2019年广东省汕尾市中考数学试卷(含答案)
2019年广东省中考数学试卷-答案
广东省2019年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题1.【答案】A【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点2-到原点的距离是2,所以2-的绝对值是2,【考点】绝对值的概念。
2.【答案】B【解析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.221 000的小数点向左移动5位得到2.21,所以221 000用科学记数法表示为52.2110⨯,【考点】科学记数法的表示方法。
3.【答案】A【解析】根据左视图是从左面看得到的图形,结合所给图形以及选项进行求解即可.观察图形,从左边看得到两个叠在一起的正方形,如下图所示:,【考点】简单几何体的三视图。
4.【答案】C【解析】根据同底数幂除法法则、同底数幂乘法法则、合并同类项法则、幂的乘方法则逐一进行计算即可得.A.633b b b ÷=,故A 选项错误;B.336b b b ⋅=,故B 选项错误;C.2222a a a +=,正确;D.()339a a =,故D 选项错误,【考点】同底数幂的乘除法,幂的乘方等运算。
5.【答案】C【解析】根据轴对称图形和中心对称图形的概念逐一进行判断即可得.A 、是轴对称图形,不是中心对称图形,故不符合题意;B 、是轴对称图形,不是中心对称图形,故不符合题意;C 、是轴对称图形,也是中心对称图形,故符合题意;D 、是轴对称图形,不是中心对称图形,故不符合题意,【考点】轴对称图形和中心对称图形。
6.【答案】C【解析】根据中位数的定义进行求解即可。
从小到大排序:3、3、5、8、11,位于最中间的数是5,所以这组数据的中位数是5,【考点】中位数。
7.【答案】D【解析】先由数轴上a ,b 两点的位置确定A ,b 的取值范围,再逐一验证即可求解.由数轴上a ,b 两点的位置可知21a --<<,01b <<, 所以a b <,故A 选项错误;a b >,故B 选项错误;0a b +<,故C 选项错误;0a b<,故D 选项正确, 【考点】实数与数轴,实数的大小比较、实数的运算等。
2019年广东省中考数学真题(含答案)
2019年广东省中考数学真题(含答案)2019年广东省初中学业水平考试数学部分已经结束,以下是选择题和填空题部分的答案及解析。
选择题:1.A,绝对值指的是一个数到0的距离,而-2到0的距离是2.2.A,科学计数法表示一个数为a×10^n,其中1≤a<10且n为整数,因此=2.21×10^5.3.B,根据左视图可知,几何体由4个正方体组成,因此它的底面是正方形,依次向上叠加的正方体的上下底面都是正方形,因此它是一个正方体。
4.B,b6÷b3=b3,b3×b3=b6,a2+a2=2a2,a3÷a3=a1.5.C,只有图C同时具有中心对称和轴对称性质。
6.B,数据按照从小到大的顺序排列为3,3,5,8,11,因此中位数为5.7.A,根据数轴可知a在b的右侧,因此a>b。
8.C,42可以分解为2×3×7,因此42的因数有1、2、3、6、7、14、21、42,其中只有2和21是相邻的,因此它们的差为19.9.A,由于x1和x2是同一个方程的两个实数根,因此它们的和等于方程的一次项系数的相反数,即x1+x2=2,因此x1≠x2;x1-2x1=-x1=2x2,因此x1-2x1≠x2;x1+x2=2,因此x1+x2≠2;x1×x2=0,因此x1×x2≠2.10.B,由于正方形ABCD的边长为4,因此CB的长度也为4,因此CE的长度为6,因此正方形EFGB的边长为6.由于FH是AD的中点,因此FH的长度为2,因此AN的长度为2.由于AB和GN平行,因此∠ANH=∠GNF,因此△ANH≅△GNF。
由于AF和GF是正方形的对角线,因此AF=GF,因此∠AFN=∠HFG。
由于FN=2NK,因此S△.填空题:11.2019+(1/3)=2019⅓。
12.∠2=180-∠1=180-75=105.13.一个n边形的内角和为180×(n-2)度,因此n=1080/180+2=8.14.4x-8y+9=4(2y+3)-8y+9=8y+12-8y+9=21.15.根据勾股定理,AC^2+CD^2=AD^2,因此AC^2+153^2=AD^2.由于AC和BD平行,因此∠ACD=∠BDC,因此△ACD∽△BDC,因此___,因此AD=153×BD/AC。
2019年广东省中考数学试卷(含解析)完美打印版
2019年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)﹣2的绝对值是()A.2B.﹣2C.D.±22.(3分)某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为()A.2.21×106 B.2.21×105C.221×103D.0.221×1063.(3分)如图,由4个相同正方体组合而成的几何体,它的左视图是()A.B.C.D.4.(3分)下列计算正确的是()A.b6÷b3=b2B.b3•b3=b9C.a2+a2=2a2D.(a3)3=a65.(3分)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.6.(3分)数据3,3,5,8,11的中位数是()A.3B.4C.5D.67.(3分)实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b|C.a+b>0D.<08.(3分)化简的结果是()A.﹣4B.4C.±4D.29.(3分)已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0C.x1+x2=2D.x1•x2=210.(3分)如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N、K:则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN:S△ADM=1:4.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.(4分)计算:20190+()﹣1=.12.(4分)如图,已知a∥b,∠1=75°,则∠2=.13.(4分)一个多边形的内角和是1080°,这个多边形的边数是.14.(4分)已知x=2y+3,则代数式4x﹣8y+9的值是.15.(4分)如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号).16.(4分)如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是(结果用含a,b代数式表示).三.解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)解不等式组:18.(6分)先化简,再求值:(﹣)÷,其中x=.19.(6分)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求的值.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如图表,根据图表信息解答下列问题:成绩等级频数分布表成绩等级频数A24B10C xD2合计y(1)x=,y=,扇形图中表示C的圆心角的度数为度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.21.(7分)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?22.(7分)在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的阴影部分的面积.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足k1x+b>的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.24.(9分)如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线;(3)如图2,若点G是△ACD的内心,BC•BE=25,求BG的长.25.(9分)如图1,在平面直角坐标系中,抛物线y=x2+x﹣与x轴交于点A、B(点A在点B右侧),点D为抛物线的顶点,点C在y轴的正半轴上,CD交x轴于点F,△CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE.(1)求点A、B、D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如图2,过顶点D作DD1⊥x轴于点D1,点P是抛物线上一动点,过点P作PM⊥x轴,点M为垂足,使得△P AM与△DD1A相似(不含全等).①求出一个满足以上条件的点P的横坐标;②直接回答这样的点P共有几个?2019年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)﹣2的绝对值是()A.2B.﹣2C.D.±2【分析】根据负数的绝对值是它的相反数,即可解答.【解答】解:|﹣2|=2,故选:A.2.(3分)某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为()A.2.21×106 B.2.21×105C.221×103D.0.221×106【分析】根据有效数字表示方法,以及科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将221000用科学记数法表示为:2.21×105.故选:B.3.(3分)如图,由4个相同正方体组合而成的几何体,它的左视图是()A.B.C.D.【分析】左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.【解答】解:从左边看得到的是两个叠在一起的正方形,如图所示.故选:A.4.(3分)下列计算正确的是()A.b6÷b3=b2B.b3•b3=b9C.a2+a2=2a2D.(a3)3=a6【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘法运算法则分别化简得出答案.【解答】解:A、b6÷b3=b3,故此选项错误;B、b3•b3=b6,故此选项错误;C、a2+a2=2a2,正确;D、(a3)3=a9,故此选项错误.故选:C.5.(3分)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.6.(3分)数据3,3,5,8,11的中位数是()A.3B.4C.5D.6【分析】先把原数据按从小到大排列,然后根据中位数的定义求解即可.