平面PAC;(2)证明:AF⊥EF.21.(本题满分12分)如图1在直角三角形ABC中,∠A=90°,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将△CDE沿DE折起,使点A在平面CDE内的射影恰好为M.(I)求AM的长;(Ⅱ)求面DCE与面BCE夹角的余弦值.22.如图,已知AC,BD为圆O的任意两条直径,直线AE,CF是圆O所在平面的两条垂线,且线段AE=CF=,AC=2.(Ⅰ)证明AD⊥BE;(Ⅱ)求多面体EF﹣ABCD体积的最大值.西充县实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】B【解析】解:由m 、n 是两条不同的直线,α,β,γ是三个不同的平面:在①中:若m ⊥α,n ∥α,则由直线与平面垂直得m ⊥n ,故①正确;在②中:若α∥β,β∥γ,则α∥γ,∵m ⊥α,∴由直线垂直于平面的性质定理得m ⊥γ,故②正确;在③中:若m ⊥α,n ⊥α,则由直线与平面垂直的性质定理得m ∥n ,故③正确;在④中:若α⊥β,m ⊥β,则m ∥α或m ⊂α,故④错误.故选:B .2. 【答案】B 【解析】由题意,可取,所以3. 【答案】 C【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心到直线的距离,之间的距离为,∴C m 1d =||AB ==m n 、3d '=PAB ∆的面积为,选C .1||2AB d '⋅=4. 【答案】C 【解析】解:x=两边平方,可变为3y 2﹣x 2=1(x ≥0),表示的曲线为双曲线的一部分;故选C .【点评】本题主要考查了曲线与方程.解题的过程中注意x 的范围,注意数形结合的思想. 5. 【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图则不等式xf (x )<0的解为:或解得:x ∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)故选:D .6.【答案】D【解析】解:∵f(1)=lg1=0,∴当x≤0时,函数f(x)没有零点,故﹣2x+a>0或﹣2x+a<0在(﹣∞,0]上恒成立,即a>2x,或a<2x在(﹣∞,0]上恒成立,故a>1或a≤0;故选D.【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题.7.【答案】D【解析】古典概型及其概率计算公式.【专题】计算题;概率与统计.【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;∴所求的概率为=故选D.【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.8.【答案】C【解析】二项式定理.【专题】计算题.【分析】利用二项展开式的通项公式求出展开式的x k的系数,将k的值代入求出各种情况的系数.【解答】解:(x+2)5的展开式中x k的系数为C5k25﹣k当k﹣1时,C5k25﹣k=C5124=80,当k=2时,C5k25﹣k=C5223=80,当k=3时,C5k25﹣k=C5322=40,当k=4时,C5k25﹣k=C54×2=10,当k=5时,C5k25﹣k=C55=1,故展开式中x k的系数不可能是50故选项为C【点评】本题考查利用二项展开式的通项公式求特定项的系数.9.【答案】C解析:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x的侧棱垂直于底面.则体积为=,解得x=.故选:C.10.【答案】C【解析】解:对于A∅⊆{0},用“∈”不对,对于B和C,元素0与集合{0}用“∈”连接,故C正确;对于D,空集没有任何元素,{0}有一个元素,故不正确.二、填空题11.【答案】64 9【解析】111]考点:球的体积和表面积.【方法点晴】本题主要考查了球的表面积和体积的问题,其中解答中涉及到截面圆圆心与球心的连线垂直于截面,球的性质、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记球的截面圆圆心的性质,求出球的半径是解答的关键.12.【答案】1e e-【解析】解析: 由得,如图所有实数对表示的区域的面积为,满足条件“”的ln a b ≥a b e ≤(,)a b e a b e ≤实数对表示的区域为图中阴影部分,其面积为,∴随机事件“”的概率为(,)a b 11001|a a e da e e ==-⎰ln a b ≥.1e e-13.【答案】 30° .【解析】解:取AD 的中点G ,连接EG ,GF 则EGDC=2,GF AB=1,故∠GEF 即为EF 与CD 所成的角.又∵FE ⊥AB ∴FE ⊥GF ∴在Rt △EFG 中EG=2,GF=1故∠GEF=30°.故答案为:30°【点评】此题的关键是作出AD 的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了.14.【答案】 24 【解析】解:由题意,B 与C 必须相邻,利用捆绑法,可得=48种方法,因为A 必须在D 的前面完成,所以完成加工该产品的不同工艺的排列顺序有48÷2=24种,故答案为:24.【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础.15.