2020年山东省枣庄市中考数学试卷解析版
2020山东省枣庄市中考数学试题(word解析版)
2020年山东省枣庄市中考数学试卷(含答案解析)2020.07.23编辑整理一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.(3分)﹣的绝对值是()A.﹣B.﹣2C.D.22.(3分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°3.(3分)计算﹣﹣(﹣)的结果为()A.﹣B.C.﹣D.4.(3分)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1B.ab>0C.a+b>0D.1﹣a>15.(3分)不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是()A.B.C.D.6.(3分)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为()A.8B.11C.16D.177.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b28.(3分)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.9.(3分)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=710.(3分)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣,3)B.(﹣3,)C.(﹣,2+)D.(﹣1,2+)11.(3分)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B 恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.3B.4C.5D.612.(3分)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.(4分)若a+b=3,a2+b2=7,则ab=.14.(4分)已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=.15.(4分)如图,AB是⊙O的直径,P A切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=.16.(4分)人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17.(4分)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.18.(4分)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.(8分)解不等式组并求它的所有整数解的和.20.(8分)欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V(Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V468棱数E612面数F458(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:.21.(8分)2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=,b=;(2)样本成绩的中位数落在范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?22.(8分)如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,OB,求△ABO 的面积.23.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.24.(10分)在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=,求DN的长.25.(10分)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.答案解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.【解答】解:﹣的绝对值为.故选:C.2.【解答】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.3.【解答】解:﹣﹣(﹣)==﹣.故选:A.4.【解答】解:A、|a|>1,故本选项错误;B、∵a<0,b>0,∴ab<0,故本选项错误;C、a+b<0,故本选项错误;D、∵a<0,∴1﹣a>1,故本选项正确;故选:D.5.【解答】解:用列表法表示所有可能出现的情况如下:共有9种可能出现的结果,其中两次都是白球的有4种,∴P(两次都是白球)=,故选:A.6.【解答】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:B.7.【解答】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.故选:C.8.【解答】解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折,平移,旋转得到.故选:B.9.【解答】解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.10.【解答】解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=,∴OH=2+1=3,∴B′(﹣,3),故选:A.11.【解答】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:D.12.【解答】解:抛物线开口向下,a<0,对称轴为x=﹣=1,因此b>0,与y轴交于正半轴,因此c>0,于是有:ac<0,因此①正确;由x=﹣=1,得2a+b=0,因此③不正确,抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,由对称轴x=1,抛物线与x轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,综上所述,正确的结论有①②④,故选:C.二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.【解答】解:(a+b)2=32=9,(a+b)2=a2+b2+2ab=9.∵a2+b2=7,∴2ab=2,ab=1,故答案为:1.14.【解答】解:把x=0代入(a﹣1)x2﹣2x+a2﹣1=0得a2﹣1=0,解得a=±1,∵a﹣1≠0,∴a=﹣1.故答案为﹣1.15.【解答】解:∵P A切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∴∠B=∠AOP=27°.故答案为:27°.16.【解答】解:∵AB=AC=2m,AD⊥BC,∴∠ADC=90°,∴AD=AC•sin50°=2×0.77≈1.5(m),故答案为1.5.17.【解答】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE===2,∴四边形BEDF的周长=4DE=4×=8,故答案为:8.18.【解答】解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,∴a=4,b=6,∴该五边形的面积S=4+×6﹣1=6,故答案为:6.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.【解答】解:,由①得,x≥﹣3,由②得,x<2,所以,不等式组的解集是﹣3≤x<2,所以,它的整数解为:﹣3,﹣2,﹣1,0,1,所以,所有整数解的和为﹣5.20.【解答】解:(1)填表如下:名称三棱锥三棱柱正方体正八面体图形顶点数V4686棱数E691212面数F4568(2)∵4+4﹣6=2,6+5﹣9=2,8+6﹣12=2,6+8﹣12=2,…,∴V+F﹣E=2.即V、E、F之间的关系式为:V+F﹣E=2.故答案为:6,9,12,6,V+F﹣E=2.21.【解答】解:(1)由统计图得,a=8,b=50﹣8﹣12﹣10=20,故答案为:8,20;(2)由中位数的意义可得,50个数据从小到大排列处在中间位置的两个数在2.0≤x<2.4组内,故答案为:2.0≤x<2.4;(3)补全频数分布直方图如图所示:(4)1200×=240(人),答:该校1200名学生中立定跳远成绩在2.4≤x<2.8范围内的有240人.22.【解答】解:(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2.4),将点A的坐标代入反比例函数表达式得:4=,解得:k=﹣8,故反比例函数表达式为:y=﹣②;(2)联立①②并解得:x=﹣2或﹣8,当x=﹣8时,y=x+5=1,故点B(﹣8,1),设y=x+5交x轴于点C(﹣10,0),过点A、B分别作x轴的垂线交于点M、N,则S△AOB=S△AOC﹣S△BOC=OC•AM OC•BN=.23.【解答】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴2∠1=∠CAB.∵∠BAC=2∠CBF,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线;(2)解:过C作CH⊥BF于H,∵AB=AC,⊙O的直径为4,∴AC=4,∵CF=6,∠ABF=90°,∴BF===2,∵∠CHF=∠ABF,∠F=∠F,∴△CHF∽△ABF,∴=,∴=,∴CH=,∴HF===,∴BH=BF﹣HF=2﹣=,∴tan∠CBF===.24.【解答】(1)证明:∵∠ACB=90°,AC=BC,CD是中线,∴∠ACD=∠BCD=45°,∠ACF=∠BCE=90°,∴∠DCF=∠DCE=135°,在△DCF和△DCE中,,∴△DCF≌△DCE(SAS)∴DE=DF;(2)证明:∵∠DCF=135°,∴∠F+∠CDF=45°,∵∠FDE=45°,∴∠CDE+∠CDF=45°,∴∠F=∠CDE,∵∠DCF=∠DCE,∠F=∠CDE,∴△FCD∽△DCE,∴=,∴CD2=CE•CF;(3)解:过点D作DG⊥BC于G,∵∠DCB=45°,∴GC=GD=CD=,由(2)可知,CD2=CE•CF,∴CE==2,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△ENC∽△DNG,∴=,即=,解得,NG=,由勾股定理得,DN==.25.【解答】解:(1)将点A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=﹣x2+x+4;(2)由抛物线的表达式知,点C(0,4),由点B、C的坐标得,直线BC的表达式为:y=﹣x+4;设点M(m,0),则点P(m,﹣m2+m+4),点Q(m,﹣m+4),∴PQ=﹣m2+m+4+m﹣4=﹣m2+m,∵OB=OC,故∠ABC=∠OCB=45°,∴∠PQN=∠BQM=45°,∴PN=PQ sin45°=(﹣m2+m)=﹣(m﹣2)2+,∵﹣<0,故当m=2时,PN有最大值为;(3)存在,理由:点A、C的坐标分别为(﹣3,0)、(0,4),则AC=5,①当AC=CQ时,过点Q作QE⊥y轴于点E,则CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,解得:m=±(舍去负值),故点Q(,);②当AC=AQ时,则AQ=AC=5,在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或0(舍去0),故点Q(1,3);③当CQ=AQ时,则2m2=[m=(﹣3)]2+(﹣m+4)2,解得:m=(舍去);综上,点Q的坐标为(1,3)或(,).。
山东省枣庄市2020年中考数学试题(word版,含解析)
2020年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.(3分)﹣的绝对值是()A.﹣B.﹣2C.D.22.(3分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°3.(3分)计算﹣﹣(﹣)的结果为()A.﹣B.C.﹣D.4.(3分)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1B.ab>0C.a+b>0D.1﹣a>15.(3分)不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是()A.B.C.D.6.(3分)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为()A.8B.11C.16D.177.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b28.(3分)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.9.(3分)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=710.(3分)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB =∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣,3)B.(﹣3,)C.(﹣,2+)D.(﹣1,2+)11.(3分)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B 恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.3B.4C.5D.612.(3分)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.(4分)若a+b=3,a2+b2=7,则ab=.14.(4分)已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=.15.(4分)如图,AB是⊙O的直径,P A切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P =36°,则∠B=.16.(4分)人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17.(4分)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.18.(4分)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.(8分)解不等式组并求它的所有整数解的和.20.(8分)欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V(Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V468棱数E612面数F458(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:.21.(8分)2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=,b=;(2)样本成绩的中位数落在范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?22.(8分)如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,OB,求△ABO 的面积.23.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.24.(10分)在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=,求DN的长.25.(10分)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.2020年山东省枣庄市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.【解答】解:﹣的绝对值为.故选:C.2.【解答】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.3.【解答】解:﹣﹣(﹣)==﹣.故选:A.4.【解答】解:A、|a|>1,故本选项错误;B、∵a<0,b>0,∴ab<0,故本选项错误;C、a+b<0,故本选项错误;D、∵a<0,∴1﹣a>1,故本选项正确;故选:D.5.【解答】解:用列表法表示所有可能出现的情况如下:共有9种可能出现的结果,其中两次都是白球的有4种,∴P(两次都是白球)=,故选:A.6.【解答】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:B.7.【解答】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.故选:C.8.【解答】解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折,平移,旋转得到.故选:B.9.【解答】解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.10.【解答】解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=,∴OH=2+1=3,∴B′(﹣,3),故选:A.11.【解答】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:D.12.【解答】解:抛物线开口向下,a<0,对称轴为x=﹣=1,因此b>0,与y轴交于正半轴,因此c>0,于是有:ac<0,因此①正确;由x=﹣=1,得2a+b=0,因此③不正确,抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,由对称轴x=1,抛物线与x轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,综上所述,正确的结论有①②④,故选:C.二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.【解答】解:(a+b)2=32=9,(a+b)2=a2+b2+2ab=9.∵a2+b2=7,∴2ab=2,ab=1,故答案为:1.14.【解答】解:把x=0代入(a﹣1)x2﹣2x+a2﹣1=0得a2﹣1=0,解得a=±1,∵a﹣1≠0,∴a=﹣1.故答案为﹣1.15.【解答】解:∵P A切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∴∠B=∠AOP=27°.故答案为:27°.16.【解答】解:∵AB=AC=2m,AD⊥BC,∴∠ADC=90°,∴AD=AC•sin50°=2×0.77≈1.5(m),故答案为1.5.17.【解答】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE===2,∴四边形BEDF的周长=4DE=4×=8,故答案为:8.18.【解答】解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,∴a=4,b=6,∴该五边形的面积S=4+×6﹣1=6,故答案为:6.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.【解答】解:,由①得,x≥﹣3,由②得,x<2,所以,不等式组的解集是﹣3≤x<2,所以,它的整数解为:﹣3,﹣2,﹣1,0,1,所以,所有整数解的和为﹣5.20.【解答】解:(1)填表如下:名称三棱锥三棱柱正方体正八面体图形顶点数V4686棱数E691212面数F4568(2)∵4+4﹣6=2,6+5﹣9=2,8+6﹣12=2,6+8﹣12=2,…,∴V+F﹣E=2.即V、E、F之间的关系式为:V+F﹣E=2.故答案为:6,9,12,6,V+F﹣E=2.21.【解答】解:(1)由统计图得,a=8,b=50﹣8﹣12﹣10=20,故答案为:8,20;(2)由中位数的意义可得,50个数据从小到大排列处在中间位置的两个数在2.0≤x<2.4组内,故答案为:2.0≤x<2.4;(3)补全频数分布直方图如图所示:(4)1200×=240(人),答:该校1200名学生中立定跳远成绩在2.4≤x<2.8范围内的有240人.22.