【解答】解:把这组数据按照从小到大的顺序排列为:3,3,5,8,11,故这组数据的中位数是,5.故选:C.7.(3分)实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b|C.a+b>0D.<0【分析】先由数轴可得﹣2<a<﹣1,0<b<1,且|a|>|b|,再判定即可.【解答】解:由图可得:﹣2<a<﹣1,0<b<1,∴a<b,故A错误;|a|>|b|,故B错误;a+b<0,故C错误;<0,故D正确;故选:D.8.(3分)化简的结果是()A.﹣4B.4C.±4D.2【分析】根据算术平方根的含义和求法,求出16的算术平方根是多少即可.【解答】解:==4.故选:B.9.(3分)已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0C.x1+x2=2D.x1•x2=2【分析】由根的判别式△=4>0,可得出x1≠x2,选项A不符合题意;将x1代入一元二次方程x2﹣2x =0中可得出x12﹣2x1=0,选项B不符合题意;利用根与系数的关系,可得出x1+x2=2,x1•x2=0,进而可得出选项C不符合题意,选项D符合题意.【解答】解:∵△=(﹣2)2﹣4×1×0=4>0,∴x1≠x2,选项A不符合题意;∵x1是一元二次方程x2﹣2x=0的实数根,∴x12﹣2x1=0,选项B不符合题意;∵x1,x2是一元二次方程x2﹣2x=0的两个实数根,∴x1+x2=2,x1•x2=0,选项C不符合题意,选项D符合题意.故选:D.10.(3分)如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N、K:则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN:S△ADM=1:4.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】由正方形的性质得到FG=BE=2,∠FGB=90°,AD=4,AH=2,∠BAD=90°,求得∠HAN =∠FGN,AH=FG,根据全等三角形的定理定理得到△ANH≌△GNF(AAS),故①正确;根据全等三角形的性质得到∠AHN=∠HFG,推出∠AFH≠∠AHF,得到∠AFN≠∠HFG,故②错误;根据全等三角形的性质得到AN=AG=1,根据相似三角形的性质得到∠AHN=∠AMG,根据平行线的性质得到∠HAK=∠AMG,根据直角三角形的性质得到FN=2NK;故③正确;根据矩形的性质得到DM=AG=2,根据三角形的面积公式即可得到结论.【解答】解:∵四边形EFGB是正方形,EB=2,∴FG=BE=2,∠FGB=90°,∵四边形ABCD是正方形,H为AD的中点,∴AD=4,AH=2,∠BAD=90°,∴∠HAN=∠FGN,AH=FG,∵∠ANH=∠GNF,∴△ANH≌△GNF(AAS),故①正确;∴∠AHN=∠HFG,∵AG=FG=2=AH,∴AF=FG=AH,∴∠AFH≠∠AHF,∴∠AFN≠∠HFG,故②错误;∵△ANH≌△GNF,∴AN=AG=1,∵GM=BC=4,∴==2,∵∠HAN=∠AGM=90°,∴△AHN∽△GMA,∴∠AHN=∠AMG,∵AD∥GM,∴∠HAK=∠AMG,∴∠AHK=∠HAK,∴AK=HK,∴AK=HK=NK,∵FN=HN,∴FN=2NK;故③正确;∵延长FG交DC于M,∴四边形ADMG是矩形,∴DM=AG=2,∵S△AFN=AN•FG=2×1=1,S△ADM=AD•DM=×4×2=4,∴S△AFN:S△ADM=1:4故④正确,故选:C.二.填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.(4分)计算:20190+()﹣1=4.【分析】分别计算负整数指数幂、零指数幂,然后再进行实数的运算即可.【解答】解:原式=1+3=4.故答案为:4.12.(4分)如图,已知a∥b,∠1=75°,则∠2=105°.【分析】根据平行线的性质及对顶角相等求解即可.【解答】解:∵直线L直线a,b相交,且a∥b,∠1=75°,∴∠3=∠1=75°,∴∠2=180°﹣∠3=180°﹣75°=105°.故答案为:105°13.(4分)一个多边形的内角和是1080°,这个多边形的边数是8.【分析】根据多边形内角和定理:(n﹣2)•180 (n≥3)可得方程180(x﹣2)=1080,再解方程即可.【解答】解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.14.(4分)已知x=2y+3,则代数式4x﹣8y+9的值是21.【分析】直接将已知变形进而代入原式求出答案.【解答】解:∵x=2y+3,∴x﹣2y=3,则代数式4x﹣8y+9=4(x﹣2y)+9=4×3+9=21.故答案为:21.15.(4分)如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是(15+15)米(结果保留根号).【分析】首先分析图形:根据题意构造直角三角形.本题涉及到两个直角三角形△BEC、△ABE,进而可解即可求出答案.【解答】解:过点B作BE⊥AB于点E,在Rt△BEC中,∠CBE=45°,BE=15;可得CE=BE×tan45°=15米.在Rt△ABE中,∠ABE=30°,BE=15,可得AE=BE×tan30°=15米.故教学楼AC的高度是AC=15米.答:教学楼AC的高度是(15)米.16.(4分)如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是a+8b(结果用含a,b代数式表示).【分析】用9个这样的图形的总长减去拼接时的重叠部分,即可得到拼出来的图形的总长度.【解答】解:由图可得,拼出来的图形的总长度=9a﹣8(a﹣b)=a+8b.故答案为:a+8b.三.解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)解不等式组:【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解不等式①,得x>3解不等式②,得x>1则不等式组的解集为x>318.(6分)先化简,再求值:(﹣)÷,其中x=.【分析】先化简分式,然后将x的值代入计算即可.【解答】解:原式==当x=时,原式==19.(6分)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求的值.【分析】(1)利用基本作图(作一个角等于已知角)作出∠ADE=∠B;(2)先利用作法得到∠ADE=∠B,则可判断DE∥BC,然后根据平行线分线段成比例定理求解.【解答】解:(1)如图,∠ADE为所作;(2)∵∠ADE=∠B ∴DE∥BC,∴==2.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如图表,根据图表信息解答下列问题:成绩等级频数分布表成绩等级频数A24B10C xD2合计y(1)x=4,y=40,扇形图中表示C的圆心角的度数为36度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.【分析】(1)随机抽男生人数:10÷25%=40(名),即y=40;C等级人数:40﹣24﹣10﹣2=4(名),即x=4;扇形图中表示C的圆心角的度数360°×=36°;(2)先画树状图,然后求得P(同时抽到甲,乙两名学生)==.【解答】(1)随机抽男生人数:10÷25%=40(名),即y=40;C等级人数:40﹣24﹣10﹣2=4(名),即x=4;扇形图中表示C的圆心角的度数360°×=36°.故答案为4,40,36;(2)画树状图如下:P(同时抽到甲,乙两名学生)==.21.(7分)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?【分析】(1)设购买篮球x个,购买足球y个,根据总价=单价×购买数量结合购买篮球、足球共60个\购买这两类球的总金额为4600元,列出方程组,求解即可;(2)设购买了a个篮球,则购买(60﹣a)个足球,根据购买篮球的总金额不超过购买足球的总金额,列不等式求出x的最大整数解即可.【解答】解:(1)设购买篮球x个,购买足球y个,依题意得:.解得.答:购买篮球20个,购买足球40个;(2)设购买了a个篮球,依题意得:70a≤80(60﹣a)解得a≤32.答:最多可购买32个篮球.22.(7分)在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的阴影部分的面积.【分析】(1)根据勾股定理即可求得;(2)根据勾股定理求得AD,由(1)得,AB2+AC2=BC2,则∠BAC=90°,根据S阴=S△ABC﹣S扇形AEF 即可求得.【解答】解:(1)AB==2,AC==2,BC==4;(2)由(1)得,AB2+AC2=BC2,∴∠BAC=90°,连接AD,AD==2,∴S阴=S△ABC﹣S扇形AEF=AB•AC﹣π•AD2=20﹣5π.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足k1x+b>的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.【分析】(1)根据一次函数图象在反比例图象的上方,可求x的取值范围;(2)将点A,点B坐标代入两个解析式可求k2,n,k1,b的值,从而求得解析式;(3)根据三角形面积相等,可得答案.【解答】解:(1)∵点A的坐标为(﹣1,4),点B的坐标为(4,n).由图象可得:k1x+b>的x的取值范围是x<﹣1或0<x<4;(2)∵反比例函数y=的图象过点A(﹣1,4),B(4,n)∴k2=﹣1×4=﹣4,k2=4n ∴n=﹣1 ∴B(4,﹣1)∵一次函数y=k1x+b的图象过点A,点B∴,解得:k1=﹣1,b=3∴直线解析式y=﹣x+3,反比例函数的解析式为y=﹣;(3)设直线AB与y轴的交点为C,∴C(0,3),∵S△AOC=×3×1=,∴S△AOB=S△AOC+S△BOC=×3×1+×4=,∵S△AOP:S△BOP=1:2,∴S△AOP=×=,∴S△COP=﹣=1,∴×3•x P=1,∴x P=,∵点P在线段AB上,∴y=﹣+3=,∴P(,).24.(9分)如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线;(3)如图2,若点G是△ACD的内心,BC•BE=25,求BG的长.【分析】(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;(2)连接OA,由∠CAF=∠CF A知∠ACD=∠CAF+∠CF A=2∠CAF,结合∠ACB=∠BCD得∠ACD =2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证;(3)证△ABE∽△CBA得AB2=BC•BE,据此知AB=5,连接AG,得∠BAG=∠BAD+∠DAG,∠BGA =∠GAC+∠ACB,由点G为内心知∠DAG=∠GAC,结合∠BAD+∠DAG=∠GAC+∠ACB得∠BAG=∠BGA,从而得出BG=AB=5.