【答案】),1(21,(+∞-∞ 【解析】考点:一元二次不等式的解法.16.【答案】2 2,3⎛⎫- ⎪⎝⎭【解析】三、解答题17.【答案】【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力.∴,则,∴.DE DC BC BA =BC AB=24BC AB DE =⋅=2BC =∴在中,,∴,∴,Rt ABC ∆12BC AB =30BAC ∠=︒60BAD ∠=︒∴在中,,所以.Rt ABD ∆30ABD ∠=︒122AD AB ==18.【答案】【解析】(1)由题意,得,因为,解得.…………………4分11424131(1)(1)44ab a b ⎧=⎪⎪⎨⎪----=⎪⎩a b >1213a b ⎧=⎪⎪⎨⎪=⎪⎩(Ⅱ)由题意,令竞标团队获得奖励金额为随机变量,X 则的值可以为0,2,4,6,8,10,12.…………5分X 而;;41433221)0(=⨯⨯==X P 1231(2)2344P X ==⨯⨯=; ;1131(4)2348P X ==⨯⨯=1211135(6)23423424P X ==⨯⨯+⨯⨯=; ;1211(8)23412P X ==⨯⨯=1111(10)23424P X ==⨯⨯=.…………………9分1111(12)23424P X ==⨯⨯=所以的分布列为:X X 024681012P 414181245121241241于是,.……………12分1115111()012345644824122424E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯2312=19.【答案】【解析】解:方法一(综合法)(1)取OB中点E,连接ME,NE∵ME∥AB,AB∥CD,∴ME∥CD又∵NE∥OC,∴平面MNE∥平面OCD∴MN∥平面OCD(2)∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角)作AP⊥CD于P,连接MP∵OA⊥平面ABCD,∴CD⊥MP∵,∴,,∴所以AB与MD所成角的大小为.(3)∵AB∥平面OCD,∴点A和点B到平面OCD的距离相等,连接OP,过点A作AQ⊥OP于点Q,∵AP⊥CD,OA⊥CD,∴CD⊥平面OAP,∴AQ⊥CD.又∵AQ⊥OP,∴AQ⊥平面OCD,线段AQ的长就是点A到平面OCD的距离,∵,,∴,所以点B到平面OCD的距离为.方法二(向量法)作AP⊥CD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系:A(0,0,0),B(1,0,0),,,O(0,0,2),M(0,0,1),(1),,设平面OCD的法向量为n=(x,y,z),则•=0,•=0即取,解得∵•=(,,﹣1)•(0,4,)=0,∴MN∥平面OCD.(2)设AB与MD所成的角为θ,∵∴,∴,AB与MD所成角的大小为.(3)设点B到平面OCD的距离为d,则d为在向量=(0,4,)上的投影的绝对值,由,得d==所以点B到平面OCD的距离为.【点评】培养学生利用多种方法解决数学问题的能力,考查学生利用空间向量求直线间的夹角和距离的能力. 20.【答案】【解析】(1)证明:如图,∵点E,F分别为CD,PD的中点,∴EF∥PC.∵PC⊂平面PAC,EF⊄平面PAC,∴EF∥平面PAC.(2)证明:∵PA⊥平面ABCD,CD⊂平面ABCD,又ABCD是矩形,∴CD⊥AD,∵PA∩AD=A,∴CD⊥平面PAD.∵AF⊂平面PAD,∴AF⊥CD.∵PA=AD,点F是PD的中点,∴AF⊥PD.又CD∩PD=D,∴AF⊥平面PDC.∵EF⊂平面PDC,∴AF⊥EF.【点评】本题考查了线面平行的判定,考查了由线面垂直得线线垂直,综合考查了学生的空间想象能力和思维能力,是中档题.21.【答案】解:(I)由已知可得AM⊥CD,又M为CD的中点,∴;3分(II)在平面ABED内,过AD的中点O作AD的垂线OF,交BE于F点,以OA为x轴,OF为y轴,OC为z轴建立坐标系,可得,∴,,5分设为面BCE的法向量,由可得=(1,2,﹣),∴cos<,>==,∴面DCE与面BCE夹角的余弦值为4分22.【答案】【解析】(Ⅰ)证明:∵BD为圆O的直径,∴AB⊥AD,∵直线AE是圆O所在平面的垂线,∴AD⊥AE,∵AB∩AE=A,∴AD⊥平面ABE,∴AD⊥BE;(Ⅱ)解:多面体EF﹣ABCD体积V=V B﹣AEFC+V D﹣AEFC=2V B﹣AEFC.∵直线AE,CF是圆O所在平面的两条垂线,∴AE∥CF,∥AE⊥AC,AF⊥AC.∵AE=CF=,∴AEFC为矩形,∵AC=2,∴S AEFC=2,作BM⊥AC交AC于点M,则BM⊥平面AEFC,∴V=2V B﹣AEFC=2×≤=.∴多面体EF﹣ABCD体积的最大值为.【点评】本题考查线面垂直,线线垂直,考查体积的计算,考查学生分析解决问题的能力,难度中等. 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
保密★启用前【考试时间:2019年10月17日】 出题:何润琼 审题:高二数学组 西充中学高2018级高二上期10月月考试题
数 学(文)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.考试结束后,将答题卡交回.