【解答】解:(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2.4),将点A的坐标代入反比例函数表达式得:4=,解得:k=﹣8,故反比例函数表达式为:y=﹣②;(2)联立①②并解得:x=﹣2或﹣8,当x=﹣8时,y=x+5=1,故点B(﹣8,1),设y=x+5交x轴于点C(﹣10,0),过点A、B分别作x轴的垂线交于点M、N,则S△AOB=S△AOC﹣S△BOC=OC•AM OC•BN=.23.【解答】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴2∠1=∠CAB.∵∠BAC=2∠CBF,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线;(2)解:过C作CH⊥BF于H,∵AB=AC,⊙O的直径为4,∴AC=4,∵CF=6,∠ABF=90°,∴BF===2,∵∠CHF=∠ABF,∠F=∠F,∴△CHF∽△ABF,∴=,∴=,∴CH=,∴HF===,∴BH=BF﹣HF=2﹣=,∴tan∠CBF===.24.【解答】(1)证明:∵∠ACB=90°,AC=BC,CD是中线,∴∠ACD=∠BCD=45°,∠ACF=∠BCE=90°,∴∠DCF=∠DCE=135°,在△DCF和△DCE中,,∴△DCF≌△DCE(SAS)∴DE=DF;(2)证明:∵∠DCF=135°,∴∠F+∠CDF=45°,∵∠FDE=45°,∴∠CDE+∠CDF=45°,∴∠F=∠CDE,∵∠DCF=∠DCE,∠F=∠CDE,∴△FCD∽△DCE,∴=,∴CD2=CE•CF;(3)解:过点D作DG⊥BC于G,∵∠DCB=45°,∴GC=GD=CD=,由(2)可知,CD2=CE•CF,∴CE==2,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△ENC∽△DNG,∴=,即=,解得,NG=,由勾股定理得,DN==.25.【解答】解:(1)将点A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=﹣x2+x+4;(2)由抛物线的表达式知,点C(0,4),由点B、C的坐标得,直线BC的表达式为:y=﹣x+4;设点M(m,0),则点P(m,﹣m2+m+4),点Q(m,﹣m+4),∴PQ=﹣m2+m+4+m﹣4=﹣m2+m,∵OB=OC,故∠ABC=∠OCB=45°,∴∠PQN=∠BQM=45°,∴PN=PQ sin45°=(﹣m2+m)=﹣(m﹣2)2+,∵﹣<0,故当m=2时,PN有最大值为;(3)存在,理由:点A、C的坐标分别为(﹣3,0)、(0,4),则AC=5,①当AC=CQ时,过点Q作QE⊥y轴于点E,则CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,解得:m=±(舍去负值),故点Q(,);②当AC=AQ时,则AQ=AC=5,在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或0(舍去0),故点Q(1,3);③当CQ=AQ时,则2m2=[m=(﹣3)]2+(﹣m+4)2,解得:m=(舍去);综上,点Q的坐标为(1,3)或(,).。
2020年枣庄中考数学试卷及答案
2020年枣庄中考数学试卷及答案(共20页)-本页仅作为预览文档封面,使用时请删除本页-2绝密☆启用前2020年枣庄市初中学业水平考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第Ⅰ卷和第Ⅱ卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号. 考试结束,将试卷和答题卡一并交回.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分. 1.21-的绝对值是 A .21-B .-2C .21 D .22. 一副直角三角板如图放置,点C 在FD 的延长线 上,AB ∥CF ,∠F =∠ACB =90°,则∠DBC 的 度数为A .10°B .15°C .18°D .30°3.计算-32-⎪⎭⎫⎝⎛-61的结果为 A . -21 B .21 C .-65 D .654.实数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是第2题图3A. |a |<1 B .ab >0C .a +b >0D .1-a >15.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是A .94 B .92 C .32 D .316.如图,在△ABC 中,AB 的垂直平分线交AB 于点D ,交BC 于点E ,连接AE .若BC =6,AC =5,则△ACE 的周长为7. 图(1)是一个长为2 a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小完全相同的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是A. abB.(a+b )2C. (a-b )2D. a 2-b 28.下图右侧的四个三角形中,不能由△ABC 经过旋转或平移得到的是第4题图1 x0 ba第6题图ab (1)(2)第7题图第8题图A B C D49. 对于实数a 、b ,定义一种新运算“⊗”为:21b a b a -=⊗,这里等式右边是实数运算.例如:81311312-=-=⊗.则方程142)2(--=-⊗x x 的解是 A . 4=x B .5=x C .6=xD .7=x10.如图,平面直角坐标系中,点B 在第一象限,点 A 在x 轴的正半轴上,∠AOB =∠B =30°,OA =2. 将△AOB 绕点O 逆时针旋转90°,点B 的对应点B'的坐标是A . (3-,3)B .(-3,3)C .(3-,32+) D .(-1,32+)10.如图,在矩形纸片ABCD 中,AB=3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC=∠ECA ,则AC 的长是( ) A .33B .4C .5D .612.如图,已知抛物线y =ax 2+bx +c 的对称轴为直线x =1. 给出下列结论:第12题图第10题图第11题图5①0<ac ; ②042>-ac b ; ③02=-b a ; ④0=+-c b a . 其中,正确的结论有A .1个B .2个C .3个D .4个第Ⅱ卷 (非选择题 共84分)二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13. 若a +b =3,a 2+b 2=7,则ab = .14. 已知关于x 的一元二次方程(a ﹣1)x 2﹣2x +a 2﹣1=0有一个根为x =0,则a = .15. 如图,AB 是⊙O 的直径,PA 切⊙O 于点A ,线段PO 交⊙O 于点C .连接BC ,若∠P =36°,则∠B = .第17题图第15题图第16题图616.人字梯为现代家庭常用的工具(如图).若AB ,AC 的长都为2m ,当α=50°时,人字梯顶端离地面的高度AD 是________m.(结果精确到,参考依据:sin 50°≈,cos 50°≈,tan 50°≈)17.如图,E ,F 是正方形ABCD 的对角线AC 上的两点,AC =8,AE =CF =2,则四边形BEDF 的周长是 .18.各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S 可用公式(是多边形内的格点数,是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”. 如图给出了一个格点五边形,则该五边形的面积S = .三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.(本题满分8分)解不等式组()⎪⎩⎪⎨⎧-<-+≤+,384,13714x x x x 并求它的所有整数解的和.20.(本题满分8分)欧拉(Euler ,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献. 他对多面体做过研究,发现多面体的顶点数V (Vertex )、棱数E (Edge )、面数F (Flat surface )之间存在一定的数量关系,给出了著名的欧拉公式.121-+=b a S a b 第18题图(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V468棱数E612面数F458(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:.21.(本题满分8分)2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试. 随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数≤x<a≤x<12≤x<b≤x<10第21题图78请根据图表中所提供的信息,完成下列问题:(1)表中a = ,b = ; (2)样本成绩的中位数落在 范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在≤x <范围内的有多少人?22.(本题满分8分)如图,在平面直角坐标系中,一次函数和的图象相交于点A ,反比例函数的图象经过点A . (1)求反比例函数的表达式;(2)设一次函数 的图象与反比例函数 的图象的另一个交点为B ,OB ,求△ABO 的面积.521+=x y x y 2-=xky =521+=x y xky =第22题图23.(本题满分8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.第23题图24.(本题满分10分)在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.第24题图1第24题图29(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF =2,求DN的长.25. (本题满分10分)如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在第25题图这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.绝密☆启用前2020年枣庄市初中学业水平考试数学参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分. 2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算..错误,但并没有改变试题的实质和难10度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分不给分.一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6小题,每小题4分,共24分)13.1 14.-1 15.27°16.17.58 18.6三、解答题:(本大题共7小题,共60分)19.(本题满分8分)解:解不等式4(x+1)≤7x+13,得x≥﹣3;…………………………………………2分解不等式384-<-xx,得x<2. ………………………………………………4分所以,不等式组的解集为﹣3≤x<2. ………………………………………………6分该不等式组的所有整数解为﹣3,﹣2,﹣1,0,1.所以,该不等式组的所有整数解的和为(-3)+(-2)+(-1)+0+1=-5. …………8分20.(本题满分8分)解:(1)填表如下:(每填对一个得1分,共4分)(2)根据上表中的数据规律发现,多面体的顶点数V 、棱数E 、面数F 之间存在关系式: V +F -E =2 . …………………………………………………………8分 21. (本题满分8分) 解(1)由统计图,可得a =8,b =20; ………2分(2)样本成绩的中位数落在≤x <范围内; ……………4分(3)由(1)知,b =20,补全的频数分布直方图如右图所示;…6分(4)1200×5010=240(人),答:估计该学校学生立定跳远成绩在≤x <范围内有240人. ……………8分名称 三棱锥 三棱柱 正方体 正八面体图形顶点数V4 6 8 6 棱数E6 9 12 12 面数F4568第21题图22.(本题满分8分)解:(1)解方程组 ⎪⎩⎪⎨⎧-=+=xy x y 2,521 得⎩⎨⎧=-=4,2y x 故A 点坐标为(-2,4). (2)分将A (-2,4)代入,得. ∴.故反比例函数的表达式为. ……………………………………3分(2)将代入消去,得 .解之,得. 当时,,故B (-8,1). ……………………………………5分在中,令y =0,得x =10-.故直线AB 与x 轴的交点为C (-10,0). 如图,过A 、B 两点分别作轴的垂线,交轴于M 、N 两点,由图形可知S △AOB =S △AOC -S △BOC BN OC AM OC ⋅⋅-⋅⋅=2121151102141021=⨯⨯-⨯⨯=. ………………………………………………8分23.(本题满分8分)x k y =24-=k8-=k xy 8-=521+=x y xy 8-=y 016102=++x x 8,221-=-=x x 8-=x 1=y 521+=x y x x 第22题图C(1)证明:如图,连接AE . ∵AB 是⊙O 的直径,∴∠AEB =90°,∠1+∠2=90°. ∵AB =AC ,∴2∠1=∠BAC . ∵∠BAC =2∠CBF , ∴∠1=∠CBF .∴∠CBF +∠2=90°,即∠ABF =90°. ∵AB 是⊙O 的直径, ∴直线BF 是⊙O 的切线. …………………………………………4分 (2)解:过点C 作CH ⊥BF 于点H . ∵AB =AC ,⊙O 的直径为4, ∴AC =4.∵CF =6,∠ABF =90°, ∴BF =2124102222=-=-AB AF . ……………………………5分∵∠CHF =∠ABF ,∠F =∠F , ∴△CHF ∽△ABF . ∴AF CF AB CH =,即6464+=CH .∴512=CH ,5216)512(62222=-=-=CH CF HF . ……………………6分第23题图12第23题图H∴52145216212=-=-=HF BF BH . ∴tan ∠CBF=7215214512==BH CH . …………………………………………8分24.(本题满分10分)(1)证明:∵∠ACB =90°,AC =BC ,CD 是中线, ∴∠BCD =∠ACD =45°,∠BCE =∠ACF =90°, ∴∠DCE =∠DCF =135°.在△DCE 与△DCF 中,⎪⎩⎪⎨⎧=∠=∠=CD CD DCF DCE CF CE ,,∴△DCE ≌△DCF .∴DE =DF ; (3)分(2)证明:∵∠DCF =∠DCE =135°, ∴∠CDF +∠F =180°﹣135°=45°. ∵∠CDF +∠CDE =45°, ∴∠F =∠CDE . ∴△CDF ∽△CED . ∴CDCF CE CD =,即CD 2=CE •CF . ……………6分(3)如图,过D 作DG ⊥BC 于点G , 则∠DGN =∠ECN =90°,CG =DG . 当CD =2,CF =2时,第24题图1第24题图2G由CD 2=CE •CF ,得CE =22. …………7分在Rt △DCG 中,CG =DG =CD •sin ∠DCG =2×sin 45°=2.∵∠ECN =∠DGN ,∠ENC =∠DNG , ∴△CEN ∽△GDN. ∴2222===DG CE GN CN , ∴GN =31CG=231⨯=32. ∴DN =22DG GN +=()22232+⎪⎪⎭⎫ ⎝⎛=352.……………………………………10分25.(本题满分10分)解:(1)将A (-3,0),B (4,0)代入y =ax 2+bx +4,得⎩⎨⎧=++=+-04416,0439b a b a解之,得⎪⎪⎩⎪⎪⎨⎧=-=31,31b a所以,抛物线的表达式为y =-31x 2+31x +4. ……………………………3分(2)由y =-31x 2+31x +4,得C (0,4).将点B (4,0)、C (0,4)代入y =kx +b ,得⎩⎨⎧==+4,04b b k解之,得⎩⎨⎧=-=4,1b k所以,直线BC 的表达式为:y =-x +4. ……………………………………4分由M (m ,0),得P (m ,-31m 2+31m +4),Q (m ,-m +4). ∴PQ =-31m 2+31m +4+m -4=-31m 2+34m∵OB =OC ,∴∠ABC =∠OCB =45°. ∴∠PQN =∠BQM =45°. ∴PN =PQ sin45°=22(-31m 2+34m )=-62m 2+322m ……………6分 =62-2)2(-m +322 ∵62-<0, ∴当m =2时,PN 有最大值,最大值为322.……………………………………7分 (3)存在,理由如下:由点A (-3,0)、C (0,4),知AC =5. ①当AC =CQ 时,过Q 作QE ⊥y 轴于点E ,易得2222222)]4(4[m m m CE EQ CQ =+--+=+=.由,2522=m 得2251=m ,2252-=m (舍). E此时,点Q (225,2258-);……8分 ②当AC =AQ 时,则AQ =AC =5. 在Rt △AMQ 中,由勾股定理,得25)4()]3([22=+-+--m m .解之,得m =1或m =0(舍). 此时,点Q (1,3);……………………………………………………………………9分 ③当CQ =AQ 时,由222)4()]3([2+-+--=m m m ,得m =225(舍). 综上知所述,可知满足条件的点Q 有两个,坐标分别为:Q (1,3),Q (225,2258-). ………………………………………………………………………………10分。
2020年部编人教版山东省枣庄市中考数学试题及答案(Word精析版)
绝密☆启用前试卷类型:A二○一三年枣庄市2020年初中学业考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并把答题纸密封线内的项目填写清楚.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 第Ⅱ卷必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一 个均计零分.1.下列计算,正确的是A.33--=-B.030=C.133-=-D.93=± 答案:A解析:因为30=1,3-1=13,9=3,所以,B 、C 、D 都错,选A 。
2.如图,AB //CD ,∠CDE =140︒,则∠A 的度数为 A.140︒ B.60︒ C.50︒ D.40︒ 答案:D解析:∠CDA =180°-140°=40°,由两直线平行,内错角相等,得:∠A =∠CDA =40°,选D 。
3.估计61+的值在A. 2到3之间B.3到4之间C.4到5之间D.5到6之间 答案:B 解析:因为469<<,即2<6<3,所以,3<6+1<4,选B 。
第2题图4.化简xxx x -+-112的结果是 A.x +1 B.1x - C.x - D.x 答案:D解析:原式=2(1)111x x x x x x x x --==---,故选D 。
5.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为A.240元B.250元C.280元D.300元 答案:A解析:设进价为x 元,则3300.810%xx⨯-=,解得:x =240,故选A >6.如图,ABC △中,AB =AC =10,BC =8,AD 平分BAC ∠交BC 于点D ,点E 为AC 的中点,连接DE ,则CDE △的周长为A.20B.18C.14D.13 答案:C解析:因为AB =AC ,AD 平分∠BAC ,所以,D 为BC 中点,又E 为AC 中点,所以,DE =12AB =5,DC =4,EC =5,故所求周长为5+5+4=14。
山东省枣庄市2020年中考数学试题及详解(WORD版)