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,又∵∠ACB=∠BCD,∠ABC=∠ADC,∴∠BCD=∠ADC,∴ED=EC;(2)如图1,连接OA,∵AB=AC,∴=,∴OA⊥BC,∵CA=CF,∴∠CAF=∠CF A,∴∠ACD=∠CAF+∠CF A=2∠CAF,∵∠ACB=∠BCD,∴∠ACD=2∠ACB,∴∠CAF=∠ACB,∴AF∥BC,∴OA⊥AF,∴AF为⊙O的切线;(3)∵∠ABE=∠CBA,∠BAD=∠BCD=∠ACB,∴△ABE∽△CBA,∴=,∴AB2=BC•BE,∵BC•BE=25,∴AB=5,如图2,连接AG,∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,∵点G为内心,∴∠DAG=∠GAC,又∵∠BAD+∠DAG=∠GAC+∠ACB,∴∠BAG=∠BGA,∴BG=AB=5.25.(9分)如图1,在平面直角坐标系中,抛物线y=x2+x﹣与x轴交于点A、B(点A在点B右侧),点D为抛物线的顶点,点C在y轴的正半轴上,CD交x轴于点F,△CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE.(1)求点A、B、D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如图2,过顶点D作DD1⊥x轴于点D1,点P是抛物线上一动点,过点P作PM⊥x轴,点M为垂足,使得△P AM与△DD1A相似(不含全等).①求出一个满足以上条件的点P的横坐标;②直接回答这样的点P共有几个?【分析】(1)利用抛物线解析式求得点A、B、D的坐标;(2)欲证明四边形BFCE是平行四边形,只需推知EC∥BF且EC=BF即可;(3)①利用相似三角形的对应边成比例求得点P的横坐标,没有指明相似三角形的对应边(角),需要分类讨论;②根据①的结果即可得到结论.【解答】解:(1)令x2+x﹣=0,解得x1=1,x2=﹣7.∴A(1,0),B(﹣7,0).由y=x2+x﹣=(x+3)2﹣2得,D(﹣3,﹣2);(2)证明:∵DD1⊥x轴于点D1,∴∠COF=∠DD1F=90°,∵∠D1FD=∠CFO,∴△DD1F∽△COF,∴=,∵D(﹣3,﹣2),∴D1D=2,OD1=3,∵AC=CF,CO⊥AF ∴OF=OA=1∴D1F=D1O﹣OF=3﹣1=2,∴=,∴OC=,∴CA=CF=F A=2,∴△ACF是等边三角形,∴∠AFC=∠ACF,∵△CAD绕点C顺时针旋转得到△CFE,∴∠ECF=∠AFC=60°,∴EC∥BF,∵EC=DC==6,∵BF=6,∴EC=BF,∴四边形BFCE是平行四边形;(3)∵点P是抛物线上一动点,∴设P点(x,x2+x﹣),①当点P在B点的左侧时,∵△P AM与△DD1A相似,∴或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣11或x1=1(不合题意舍去)x2=﹣;当点P在A点的右侧时,∵△P AM与△DD1A相似,∴=或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=﹣(不合题意舍去);当点P在AB之间时,∵△P AM与△DD1A相似,∴=或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=﹣;综上所述,点P的横坐标为﹣11或﹣或﹣;②由①得,这样的点P共有3个.。
2019年广东省中考数学试卷以及解析答案
2019年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)﹣2的绝对值是()A.2B.﹣2C.D.±22.(3分)某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为()A.2.21×106 B.2.21×105C.221×103D.0.221×106 3.(3分)如图,由4个相同正方体组合而成的儿何体,它的左视图是()A.B.C.D.4.(3分)下列计算正确的是()A.b6+b3=b2B.b3•b3=b9C.a2+a2=2a2D.(a3)3=a6 5.(3分)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.6.(3分)数据3,3,5,8,11的中位数是()A.3B.4C.5D.67.(3分)实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b|C.a+b>0D.<08.(3分)化简的结果是()A.﹣4B.4C.±4D.29.(3分)已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0C.x1+x2=2D.x1•x2=2 10.(3分)如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N、K:则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN:S△ADM=1:4.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)计算:20190+()﹣1=.12.(4分)如图,已知a∥b,∠1=75°,则∠2=.13.(4分)一个多边形的内角和是1080°,这个多边形的边数是.14.(4分)已知x=2y+3,则代数式4x﹣8y+9的值是.15.(4分)如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B 点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号).16.(4分)如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是(结果用含a,b代数式表示).三.解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)解不等式组:18.(6分)先化简,再求值:(﹣)÷,其中x=.19.(6分)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求的值.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如图表所示,根据图表信息解答下列问题:成绩等级频数分布表(1)x=,y=,扇形图中表示C的圆心角的度数为度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.21.(7分)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?22.(7分)在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC 于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的阴影部分的面积.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足kx+b>的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.24.(9分)如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线;(3)如图2,若点G是△ACD的内心,BC•BE=25,求BG的长.25.(9分)如图1,在平面直角坐标系中,抛物线y=x2+x﹣与x轴交于点A、B(点A在点B右侧),点D为抛物线的顶点,点C在y轴的正半轴上,CD交x轴于点F,△CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE.(1)求点A、B、D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如图2,过顶点D作DD1⊥x轴于点D1,点P是抛物线上一动点,过点P作PM⊥x轴,点M为垂足,使得△P AM与△DD1A相似(不含全等).①求出一个满足以上条件的点P的横坐标;②直接回答这样的点P共有几个?2019年广东省中考数学试卷答案与解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.【分析】根据负数的绝对值是它的相反数,即可解答.【解答】解:|﹣2|=2,故选:A.【点评】本题考查了绝对值,解决本题的关键是明确负数的绝对值是它的相反数.2.【分析】根据有效数字表示方法,以及科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将221000用科学记数法表示为:2.21×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.【解答】解:从左边看得到的是两个叠在一起的正方形,如图所示.故选:A.【点评】此题考查了简单几何体的三视图,解答本题的关键是掌握左视图的观察位置.4.【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘法运算法则分别化简得出答案.【解答】解:A、b6+b3,无法计算,故此选项错误;B、b3•b3=b6,故此选项错误;C、a2+a2=2a2,正确;D、(a3)3=a9,故此选项错误.故选:C.【点评】此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘法运算,正确掌握相关运算法则是解题关键.5.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合6.【分析】先把原数据按从小到大排列,然后根据中位数的定义求解即可.【解答】解:把这组数据按照从小到大的顺序排列为:3,3,5,8,11,故这组数据的中位数是,5.故选:C.【点评】本题考查了中位数的概念:把一组数据按从小到大的顺序排列,最中间那个数或中间两个数的平均数就是这组数据的中位数.7.【分析】先由数轴可得﹣2<a<﹣1,0<b<1,且|a|>|b|,再判定即可.【解答】解:由图可得:﹣2<a<﹣1,0<b<1,∴a<b,故A错误;|a|>|b|,故B错误;a+b<0,故C错误;<0,故D正确;故选:D.【点评】本题主要考查了实数与数轴,解题的关键是利用数轴确定a,b的取值范围.利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.8.【分析】根据算术平方根的含义和求法,求出16的算术平方根是多少即可.【解答】解:==4.故选:B.