第Ⅰ卷(选择题 共
60分)
注意事项: 必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑.
第Ⅰ卷共12小题.
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.
1.直线123
x y +=在y 轴上的截距为( ) A .2 B .3
C .-2
D .-3 2.圆22:20C x y x +-=的圆心坐标和半径分别是( )
A .(1,0),2
B .(1,0),1
C .(1,0)-,2
D .(1,0)-,1
3.已知直线的点斜式方程是21)y x -=-,那么此直线的倾斜角为 A.6π B.3π C.23π D.56
π 4.不等式20x y -≤表示的平面区域是
A. B. C. D.
5.已知(1,4)A ,(3,2)B -,
直线:20l ax y ++=,若直线l 过线段AB 的中点,则a =( ) A .-5 B .5 C .-4 D .4
6.已知圆 经过点 , ,且圆心为 , ,则圆 的方程为
A.
B. C. D.
7.圆2260x y x +-=与圆228120x y x +++=的位置关系为( )
A .相离
B .相交
C .外切
D .内切
8.若,x y 满足约束条件03020y x y x y ≥⎧⎪+-≤⎨⎪-≥⎩
,则2z x y =+的取值范围是( )
A .[0,4]
B .(,4]-∞
C .[0,6]
D .[6,)+∞
9
10=的化简结果为( )
A .2212516x y +=
B .2212516
y x += C .22
1259x y += D .221259y x += 10.若圆心坐标为(2,1)-的圆,被直线10x y --=
截得的弦长为程是( )
A .22(2)(1)2x y -++=
B .22
(2)(1)4x y -++= C .22(2)(1)8x y -++= D .22
(2)(1)16x y -++= 11.椭圆22
192
x y +=的焦点为12,F F ,点P 在椭圆上,若14PF =,则12F PF ∠的余弦值为( ) A.12 B.12-
C.2
D.
12.已知椭圆2222:1x y C a b
+=,0a b >>,12,F F 分别为椭圆的左右焦点,若椭圆C 上存在点
()()000,0P x y x ≥使得1260F PF ∠=,则椭圆的离心率的取值范围为
( ) A
.⎫⎪⎪⎣⎭ B
.⎛ ⎝⎦ C .1,12⎡⎫⎪⎢⎣⎭ D .10,2⎛⎤ ⎥⎝⎦
第Ⅱ卷(非选择题 共90分)
注意事项:
必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿纸上无效.
二、填空题:本大题共4小题,每小题5分,共20分.
13.在平面直角坐标系xOy 中,直线l:(2)1y a x =-+经过定点的坐标
14.已知直线20x ay +-=与圆22
1x y +=相切,则a 的值是 15
.短轴长为23
e =的椭圆的两焦点为1F ,,过1F 作直线交椭圆于A , B 两点,则△2ABF 的周长为________.
16.若点和点分别为椭圆的中心和左焦点,点为椭圆上的任意点,则OP FP →→
的最大值为 。
三、解答题:本答题共6小题,共70分.解答应写出文字说明、证明过程或验算步骤.
17、(本题10分)(1)求两条直线220x y ++=与210x y -+=的交点坐标, (2)求两条平行直线34120x y +-=与8110ax y ++=间的距离。
O F 22
143
x y +=P
18、(本题12分)在圆229x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足。
当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?
19、(本题12分)已知圆心为C 的圆经过点(1,1)A 和(3,3)B -,且圆心C 在直线:10l x y -+=上,求圆心为C 的圆的标准方程。
20、(本题12分)如图,在斜三棱柱111ABC A B C -中,侧面11AAC C 是菱形,1AC 与1A C
交于点O ,点E 是AB 的中点
(1)求证:11OE B //平面BCC
(2)若111AC A B BC ⊥⊥,求证:AC
21、(本题12分)已知直线:250l x y --=与圆22
:50C x y +=相交于,A B 两点。
求 (1)交点,A B 的坐标 (2)AOB △的面积
22、已知椭圆22221(0)x y a b a b
+=>>的长轴长为4,点A 在椭圆上。
(1)求椭圆的标准方程;
(2)设斜率为1的直线l 与椭圆交于,M N 两点,线段MN 的垂直平分线与x 轴交于点
P ,且点P 的横坐标的取值范围是3(,0)5
-,求MN 的取值范围。
四川省西充中学高2018级高二上期10月月考考试试题文科数学(无答案)
7 / 7。