第一部分2020年枣庄市初中学业水平考试数学试题(1-8)第二部分2020年枣庄市初中学业水平考试数学试题详解(9-19) 注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第Ⅰ卷和第Ⅱ卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号.考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分. 1.12- 的绝对值是( ) A. -2 B. 12- C. 2 D. 12 2.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( ) A. 10°B. 15°C. 18°D. 30° 3.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A . 12-B. 12C. 56-D. 56 4.实数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是( )A. ||1a <B. 0ab >C. 0a b +>D. 11a -> 5.布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是( )A. 49B. 29C. 23D. 136.如图,在△ABC 中,AB 的垂直平分线交AB 于点D ,交BC 于点E ,若BC=6,AC=5,则△ACE 的周长为( )A. 8B. 11C. 16D. 177. 图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是A. B. ()2a b - C. D.8.在下图的四个三角形中,不能由ABC 经过旋转或平移得到的是( )A. B. C. D.9.对于实数a 、b ,定义一种新运算“⊗”为:21a b a b ⊗=-,这里等式右边是实数运算.例如:21113138⊗==--.则方程()2214⊗-=--x x 的解是( ) A. 4x =B. 5x =C. 6x =D. 7x = 10.如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,30AOB B ∠=∠=︒,2OA =,将AOB ∆绕点O 逆时针旋转90︒,点B 的对应点B '的坐标是( )A. (1,23-+B. ()3,3C. (3,23-+D. (3-11.如图,在矩形纸片ABCD 中,AB=3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC=∠ECA ,则AC 的长是( )A. 33B. 6C. 4D. 512.如图,已知抛物线2y ax bx c =++的对称轴为直线1x =.给出下列结论:①0ac <; ②240b ac ->; ③20a b -=; ④0a b c -+=.其中,正确的结论有( )A. 1个B. 2个C. 3个D. 4个第Ⅱ卷(非选择题 共84分)二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.若a +b =3,a 2+b 2=7,则ab =_____.14.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为_______. 15.如图,AB 是O 的直径,P A 切O 于点A ,线段PO 交O 于点C .连接BC ,若36P ∠=︒,则B ∠=________.16.如图,人字梯AB ,AC 的长都为2米.当50a =︒时,人字梯顶端高地面的高度AD 是____米(结果精确到0.1m .参考依据:sin500.77︒≈,cos500.64︒≈,tan50 1.19︒≈)17.如图,E ,F 是正方形ABCD 的对角线AC 上的两点,8AC =,2AE CF ==,则四边形BEDF 的周长是_____.18.各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S 可用公式112S a b =+-(a 是多边形内的格点数,b 是多边形边界上的格点数)计算,这个公式称为“皮克(Pick )定理”.如图给出了一个格点五边形,则该五边形的面积S =________.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.解不等式组4(1)713843x x x x +≤+⎧⎪-⎨-<⎪⎩,并求它的所有整数解的和.20.欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数(Vertex)、棱数E(Edge)、面数F(Flat surface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V 4 6 8棱数E 6 12面数F 4 5 8(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:____________________________.21.2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2 1.6x< ax<121.62.02.0 2.4x< bx<102.4 2.8学生立定跳远测试成绩的频数分布直方图请根据图表中所提供的信息,完成下列问题:(1)表中a=________,b=________;(2)样本成绩的中位数落在________范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4 2.8x<范围内的有多少人?22.如图,在平面直角坐标系xOy中,一次函数152y x=+和2y x=-的图象相交于点A,反比例函数kyx=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数152y x=+的图象与反比例函数kyx=的图象的另一个交点为B,连接OB,求ABO∆的面积.23.如图,在ABC 中,AB AC =,以AB 为直径的O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且2BAC CBF ∠=∠.(1)求证:BF 是O 的切线; (2)若O 的直径为4,6CF =,求tan CBF ∠.24.在ABC 中,90ACB ∠=︒,CD 是中线,AC BC =,一个以点D 为顶点的45°角绕点D 旋转,使角的两边分别与AC 、BC 的延长线相交,交点分别为点E 、F ,DF 与AE 交于点M ,DE 与BC 交于点N . (1)如图1,若CE CF =,求证:DE DF =;(2)如图2,在EDF ∠绕点D 旋转的过程中,试证明2CD CE CF =⋅恒成立;(3)若2CD =,2CF =DN 的长.25.如图,抛物线24y ax bx =++交x 轴于(3,0)A -,(4,0)B 两点,与y 轴交于点C ,AC ,BC .M 为线段OB 上的一个动点,过点M 作PM x ⊥轴,交抛物线于点P ,交BC 于点Q .(1)求抛物线的表达式;(2)过点P 作PN BC ⊥,垂足为点N .设M 点的坐标为(,0)M m ,请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?(3)试探究点M 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标;若不存在,请说明理由.2020年枣庄市初中学业水平考试数学试题详解注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第Ⅰ卷和第Ⅱ卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号.考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1、解:12-的绝对值是12. 故选:D .2、由题意可得:∠EDF=45°,∠ABC=30°,∵AB ∥CF ,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.3、解:2121413136366662⎛⎫---=-+=-+=-=- ⎪⎝⎭, 故选:A .4、解:由数轴上a 与1的位置可知:||1a >,故选项A 错误;因为a <0,b >0,所以0ab <,故选项B 错误;因为a <0,b >0,所以0a b +<,故选项C 错误;因为a <0,则11a ->,故选项D 正确;故选:D .5、解:画树状图得:则共有9种等可能的结果,两次都摸到白球的有4种情况,∴两次都摸到白球的概率为49. 故选A .6、解:∵DE 垂直平分AB ,∴AE=BE ,∴△ACE 的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选B .7、由题意可得,正方形的边长为a b +,故正方形的面积为()2a b +.又∵原矩形的面积为2a 2b 4ab ⋅=,∴中间空的部分的面积=()()22a b 4ab a b +-=-. 故选C .8、A 、可由△ABC 逆时针旋转一个角度得到;B 、可由△ABC 翻折得到;C 、可由△ABC 逆时针旋转一个角度得到;D 、可由△ABC 逆时针旋转一个角度得到.故选B .9、解:211(2)(2)4x x x ⊗-==--- ∴方程表达为:12144x x =--- 解得:5x =, 经检验,5x =是原方程的解,故选:B .10、如图,作B H y '⊥轴于H .由题意:2OA A B '''==,60B A H ''∠=︒,∴30A B H ''∠=︒,∴112AH A B '''==,B H '= ∴3OH =,∴()B ',故选B .11、∵将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,∴AF=AB ,∠AFE=∠B=90°,∴EF ⊥AC ,∵∠EAC=∠ECA ,∴AE=CE ,∴AF=CF ,∴AC=2AB=6,故选B .12、解:∵抛物线开口向下,则a <0,∵抛物线交于y 轴的正半轴,则c >0,∴ac <0,故①正确;∵抛物线与x轴有两个交点,∴240b ac ->,故②正确;∵抛物线的对称轴为直线1x =,则12b a-=,即2a=-b , ∴2a+b=0,故③错误;∵抛物线经过点(3,0),且对称轴为直线1x =,∴抛物线经过点(-1,0),则0a b c -+=,故④正确;∴正确的有①②④,共3个,故选:C .第Ⅱ卷(非选择题 共84分)二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分. 13、(a +b )2=32=9,(a +b )2=a 2+b 2+2ab =9.∵a 2+b 2=7,∴2ab =2,ab =1,故答案为1.14、0x =代入方程得:210a -=解得:1a =±∵22(1)210a x x a --+-=是关于x 的一元二次方程∴10,1a a -≠≠∴1a =-故答案为-115、如图,连接AC ,AB 是O 的直径,∴90ACB ∠=︒,∴90B BAC ∠+∠=︒,∵P A 切O 于点A ,∴90BAP ∠=︒,∴B PAC ∠=∠,∵ACO P PAC ∠=∠+∠,90ACO BCO ACO B ∠+∠=∠+∠=︒,∴9036B B ︒-∠=∠+︒,解得27B ∠=︒,故答案为:27︒.16、在Rt ADC ∆中,∵2AC =,50ACD ∠=︒, ∴sin 50AD AC︒=, ∴sin5020.77 1.5AD AC =⨯︒=⨯≈.故答案为1.5.17、如图,连接BD 交AC 于点O ,∵四边形ABCD 为正方形,∴BD AC ⊥,OD OB OA OC ===,∵2AE CF ==,∴OA AE OC CF -=-,即OE OF =,∴四边形BEDF 为平行四边形,且BD EF ⊥,∴四边形BEDF 为菱形,∴DE DF BE BF ===,∵8AC BD ==,8422OE OF -===, 由勾股定理得:22224225DE OD OE =+=+=,∴四边形BEDF 的周长442585DE ==⨯=, 故答案为85.18、由图可知:五边形内部格点有4个,故4a =五边形边上格点有6个,故6b =∴112S a b =+-=146162+⨯-= 故答案为:6.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19、解不等式4(1)713x x ++,得3x -;解不等式843x x --<,得2x <. 所以,不等式组的解集为32x -<.该不等式组的所有整数解为-3,-2,-1,0,1.所以,该不等式组的所有整数解的和为(3)(2)(1)015-+-+-++=-.20、解:(1)填表如下:名称三棱锥 三棱柱 正方体 正八面体图形顶点数V 4 6 8 6棱数E 6 9 12 12面数F4 5 6 8(2)据上表中的数据规律发现,多面体的顶点数V 、棱数E 、面数F 之间存在关系式:2V F E +-=.21、解(1)由统计图可得8a =,508121020b =---=;(2)有50名学生进行测试,第25和26名的成绩和的平均数为中位数∴样本成绩的中位数落在2.0 2.4x <范围内;(3)由(1)知,20b =,补全的频数分布直方图如右图所示;学生立定跳远测试成绩的频数分布直方图(4)10120024050⨯=(人), 答:估计该学校学生立定跳远成绩在2.4 2.8x <范围内有240人.22、(1)由题意:联立直线方程1522y x y x⎧=+⎪⎨⎪=-⎩,可得24x y =-⎧⎨=⎩,故A 点坐标为(-2,4)将A(-2,4)代入反比例函数表达式kyx=,有42k=-,∴8k=-故反比例函数的表达式为8yx=-(2)联立直线152y x=+与反比例函数8yx=-,1528xy xy⎧=+⎪⎪⎨⎪=-⎪⎩解得122,8x x=-=-,当8x=-时,1y=,故B(-8,1)如图,过A,B两点分别作x轴的垂线,交x轴于M、N两点,由模型可知S梯形AMNB=S△AOB,∴S梯形AMNB=S△AOB=12121()()2y y x x+-⨯=1(14)[(2)(8)]2+⨯---⨯=156152⨯⨯= 23、(1)(1)证明:如图,连接AE.∵AB是O的直径,∴90AEB=︒∠,1290∠+∠=︒.∵AB AC=,∴21BAC∠=∠.∵2BAC CBF ∠=∠,∴1CBF ∠=∠.∴290CBF ∠+∠=︒,即90ABF ∠=︒.∵AB 是O 的直径,∴直线BF 是O 的切线. (2)解:过点C 作CH BF ⊥于点H .∵AB AC =,O 的直径为4, ∴4AC =.∵6CF =,90ABF ∠=︒, ∴2222104221AF AB BF -=-==.∵CHF ABF ∠=∠,F F ∠=∠,∴CHF ABF ∽△△.∴CH CF AB AF =,即6446CH =+. ∴125CH =,222212621655HF CF CH ⎛⎫=-=-= ⎪⎝⎭. ∴621421221BH BF HF =-=-=. ∴12215tan 7421CH CBF BH ∠===.24、(1)证明:∵90ACB ∠=︒,AC BC =,CD 是中线,∴45BCD ACD ∠=∠=︒,90BCE ACF ∠=∠=︒,∴135DCE DCF ∠=∠=︒.在DCE 与DCF 中,CE CF DCE DCF CD CD =⎧⎪∠=∠⎨⎪=⎩,∴DCE DCF ≌△△.∴DE DF =;(2)证明:∵135DCF DCE ∠=∠=︒,∴18013545CDF F ∠+∠=︒-︒=︒∵45CDF CDE ∠+∠=︒,∴F CDE ∠=∠.∴CDF CED △∽△. ∴CD CF CE CD=,即2CD CE CF =⋅. (3)如图,过D 作DG BC ⊥于点G ,则90DGN ECN ∠=∠=︒,CG DG =.当2CD =,CF =由2CD CE CF =⋅,得CE =在Rt DCG 中,sin 2sin 45CG DG CD DCG ==⋅∠=⨯︒=∵ECN DGN ∠=∠,ENC DNG ∠=∠,∴CEN GDN △∽△.∴2CN CE GN DG ===,∴11333GN CG ===.∴DN ===25、解:(1)将(3,0)A -,(4,0)B 代入24y ax bx =++,得934016440a b a b -+=⎧⎨++=⎩,解之,得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩. 所以,抛物线的表达式为211433y x x =-++. (2)由211433y x x =-++,得(0,4)C . 将点(4,0)B 、(0,4)C 代入y kx b =+,得404k b b +=⎧⎨=⎩,解之,得14k b =-⎧⎨=⎩. 所以,直线BC 的表达式为:4y x =-+.由(,0)M m ,得211,433P m m m ⎛⎫-++ ⎪⎝⎭,4(),Q m m -+. ∴221114443333PQ m m m m m =-+++-=-+ ∵OB OC =,∴45ABC OCB ∠=∠=︒.∴45PQN BQM ∠=∠=︒.∴22214222sin 4533PN PQ m m ⎫=︒=-+=⎪⎝⎭. 222(2)63m =--+. ∵206-< ∴当2m =时,PN 有最大值,最大值为223. (3)存在,理由如下:由点(3,0)A -,(0,4)C ,知5AC =.①当AC CQ =时,过Q 作QE y ⊥轴于点E ,易得222222[4(4)]2CQ EQ CE m m m =+=+--+=, 由2225m =,得152m =,252m =(舍) 此时,点5285222Q ⎛- ⎝⎭;②当AC AQ =时,则5AQ AC ==.在Rt AMQ △中,由勾股定理,得22[(3)](4)25m m --+-+=.解之,得1m =或0m =(舍)此时,点()1,3Q ;③当CQ AQ =时,由2222[(3)](4)m m m =--+-+,得252m =(舍). 综上知所述,可知满足条件的点Q 有两个,坐标分别为:()1,3Q ,5285222Q ⎛-⎝⎭.。
枣庄市中考数学试题解析版
2020年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均计零分。
1.下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+12.如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A.75°36′ B.75°12′ C.74°36′ D.74°12′3.某中学篮球队12名队员的年龄如表:年龄(岁)13 14 15 16人数 1 5 4 2关于这12名队员年龄的年龄,下列说法错误的是()A.众数是14 B.极差是3 C.中位数是14.5 D.平均数是14.84.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D,则∠D的度数为()A.15° B.17.5° C.20° D.22.5°5.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣56.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白 B.红 C.黄 D.黑7.如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是()A.3 B.4 C.5.5 D.108.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A. B. C. D.9.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A. B. C.5 D.410.已知点P(a+1,﹣ +1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A. B.C. D.11.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分的面积为()A.2π B.π C. D.12.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分。
2020年山东枣庄中考数学试卷(解析版)
14.
解析:
把
代入
得
∵
,
∴
.
故答案为 .
15.
解析:
∵ 切⊙ 于点 ,
∴
,
∵
,
∴
,
∴
.
故答案为: .
16.
解析:
∵
,
∴
.
故答案为: .
,解得
,
13
17.
解析:
如图,连接 交 于点 ,
∵四边形
为正方形,
∴
,
,
∵
,
∴
,即
,
∴四边形
为平行四边形,且
,
∴四边形
为菱形,
∴
,
∵
,
,
由勾股定理得:
,
∴四边形
的周长
)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成
四块形状和大小都一样的小长方形,然后按图( )那样拼成一个正方形,则中间空的部分的面积是(
).
图
图
A.
B.
C.
D.
8. 如图的四个三角形中,不能由
经过旋转或平移得到的是( ).
A.
2
B.
C.
D.
9. 对于实数 、 ,定义一种新运算“ ”为: .则方程
(2) 解析: ( 1 )填表如下:
名称
三棱锥
三棱柱
正方体
正八面体
图形
顶点数
棱数
面数
故答案为: , , , .
( 2 )∵
,
,
,
,
,
∴
.
即 、 、 之间的关系式为:
.