【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.9.【分析】由根的判别式△=4>0,可得出x1≠x2,选项A不符合题意;将x1代入一元二次方程x2﹣2x=0中可得出x12﹣2x1=0,选项B不符合题意;利用根与系数的关系,可得出x1+x2=2,x1•x2=0,进而可得出选项C不符合题意,选项D符合题意.【解答】解:∵△=(﹣2)2﹣4×1×0=4>0,∴x1≠x2,选项A不符合题意;∵x1是一元二次方程x2﹣2x=0的实数根,∴x12﹣2x1=0,选项B不符合题意;∵x1,x2是一元二次方程x2﹣2x=0的两个实数根,∴x1+x2=2,x1•x2=0,选项C不符合题意,选项D符合题意.故选:D.【点评】本题考查了根与系数的关系以及根的判别式,逐一分析四个选项的正误是解题的关键.10.【分析】由正方形的性质得到FG=BE=2,∠FGB=90°,AD=4,AH=2,∠BAD=90°,求得∠HAN=∠FGN,AH=FG,根据全等三角形的定理定理得到△ANH≌△GNF (AAS),故①正确;根据全等三角形的性质得到∠AHN=∠HFG,推出∠AFH≠∠AHF,得到∠AFN≠∠HFG,故②错误;根据全等三角形的性质得到AN=AG=1,根据相似三角形的性质得到∠AHN=∠AMG,根据平行线的性质得到∠HAK=∠AMG,根据直角三角形的性质得到FN=2NK;故③正确;根据矩形的性质得到DM=AG=2,根据三角形的面积公式即可得到结论.【解答】解:∵四边形EFGB是正方形,EB=2,∴FG=BE=2,∠FGB=90°,∵四边形ABCD是正方形,H为AD的中点,∴AD=4,AH=2,∠BAD=90°,∴∠HAN=∠FGN,AH=FG,∵∠ANH=∠GNF,∴△ANH≌△GNF(AAS),故①正确;∴∠AHN=∠HFG,∵AG=FG=2=AH,∴AF=FG=AH,∴∠AFH≠∠AHF,∴∠AFN≠∠HFG,故②错误;∵△ANH≌△GNF,∴AN=AG=1,∵GM=BC=4,∴==2,∵∠HAN=∠AGM=90°,∴△AHN∽△GMA,∴∠AHN=∠AMG,∵AD∥GM,∴∠HAK=∠AMG,∴∠AHK=∠HAK,∴AK=HK,∴AK=HK=NK,∵FN=HN,∴FN=2NK;故③正确;∵延长FG交DC于M,∴四边形ADMG是矩形,∴DM=AG=2,∵S△AFN=AN•FG=2×1=1,S△ADM=AD•DM=×4×2=4,∴S△AFN:S△ADM=1:4故④正确,故选:C.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,矩形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.二.填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.【分析】分别计算负整数指数幂、零指数幂,然后再进行实数的运算即可.【解答】解:原式=1+3=4.故答案为:4.【点评】此题考查了实数的运算,解答本题关键是掌握负整数指数幂及零指数幂的运算法则,难度一般.12.【分析】根据平行线的性质及对顶角相等求解即可.【解答】解:∵直线L直线a,b相交,且a∥b,∠1=75°,∴∠3=∠1=75°,∴∠2=180°﹣∠3=180°﹣75°=105°.故答案为:105°【点评】此题考查平行线的性质,解题关键为:两直线平行,同旁内角互补,对顶角相等.13.【分析】根据多边形内角和定理:(n﹣2)•180 (n≥3)可得方程180(x﹣2)=1080,再解方程即可.【解答】解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.【点评】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180 (n ≥3).14.【分析】直接将已知变形进而代入原式求出答案.【解答】解:∵x=2y+3,∴x﹣2y=3,则代数式4x﹣8y+9=4(x﹣2y)+9=4×3+9=21.故答案为:21.【点评】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.15.【分析】首先分析图形:根据题意构造直角三角形.本题涉及到两个直角三角形△BEC、△ABE,进而可解即可求出答案.【解答】解:过点B作BE⊥AB于点E,在Rt△BEC中,∠CBE=45°,BE=15;可得CE=BE×tan45°=15米.在Rt△ABE中,∠ABE=30°,BE=15,可得AE=BE×tan30°=15米.故教学楼AC的高度是AC=15米.答:教学楼AC的高度是(15)米.【点评】本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.16.【分析】用9个这样的图形的总长减去拼接时的重叠部分,即可得到拼出来的图形的总长度.【解答】解:由图可得,拼出来的图形的总长度=9a﹣8(a﹣b)=a+8b.故答案为:a+8b.【点评】本题主要考查了利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.三.解答题(一)(本大题3小题,每小题6分,共18分)17.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解不等式①,得x>3解不等式②,得x>1则不等式组的解集为x>3【点评】本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).18.【分析】先化简分式,然后将x的值代入计算即可.【解答】解:原式==当x=时,原式==【点评】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.19.【分析】(1)利用基本作图(作一个角等于已知角)作出∠ADE=∠B;(2)先利用作法得到∠ADE=∠B,则可判断DE∥BC,然后根据平行线分线段成比例定理求解.【解答】解:(1)如图,∠ADE为所作;(2)∵∠ADE=∠B∴DE∥BC,∴==2.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).四、解答题(二)(本大题3小题,每小题7分,共21分)20.【分析】(1)随机抽男生人数:10÷25%=40(名),即y=40;C等级人数:40﹣24﹣10﹣2=4(名),即x=4;扇形图中表示C的圆心角的度数360°×=36°;(2)先画树状图,然后求得P(同时抽到甲,乙两名学生)==.【解答】(1)随机抽男生人数:10÷25%=40(名),即y=40;C等级人数:40﹣24﹣10﹣2=4(名),即x=4;扇形图中表示C的圆心角的度数360°×=36°.故答案为4,40,36;(2)画树状图如下:P(同时抽到甲,乙两名学生)==.【点评】本题考查了统计图与概率,熟练掌握列表法与树状图求概率是解题的关键.21.【分析】(1)设购买篮球x个,购买足球y个,根据总价=单价×购买数量结合购买篮球、足球共60个\购买这两类球的总金额为4600元,列出方程组,求解即可;(2)设购买了a个篮球,则购买(60﹣a)个足球,根据购买篮球的总金额不超过购买足球的总金额,列不等式求出x的最大整数解即可.【解答】解:(1)设购买篮球x个,购买足球y个,依题意得:.解得.答:购买篮球20个,购买足球40个;(2)设购买了a个篮球,依题意得:70a≤80(60﹣a)解得a≤32.答:最多可购买32个篮球.【点评】此题考查了一元一次不等式的应用和二元一次方程组的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.22.【分析】(1)根据勾股定理即可求得;(2)根据勾股定理求得AD,由(1)得,AB2+AC2=BC2,则∠BAC=90°,根据S阴=S△ABC﹣S扇形AEF即可求得.【解答】解:(1)AB==2,AC==2,BC==4;(2)由(1)得,AB2+AC2=BC2,∴∠BAC=90°,连接AD,AD==2,∴S阴=S△ABC﹣S扇形AEF=AB•AC﹣π•AD2=20﹣5π.【点评】本题考查了勾股定理和扇形面积的计算,证得△ABC是等腰直角三角形是解题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分)23.【分析】(1)根据一次函数图象在反比例图象的上方,可求x的取值范围;(2)将点A,点B坐标代入两个解析式可求k2,n,k1,b的值,从而求得解析式;(3)根据三角形面积相等,可得答案.【解答】解:(1)∵点A的坐标为(﹣1,4),点B的坐标为(4,n).由图象可得:kx+b>的x的取值范围是x<﹣1或0<x<4;(2)∵反比例函数y=的图象过点A(﹣1,4),B(4,n)∴k2=﹣1×4=﹣4,k2=4n∴n=﹣1∴B(4,﹣1)∵一次函数y=kx+b的图象过点A,点B∴,解得:k=﹣1,b=3∴直线解析式y=﹣x+3,反比例函数的解析式为y=﹣;(3)设直线AB与y轴的交点为C,∴C(0,3),∵S△AOC=×3×1=,∴S△AOB=S△AOC+S△BOC=×3×1+×4=,∵S△AOP:S△BOP=1:2,∴S△AOP=×=,∴S△COP=﹣=1,∴×3•x P=1,∴x P=,∵点P在线段AB上,∴y=﹣+3=,∴P(,).【点评】本题考查了反比例函数图象与一次函数图象的交点问题,熟练运用图象上的点的坐标满足图象的解析式是本题的关键.24.【分析】(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;(2)连接OA,由∠CAF=∠CF A知∠ACD=∠CAF+∠CF A=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证;(3)证△ABE∽△CBA得AB2=BC•BE,据此知AB=5,连接AG,得∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,由点G为内心知∠DAG=∠GAC,结合∠BAD+∠DAG =∠GDC+∠ACB得∠BAG=∠BGA,从而得出BG=AB=5.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,又∵∠ACB=∠BCD,∠ABC=∠ADC,∴∠BCD=∠ADC,∴ED=EC;(2)如图1,连接OA,∵AB=AC,∴=,∴OA⊥BC,∵CA=CF,∴∠CAF=∠CF A,∴∠ACD=∠CAF+∠CF A=2∠CAF,∵∠ACB=∠BCD,∴∠ACD=2∠ACB,∴∠CAF=∠ACB,∴AF∥BC,∴OA⊥AF,∴AF为⊙O的切线;(3)∵∠ABE=∠CBA,∠BAD=∠BCD=∠ACB,∴△ABE∽△CBA,∴=,∴AB2=BC•BE,∴BC•BE=25,∴AB=5,如图2,连接AG,∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,∵点G为内心,∴∠DAG=∠GAC,又∵∠BAD+∠DAG=∠GDC+∠ACB,∴∠BAG=∠BGA,∴BG=AB=5.