故答案为:
2020年山东省枣庄市中考数学试卷 (解析版)
2020年山东省枣庄市中考数学试卷一、选择题(共12小题).1.﹣的绝对值是()A.﹣B.﹣2C.D.22.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°3.计算﹣﹣(﹣)的结果为()A.﹣B.C.﹣D.4.实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1B.ab>0C.a+b>0D.1﹣a>15.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是()A.B.C.D.6.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC =6,AC=5,则△ACE的周长为()A.8B.11C.16D.177.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b28.如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.9.对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=710.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB =∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣,3)B.(﹣3,)C.(﹣,2+)D.(﹣1,2+)11.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.3B.4C.5D.612.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.若a+b=3,a2+b2=7,则ab=.14.已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=.15.如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P =36°,则∠B=.16.人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.18.各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.解不等式组并求它的所有整数解的和.20.欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V (Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V468棱数E612面数F458(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:.21.2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=,b=;(2)样本成绩的中位数落在范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?22.如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,OB,求△ABO的面积.23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F 在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.24.在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC 交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=,求DN的长.25.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.参考答案一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.﹣的绝对值是()A.﹣B.﹣2C.D.2【分析】根据绝对值的定义直接计算即可解答.解:﹣的绝对值为.故选:C.2.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=60°,进而得出答案.解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.3.计算﹣﹣(﹣)的结果为()A.﹣B.C.﹣D.【分析】根据有理数的减法法则计算即可.解:﹣﹣(﹣)==﹣.故选:A.4.实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1B.ab>0C.a+b>0D.1﹣a>1【分析】直接利用a,b在数轴上位置进而分别分析得出答案.解:A、|a|>1,故本选项错误;B、∵a<0,b>0,∴ab<0,故本选项错误;C、a+b<0,故本选项错误;D、∵a<0,∴1﹣a>1,故本选项正确;故选:D.5.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是()A.B.C.D.【分析】列举出所有可能出现的结果,进而求出“两次都是白球”的概率.解:用列表法表示所有可能出现的情况如下:共有9种可能出现的结果,其中两次都是白球的有4种,∴P(两次都是白球)=,故选:A.6.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC =6,AC=5,则△ACE的周长为()A.8B.11C.16D.17【分析】在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC =6,AC=5,则△ACE的周长为解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:B.7.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【分析】中间部分的四边形是正方形,表示出边长,则面积可以求得.解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.故选:C.8.如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.【分析】根据平移,旋转的性质判断即可.解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折,平移,旋转得到.故选:B.9.对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=7【分析】所求方程利用题中的新定义化简,求出解即可.解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.10.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB =∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣,3)B.(﹣3,)C.(﹣,2+)D.(﹣1,2+)【分析】如图,过点B′作B′H⊥y轴于H.解直角三角形求出′H,B′H即可.解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=,∴OH=2+1=3,∴B′(﹣,3),故选:A.11.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.3B.4C.5D.6【分析】根据折叠的性质得到AF=AB,∠AFE=∠B=90°,根据等腰三角形的性质得到AF=CF,于是得到结论.解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:D.12.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A.1个B.2个C.3个D.4个【分析】根据抛物线的开口方向、对称轴、与x轴、y轴的交点,综合进行判断即可.解:抛物线开口向下,a<0,对称轴为x=﹣=1,因此b>0,与y轴交于正半轴,因此c>0,于是有:ac<0,因此①正确;由x=﹣=1,得2a+b=0,因此③不正确,抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,由对称轴x=1,抛物线与x轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,综上所述,正确的结论有①②④,故选:C.二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.若a+b=3,a2+b2=7,则ab=1.【分析】根据完全平方公式,可得答案.解:(a+b)2=32=9,(a+b)2=a2+b2+2ab=9.∵a2+b2=7,∴2ab=2,ab=1,故答案为:1.14.已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=﹣1.【分析】根据一元二次方程的解的定义把x=0代入原方程得到关于a的一元二次方程,解得a=±1,然后根据一元二次方程的定义确定a的值.解:把x=0代入(a﹣1)x2﹣2x+a2﹣1=0得a2﹣1=0,解得a=±1,∵a﹣1≠0,∴a=﹣1.故答案为﹣1.15.如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P =36°,则∠B=27°.【分析】直接利用切线的性质得出∠OAP=90°,再利用三角形内角和定理得出∠AOP =54°,结合圆周角定理得出答案.解:∵PA切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∴∠B=∠AOP=27°.故答案为:27°.16.人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是 1.5m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【分析】在Rt△ADC中,求出AD即可.解:∵AB=AC=2m,AD⊥BC,∴∠ADC=90°,∴AD=AC•sin50°=2×0.77≈1.5(m),故答案为1.5.17.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是8.【分析】连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD⊥EF,可证得四边形BEDF为菱形;根据勾股定理计算DE的长,可得结论.解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE===2,∴四边形BEDF的周长=4DE=4×=8,故答案为:8.18.各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=6.【分析】分别统计出多边形内部的格点数a和边界上的格点数b,再代入公式S=a+b ﹣1,即可得出格点多边形的面积.解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,∴a=4,b=6,∴该五边形的面积S=4+×6﹣1=6,故答案为:6.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.解不等式组并求它的所有整数解的和.【分析】先求出两个不等式的解集,再求其公共解,然后找出整数求和即可.解:,由①得,x≥﹣3,由②得,x<2,所以,不等式组的解集是﹣3≤x<2,所以,它的整数解为:﹣3,﹣2,﹣1,0,1,所以,所有整数解的和为﹣5.20.欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V (Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V4686棱数E691212面数F4568(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:V+F ﹣E=2.【分析】(1)根据图形数出顶点数,棱数,面数,填入表格即可;(2)根据表格数据,顶点数与面数的和减去棱数等于2进行解答.解:(1)填表如下:名称三棱锥三棱柱正方体正八面体图形顶点数V4686棱数E691212面数F4568(2)∵4+4﹣6=2,6+5﹣9=2,8+6﹣12=2,6+8﹣12=2,…,∴V+F﹣E=2.即V、E、F之间的关系式为:V+F﹣E=2.故答案为:6,9,12,6,V+F﹣E=2.21.2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=8,b=20;(2)样本成绩的中位数落在 2.0≤x<2.4范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?【分析】(1)由频数分布直方图可得a=8,由频数之和为50求出b的值;(2)根据中位数的意义,找出第25、26位的两个数落在哪个范围即可;(3)求出b的值,就可以补全频数分布直方图;(4)样本估计总体,样本中立定跳远成绩在2.4≤x<2.8范围内的占,因此估计总体1200人的是立定跳远成绩在2.4≤x<2.8范围内的人数.解:(1)由统计图得,a=8,b=50﹣8﹣12﹣10=20,故答案为:8,20;(2)由中位数的意义可得,50个数据从小到大排列处在中间位置的两个数在2.0≤x<2.4组内,故答案为:2.0≤x<2.4;(3)补全频数分布直方图如图所示:(4)1200×=240(人),答:该校1200名学生中立定跳远成绩在2.4≤x<2.8范围内的有240人.22.如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,OB,求△ABO的面积.【分析】(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2.4),进而求解;(2)S△AOB=S△AOC﹣S△BOC=OC•AM OC•BN,即可求解.解:(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2.4),将点A的坐标代入反比例函数表达式得:4=,解得:k=﹣8,故反比例函数表达式为:y=﹣②;(2)联立①②并解得:x=﹣2或﹣8,当x=﹣8时,y=x+5=1,故点B(﹣8,1),设y=x+5交x轴于点C(﹣10,0),过点A、B分别作x轴的垂线交于点M、N,则S△AOB=S△AOC﹣S△BOC=OC•AM OC•BN=.23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F 在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.【分析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°,于是得到结论;(2)过C作CH⊥BF于H,根据勾股定理得到BF===2,根据相似三角形的性质得到CH=,根据三角函数的定义即可得到结论.【解答】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴2∠1=∠CAB.∵∠BAC=2∠CBF,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线;(2)解:过C作CH⊥BF于H,∵AB=AC,⊙O的直径为4,∴AC=4,∵CF=6,∠ABF=90°,∴BF===2,∵∠CHF=∠ABF,∠F=∠F,∴△CHF∽△ABF,∴=,∴=,∴CH=,∴HF===,∴BH=BF﹣HF=2﹣=,∴tan∠CBF===.24.在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC 交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=,求DN的长.【分析】(1)根据等腰直角三角形的性质得到∠ACD=∠BCD=45°,证明△DCF≌△DCE,根据全等三角形的对应边相等证明结论;(2)证明△FCD∽△DCE,根据相似三角形的性质列出比例式,整理即可证明结论;(3)作DG⊥BC,根据等腰直角三角形的性质求出DG,由(2)的结论求出CE,证明△ENC∽△DNG,根据相似三角形的性质求出NG,根据勾股定理计算,得到答案.【解答】(1)证明:∵∠ACB=90°,AC=BC,CD是中线,∴∠ACD=∠BCD=45°,∠ACF=∠BCE=90°,∴∠DCF=∠DCE=135°,在△DCF和△DCE中,,∴△DCF≌△DCE(SAS)∴DE=DF;(2)证明:∵∠DCF=135°,∴∠F+∠CDF=45°,∵∠FDE=45°,∴∠CDE+∠CDF=45°,∴∠F=∠CDE,∵∠DCF=∠DCE,∠F=∠CDE,∴△FCD∽△DCE,∴=,∴CD2=CE•CF;(3)解:过点D作DG⊥BC于G,∵∠DCB=45°,∴GC=GD=CD=,由(2)可知,CD2=CE•CF,∴CE==2,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△ENC∽△DNG,∴=,即=,解得,NG=,由勾股定理得,DN==.25.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)PN=PQ sin45°=(﹣m2+m)=﹣(m﹣2)2+,即可求解;(3)分AC=CQ、AC=AQ、CQ=AQ三种情况,分别求解即可.解:(1)将点A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=﹣x2+x+4;(2)由抛物线的表达式知,点C(0,4),由点B、C的坐标得,直线BC的表达式为:y=﹣x+4;设点M(m,0),则点P(m,﹣m2+m+4),点Q(m,﹣m+4),∴PQ=﹣m2+m+4+m﹣4=﹣m2+m,∵OB=OC,故∠ABC=∠OCB=45°,∴∠PQN=∠BQM=45°,∴PN=PQ sin45°=(﹣m2+m)=﹣(m﹣2)2+,∵﹣<0,故当m=2时,PN有最大值为;(3)存在,理由:点A、C的坐标分别为(﹣3,0)、(0,4),则AC=5,①当AC=CQ时,过点Q作QE⊥y轴于点E,则CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,解得:m=±(舍去负值),故点Q(,);②当AC=AQ时,则AQ=AC=5,在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或0(舍去0),故点Q(1,3);③当CQ=AQ时,则2m2=[m=(﹣3)]2+(﹣m+4)2,解得:m=(舍去);综上,点Q的坐标为(1,3)或(,).。
2020年山东省枣庄市中考数学试卷及答案
2020年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分. 1.(3分)−12的绝对值是( ) A .−12B .﹣2C .12D .22.(3分)一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°3.(3分)计算−23−(−16)的结果为( ) A .−12B .12C .−56D .564.(3分)实数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是( )A .|a |<1B .ab >0C .a +b >0D .1﹣a >15.(3分)不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是( ) A .49B .29C .23D .136.(3分)如图,在△ABC 中,AB 的垂直平分线交AB 于点D ,交BC 于点E ,连接AE .若BC =6,AC =5,则△ACE 的周长为( )A .8B .11C .16D .177.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b28.(3分)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.9.(3分)对于实数a、b,定义一种新运算“⊗”为:a⊗b=1a−b2,这里等式右边是实数运算.例如:1⊗3=11−32=−18.则方程x⊗(﹣2)=2x−4−1的解是()A.x=4B.x=5C.x=6D.x=710.(3分)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB =∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(−√3,3)B.(﹣3,√3)C.(−√3,2+√3)D.(﹣1,2+√3)11.(3分)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.3√3B.4C.5D.612.(3分)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.(4分)若a+b=3,a2+b2=7,则ab=.14.(4分)已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a =.15.(4分)如图,AB是⊙O的直径,P A切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=.16.(4分)人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17.(4分)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.18.(4分)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+12b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.(8分)解不等式组{4(x+1)≤7x+13,x−4<x−83,并求它的所有整数解的和.20.(8分)欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V(Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V468棱数E612面数F458(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:.21.(8分)2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=,b=;(2)样本成绩的中位数落在范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?22.(8分)如图,在平面直角坐标系中,一次函数y=12x+5和y=﹣2x的图象相交于点A,反比例函数y=kx的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=12x+5的图象与反比例函数y=kx的图象的另一个交点为B,OB,求△ABO的面积.23.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.24.(10分)在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=√2,求DN的长.25.(10分)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.2020年山东省枣庄市中考数学试卷答案一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.(3分)−12的绝对值是()A.−12B.﹣2C.12D.2解:−12的绝对值为12.故选:C.2.(3分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.3.(3分)计算−23−(−16)的结果为()A.−12B.12C.−56D.56解:−23−(−16)=−23+16=−12.故选:A.4.(3分)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1B.ab>0C.a+b>0D.1﹣a>1解:A、|a|>1,故本选项错误;B、∵a<0,b>0,∴ab<0,故本选项错误;C、a+b<0,故本选项错误;D、∵a<0,∴1﹣a>1,故本选项正确;故选:D .5.(3分)不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是( ) A .49B .29C .23D .13解:用列表法表示所有可能出现的情况如下:共有9种可能出现的结果,其中两次都是白球的有4种, ∴P (两次都是白球)=49, 故选:A .6.(3分)如图,在△ABC 中,AB 的垂直平分线交AB 于点D ,交BC 于点E ,连接AE .若BC =6,AC =5,则△ACE 的周长为( )A .8B .11C .16D .17解:∵DE 垂直平分AB , ∴AE =BE ,∴△ACE 的周长=AC +CE +AE =AC +CE +BE =AC +BC =5+6 =11. 故选:B .7.(3分)图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.故选:C.8.(3分)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折,平移,旋转得到.故选:B.9.(3分)对于实数a、b,定义一种新运算“⊗”为:a⊗b=1a−b2,这里等式右边是实数运算.例如:1⊗3=11−32=−18.则方程x⊗(﹣2)=2x−4−1的解是()A.x=4B.x=5C.x=6D.x=7解:根据题意,得1x−4=2x−4−1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.10.(3分)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB =∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(−√3,3)B.(﹣3,√3)C.(−√3,2+√3)D.(﹣1,2+√3)解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=√3,∴OH=2+1=3,∴B′(−√3,3),故选:A.11.(3分)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.3√3B.4C.5D.6解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:D.12.(3分)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A.1个B.2个C.3个D.4个解:抛物线开口向下,a<0,对称轴为x=−b2a=1,因此b>0,与y轴交于正半轴,因此c>0,于是有:ac<0,因此①正确;由x=−b2a=1,得2a+b=0,因此③不正确,抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,由对称轴x=1,抛物线与x轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,综上所述,正确的结论有①②④,故选:C.二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.(4分)若a+b=3,a2+b2=7,则ab=1.解:(a+b)2=32=9,(a+b)2=a2+b2+2ab=9.∵a2+b2=7,∴2ab=2,ab=1,故答案为:1.14.(4分)已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=﹣1.解:把x=0代入(a﹣1)x2﹣2x+a2﹣1=0得a2﹣1=0,解得a=±1,∵a﹣1≠0,∴a=﹣1.故答案为﹣1.15.(4分)如图,AB是⊙O的直径,P A切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=27°.解:∵P A切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∴∠B=12∠AOP=27°.故答案为:27°.16.(4分)人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是 1.5m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)解:∵AB=AC=2m,AD⊥BC,∴∠ADC=90°,∴AD=AC•sin50°=2×0.77≈1.5(m),故答案为1.5.17.(4分)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是8√5.解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF=8−42=2,由勾股定理得:DE =√OD 2+OE 2=√42+22=2√5, ∴四边形BEDF 的周长=4DE =4×2√5=8√5, 故答案为:8√5.18.(4分)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S 可用公式S =a +12b ﹣1(a 是多边形内的格点数,b 是多边形边界上的格点数)计算,这个公式称为“皮克(Pick )定理”.如图给出了一个格点五边形,则该五边形的面积S = 6 .解:∵a 表示多边形内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积, ∴a =4,b =6,∴该五边形的面积S =4+12×6﹣1=6, 故答案为:6.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.(8分)解不等式组{4(x +1)≤7x +13,x −4<x−83,并求它的所有整数解的和. 解:{4(x +1)≤7x +13①x −4<x−83②, 由①得,x ≥﹣3, 由②得,x <2,所以,不等式组的解集是﹣3≤x <2,所以,它的整数解为:﹣3,﹣2,﹣1,0,1,所以,所有整数解的和为﹣5.20.(8分)欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V(Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V4686棱数E691212面数F4568(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:V+F ﹣E=2.解:(1)填表如下:名称三棱锥三棱柱正方体正八面体图形顶点数V4686棱数E691212面数F4568(2)∵4+4﹣6=2,6+5﹣9=2,8+6﹣12=2,6+8﹣12=2,…,∴V+F﹣E=2.即V、E、F之间的关系式为:V+F﹣E=2.故答案为:6,9,12,6,V+F﹣E=2.21.(8分)2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=8,b=20;(2)样本成绩的中位数落在 2.0≤x<2.4范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?解:(1)由统计图得,a=8,b=50﹣8﹣12﹣10=20,故答案为:8,20;(2)由中位数的意义可得,50个数据从小到大排列处在中间位置的两个数在2.0≤x<2.4组内,故答案为:2.0≤x<2.4;(3)补全频数分布直方图如图所示:(4)1200×1050=240(人),答:该校1200名学生中立定跳远成绩在2.4≤x<2.8范围内的有240人.22.(8分)如图,在平面直角坐标系中,一次函数y=12x+5和y=﹣2x的图象相交于点A,反比例函数y=kx的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=12x+5的图象与反比例函数y=kx的图象的另一个交点为B,OB,求△ABO的面积.解:(1)联立y=12x+5①和y=﹣2x并解得:{x=−2y=4,故点A(﹣2.4),将点A的坐标代入反比例函数表达式得:4=k−2,解得:k=﹣8,故反比例函数表达式为:y=−8x ②;(2)联立①②并解得:x=﹣2或﹣8,当x=﹣8时,y=12x+5=1,故点B(﹣8,1),设y=12x+5交x轴于点C(﹣10,0),过点A、B分别作x轴的垂线交于点M、N,则S△AOB=S△AOC﹣S△BOC=12×OC•AM−12OC•BN=12×4×10−12×10×1=15.23.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴2∠1=∠CAB.∵∠BAC=2∠CBF,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线;(2)解:过C作CH⊥BF于H,∵AB=AC,⊙O的直径为4,∴AC=4,∵CF=6,∠ABF=90°,∴BF =√AF 2−AB 2=√102−42=2√21, ∵∠CHF =∠ABF ,∠F =∠F , ∴△CHF ∽△ABF , ∴CH AB =CF AF , ∴CH 4=64+6,∴CH =125, ∴HF =√CF 2−CH 2=√62−(125)2=6√215, ∴BH =BF ﹣HF =2√21−6√215=4√215, ∴tan ∠CBF =CH BH =1254√215=√217.24.(10分)在△ABC 中,∠ACB =90°,CD 是中线,AC =BC ,一个以点D 为顶点的45°角绕点D 旋转,使角的两边分别与AC 、BC 的延长线相交,交点分别为点E 、F ,DF 与AC 交于点M ,DE 与BC 交于点N .(1)如图1,若CE =CF ,求证:DE =DF ;(2)如图2,在∠EDF 绕点D 旋转的过程中,试证明CD 2=CE •CF 恒成立; (3)若CD =2,CF =√2,求DN 的长.(1)证明:∵∠ACB =90°,AC =BC ,CD 是中线, ∴∠ACD =∠BCD =45°,∠ACF =∠BCE =90°,∴∠DCF =∠DCE =135°,在△DCF 和△DCE 中,{CF =CE ∠DCF =∠DCE DC =DC,∴△DCF ≌△DCE (SAS )∴DE =DF ;(2)证明:∵∠DCF =135°,∴∠F +∠CDF =45°,∵∠FDE =45°,∴∠CDE +∠CDF =45°,∴∠F =∠CDE ,∵∠DCF =∠DCE ,∠F =∠CDE ,∴△FCD ∽△DCE ,∴CF CD =CD CE ,∴CD 2=CE •CF ;(3)解:过点D 作DG ⊥BC 于G ,∵∠DCB =45°,∴GC =GD =√22CD =√2,由(2)可知,CD 2=CE •CF ,∴CE =CD 2CF =2√2,∵∠ECN =∠DGN ,∠ENC =∠DNG ,∴△ENC ∽△DNG ,∴CN NG =CE DG ,即√2−NG NG =√2√2, 解得,NG =√23,由勾股定理得,DN =√DG 2+NG 2=2√53.25.(10分)如图,抛物线y =ax 2+bx +4交x 轴于A (﹣3,0),B (4,0)两点,与y 轴交于点C ,AC ,BC .M 为线段OB 上的一个动点,过点M 作PM ⊥x 轴,交抛物线于点P ,交BC 于点Q .(1)求抛物线的表达式;(2)过点P 作PN ⊥BC ,垂足为点N .设M 点的坐标为M (m ,0),请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?(3)试探究点M 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标;若不存在,请说明理由.解:(1)将点A 、B 的坐标代入抛物线表达式得{9a −3b +4=016a +4b +4=0,解得{a =−13b =13, 故抛物线的表达式为:y =−13x 2+13x +4;(2)由抛物线的表达式知,点C (0,4),由点B 、C 的坐标得,直线BC 的表达式为:y =﹣x +4;设点M (m ,0),则点P (m ,−13m 2+13m +4),点Q (m ,﹣m +4),∴PQ =−13m 2+13m +4+m ﹣4=−13m 2+43m ,∵OB =OC ,故∠ABC =∠OCB =45°,∴∠PQN =∠BQM =45°,∴PN =PQ sin45°=√22(−13m 2+43m )=−√26(m ﹣2)2+2√23,∵−√26<0,故当m =2时,PN 有最大值为2√23;(3)存在,理由:点A 、C 的坐标分别为(﹣3,0)、(0,4),则AC =5,①当AC =CQ 时,过点Q 作QE ⊥y 轴于点E ,则CQ 2=CE 2+EQ 2,即m 2+[4﹣(﹣m +4)]2=25,解得:m =±5√22(舍去负值), 故点Q (5√22,8−5√22); ②当AC =AQ 时,则AQ =AC =5,在Rt △AMQ 中,由勾股定理得:[m ﹣(﹣3)]2+(﹣m +4)2=25,解得:m =1或0(舍去0),故点Q (1,3);③当CQ =AQ 时,则2m 2=[m =(﹣3)]2+(﹣m +4)2,解得:m =252(舍去); 综上,点Q 的坐标为(1,3)或(5√22,8−5√22).。
2020年山东枣庄中考数学试题及答案
2020年山东枣庄中考数学试题及答案一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.(3分)﹣的绝对值是()A.﹣B.﹣2 C.D.22.(3分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°3.(3分)计算﹣﹣(﹣)的结果为()A.﹣B.C.﹣D.4.(3分)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0 C.a+b>0 D.1﹣a>15.(3分)不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是()A.B.C.D.6.(3分)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC =6,AC=5,则△ACE的周长为()A.8 B.11 C.16 D.177.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b28.(3分)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.9.(3分)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4 B.x=5 C.x=6 D.x=710.(3分)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB =∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣,3)B.(﹣3,)C.(﹣,2+)D.(﹣1,2+)11.(3分)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.3B.4 C.5 D.612.(3分)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.(4分)若a+b=3,a2+b2=7,则ab=.14.(4分)已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a =.15.(4分)如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=.16.(4分)人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17.(4分)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.18.(4分)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.(8分)解不等式组并求它的所有整数解的和.20.(8分)欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V(Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V 4 6 8棱数E 6 12面数F 4 5 8 (2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:.21.(8分)2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6 a1.6≤x<2.0 122.0≤x<2.4 b2.4≤x<2.8 10请根据图表中所提供的信息,完成下列问题:(1)表中a=,b=;(2)样本成绩的中位数落在范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?22.(8分)如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,OB,求△ABO的面积.23.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F 在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.24.(10分)在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=,求DN的长.25.(10分)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.【解答】解:﹣的绝对值为.故选:C.2.【解答】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.3.【解答】解:﹣﹣(﹣)==﹣.故选:A.4.【解答】解:A、|a|>1,故本选项错误;B、∵a<0,b>0,∴ab<0,故本选项错误;C、a+b<0,故本选项错误;D、∵a<0,∴1﹣a>1,故本选项正确;故选:D.5.【解答】解:用列表法表示所有可能出现的情况如下:共有9种可能出现的结果,其中两次都是白球的有4种,∴P(两次都是白球)=,故选:A.6.【解答】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:B.7.【解答】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.故选:C.8.【解答】解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折,平移,旋转得到.故选:B.9.【解答】解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.10.【解答】解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=,∴OH=2+1=3,∴B′(﹣,3),故选:A.11.【解答】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:D.12.【解答】解:抛物线开口向下,a<0,对称轴为x=﹣=1,因此b>0,与y轴交于正半轴,因此c>0,于是有:ac<0,因此①正确;由x=﹣=1,得2a+b=0,因此③不正确,抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,由对称轴x=1,抛物线与x轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,综上所述,正确的结论有①②④,故选:C.二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.【解答】解:(a+b)2=32=9,(a+b)2=a2+b2+2ab=9.∵a2+b2=7,∴2ab=2,ab=1,故答案为:1.14.【解答】解:把x=0代入(a﹣1)x2﹣2x+a2﹣1=0得a2﹣1=0,解得a=±1,∵a﹣1≠0,∴a=﹣1.故答案为﹣1.15.【解答】解:∵PA切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∴∠B=∠AOP=27°.故答案为:27°.16.【解答】解:∵AB=AC=2m,AD⊥BC,∴∠ADC=90°,∴AD=AC•sin50°=2×0.77≈1.5(m),故答案为1.5.17.【解答】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE===2,∴四边形BEDF的周长=4DE=4×=8,故答案为:8.18.【解答】解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,∴a=4,b=6,∴该五边形的面积S=4+×6﹣1=6,故答案为:6.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.【解答】解:,由①得,x≥﹣3,由②得,x<2,所以,不等式组的解集是﹣3≤x<2,所以,它的整数解为:﹣3,﹣2,﹣1,0,1,所以,所有整数解的和为﹣5.20.【解答】解:(1)填表如下:名称三棱锥三棱柱正方体正八面体图形顶点数V 4 6 8 6棱数E 6 9 12 12面数F 4 5 6 8 (2)∵4+4﹣6=2,6+5﹣9=2,8+6﹣12=2,6+8﹣12=2,…,∴V+F﹣E=2.即V、E、F之间的关系式为:V+F﹣E=2.故答案为:6,9,12,6,V+F﹣E=2.21.【解答】解:(1)由统计图得,a=8,b=50﹣8﹣12﹣10=20,故答案为:8,20;(2)由中位数的意义可得,50个数据从小到大排列处在中间位置的两个数在2.0≤x<2.4组内,故答案为:2.0≤x<2.4;(3)补全频数分布直方图如图所示:(4)1200×=240(人),答:该校1200名学生中立定跳远成绩在2.4≤x<2.8范围内的有240人.22.【解答】解:(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2.4),将点A的坐标代入反比例函数表达式得:4=,解得:k=﹣8,故反比例函数表达式为:y=﹣②;(2)联立①②并解得:x=﹣2或﹣8,当x=﹣8时,y=x+5=1,故点B(﹣8,1),设y=x+5交x轴于点C(﹣10,0),过点A、B分别作x轴的垂线交于点M、N,则S△AOB=S△AOC﹣S△BOC=OC•AM OC•BN=.23.【解答】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴2∠1=∠CAB.∵∠BAC=2∠CBF,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线;(2)解:过C作CH⊥BF于H,∵AB=AC,⊙O的直径为4,∴AC=4,∵CF=6,∠ABF=90°,∴BF===2,∵∠CHF=∠ABF,∠F=∠F,∴△CHF∽△ABF,∴=,∴=,∴CH=,∴HF===,∴BH=BF﹣HF=2﹣=,∴tan∠CBF===.24.【解答】(1)证明:∵∠ACB=90°,AC=BC,CD是中线,∴∠ACD=∠BCD=45°,∠ACF=∠BCE=90°,∴∠DCF=∠DCE=135°,在△DCF和△DCE中,,∴△DCF≌△DCE(SAS)∴DE=DF;(2)证明:∵∠DCF=135°,∴∠F+∠CDF=45°,∵∠FDE=45°,∴∠CDE+∠CDF=45°,∴∠F=∠CDE,∵∠DCF=∠DCE,∠F=∠CDE,∴△FCD∽△DCE,∴=,∴CD2=CE•CF;(3)解:过点D作DG⊥BC于G,∵∠DCB=45°,∴GC=GD=CD=,由(2)可知,CD2=CE•CF,∴CE==2,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△ENC∽△DNG,∴=,即=,解得,NG=,由勾股定理得,DN==.25.【解答】解:(1)将点A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=﹣x2+x+4;(2)由抛物线的表达式知,点C(0,4),由点B、C的坐标得,直线BC的表达式为:y=﹣x+4;设点M(m,0),则点P(m,﹣m2+m+4),点Q(m,﹣m+4),∴PQ=﹣m2+m+4+m﹣4=﹣m2+m,∵OB=OC,故∠ABC=∠OCB=45°,∴∠PQN=∠BQM=45°,∴PN=PQ sin45°=(﹣m2+m)=﹣(m﹣2)2+,∵﹣<0,故当m=2时,PN有最大值为;(3)存在,理由:点A、C的坐标分别为(﹣3,0)、(0,4),则AC=5,①当AC=CQ时,过点Q作QE⊥y轴于点E,则CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,解得:m=±(舍去负值),故点Q(,);②当AC=AQ时,则AQ=AC=5,在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或0(舍去0),故点Q(1,3);③当CQ=AQ时,则2m2=[m=(﹣3)]2+(﹣m+4)2,解得:m=(舍去);综上,点Q的坐标为(1,3)或(,).。