【点评】本题是圆的综合问题,解题的关键是掌握圆心角定理、切线的判定与性质、相似三角形的判定与性质等知识点.25.【分析】(1)利用抛物线解析式求得点A、B、D的坐标;(2)欲证明四边形BFCE是平行四边形,只需推知EC∥BF且EC=BF即可;(3)①利用相似三角形的对应边成比例求得点P的横坐标,没有指明相似三角形的对应边(角),需要分类讨论;②根据①的结果即可得到结论.【解答】解:(1)令x2+x﹣=0,解得x1=1,x2=﹣7.∴A(1,0),B(﹣7,0).由y=x2+x﹣=(x+3)2﹣2得,D(﹣3,﹣2);(2)证明:∵DD1⊥x轴于点D1,∴∠COF=∠DD1F=90°,∵∠D1FD=∠CFO,∴△DD1F∽△COF,∴=,∵D(﹣3,﹣2),∴D1D=2,OD=3,∵AC=CF,CO⊥AF∴OF=OA=1∴D1F=D1O﹣OF=3﹣1=2,∴=,∴OC=,∴CA=CF=F A=2,∴△ACF是等边三角形,∴∠AFC=∠ACF,∵△CAD绕点C顺时针旋转得到△CFE,∴∠ECF=∠AFC=60°,∴EC∥BF,∵EC=DC==6,∵BF=6,∴EC=BF,∴四边形BFCE是平行四边形;(3)∵点P是抛物线上一动点,∴设P点(x,x2+x﹣),①当点P在B点的左侧时,∵△P AM与△DD1A相似,∴或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣11或x1=1(不合题意舍去)x2=﹣;当点P在A点的右侧时,∵△P AM与△DD1A相似,∴=或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=﹣(不合题意舍去);当点P在AB之间时,∵△P AM与△DD1A相似,∴=或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=﹣;综上所述,点P的横坐标为﹣11或﹣或﹣;②由①得,这样的点P共有3个.【点评】本题考查了二次函数的综合题,待定系数法求函数的解析式,全等三角形的判定和性质,平行四边形的判定,相似三角形的判定和性质,正确的理解题意是解题的关键.第21页(共21页)。
2019年广东中考数学试题及答案(共4卷)
广东中考数学试卷一(时间:100分钟,满分120分)一、选择题(本大题共5小题,每小题3分,共15分;在每小题给出的四个选项中,只有一个是正确的)1.27的立方根是( ) A .3 B .3- C .9 D .9-2.5月31日,参观上海世博会的游客约为505 000人.505 000用科学记数法表示为( )A .505×103B .5.05×103C .5.05×104D .5.05×105 3.下列计算正确的是( )A .a 4+a 2=a 6B .2a ·4a =8aC .a 5÷a 2=a 3D .(a 2)3=a 54.方程组⎩⎪⎨⎪⎧x +y =3x -y =-1的解是( )A.⎩⎪⎨⎪⎧ x =1y =2B.⎩⎪⎨⎪⎧ x =1y =-2C.⎩⎪⎨⎪⎧ x =2y =1D.⎩⎪⎨⎪⎧x =0y =-1 5.一个几何体的三视图如图所示.那么这个几何体是( )二、填空题(本大题共5小题,每小题4分,共20分)6.若x 、y 为实数,且x +3+|y -2|=0,则x +y = .7.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 .8.一组数据1,6,x,5,9的平均数是5,那么这组数据的中位数是 .9.双曲线y =2k -1x的图象经过第二、四象限,则k 的取值范围是 .10.如图,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有 个.三、解答题(本大题共5小题,每小题6分,共30分) 11.计算:(-2 011)0+⎝⎛⎭⎫22-1+||2-2-2cos60°.12.解方程:x +4x x -1=3x -1.13.先化简,再求值:⎝ ⎛⎭⎪⎫a -1a 2-4a +4-a +2a 2-2a ÷⎝⎛⎭⎫4a -1,其中a =2- 3.14.如图,已知二次函数y =-12x 2+bx +c 的图象经过A (2,0),B (0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA 、BC ,求△ABC 的面积.15.某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB =6 m , ∠ABC =45°,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使∠ADC =30°(如图所示).(1)求调整后楼梯AD 的长; (2)求BD 的长(结果保留根号).四、解答题(本大题共4小题,每小题7分,共28分)16.日本福岛出现核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场监测与海水采样,针对核泄漏在极端情况下对海洋环境的影响及时开展分析评估.如图,上午9时,海检船位于A 处,观测到某港口城市P 位于海检船的北偏西67.5°方向,海检船以21海里/时的速度向正北方向行驶,下午2时海检船到达B 处,这时观察到城市P 位于海检船的南偏西36.9°方向,求此时海检船所在B 处与城市P 的距离?⎝⎛参考数据:sin 36.90≈35,tan 36.90≈34,⎭⎫sin 67.50≈1213,tan 67.50≈12517.2011年6月4日,李娜获得法网公开赛的冠军,圆了中国人的网球梦,也在国内掀起一股网球热.某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:他拿出一个装有质地、大小相同的2x个红球与3x个白球的袋子,让爸爸摸出一个球,如果摸出的是红球,妹妹去听讲座,如果摸出的是白球,小明去听讲座.(1)爸爸说这个办法不公平,请你用概率的知识解释原因;(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有利还是对妹妹有利,说明理由.18.绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿有几种方案安排甲、乙两种货车可一次性地将水果运到销售地?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?19.已知:如图,在Rt △ABC 中,∠C =90°,∠BAC 的角平分线AD 交BC 边于D .(1)以AB 边上一点O 为圆心,过A 、D 两点作⊙O (不写作法,保留作图痕迹),再判断直线BC 与⊙O 的位置关系,并说明理由;(2)若(1)中的⊙O 与AB 边的另一个交点为E ,AB =6,BD =2 3,求线段BD 、BE 与劣弧DE 所围成的图形面积(结果保留根号和π).五、解答题(本大题共3小题,每小题9分,共27分)20.对于任何实数,我们规定符号⎪⎪⎪ a c ⎪⎪⎪b d 的意义是⎪⎪⎪ a c⎪⎪⎪b d =ad -bc . (1)按照这个规定请你计算⎪⎪⎪ 57⎪⎪⎪68的值;(2)按照这个规定请你计算:当x 2-3x +1=0时,⎪⎪⎪⎪⎪⎪x +1x -23xx -1的值.21.已知:如图,在△ABC 中,BC =AC ,以BC 为直径的⊙O 与边AB 相交于点D ,DE ⊥AC ,垂足为点E .(1)求证:点D 是AB 的中点;(2)判断DE 与⊙O 的位置关系,并证明你的结论;(3)若⊙O 的直径为18,cos B =13,求DE 的长.22.如图,已知二次函数y =-x 2+bx +c 的图象经过A (-2,-1),B (0,7)两点.(1)求该抛物线的解析式及对称轴; (2)当x 为何值时,y >0?(3)在x 轴上方作平行于x 轴的直线l ,与抛物线交于C 、D 两点(点C 在对称轴的左侧),过点C 、D 作x 轴的垂线,垂足分别为F 、E .当矩形CDEF 为正方形时,求C 点的坐标.广东中考数学试卷一参考答案一、选择题1. A2. D3. C4. A5. C 二、填空题6. -17. 38. 59. k <12 10. 100三、解答题11.解:原式=1+2+2-2-1=212.解:方程两边同乘最简公分母x (x -1),得x +4=3x ,解得x =2. 经检验:x =2是原方程的根. ∴原方程的解为x =2. 13.解:原式=⎣⎢⎡⎦⎥⎤a -1a -22-a +2a a -2÷4-aa=aa -1-a -2a +2a a -22·a4-a=1a -22.当a =2-3时,原式=13.14.解:(1)把A (2,0),B (0,-6)代入y =-12x 2+bx +c ,得⎩⎪⎨⎪⎧ -2+2b +c =0c =-6,解得⎩⎪⎨⎪⎧b =4c =-6. ∴这个二次函数的解析式为y =-12x 2+4x -6.(2)∵该抛物线对称轴为直线x =-42×⎝⎛⎭⎫-12=4,∴点C 的坐标为(4,0),∴AC =OC -OA =4-2=2, ∴S △ABC =12×AC ×OB =12×2×6=6.15.解:(1)已知AB =6 m ,∠ABC =45°, ∴AC =BC =AB ·sin45°=6×22=3 2,∵∠ADC =30°,∴AD =2AC =6 2. 答:调整后楼梯AD 的长为6 2m. (2)CD =AD ·cos30°=6 2×32=3 6,∴BD =CD -BC =3 6-3 2. 答:BD 的长为(3 6-3 2)m.16.解:如图,过点P 作PC ⊥AB ,垂足为C ,设PC =x 海里, 在Rt △APC 中,∵tan ∠A =PC AC, ∴AC =PC tan67.5°=5x12.在Rt △PCB 中,∵tan ∠B =PC BC, ∴BC =x tan36.9°=4x3.∵AC +BC =AB =21×5, ∴5x 12+4x3=21×5,解得 x =60. ∵sin ∠B =PCPB,∴PB =PC sin ∠B =60sin36.9°=60×53=100(海里).∴海检船所在B 处与城市P 的距离为100海里.17.解:(1)∵红球有2x 个,白球有3x 个,∴P (红球)=2x 2x +3x =25,P (白球)=3x 2x +3x =35,∴P (红球)< P (白球), ∴这个办法不公平.(2)取出3个白球后,红球有2x 个,白球有(3x -3)个, ∴P (红球)=2x5x -3,P (白球)=3x -35x -3,x 为正整数,∴P (红球)- P (白球) =3-x5x -3.①当x <3时,则P (红球)> P (白球), ∴对小妹有利.②当x =3时,则P (红球)= P (白球), ∴对小妹、小明是公平的.③当x >3时,则P (红球)< P (白球),∴对小明有利.18.