20山东枣庄市初中学业水平考试数学试题
2020年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.(3分)﹣的绝对值是()A.﹣B.﹣2C.D.22.(3分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°3.(3分)计算﹣﹣(﹣)的结果为()A.﹣B.C.﹣D.4.(3分)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1B.ab>0C.a+b>0D.1﹣a>15.(3分)不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是()A.B.C.D.6.(3分)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为()A.8B.11C.16D.177.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b28.(3分)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.9.(3分)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=710.(3分)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB =∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣,3)B.(﹣3,)C.(﹣,2+)D.(﹣1,2+)11.(3分)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B 恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.3B.4C.5D.612.(3分)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.(4分)若a+b=3,a2+b2=7,则ab=.14.(4分)已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=.15.(4分)如图,AB是⊙O的直径,P A切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P =36°,则∠B=.16.(4分)人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17.(4分)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.18.(4分)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.(8分)解不等式组并求它的所有整数解的和.20.(8分)欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V(Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V468棱数E612面数F458(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:.21.(8分)2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=,b=;(2)样本成绩的中位数落在范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?22.(8分)如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,OB,求△ABO 的面积.23.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.24.(10分)在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=,求DN的长.25.(10分)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.2020年山东省枣庄市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.【解答】解:﹣的绝对值为.故选:C.2.【解答】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.3.【解答】解:﹣﹣(﹣)==﹣.故选:A.4.【解答】解:A、|a|>1,故本选项错误;B、∵a<0,b>0,∴ab<0,故本选项错误;C、a+b<0,故本选项错误;D、∵a<0,∴1﹣a>1,故本选项正确;故选:D.5.【解答】解:用列表法表示所有可能出现的情况如下:共有9种可能出现的结果,其中两次都是白球的有4种,∴P(两次都是白球)=,故选:A.6.【解答】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:B.7.【解答】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.故选:C.8.【解答】解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折,平移,旋转得到.故选:B.9.【解答】解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.10.【解答】解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=,∴OH=2+1=3,∴B′(﹣,3),故选:A.11.【解答】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:D.12.【解答】解:抛物线开口向下,a<0,对称轴为x=﹣=1,因此b>0,与y轴交于正半轴,因此c>0,于是有:ac<0,因此①正确;由x=﹣=1,得2a+b=0,因此③不正确,抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,由对称轴x=1,抛物线与x轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,综上所述,正确的结论有①②④,故选:C.二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.【解答】解:(a+b)2=32=9,(a+b)2=a2+b2+2ab=9.∵a2+b2=7,∴2ab=2,ab=1,故答案为:1.14.【解答】解:把x=0代入(a﹣1)x2﹣2x+a2﹣1=0得a2﹣1=0,解得a=±1,∵a﹣1≠0,∴a=﹣1.故答案为﹣1.15.【解答】解:∵P A切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∴∠B=∠AOP=27°.故答案为:27°.16.【解答】解:∵AB=AC=2m,AD⊥BC,∴∠ADC=90°,∴AD=AC•sin50°=2×0.77≈1.5(m),故答案为1.5.17.【解答】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE===2,∴四边形BEDF的周长=4DE=4×=8,故答案为:8.18.【解答】解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,∴a=4,b=6,∴该五边形的面积S=4+×6﹣1=6,故答案为:6.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.【解答】解:,由①得,x≥﹣3,由②得,x<2,所以,不等式组的解集是﹣3≤x<2,所以,它的整数解为:﹣3,﹣2,﹣1,0,1,所以,所有整数解的和为﹣5.20.【解答】解:(1)填表如下:名称三棱锥三棱柱正方体正八面体图形顶点数V4686棱数E691212面数F4568(2)∵4+4﹣6=2,6+5﹣9=2,8+6﹣12=2,6+8﹣12=2,…,∴V+F﹣E=2.即V、E、F之间的关系式为:V+F﹣E=2.故答案为:6,9,12,6,V+F﹣E=2.21.【解答】解:(1)由统计图得,a=8,b=50﹣8﹣12﹣10=20,故答案为:8,20;(2)由中位数的意义可得,50个数据从小到大排列处在中间位置的两个数在2.0≤x<2.4组内,故答案为:2.0≤x<2.4;(3)补全频数分布直方图如图所示:(4)1200×=240(人),答:该校1200名学生中立定跳远成绩在2.4≤x<2.8范围内的有240人.22.【解答】解:(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2.4),将点A的坐标代入反比例函数表达式得:4=,解得:k=﹣8,故反比例函数表达式为:y=﹣②;(2)联立①②并解得:x=﹣2或﹣8,当x=﹣8时,y=x+5=1,故点B(﹣8,1),设y=x+5交x轴于点C(﹣10,0),过点A、B分别作x轴的垂线交于点M、N,则S△AOB=S△AOC﹣S△BOC=OC•AM OC•BN=.23.【解答】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴2∠1=∠CAB.∵∠BAC=2∠CBF,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线;(2)解:过C作CH⊥BF于H,∵AB=AC,⊙O的直径为4,∴AC=4,∵CF=6,∠ABF=90°,∴BF===2,∵∠CHF=∠ABF,∠F=∠F,∴△CHF∽△ABF,∴=,∴=,∴CH=,∴HF===,∴BH=BF﹣HF=2﹣=,∴tan∠CBF===.24.【解答】(1)证明:∵∠ACB=90°,AC=BC,CD是中线,∴∠ACD=∠BCD=45°,∠ACF=∠BCE=90°,∴∠DCF=∠DCE=135°,在△DCF和△DCE中,,∴△DCF≌△DCE(SAS)∴DE=DF;(2)证明:∵∠DCF=135°,∴∠F+∠CDF=45°,∵∠FDE=45°,∴∠CDE+∠CDF=45°,∴∠F=∠CDE,∵∠DCF=∠DCE,∠F=∠CDE,∴△FCD∽△DCE,∴=,∴CD2=CE•CF;(3)解:过点D作DG⊥BC于G,∵∠DCB=45°,∴GC=GD=CD=,由(2)可知,CD2=CE•CF,∴CE==2,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△ENC∽△DNG,∴=,即=,解得,NG=,由勾股定理得,DN==.25.【解答】解:(1)将点A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=﹣x2+x+4;(2)由抛物线的表达式知,点C(0,4),由点B、C的坐标得,直线BC的表达式为:y=﹣x+4;设点M(m,0),则点P(m,﹣m2+m+4),点Q(m,﹣m+4),∴PQ=﹣m2+m+4+m﹣4=﹣m2+m,∵OB=OC,故∠ABC=∠OCB=45°,∴∠PQN=∠BQM=45°,∴PN=PQ sin45°=(﹣m2+m)=﹣(m﹣2)2+,∵﹣<0,故当m=2时,PN有最大值为;(3)存在,理由:点A、C的坐标分别为(﹣3,0)、(0,4),则AC=5,①当AC=CQ时,过点Q作QE⊥y轴于点E,则CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,解得:m=±(舍去负值),故点Q(,);②当AC=AQ时,则AQ=AC=5,在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或0(舍去0),故点Q(1,3);③当CQ=AQ时,则2m2=[m=(﹣3)]2+(﹣m+4)2,解得:m=(舍去);综上,点Q的坐标为(1,3)或(,).。
2020年山东省枣庄市中考数学试卷(教师版含解析)
参考答案一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.﹣的绝对值是()A.﹣B.﹣2 C.D.2【分析】根据绝对值的定义直接计算即可解答.解:﹣的绝对值为.故选:C.2.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=60°,进而得出答案.解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.3.计算﹣﹣(﹣)的结果为()A.﹣B.C.﹣D.【分析】根据有理数的减法法则计算即可.解:﹣﹣(﹣)==﹣.故选:A.4.实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0 C.a+b>0 D.1﹣a>1【分析】直接利用a,b在数轴上位置进而分别分析得出答案.解:A、|a|>1,故本选项错误;B、∵a<0,b>0,∴ab<0,故本选项错误;C、a+b<0,故本选项错误;D、∵a<0,∴1﹣a>1,故本选项正确;故选:D.5.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是()A.B.C.D.【分析】列举出所有可能出现的结果,进而求出“两次都是白球”的概率.解:用列表法表示所有可能出现的情况如下:共有9种可能出现的结果,其中两次都是白球的有4种,∴P(两次都是白球)=,故选:A.6.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为()A.8 B.11 C.16 D.17【分析】在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC =6,AC=5,则△ACE的周长为解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:B.7.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【分析】中间部分的四边形是正方形,表示出边长,则面积可以求得.解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.故选:C.8.如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.【分析】根据平移,旋转的性质判断即可.解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折,平移,旋转得到.故选:B.9.对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4 B.x=5 C.x=6 D.x=7【分析】所求方程利用题中的新定义化简,求出解即可.解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.10.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB =∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣,3) B.(﹣3,) C.(﹣,2+) D.(﹣1,2+) 【分析】如图,过点B′作B′H⊥y轴于H.解直角三角形求出′H,B′H即可.解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=,∴OH=2+1=3,∴B′(﹣,3),故选:A.11.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B 恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.3B.4 C.5 D.6【分析】根据折叠的性质得到AF=AB,∠AFE=∠B=90°,根据等腰三角形的性质得到AF=CF,于是得到结论.解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:D.12.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A.1个B.2个C.3个D.4个【分析】根据抛物线的开口方向、对称轴、与x轴、y轴的交点,综合进行判断即可.解:抛物线开口向下,a<0,对称轴为x=﹣=1,因此b>0,与y轴交于正半轴,因此c>0,于是有:ac<0,因此①正确;由x=﹣=1,得2a+b=0,因此③不正确,抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,由对称轴x=1,抛物线与x轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,综上所述,正确的结论有①②④,故选:C.二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.若a+b=3,a2+b2=7,则ab=1.【分析】根据完全平方公式,可得答案.解:(a+b)2=32=9,(a+b)2=a2+b2+2ab=9.∵a2+b2=7,∴2ab=2,ab=1,故答案为:1.14.已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=﹣1.【分析】根据一元二次方程的解的定义把x=0代入原方程得到关于a的一元二次方程,解得a=±1,然后根据一元二次方程的定义确定a的值.解:把x=0代入(a﹣1)x2﹣2x+a2﹣1=0得a2﹣1=0,解得a=±1,∵a﹣1≠0,∴a=﹣1.故答案为﹣1.15.如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P =36°,则∠B=27°.【分析】直接利用切线的性质得出∠OAP=90°,再利用三角形内角和定理得出∠AOP=54°,结合圆周角定理得出答案.解:∵PA切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∴∠B=∠AOP=27°.故答案为:27°.16.人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是 1.5m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【分析】在Rt△ADC中,求出AD即可.解:∵AB=AC=2m,AD⊥BC,∴∠ADC=90°,∴AD=AC•sin50°=2×0.77≈1.5(m),故答案为1.5.17.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是8.【分析】连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD⊥EF,可证得四边形BEDF为菱形;根据勾股定理计算DE的长,可得结论.解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE===2,∴四边形BEDF的周长=4DE=4×=8,故答案为:8.18.各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=6.【分析】分别统计出多边形内部的格点数a和边界上的格点数b,再代入公式S=a+b ﹣1,即可得出格点多边形的面积.解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,∴a=4,b=6,∴该五边形的面积S=4+×6﹣1=6,故答案为:6.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.解不等式组并求它的所有整数解的和.【分析】先求出两个不等式的解集,再求其公共解,然后找出整数求和即可.解:,由①得,x≥﹣3,由②得,x<2,所以,不等式组的解集是﹣3≤x<2,所以,它的整数解为:﹣3,﹣2,﹣1,0,1,所以,所有整数解的和为﹣5.20.欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V(Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V 4 6 8 6棱数E 6 912 12面数F 4 5 68(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:V+F﹣E=2.【分析】(1)根据图形数出顶点数,棱数,面数,填入表格即可;(2)根据表格数据,顶点数与面数的和减去棱数等于2进行解答.解:(1)填表如下:名称三棱锥三棱柱正方体正八面体图形顶点数V 4 6 8 6棱数E 6 9 12 12面数F 4 5 6 8(2)∵4+4﹣6=2,6+5﹣9=2,8+6﹣12=2,6+8﹣12=2,…,∴V+F﹣E=2.即V、E、F之间的关系式为:V+F﹣E=2.故答案为:6,9,12,6,V+F﹣E=2.21.2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6 a1.6≤x<2.0 122.0≤x<2.4 b2.4≤x<2.8 10请根据图表中所提供的信息,完成下列问题:(1)表中a=8,b=20;(2)样本成绩的中位数落在 2.0≤x<2.4范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?【分析】(1)由频数分布直方图可得a=8,由频数之和为50求出b的值;(2)根据中位数的意义,找出第25、26位的两个数落在哪个范围即可;(3)求出b的值,就可以补全频数分布直方图;(4)样本估计总体,样本中立定跳远成绩在2.4≤x<2.8范围内的占,因此估计总体1200人的是立定跳远成绩在2.4≤x<2.8范围内的人数.解:(1)由统计图得,a=8,b=50﹣8﹣12﹣10=20,故答案为:8,20;(2)由中位数的意义可得,50个数据从小到大排列处在中间位置的两个数在2.0≤x<2.4组内,故答案为:2.0≤x<2.4;(3)补全频数分布直方图如图所示:(4)1200×=240(人),答:该校1200名学生中立定跳远成绩在2.4≤x<2.8范围内的有240人.22.如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,OB,求△ABO的面积.【分析】(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2.4),进而求解;(2)S△AOB=S△AOC﹣S△BOC=OC•AM OC•BN,即可求解.解:(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2.4),将点A的坐标代入反比例函数表达式得:4=,解得:k=﹣8,故反比例函数表达式为:y=﹣②;(2)联立①②并解得:x=﹣2或﹣8,当x=﹣8时,y=x+5=1,故点B(﹣8,1),设y=x+5交x轴于点C(﹣10,0),过点A、B分别作x轴的垂线交于点M、N,则S△AOB=S△AOC﹣S△BOC=OC•AM OC•BN=.23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.【分析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°,于是得到结论;(2)过C作CH⊥BF于H,根据勾股定理得到BF===2,根据相似三角形的性质得到CH=,根据三角函数的定义即可得到结论.【解答】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴2∠1=∠CAB.∵∠BAC=2∠CBF,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线;(2)解:过C作CH⊥BF于H,∵AB=AC,⊙O的直径为4,∴AC=4,∵CF=6,∠ABF=90°,∴BF===2,∵∠CHF=∠ABF,∠F=∠F,∴△CHF∽△ABF,∴=,∴=,∴CH=,∴HF===,∴BH=BF﹣HF=2﹣=,∴tan∠CBF===.24.在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D 旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=,求DN的长.【分析】(1)根据等腰直角三角形的性质得到∠ACD=∠BCD=45°,证明△DCF≌△DCE,根据全等三角形的对应边相等证明结论;(2)证明△FCD∽△DCE,根据相似三角形的性质列出比例式,整理即可证明结论;(3)作DG⊥BC,根据等腰直角三角形的性质求出DG,由(2)的结论求出CE,证明△ENC∽△DNG,根据相似三角形的性质求出NG,根据勾股定理计算,得到答案.【解答】(1)证明:∵∠ACB=90°,AC=BC,CD是中线,∴∠ACD=∠BCD=45°,∠ACF=∠BCE=90°,∴∠DCF=∠DCE=135°,在△DCF和△DCE中,,∴△DCF≌△DCE(SAS)∴DE=DF;(2)证明:∵∠DCF=135°,∴∠F+∠CDF=45°,∵∠FDE=45°,∴∠CDE+∠CDF=45°,∴∠F=∠CDE,∵∠DCF=∠DCE,∠F=∠CDE,∴△FCD∽△DCE,∴=,∴CD2=CE•CF;(3)解:过点D作DG⊥BC于G,∵∠DCB=45°,∴GC=GD=CD=,由(2)可知,CD2=CE•CF,∴CE==2,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△ENC∽△DNG,∴=,即=,解得,NG=,由勾股定理得,DN==.25.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)PN=PQ sin45°=(﹣m2+m)=﹣(m﹣2)2+,即可求解;(3)分AC=CQ、AC=AQ、CQ=AQ三种情况,分别求解即可.解:(1)将点A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=﹣x2+x+4;(2)由抛物线的表达式知,点C(0,4),由点B、C的坐标得,直线BC的表达式为:y=﹣x+4;设点M(m,0),则点P(m,﹣m2+m+4),点Q(m,﹣m+4),∴PQ=﹣m2+m+4+m﹣4=﹣m2+m,∵OB=OC,故∠ABC=∠OCB=45°,∴∠PQN=∠BQM=45°,∴PN=PQ sin45°=(﹣m2+m)=﹣(m﹣2)2+,∵﹣<0,故当m=2时,PN有最大值为;(3)存在,理由:点A、C的坐标分别为(﹣3,0)、(0,4),则AC=5,①当AC=CQ时,过点Q作QE⊥y轴于点E,则CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,解得:m=±(舍去负值),故点Q(,);②当AC=AQ时,则AQ=AC=5,在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或0(舍去0),故点Q(1,3);③当CQ=AQ时,则2m2=[m=(﹣3)]2+(﹣m+4)2,解得:m=(舍去);综上,点Q的坐标为(1,3)或(,).。