解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意得⎩⎪⎨⎪⎧4x +28-x ≥20x +28-x ≥12, 解此不等式组得2≤x ≤4. ∵x 是正整数,∴x 可取的值为2,3,4.甲种货车 乙种货车 方案一 2辆 6辆 方案二 3辆 5辆 方案三4辆4辆(2)方案一所需运费为300×2+240×6=2 040元; 方案二所需运费为300×3+240×5=2 100元; 方案三所需运费为300×4+240×4=2 160元.∴王灿应选择方案一运费最少,最少运费是2 040元. 19.解:(1)如图 (需保留线段AD 中垂线的痕迹).直线BC 与⊙O 相切.理由如下:连接OD ,∵OA =OD ,∴∠OAD =∠ODA . ∵AD 平分∠BAC ,∴∠OAD =∠DAC . ∴∠ODA =∠DAC . ∴OD ∥AC . ∵∠C =90°,∴∠ODB =90°,即OD ⊥BC . 又∵直线BC 过半径OD 的外端, ∴BC 为⊙O 的切线.(2)设OA =OD =r ,在Rt △BDO 中,OD 2+BD 2=OB 2, ∴r 2+(2 3)2=(6-r )2,解得r =2. ∵tan ∠BOD =BDOD =3,∴∠BOD =60°.∴S 扇形ODE =60π·22360=23π.∴所求图形面积为S △BOD -S 扇形ODE =2 3-23π.20.解:(1)⎪⎪⎪ 57⎪⎪⎪68=5×8-6×7=-2. (2)⎪⎪⎪ x +1x -2⎪⎪⎪3x x -1=()x +1()x -1-3x ()x -2 =x 2-1-3x 2+6x =-2x 2+6x -1. 又∵x 2-3x +1=0, ∴x 2-3x =-1,原式=-2(x 2-3x )-1=-2×(-1)-1=1. 21.(1)证明:如图,连接CD ,则CD ⊥AB ,又∵AC =BC ,∴AD =BD , 即点D 是AB 的中点. (2)解:DE 是⊙O 的切线.理由是:连接OD ,则DO 是△ABC 的中位线, ∴DO ∥AC . 又∵DE ⊥AC , ∴DE ⊥DO ,又∵OD 是⊙O 的半径, ∴DE 是⊙O 的切线.(3)∵AC =BC ,∴∠B =∠A ,∴cos ∠B =cos ∠A =13.∵cos ∠B =BD BC =13,BC =18,∴BD =6,∴AD =6. ∵cos ∠A =AE AD =13,∴AE =2.在Rt △AED 中,DE =AD 2-AE 2=4 2.22.解:(1)把A (-2,-1),B (0,7)两点的坐标代入 y =-x 2+bx +c ,得⎩⎪⎨⎪⎧ -4-2b +c =-1c =7,解得⎩⎪⎨⎪⎧b =2c =7. 所以,该抛物线的解析式为y =-x 2+2x +7,又因为y =-x 2+2x +7=-(x -1)2+8,所以对称轴为直线x =1. (2)当函数值y =0时,-x 2+2x +7=0的解为x =1±2 2,结合图象,容易知道1-2 2<x <1+2 2时,y >0.(3)当矩形CDEF 为正方形时,设C 点的坐标为(m ,n ), 则n =-m 2+2m +7,即CF =-m 2+2m +7. 因为C 、D 两点的纵坐标相等,所以C 、D 两点关于对称轴x =1对称, 设点D 的横坐标为p ,则1-m =p -1,所以p =2-m ,所以CD =(2-m )-m =2-2m . 因为CD =CF ,所以2-2m =-m 2+2m +7, 整理,得m 2-4m -5=0,解得m =-1或5. 因为点C 在对称轴的左侧,所以m 只能取-1. 当m =-1时,n =-m 2+2m +7=-(-1)2+2×(-1)+7=4. 于是,点C 的坐标为(-1,4).广东中考数学试卷二考试用时100分钟,满分为120分一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-2的倒数是( )A .2B .-2C .21D .21-2.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨B .5.464×108吨C .5.464×109吨D .5.464×1010吨3.将左下图中的箭头缩小到原来的21,得到的图形是( )4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( ) A .51 B .31 C .85 D .835.正八边形的每个内角为( )A .120ºB .135ºC .140ºD .144º二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.已知反比例函数xky =的图象经过(1,-2),则=k ____________. 7.使2-x 在实数范围内有意义的x 的取值范围是______ _____. 8.按下面程序计算:输入3=x ,则输出的答案是_______________.9.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C .若∠A =40º,则∠C =_____.10.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;A .B .D .题3图题9图 B C O A如此下去…,则正六角星形A 4F 4B 4D 4C 4E 4的面积为_________________.三、解答题(一)(本大题5小题,每小题6分,共30分) 11.计算:20245sin 18)12011(-︒+-.12.解不等式组:⎩⎨⎧-≤-->+128,312x x x ,并把解集在数轴上表示出来.13.已知:如图,E ,F 在AC 上,AD //CB 且AD =求证:AE =CF .题13图 B C D A F E题14图题10图(1) E题10图(2) 题10图(3)14.如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1.(1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π).15.已知抛物线c x x y ++=221与x 轴没有交点. (1)求c 的取值范围;(2)试确定直线1+=cx y 经过的象限,并说明理由.四、解答题(二)(本大题4小题,每小题7分,共28分)16.某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶? 17.如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路. 现新修一条路AC 到公路l . 小明测量出∠ACD =30º,∠ABD =45º,BC =50m . 请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m ;参考数据:414.12≈,732.13≈).18.李老师为了解班里学生的作息时间表,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题: (1)此次调查的总体是什么? (2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?19.如图,直角梯形纸片ABCD 中,AD //BC ,∠A =90º,∠C =30º.折叠纸片使BC 经过点D ,点C 落在点E 处,BF 是折痕,且BF =CF =8. (1)求∠BDF 的度数; (2)求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)20.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36…………………………题19图 B C E D A F(1)表中第8行的最后一个数是______________,它是自然数_____________的平方,第8行共有____________个数;(2)用含n 的代数式表示:第n 行的第一个数是___________________,最后一个数是________________,第n 行共有_______________个数;(3)求第n 行各数之和.21.如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB =AC =EF =9,∠BAC =∠DEF =90º,固定△ABC ,将△DEF 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE ,DF (或它们的延长线)分别交BC (或它的延长线) 于G ,H 点,如图(2)(1)问:始终与△AGC(2)设CG =x ,BH =y ,求y 关于x 的函数关系式(只要求根据图(2)的情形说明理由) (3)问:当x 为何值时,△AGH 是等腰三角形.22.如图,抛物线1417452++-=x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC轴,交直线AB 于点M ,交抛物线于点N . 设点P 求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O 何值时,四边形BCMN 请说明理由.题21图(1) BH F A (D ) G C EC (E ) B F A (D ) 题21图(2)广东中考数学试卷二参考答案一、1-5、DBACB 二、6、-27、___ x ≥2__8、___12__9、__25º__ 10、2561 三、11、原式=-6 12、x ≥3 13、由△ADF ≌△CB E ,得AF =C E ,故得:AE=CF 14、(1)⊙P 与⊙P 1外切。
2019广东省中考数学试卷及答案(2)
2019 广东省中考数学试卷及答案(2)(word 版可编辑修改)
编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019 广东省中考数学试卷及 答案(2)(word 版可编辑修改))的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您 的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为 2019 广东省中考数学试卷及答案(2)(word 版可编辑修改)的全部内容。
一、选择题 123 ABA
2019 东省中考数学答案
4 5 6 7 8 9 10 CCCDBDC
二、填空题 11、答案:4 解析:本题考查了零次幂和负指数幂的运算 12、答案:105 解析:本题考查了平行线的性质,互为补角的计算 13、答案:8 解析:本题考查了多边形内角和的计算公式
10
14、答案:21
三、解答题(一)(本大题 3 小题,每小题 6 分,共 18 分)
x 1 2 ①
17.解不等式组: 2 x 1 4 ②
18.先化简,再求值:
x
x
2
x
1
2
x2 x2
x 4
,
其中 x=
2.
19.如图,在ABC 中,点 D 是 AB 边上的一点.
(1)请用尺规作图法,在ABC 内,求作∠ADE,使∠ADE=∠B,DE 交 AC 于 E;(不要求写作法, 保留作图痕迹)
2019 广东省中考数学试卷及答案(2)(word 版可编辑修改)
(完整版)2019广东省中考数学试卷及答案
2019年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-2的绝对值是 A .2B .-2C .12D .±22.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为 A .2.21×106B .2.21×105C .221×103D .0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是4.下列计算正确的是 A .632b b b ÷=B .339b b b ⋅=C .2222a a a +=D .()363a a =5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是6.数据3、3、5、8、11的中位数是 A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a b >B .a b <C .0a b +>D .0ab<8的结果是 A .-4B .4C .±4D .29.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是 A .12x x ≠ B .2112=0x x - C .12=2x x +D .12=2x x ⋅10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:ANH GNF ①≌ ;AFN HFG ∠=∠② ;2FN NK =③;:1:4AFNADMSS=④.其中正确的结论有A .1个B .2个C .3个D .4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算:1120193-⎛⎫+ ⎪⎝⎭= .12.如图,已知a b ,175∠=°,则∠2= .13.一个多边形的内角和是1080︒ ,这个多边形的边数是 . 14.已知23x y =+ ,则代数式489x y -+ 的值是 .15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是 米(结果保留根号) .16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是 (结果用含a 、b 代数式表示) .三、解答题(一)(本大题3小题,每小题6分,共18分) 17.解不等式组:()12214x x ->⎧⎨+>⎩①②18.先化简,再求值:221224xx x x x x -⎛⎫-÷ ⎪---⎝⎭,其中x19.如图,在ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在ABC 内,求作∠ADE ,使∠ADE =∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB ,求AEEC的值.四、解答题(二) (本大题3小题,每小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x = ,y = ,扇形图中表示C 的圆心角的度数为 度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个? (2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?22.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,ABC 的三个顶点均在格点上,以点A 为圆心的EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及FE 所围成的阴影部分的面积.五、解答题(三)(本大题3小题,每小题9分,共27分) 23.如图,一次函数y =k 1x +b 的图象与反比例函数2k y x=的图象相交于A 、B 两点,其中点A 的坐标为(-1,4),点B 的坐标为(4,n ).(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.24.如题24-1图,在ABC 中,AB =AC ,⊙O 是ABC 的外接圆,过点C 作∠BCD =∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF =AC ,连接AF .(1)求证:ED =EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是ACD 的内心,25BC BE ⋅=,求BG 的长.25.如题25-1图,在平面直角坐标系中,抛物线2y x 与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,CAD 绕点C 顺时针旋转得到CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作1DD x ⊥轴于点D 1,点P 是抛物线上一动点,过点P 作PM x ⊥轴,点M 为垂足,使得PAM 与1DD A 相似(不含全等). ①求出一个满足以上条件的点P 的横坐标; ②直接回答....这样的点P 共有几个?2019广东省中考数学答案一、选择题二、填空题 11、答案:4解析:本题考查了零次幂和负指数幂的运算 12、答案:︒105解析:本题考查了平行线的性质,互为补角的计算 13、答案:8解析:本题考查了多边形内角和的计算公式 14、答案:21解析:整体思想,考查了整式的运算 15、答案:31515+解析:本题利用了特殊三角函数值解决实际问题16、答案:b a 8+三 解答题(一)17、解: ①得:3>x ①得:1>x①不等式组的解集为:3>x18、解: 原式=)1()2)(2(21--+⋅--x x x x x x =xx 2+ 当2=x 时 原式=222+ =2222+ =21+19、解:(1)如图所示:①ADE 即为所求。
完整版)2019广东省中考数学试卷及答案
完整版)2019广东省中考数学试卷及答案2019年广东省初中学业水平考试数学本次考试共4页,满分120分,考试时间100分钟。
在答题卡上填写准考证号、姓名、考场号和座位号,使用黑色字迹的签字笔或钢笔。
用2B铅笔涂黑对应题号的标号。
选择题答案涂在答题卡上,用2B铅笔涂黑。
如需更改答案,先用橡皮擦干净,再涂上新答案。
非选择题必须使用黑色字迹的钢笔或签字笔作答,写在答题卡指定区域内。
如需更改答案,先划掉原答案,再写上新答案。
不得使用铅笔或涂改液。
不按要求作答的答案无效。
保持答题卡整洁,考试结束时将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)1.求-2的绝对值。
A。
2B。
-2C。
1D。
±22.某网店2019年母亲节当天的营业额为元,将数用科学记数法表示为A。
2.21×106B。
2.21×105C。
221×103D。
0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是4.下列计算正确的是A。
b6÷b3=b2B。
b3×b3=b9C。
a2+a2=2a2D。
(a3) =a65.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是6.数据3、3、5、8、11的中位数是A。
3B。
4C。
5D。
67.实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是A。
a>bB。
a<bC。
a+b>a-bD。
a-b<b-a8.化简42的结果是A。
-4B。
4C。
±4D。
29.已知x1、x2是一元二次方程x2-2x=0的两个实数根,下列结论错误的是A。
x1≠x2B。
x12-2x1=0C。
x1+x2=2D。
x1×x2=210.如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM、AF,H为AD的中点,连接FH分别与AB、AM交于点N、K。
2019年广东省中考数学试题(含答案,解析版)
2019年广东省初中学业水平考试数 学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.﹣2的绝对值是A .2B .﹣2C .21 D .±2 【答案】A【解析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.【考点】绝对值2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A.2.21×106B.2.21×105 C.221×103 D.0.221×106【答案】B【解析】a×10n形式,其中0≤|a|<10.【考点】科学记数法3.如图,由4个相同正方体组合而成的几何体,它的左视图是【答案】A【解析】从左边看,得出左视图.【考点】简单组合体的三视图4.下列计算正确的是A.b6÷b3=b2B.b3·b3=b9C.a2+a2=2a2D.(a3)3=a6【答案】C【解析】合并同类项:字母部分不变,系数相加减.【考点】同底数幂的乘除,合并同类项,幂的乘方5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是【答案】C【解析】轴对称与中心对称的概念.【考点】轴对称与中心对称6.数据3、3、5、8、11的中位数是A .3B .4C .5D .6【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数的概念 7.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a| < |b|C .a+b>0D .ba <0【答案】D【解析】a 是负数,b 是正数,异号两数相乘或相除都得负.【考点】数与代数式的大小比较,数轴的认识8.化简24的结果是A .﹣4B .4C .±4D .2【答案】B【解析】公式aa2 .【考点】二次根式9.已知x1、x2是一元二次方程了x2﹣2x=0的两个实数根,下列结论错误的是A.x1≠x2B.x12﹣2x1=0 C.x1+x2=2 D.x1·x2=2 【答案】D【解析】因式分解x(x-2)=0,解得两个根分别为0和2,代入选项排除法. 【考点】一元二次方程的解的概念和计算10.如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM、AF,H为AD的中点,连接FH分别与AB、AM交于点N、K.则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN: S△ADM =1 : 4.其中正确的结论有A.1个B.2个C.3个D.4个【答案】C【解析】AH=GF=2,∠ANH=∠GNF,∠AHN=∠GFN,△ANH≌△GNF(AAS),①正确;由①得AN=GN=1,∵NG⊥FG,NA不垂直于AF,∴FN不是∠AFG的角平分线,∴∠AFN≠∠HFG,②错误;由△AKH∽△MKF,且AH:MF=1:3,∴KH:KF=1:3,又∵FN=HN,∴K为NH的中点,即FN=2NK,③正确;S△AFN =21AN·FG=1,S△ADM =21DM·AD=4,∴S△AFN : S△ADM =1 :4,④正确.【考点】正方形的性质,平行线的应用,角平分线的性质,全等三角形,相似三角形,三角形的面积二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+(31)﹣1=____________. 【答案】4【解析】1+3=4【考点】零指数幂和负指数幂的运算12.如图,已知a ∥b ,∠l=75°,则∠2 =________.【答案】105°【解析】180°-75°=105°.【考点】平行线的性质 13.一个多边形的内角和是1080°,这个多边形的边数是_________.【答案】8【解析】(n-2)×180°=1080°,解得n=8.【考点】n 边形的内角和=(n-2)×180°14.已知x=2y+3,则代数式4x ﹣8y+9的值是___________.【解析】由已知条件得x-2y=3,原式=4(x-2y)+9=12+9=21.【考点】代数式的整体思想15米,在实验楼的15.如图,某校教学楼AC与实验楼BD的水平间距CD=3顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是_________________米(结果保留根号).【答案】15+153【解析】AC=CD·tan30°+CD·tan45°=15+153.【考点】解直角三角形,特殊三角函数值16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a、b代数式表示).【解析】每个接触部分的相扣长度为(a-b ),则下方空余部分的长度为a-2(a-b )=2b-a ,3个拼出来的图形有1段空余长度,总长度=2a+(2b-a )=a+2b ;5个拼出来的图形有2段空余长度,总长度=3a+2(2b-a )=a+4b ;7个拼出来的图形有3段空余长度,总长度=4a+3(2b-a )=a+6b ;9个拼出来的图形有4段空余长度,总长度=5a+4(2b-a )=a+8b.