2020年山东枣庄中考数学题及答案
2020年山东枣庄中考数学真题及答案一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.(3分)﹣的绝对值是()A.﹣B.﹣2 C.D.22.(3分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°3.(3分)计算﹣﹣(﹣)的结果为()A.﹣B.C.﹣D.4.(3分)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0 C.a+b>0 D.1﹣a>15.(3分)不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是()A.B.C.D.6.(3分)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC =6,AC=5,则△ACE的周长为()A.8 B.11 C.16 D.177.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b28.(3分)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.9.(3分)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4 B.x=5 C.x=6 D.x=710.(3分)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB =∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣,3)B.(﹣3,)C.(﹣,2+)D.(﹣1,2+)11.(3分)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.3B.4 C.5 D.612.(3分)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.(4分)若a+b=3,a2+b2=7,则ab=.14.(4分)已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a =.15.(4分)如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=.16.(4分)人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17.(4分)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.18.(4分)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.(8分)解不等式组并求它的所有整数解的和.20.(8分)欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V(Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V 4 6 8棱数E 6 12面数F 4 5 8 (2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:.21.(8分)2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6 a1.6≤x<2.0 122.0≤x<2.4 b2.4≤x<2.8 10请根据图表中所提供的信息,完成下列问题:(1)表中a=,b=;(2)样本成绩的中位数落在范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?22.(8分)如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,OB,求△ABO的面积.23.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F 在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.24.(10分)在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=,求DN的长.25.(10分)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.【解答】解:﹣的绝对值为.故选:C.2.【解答】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.3.【解答】解:﹣﹣(﹣)==﹣.故选:A.4.【解答】解:A、|a|>1,故本选项错误;B、∵a<0,b>0,∴ab<0,故本选项错误;C、a+b<0,故本选项错误;D、∵a<0,∴1﹣a>1,故本选项正确;故选:D.5.【解答】解:用列表法表示所有可能出现的情况如下:共有9种可能出现的结果,其中两次都是白球的有4种,∴P(两次都是白球)=,故选:A.6.【解答】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:B.7.【解答】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.故选:C.8.【解答】解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折,平移,旋转得到.故选:B.9.【解答】解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.10.【解答】解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=,∴OH=2+1=3,∴B′(﹣,3),故选:A.11.【解答】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:D.12.【解答】解:抛物线开口向下,a<0,对称轴为x=﹣=1,因此b>0,与y轴交于正半轴,因此c>0,于是有:ac<0,因此①正确;由x=﹣=1,得2a+b=0,因此③不正确,抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,由对称轴x=1,抛物线与x轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,综上所述,正确的结论有①②④,故选:C.二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.【解答】解:(a+b)2=32=9,(a+b)2=a2+b2+2ab=9.∵a2+b2=7,∴2ab=2,ab=1,故答案为:1.14.【解答】解:把x=0代入(a﹣1)x2﹣2x+a2﹣1=0得a2﹣1=0,解得a=±1,∵a﹣1≠0,∴a=﹣1.故答案为﹣1.15.【解答】解:∵PA切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∴∠B=∠AOP=27°.故答案为:27°.16.【解答】解:∵AB=AC=2m,AD⊥BC,∴∠ADC=90°,∴AD=AC•sin50°=2×0.77≈1.5(m),故答案为1.5.17.【解答】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE===2,∴四边形BEDF的周长=4DE=4×=8,故答案为:8.18.【解答】解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,∴a=4,b=6,∴该五边形的面积S=4+×6﹣1=6,故答案为:6.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.【解答】解:,由①得,x≥﹣3,由②得,x<2,所以,不等式组的解集是﹣3≤x<2,所以,它的整数解为:﹣3,﹣2,﹣1,0,1,所以,所有整数解的和为﹣5.20.【解答】解:(1)填表如下:名称三棱锥三棱柱正方体正八面体图形顶点数V 4 6 8 6棱数E 6 9 12 12面数F 4 5 6 8 (2)∵4+4﹣6=2,6+5﹣9=2,8+6﹣12=2,6+8﹣12=2,…,∴V+F﹣E=2.即V、E、F之间的关系式为:V+F﹣E=2.故答案为:6,9,12,6,V+F﹣E=2.21.【解答】解:(1)由统计图得,a=8,b=50﹣8﹣12﹣10=20,故答案为:8,20;(2)由中位数的意义可得,50个数据从小到大排列处在中间位置的两个数在2.0≤x<2.4组内,故答案为:2.0≤x<2.4;(3)补全频数分布直方图如图所示:(4)1200×=240(人),答:该校1200名学生中立定跳远成绩在2.4≤x<2.8范围内的有240人.22.【解答】解:(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2.4),将点A的坐标代入反比例函数表达式得:4=,解得:k=﹣8,故反比例函数表达式为:y=﹣②;(2)联立①②并解得:x=﹣2或﹣8,当x=﹣8时,y=x+5=1,故点B(﹣8,1),设y=x+5交x轴于点C(﹣10,0),过点A、B分别作x轴的垂线交于点M、N,则S△AOB=S△AOC﹣S△BOC=OC•AM OC•BN=.23.【解答】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴2∠1=∠CAB.∵∠BAC=2∠CBF,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线;(2)解:过C作CH⊥BF于H,∵AB=AC,⊙O的直径为4,∴AC=4,∵CF=6,∠ABF=90°,∴BF===2,∵∠CHF=∠ABF,∠F=∠F,∴△CHF∽△ABF,∴=,∴=,∴CH=,∴HF===,∴BH=BF﹣HF=2﹣=,∴tan∠CBF===.24.【解答】(1)证明:∵∠ACB=90°,AC=BC,CD是中线,∴∠ACD=∠BCD=45°,∠ACF=∠BCE=90°,∴∠DCF=∠DCE=135°,在△DCF和△DCE中,,∴△DCF≌△DCE(SAS)∴DE=DF;(2)证明:∵∠DCF=135°,∴∠F+∠CDF=45°,∵∠FDE=45°,∴∠CDE+∠CDF=45°,∴∠F=∠CDE,∵∠DCF=∠DCE,∠F=∠CDE,∴△FCD∽△DCE,∴=,∴CD2=CE•CF;(3)解:过点D作DG⊥BC于G,∵∠DCB=45°,∴GC=GD=CD=,由(2)可知,CD2=CE•CF,∴CE==2,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△ENC∽△DNG,∴=,即=,解得,NG=,由勾股定理得,DN==.25.【解答】解:(1)将点A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=﹣x2+x+4;(2)由抛物线的表达式知,点C(0,4),由点B、C的坐标得,直线BC的表达式为:y=﹣x+4;设点M(m,0),则点P(m,﹣m2+m+4),点Q(m,﹣m+4),∴PQ=﹣m2+m+4+m﹣4=﹣m2+m,∵OB=OC,故∠ABC=∠OCB=45°,∴∠PQN=∠BQM=45°,∴PN=PQ sin45°=(﹣m2+m)=﹣(m﹣2)2+,∵﹣<0,故当m=2时,PN有最大值为;(3)存在,理由:点A、C的坐标分别为(﹣3,0)、(0,4),则AC=5,①当AC=CQ时,过点Q作QE⊥y轴于点E,则CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,解得:m=±(舍去负值),故点Q(,);②当AC=AQ时,则AQ=AC=5,在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或0(舍去0),故点Q(1,3);③当CQ=AQ时,则2m2=[m=(﹣3)]2+(﹣m+4)2,解得:m=(舍去);综上,点Q的坐标为(1,3)或(,).。
2020年枣庄市中考数学试题解析
2020年枣庄市初中学业水平考试数学试题第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.12-的绝对值是()A. -2B.12- C. 2 D.12【答案】D【解析】【分析】直接利用绝对值的定义得出答案.【详解】解:12-的绝对值是12.故选:D.【点睛】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,,F=∠ACB=90°,则,DBC的度数为( )A. 10°B. 15°C. 18°D. 30°【答案】B【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,,ABC=30°,,AB,CF,,,ABD=,EDF=45°,,,DBC=45°,30°=15°,故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.3.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A. 12- B. 12 C. 56- D. 56【答案】A【解析】【分析】根据有理数的加减运算法则即可解答. 【详解】解:2121413136366662⎛⎫---=-+=-+=-=- ⎪⎝⎭, 故选:A .【点睛】本题考查了有理数的加减运算,解题的关键是掌握有理数的运算法则.4.实数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是( )A. ||1a <B. 0ab >C. 0a b +>D. 11a -> 【答案】D【解析】【分析】直接利用a ,b 在数轴上位置进而分别分析得出答案.【详解】解:由数轴上a 与1的位置可知:||1a >,故选项A 错误;因为a <0,b >0,所以0ab <,故选项B 错误;因为a <0,b >0,所以0a b +<,故选项C 错误;因为a <0,则11a ->,故选项D 正确;故选:D .【点睛】此题主要考查了根据点在数轴的位置判断式子的正误,正确结合数轴分析是解题关键. 5.布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是( ) A. 49 B. 29 C. 23 D. 13【答案】A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得两次都摸到白球的情况,再利用概率公式求解即可求得答案.【详解】解:画树状图得:则共有9种等可能的结果,两次都摸到白球的有4种情况,∴两次都摸到白球的概率为49.故选A,【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.6.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为()A. 8B. 11C. 16D. 17【答案】B【解析】【分析】根据线段垂直平分线的性质得AE=BE,然后利用等量代换即可得到△ACE的周长=AC+BC,再把BC=6,AC=5代入计算即可.【详解】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.7. 图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是A. B. ()2a b - C. D.【答案】C【解析】试题分析:由题意可得,正方形的边长为a b +,故正方形的面积为()2a b +.又,原矩形的面积为2a 2b 4ab ⋅=,,中间空的部分的面积=()()22a b 4ab a b +-=-.故选C .8.在下图的四个三角形中,不能由ABC 经过旋转或平移得到的是( )A. B. C. D.【答案】B【解析】【分析】根据平移和旋转的性质解答.【详解】A 、可由,ABC 逆时针旋转一个角度得到;B 、可由,ABC 翻折得到;C 、可由,ABC 逆时针旋转一个角度得到;D 、可由,ABC 逆时针旋转一个角度得到.故选B .9.对于实数a 、b ,定义一种新运算“⊗”为:21a b a b⊗=-,这里等式右边是实数运算.例如:21113138⊗==--.则方程()2214⊗-=--x x 的解是( ) A. 4x =B. 5x =C. 6x =D. 7x = 【答案】B【解析】【分析】根据题中的新运算法则表达出方程,再根据分式方程的解法解答即可. 【详解】解:211(2)(2)4x x x ⊗-==--- ∴方程表达为:12144x x =--- 解得:5x =, 经检验,5x =是原方程的解,故选:B .【点睛】本题考查了新定义的运算法则的计算、分式方程的解法,解题的关键是理解题中给出的新运算法则及分式方程的解法.10.如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,30AOB B ∠=∠=︒,2OA =,将AOB ∆绕点O 逆时针旋转90︒,点B 的对应点B '的坐标是( )A. (1,2-B. ()C. (2+D. (- 【答案】B【解析】【分析】 如图,作B H y '⊥轴于H .解直角三角形求出B H ',OH 即可.【详解】如图,作B H y '⊥轴于H .由题意:2OA A B '''==,60B A H ''∠=︒,∴30A B H ''∠=︒, ∴112AH A B '''==,B H '= ∴3OH =,∴()B ',故选B .【点睛】本题考查坐标与图形变化﹣旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.11.如图,在矩形纸片ABCD 中,AB=3,点E 在边BC 上,将,ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若,EAC=,ECA ,则AC 的长是( )A. B. 6 C. 4 D. 5【答案】B【解析】∵将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,,AF=AB,,AFE=,B=90°,,EF,AC,,,EAC=,ECA,,AE=CE,,AF=CF,,AC=2AB=6,故选B,【点睛】本题考查了翻折变换的性质,矩形的性质等,得到EF 垂直平分AC 是解题的关键,12.如图,已知抛物线2y ax bx c =++的对称轴为直线1x =.给出下列结论:①0ac <; ②240b ac ->; ③20a b -=; ④0a b c -+=.其中,正确的结论有( )A. 1个B. 2个C. 3个D. 4个 【答案】C【解析】【分析】根据开口方向及抛物线与y轴交点的位置即可判断①;根据抛物线与x轴交点的个数即可判断②;根据对称轴为直线1x =,即可判断③;根据抛物线的对称性,可知抛物线经过点(-1,0),即可判断④.【详解】解:∵抛物线开口向下,则a <0,∵抛物线交于y 轴的正半轴,则c >0,∴ac <0,故①正确;∵抛物线与x轴有两个交点,∴240b ac ->,故②正确;∵抛物线的对称轴为直线1x =,则12b a-=,即2a=-b , ∴2a+b=0,故③错误;∵抛物线经过点(3,0),且对称轴为直线1x =,∴抛物线经过点(-1,0),则0a b c -+=,故④正确;∴正确的有①②④,共3个,故选:C .【点睛】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(0,c ).第Ⅱ卷(非选择题 共84分)二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分. 13.若a +b =3,a 2+b 2=7,则ab =_____.【答案】1【解析】【分析】根据完全平方公式,可得答案.【详解】(a +b )2=32=9,(a +b )2=a 2+b 2+2ab =9.∵a 2+b 2=7,∴2ab =2,ab =1,故答案为1.【点睛】本题考查了完全平方公式,利用完全平方公式是解题关键.14.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为_______.【答案】-1【解析】【分析】直接把0x =代入方程计算即可详解】0x =代入方程得:210a -=解得:1a =±∵22(1)210a x x a --+-=是关于x 的一元二次方程 ∴10,1a a -≠≠∴1a =-故答案为-1【点睛】本题考查一元二次方程解的定义,直接把方程得解代入即可求出参数值,需要注意的是一元二次方程的平方项系数不为015.如图,AB 是O 的直径,P A 切O 于点A ,线段PO 交O 于点C .连接BC ,若36P ∠=︒,则B ∠=________.【答案】27°【解析】【分析】连接AC ,根据直径所对的圆周角是直角、切线的定义得到B PAC ∠=∠,根据三角形外角的性质可得ACO P PAC P B ∠=∠+∠=∠+∠,因此可得9036B B ︒-∠=∠+︒,求解即可.详解】如图,连接AC ,AB 是O 的直径,,90ACB ∠=︒,∴90B BAC ∠+∠=︒,,P A 切O 于点A ,∴90BAP ∠=︒,,B PAC ∠=∠,,ACO P PAC ∠=∠+∠,90ACO BCO ACO B ∠+∠=∠+∠=︒,,9036B B ︒-∠=∠+︒,解得27B ∠=︒,故答案为:27︒.【点睛】本题考查直径所对的圆周角是直角、切线的性质、三角形外角的性质等内容,解题的关键是作出辅助线,得到关于B 的方程.16.如图,人字梯AB ,AC 的长都为2米.当50a =︒时,人字梯顶端高地面的高度AD 是____米(结果精确到0.1m .参考依据:sin500.77︒≈,cos500.64︒≈,tan50 1.19︒≈)【【答案】1.5.【解析】【分析】在Rt ADC ∆中,根据锐角三角函数正弦定义即可求得答案.【详解】在Rt ADC ∆中,∵2AC =,50ACD ∠=︒, ∴sin 50AD AC︒=, ∴sin5020.77 1.5AD AC =⨯︒=⨯≈.故答案为1.5.【点睛】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型. 17.如图,E ,F 是正方形ABCD 的对角线AC 上的两点,8AC =,2AE CF ==,则四边形BEDF 的周长是_____.【答案】【解析】【分析】连接BD 交AC 于点O ,则可证得OE OF =,OD OB =,可证四边形BEDF 为平行四边形,且BD EF ⊥,可证得四边形BEDF 为菱形;根据勾股定理计算DE 的长,可得结论.【详解】如图,连接BD 交AC 于点O ,,四边形ABCD 为正方形,,BD AC ⊥,OD OB OA OC ===,,2AE CF ==,,OA AE OC CF -=-,即OE OF =,,四边形BEDF 为平行四边形,且BD EF ⊥,,四边形BEDF 为菱形,,DE DF BE BF ===,,8AC BD ==,8422OE OF -===,由勾股定理得:DE ===,四边形BEDF 的周长44DE ==⨯=故答案为.【点睛】本题考查了正方形的性质、菱形的判定和性质及勾股定理,掌握对角线互相垂直平分的四边形为菱形是解题的关键.18.各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S 可用公式112S a b =+-(a 是多边形内的格点数,b 是多边形边界上的格点数)计算,这个公式称为“皮克(Pick )定理”.如图给出了一个格点五边形,则该五边形的面积S =________.【答案】6【解析】【分析】根据题目要求,数出五边形内部格点数量,五边形边上格点的数量,代入112S a b =+-计算即可.【详解】由图可知:五边形内部格点有,个,故4a =五边形边上格点有,个,故6b = ∴112S a b =+-=146162+⨯-= 故答案为:6.【点睛】本题考查了网格中不规则多边形的计算,按题目要求尽心计算即可. 三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.解不等式组4(1)713843x x x x +≤+⎧⎪-⎨-<⎪⎩,并求它的所有整数解的和. 【答案】−3⩽x<2,-5【解析】【分析】先求出两个不等式解集,再求其公共部分,然后找出整数解,即可求解.【详解】解不等式4(1)713x x ++,得3x -; 解不等式843x x --<,得2x <. 所以,不等式组的解集为32x -<.该不等式组的所有整数解为-3,-2,-1,0,1.所以,该不等式组的所有整数解的和为(3)(2)(1)015-+-+-++=-.【点睛】本题考查了解一元一次不等式组、一元一次不等式组的整数解,解决的关键是正确解出每个不等式的解集,然后根据限制条件求出不等式的整数解.20.欧拉(Euler ,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数(Vertex )、棱数E (Edge )、面数F (Flat surface )之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:的(2)分析表中的数据,你能发现V 、E 、F 之间有什么关系吗?请写出关系式:____________________________.【答案】(1)表格详见解析;(2)2V F E +-=【解析】【分析】(1)通过认真观察图象,即可一一判断;(2)从特殊到一般探究规律即可.【详解】解:(1)填表如下:(2)据上表中的数据规律发现,多面体的顶点数V 、棱数E 、面数F 之间存在关系式:2V F E +-=.【点睛】本题考查规律型问题,欧拉公式等知识,解题的关键是学会从特殊到一般探究规律的方法,属于中考常考题型.21.2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m )绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表 1.6 2.0x < 2.0 2.4x < 2.4 2.8x <学生立定跳远测试成绩的频数分布直方图请根据图表中所提供的信息,完成下列问题:(1)表中a =________,b =________;(2)样本成绩的中位数落在________范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4 2.8x <范围内的有多少人?【答案】(1)8a =,20b =;(2)2.0 2.4x <;(3)详见解析;(4)240人【解析】【分析】(1)根据频数分布直方图可以求得a 的值,再根据样本容量求出b 的值.(2)结合中位数的求法可以求出中位数落在哪一组.(3)根据(1)中的结果可以将频数分布直方图补充完整.(4)根据频数分步表中的数据可以求出该学校学生立定跳远成绩在2.4 2.8x <范围内的有多少人.【详解】解(1)由统计图可得8a =,508121020b =---=;(2)有50名学生进行测试,第25和26名的成绩和的平均数为中位数∴样本成绩的中位数落在2.0 2.4x <范围内;(3)由(1)知,20b =,补全的频数分布直方图如右图所示;学生立定跳远测试成绩的频数分布直方图(4)10120024050⨯=(人), 答:估计该学校学生立定跳远成绩在2.4 2.8x <范围内有240人.【点睛】本题考查频数分步表、频数分步直方图、中位数、用样本估计总体,解答本题的关键是明确题意,利用数形结合思想解答.22.如图,在平面直角坐标系xOy 中,一次函数152y x =+和2y x =-的图象相交于点A ,反比例函数k y x=的图象经过点A . (1)求反比例函数的表达式;(2)设一次函数152y x =+ 的图象与反比例函数k y x = 的图象的另一个交点为B ,连接OB ,求ABO ∆的面积.【答案】(1)反比例函数的表达式为8y x -=;(2)ABO ∆的面积为15. 【解析】【分析】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年山东省枣庄市中考数学试卷题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.-的绝对值是()A. -B.C. -2D. 22.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A. 10°B. 15°C. 18°D. 30°3.计算--(-)的结果为()A. -B.C. -D.4.实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A. |a|<1B. ab>0C. a+b>0D. 1-a>15.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是()A. B. C. D.6.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为()A. 8B. 11C. 16D. 177.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A. abB. (a+b)2C. (a-b)2D. a2-b28.如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.9.对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(-2)=-1的解是()A. x=4B. x=5C. x=6D. x=710.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A. (-,3)B. (-3,)C. (-,2+)D. (-1,2+)11.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A. 3B. 4C. 5D. 612.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2-4ac>0;③2a-b=0;④a-b+c=0.其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共24.0分)13.若a+b=3,a2+b2=7,则ab=______.14.已知关于x的一元二次方程(a-1)x2-2x+a2-1=0有一个根为x=0,则a=______.15.如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=______.16.人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是______m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是______.18.各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+b-1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=______.三、解答题(本大题共7小题,共60.0分)19.解不等式组并求它的所有整数解的和.20.欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V(Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V468______棱数E6______ 12______面数F45______ 8(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:______.21.2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=______,b=______;(2)样本成绩的中位数落在______范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?22.如图,在平面直角坐标系中,一次函数y=x+5和y=-2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,OB,求△ABO的面积.23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.24.在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC 交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=,求DN的长.25.如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:-的绝对值为.故选:B.根据绝对值的定义直接计算即可解答.本题主要考查绝对值的性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】B【解析】【解答】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°-30°=15°.故选:B.【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.3.【答案】A【解析】解:--(-)==-.故选:A.根据有理数的减法法则计算即可.本题主要考查了有理数的减法,熟记运算法则是解答本题的关键.减去一个数,等于加上这个数的相反数.4.【答案】D【解析】解:A、|a|>1,故本选项错误;B、∵a<0,b>0,∴ab<0,故本选项错误;C、a+b<0,故本选项错误;D、∵a<0,∴1-a>1,故本选项正确;故选:D.直接利用a,b在数轴上位置进而分别分析得出答案.此题主要考查了实数与数轴,正确结合数轴分析是解题关键.5.【答案】A【解析】解:用列表法表示所有可能出现的情况如下:共有9种可能出现的结果,其中两次都是白球的有4种,∴P(两次都是白球)=,故选:A.列举出所有可能出现的结果,进而求出“两次都是白球”的概率.本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果数是正确解答的关键.6.【答案】B【解析】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:B.在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.7.【答案】C【解析】解:中间部分的四边形是正方形,边长是a+b-2b=a-b,则面积是(a-b)2.故选:C.中间部分的四边形是正方形,表示出边长,则面积可以求得.本题考查了列代数式,正确表示出小正方形的边长是关键.8.【答案】B【解析】解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折,平移,旋转得到.故选:B.根据平移,旋转的性质判断即可.本题考查利用旋转,平移设计图案,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】B【解析】解:根据题意,得=-1,去分母得:1=2-(x-4),解得:x=5,经检验x=5是分式方程的解.故选:B.所求方程利用题中的新定义化简,求出解即可.此题考查了解分式方程,弄清题中的新定义是解本题的关键.10.【答案】A【解析】解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=,∴OH=2+1=3,∴B′(-,3),故选:A.如图,过点B′作B′H⊥y轴于H.解直角三角形求出′H,B′H即可.本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.11.【答案】D【解析】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:D.根据折叠的性质得到AF=AB,∠AFE=∠B=90°,根据等腰三角形的性质得到AF=CF,于是得到结论.本题考查了翻折变换的性质,矩形的性质,熟练掌握折叠的性质是解题的关键.12.【答案】C【解析】解:抛物线开口向下,a<0,对称轴为x=-=1,因此b>0,与y轴交于正半轴,因此c>0,于是有:ac<0,因此①正确;由x=-=1,得2a+b=0,因此③不正确,抛物线与x轴有两个不同交点,因此b2-4ac>0,②正确,由对称轴x=1,抛物线与x轴的一个交点为(3,0),对称性可知另一个交点为(-1,0),因此a-b+c=0,故④正确,综上所述,正确的结论有①②④,故选:C.根据抛物线的开口方向、对称轴、与x轴、y轴的交点,综合进行判断即可.本题考查二次函数的图象和性质,理解二次函数的图象与系数的关系是正确判断的前提.13.【答案】1【解析】解:(a+b)2=32=9,(a+b)2=a2+b2+2ab=9.∵a2+b2=7,∴2ab=2,ab=1,故答案为:1.根据完全平方公式,可得答案.本题考查了完全平方公式,利用完全平方公式是解题关键.14.【答案】-1【解析】解:把x=0代入(a-1)x2-2x+a2-1=0得a2-1=0,解得a=±1,∵a-1≠0,∴a=-1.故答案为-1.根据一元二次方程的解的定义把x=0代入原方程得到关于a的一元二次方程,解得a=±1,然后根据一元二次方程的定义确定a的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以一元二次方程的解也称为一元二次方程的根.也考查了一元二次方程的定义.15.【答案】27°【解析】解:∵PA切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∴∠B=∠AOP=27°.故答案为:27°.直接利用切线的性质得出∠OAP=90°,再利用三角形内角和定理得出∠AOP=54°,结合圆周角定理得出答案.此题主要考查了切线的性质以及圆周角定理,正确得出∠AOP的度数是解题关键.16.【答案】1.5【解析】解:∵AB=AC=2m,AD⊥BC,∴∠ADC=90°,∴AD=AC•sin50°=2×0.77≈1.5(m),故答案为1.5.在Rt△ADC中,求出AD即可.本题考查解直角三角形的应用,看解题的关键是理解题意,灵活运用所学知识解决问题.17.【答案】8【解析】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA-AE=OC-CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE===2,∴四边形BEDF的周长=4DE=4×=8,故答案为:8.连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD⊥EF,可证得四边形BEDF为菱形;根据勾股定理计算DE的长,可得结论.本题主要考查正方形的性质、菱形的判定和性质及勾股定理,掌握对角线互相垂直平分的四边形为菱形是解题的关键.18.【答案】6【解析】解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,∴a=4,b=6,∴该五边形的面积S=4+×6-1=6,故答案为:6.分别统计出多边形内部的格点数a和边界上的格点数b,再代入公式S=a+b-1,即可得出格点多边形的面积.本题考查格点多边形面积的计算,解题的关键是根据图形正确统计出a,b的值.19.【答案】解:,由①得,x≥-3,由②得,x<2,所以,不等式组的解集是-3≤x<2,所以,它的整数解为:-3,-2,-1,0,1,所以,所有整数解的和为-5.【解析】先求出两个不等式的解集,再求其公共解,然后找出整数求和即可.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).20.【答案】6 9 12 6 V+F-E=2【解析】解:(1)填表如下:名称三棱锥三棱柱正方体正八面体图形顶点数V4686棱数E691212面数F4568()∵,6+5-9=2,8+6-12=2,6+8-12=2,…,∴V+F-E=2.即V、E、F之间的关系式为:V+F-E=2.故答案为:6,9,12,6,V+F-E=2.(1)根据图形数出顶点数,棱数,面数,填入表格即可;(2)根据表格数据,顶点数与面数的和减去棱数等于2进行解答.本题是对欧拉公式的考查,观察图形准确数出各图形的顶点数、面数、棱数是解题的关键.21.【答案】8 20 2.0≤x<2.4【解析】解:(1)由统计图得,a=8,b=50-8-12-10=20,故答案为:8,20;(2)由中位数的意义可得,50个数据从小到大排列处在中间位置的两个数在2.0≤x<2.4组内,故答案为:2.0≤x<2.4;(3)补全频数分布直方图如图所示:(4)1200×=240(人),答:该校1200名学生中立定跳远成绩在2.4≤x<2.8范围内的有240人.(1)由频数分布直方图可得a=8,由频数之和为50求出b的值;(2)根据中位数的意义,找出第25、26位的两个数落在哪个范围即可;(3)求出b的值,就可以补全频数分布直方图;(4)样本估计总体,样本中立定跳远成绩在2.4≤x<2.8范围内的占,因此估计总体1200人的是立定跳远成绩在2.4≤x<2.8范围内的人数.本题考查频数分布表、频数分布直方图的意义和制作方法,理解各个数量之间的关系是正确解答的关键.22.【答案】解:(1)联立y=x+5①和y=-2x并解得:,故点A(-2.4),将点A的坐标代入反比例函数表达式得:4=,解得:k=-8,故反比例函数表达式为:y=-②;(2)联立①②并解得:x=-2或-8,当x=-8时,y=x+5=1,故点B(-8,1),设y=x+5交x轴于点C(-10,0),过点A、B分别作x轴的垂线交于点M、N,则S△AOB=S△AOC-S△BOC=OC•AM OC•BN=.【解析】(1)联立y=x+5①和y=-2x并解得:,故点A(-2.4),进而求解;(2)S△AOB=S△AOC-S△BOC=OC•AM OC•BN,即可求解.本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.23.【答案】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴2∠1=∠CAB.∵∠BAC=2∠CBF,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线;(2)解:过C作CH⊥BF于H,∵AB=AC,⊙O的直径为4,∴AC=4,∵CF=6,∠ABF=90°,∴BF===2,∵∠CHF=∠ABF,∠F=∠F,∴△CHF∽△ABF,∴=,∴=,∴CH=,∴HF===,∴BH=BF-HF=2-=,∴tan∠CBF===.【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°,于是得到结论;(2)过C作CH⊥BF于H,根据勾股定理得到BF===2,根据相似三角形的性质得到CH=,根据三角函数的定义即可得到结论.本题考查了切线的判定与性质、勾股定理、直角所对的圆周角是直角、相似三角形的判定和性质、解直角三角形等知识点、正确的作出辅助线是解题的关键.24.【答案】(1)证明:∵∠ACB=90°,AC=BC,CD是中线,∴∠ACD=∠BCD=45°,∠ACF=∠BCE=90°,∴∠DCF=∠DCE=135°,在△DCF和△DCE中,,∴△DCF≌△DCE(SAS)∴DE=DF;(2)证明:∵∠DCF=135°,∴∠F+∠CDF=45°,∵∠FDE=45°,∴∠CDE+∠CDF=45°,∴∠F=∠CDE,∵∠DCF=∠DCE,∠F=∠CDE,∴△FCD∽△DCE,∴=,∴CD2=CE•CF;(3)解:过点D作DG⊥BC于G,∵∠DCB=45°,∴GC=GD=CD=,由(2)可知,CD2=CE•CF,∴CE==2,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△ENC∽△DNG,∴=,即=,解得,NG=,由勾股定理得,DN==.【解析】(1)根据等腰直角三角形的性质得到∠ACD=∠BCD=45°,证明△DCF≌△DCE,根据全等三角形的对应边相等证明结论;(2)证明△FCD∽△DCE,根据相似三角形的性质列出比例式,整理即可证明结论;(3)作DG⊥BC,根据等腰直角三角形的性质求出DG,由(2)的结论求出CE,证明△ENC∽△DNG,根据相似三角形的性质求出NG,根据勾股定理计算,得到答案.本题考查的是相似三角形的判定和性质、全等三角形的判定和性质、等腰直角三角形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.25.【答案】解:(1)将点A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=-x2+x+4;(2)由抛物线的表达式知,点C(0,4),由点B、C的坐标得,直线BC的表达式为:y=-x+4;设点M(m,0),则点P(m,-m2+m+4),点Q(m,-m+4),∴PQ=-m2+m+4+m-4=-m2+m,∵OB=OC,故∠ABC=∠OCB=45°,∴∠PQN=∠BQM=45°,∴PN=PQ sin45°=(-m2+m)=-(m-2)2+,∵-<0,故当m=2时,PN有最大值为;(3)存在,理由:点A、C的坐标分别为(-3,0)、(0,4),则AC=5,①当AC=CQ时,过点Q作QE⊥y轴于点E,则CQ2=CE2+EQ2,即m2+[4-(-m+4)]2=25,解得:m=±(舍去负值),故点Q(,);②当AC=AQ时,则AQ=AC=5,在Rt△AMQ中,由勾股定理得:[m-(-3)]2+(-m+4)2=25,解得:m=1或0(舍去0),故点Q(1,3);③当CQ=AQ时,则2m2=[m=(-3)]2+(-m+4)2,解得:m=(舍去);综上,点Q的坐标为(1,3)或(,).【解析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)PN=PQ sin45°=(-m2+m)=-(m-2)2+,即可求解;(3)分AC=CQ、AC=AQ、CQ=AQ三种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数的性质、解直角三角形、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.。