【考点】规律探究题型三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:【答案】解:由①得x >3,由②得x >1,∴原不等式组的解集为x >3.【考点】解一元一次不等式组18.先化简,再求值:4-x x -x 2-x 1-2-x x 22÷⎪⎭⎫ ⎝⎛ ,其中x=2. 【答案】解:原式=2-x 1-x 4-x x -x 22÷ =2-x 1-x ×()()()1-x x 2-x 2x + =x 2x +当x=2,原式=222+=2222+=1+2. 【考点】分式的化简求值,包括通分、约分、因式分解、二次根式计算19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若DB AD=2,求EC AE的值.【答案】解:(1)如图所示,∠ADE 为所求.(2)∵∠ADE=∠B∴DE ∥BC ∴EC AE =DB AD∵DB AD =2 ∴ECAE =2 【考点】尺规作图之作一个角等于已知角,平行线分线段成比例四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C 的圆心角的度数为_______度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.【答案】解:(1)y=10÷25%=40,x=40-24-10-2=4,C 的圆心角=360°×404=36° (2)画树状图如下:一共有6种可能结果,每种结果出现的可能性相同,其中同时抽到甲、乙的结果有2种∴P (甲乙)=62=31 答:同时抽到甲、乙两名学生的概率为31. 【考点】数据收集与分析,概率的计算21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?【答案】解:(1)设购买篮球x 个,则足球(60-x )个.由题意得70x+80(60-x )=4600,解得x=20则60-x=60-20=40.答:篮球买了20个,足球买了40个.(2)设购买了篮球y 个.由题意得 70y ≤80(60-x ),解得y ≤32答:最多可购买篮球32个.【考点】一元一次方程的应用,一元一次不等式的应用22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.【答案】解:(1)由题意可知,AB=2262+=102,AC=2262+=102, BC=2284+=54(2)连接AD由(1)可知,AB2+AC2=BC2,AB=AC∴∠BAC=90°,且△ABC 是等腰直角三角形∵以点A 为圆心的⌒EF 与BC 相切于点D∴AD ⊥BC∴AD=21BC=52 (或用等面积法AB ·AC=BC ·AD 求出AD 长度) ∵S 阴影=S △ABC -S 扇形EAFS △ABC =21×102×102=20 S 扇形EAF =()25241π =5π ∴S 阴影=20-5π【考点】勾股定理及其逆定理,阴影面积的计算包括三角形和扇形的面积公式五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=x k 2的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).(1)根据函数图象,直接写出满足k 1x+b>x k 2的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP : S △BOP =1 : 2,求点P 的坐标.【答案】解:(1)x <-1或0<x <4(2)∵反比例函数y=x k 2图象过点A (﹣1,4) ∴4=1-k 2,解得k 2=﹣4 ∴反比例函数表达式为x4-y = ∵反比例函数x4-y =图象过点B (4,n ) ∴n=44-=﹣1,∴B (4,﹣1) ∵一次函数y=k 1x+b 图象过A (﹣1,4)和B (4,﹣1)∴⎩⎨⎧+=+=bk 41-b -k 411,解得⎩⎨⎧==3b 1-k 1 ∴一次函数表达式为y=﹣x+3(3)∵P 在线段AB 上,设P 点坐标为(a ,﹣a+3)∴△AOP 和△BOP 的高相同∵S △AOP : S △BOP =1 : 2∴AP : BP=1 : 2过点B 作BC ∥x 轴,过点A 、P 分别作AM ⊥BC ,PN ⊥BC 交于点M 、N∵AM ⊥BC ,PN ⊥BC ∴BNMN BP AP = ∵MN=a+1,BN=4-a ∴21a -41a =+,解得a=32 ∴-a+3=37 ∴点P 坐标为(32,37) (或用两点之间的距离公式AP=()()224-3a -1a +++,BP=()()223-a 1-a -4++,由21BP AP =解得a 1=32,a 2=-6舍去)【考点】一次函数和反比例函数的数形结合,会比较函数之间的大小关系,会求函数的解析式,同高的三角形的面积比与底边比的关系24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF是⊙O的切线;(3)如题24-2图,若点G是△ACD的内心,BC·BE=25,求BG的长.【答案】(1)证明:∵AB=AC∴∠B==∠ACB∵∠BCD=∠ACB∴∠B=∠BCD∵⌒AC=⌒AC∴∠B=∠D∴∠BCD=∠D ∴ED=EC (2)证明:连接AO并延长交⊙O于点G,连接CG 由(1)得∠B=∠BCD∴AB∥DF∵AB=AC,CF=AC∴AB=CF∴四边形ABCF是平行四边形∴∠CAF=∠ACB∵AG为直径∴∠ACG=90°,即∠G+∠GAC=90°∵∠G=∠B,∠B=∠ACB∴∠ACB+∠GAC=90°∴∠CAF+∠GAC=90°即∠OAF=90°∵点A在⊙O上∴AF是⊙O的切线(3)解:连接AG∵∠BCD=∠ACB ,∠BCD=∠1∴∠1=∠ACB∵∠B=∠B∴△ABE ∽△CBA ∴BCAB AB BE ∵BC ·BE=25∴AB 2=25∴AB=5∵点G 是△ACD 的内心∴∠2=∠3∵∠BGA=∠3+∠BCA=∠3+∠BCD=∠3+∠1=∠3+∠2=∠BAG∴BG=AB=5【考点】圆的综合应用,等弧等弦等角的转换,切线的证明,垂径定理的逆应用,内心的概念,相似三角形的应用,外角的应用,等量代换的意识25.如题25-1图,在平面直角坐标系中,抛物线y=837 -x 433x 832+与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?【答案】(1)解:由y=837 -x 433x 832+=()32-3x 83+得点D 坐标为(﹣3,32) 令y=0得x 1=﹣7,x 2=1∴点A 坐标为(﹣7,0),点B 坐标为(1,0)(2)证明:过点D 作DG ⊥y 轴交于点G ,设点C 坐标为(0,m )∴∠DGC=∠FOC=90°,∠DCG=∠FCO∴△DGC ∽△FOC ∴COCG FO DG = 由题意得CA=CF ,CD=CE ,∠DCA=∠ECF ,OA=1,DG=3,CG=m+32 ∵CO ⊥FA∴FO=OA=1 ∴m 32m 13+=,解得m=3 (或先设直线CD 的函数解析式为y=kx+b ,用D 、F 两点坐标求出y=3x+3,再求出点C 的坐标)∴点C 坐标为(0,3)∴CD=CE=()223233++=6 ∵tan ∠CFO=FO CO =3∴∠CFO=60°∴△FCA 是等边三角形∴∠CFO=∠ECF∴EC ∥BA∵BF=BO -FO=6∴CE=BF∴四边形BFCE 是平行四边形(3)解:①设点P 坐标为(m ,837-m 433m 832+),且点P 不与点A 、B 、D 重合.若△PAM 与△DD 1A 相似,因为都是直角三角形,则必有一个锐角相等.由(1)得AD 1=4,DD 1=32(A )当P 在点A 右侧时,m >1 (a )当△PAM ∽△DAD 1,则∠PAM=∠DAD 1,此时P 、A 、D 三点共线,这种情况不存在(b )当△PAM ∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴3241-m 837-m 433m 832=+,解得m 1=35-(舍去),m 2=1(舍去),这种不存在(B )当P 在线段AB 之间时,﹣7<m <1 (a )当△PAM ∽△DAD 1,则∠PAM=∠DAD 1,此时P 与D 重合,这种情况不存在第 21 页 (共 21 页) (b )当△PAM ∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴3241-m 837-m 433m 832=+,解得m 1=35-,m 2=1(舍去) (C )当P 在点B 左侧时,m <﹣7(a )当△PAM ∽△DAD 1,则∠PAM=∠DAD 1,此时11AD DD AM PM = ∴﹣3241-m 837-m 433m 832=+432,解得m 1=﹣11,m 2=1(舍去) (b )当△PAM ∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴﹣3241-m 837-m 433m 832=+,解得m 1=337-,m 2=1(舍去) 综上所述,点P 的横坐标为35-,﹣11,337-,三个任选一个进行求解即可. ②一共存在三个点P ,使得△PAM 与△DD 1A 相似.【考点】二次函数的综合应用,旋转的性质,相似三角形的的应用,等边三角形的性质,平行四边形的证明,平面直角坐标的灵活应用,动点问题,分类讨论思想。
2019年广东省汕尾市中考数学试卷(含答案)
2019 年广东省汕尾市中考数学试卷一、选择题(共 10 小题,每小题 4 分,共 40 分) 1.(2019 年广东汕尾)﹣2 的倒数是( ) A.2B.C.﹣D.﹣0.2分析:根据乘积为 1 的两数互为倒数,即可得出答案. 解:﹣2 的倒数为﹣ .故选 C.点评:此题考查了倒数的定义,属于基础题,关键是掌握乘积为 1 的两数互为倒数. 2.(2019 年广东汕尾)下列电视台的台标,是中心对称图形的是( ) A.B.C.D.分析:根据中心对称图形的定义旋转 180°后能够与原图形完全重合即是中心对称图形,即可判断得出. 解:A、∵此图形旋转 180°后能与原图形重合,∴此图形是中心对称图形,故此选项正确; B、∵此图形旋转 180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误; C、此图形旋转 180°后不能与原图形重合,此图形不是中心对称图形,故此选项错误; D、∵此图形旋转 180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误.故选;A. 点评:此题主要考查了中心对称图形的定义,根据定义得出图形形状是解决问题的关键. 3.(2019 年广东汕尾)若 x>y,则下列式子中错误的是( ) A.x﹣3>y﹣3B. >C.x+3>y+3D.﹣3x>﹣3y分析:根据不等式的基本性质,进行选择即可.解:A、根据不等式的性质 1,可得 x﹣3>y﹣3,故 A 正确;B、根据不等式的性质 2,可得 > ,故 B 正确;C、根据不等式的性质 1,可得 x+3>y+3,故 C 正确;D、根据不等式的性质 3,可得﹣3x<﹣3y,故 D 错误;故选 D.点评:本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.(2019 年广东汕尾)在我国南海某海域探明可燃冰储量约有 194 亿立方米,数字 19400000000 用科学记数法表示正确的是( ) A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109分析:科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变 成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当 原数的绝对值<1 时,n 是负数. 解:将 19400000000 用科学记数法表示为:1.94×1010.故选:A. 点评:此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整 数,表示时关键要正确确定 a 的值以及 n 的值.5.(2019 年广东汕尾)下列各式计算正确的是( ) A.(a+b)2=a2+b2 B.a•a2=a3C.a8÷a2=a4D.a2+a3=a5分析:A、原式利用完全平方公式展开得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式不能合并,错误.解:A、原式=a2+b2+2ab,错误;B、原式=a3,正确; C、原式=a6,错误;D、原式不能合并,错误,故选 B点评:此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.6.(2019 年广东汕尾)如图,能判定 EB∥AC 的条件是( ) A.∠C=∠ABE B.∠A=∠EBDC.∠C=∠ABCD.∠A=∠ABE分析:在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.解:A 和 B 中的角不是三线八角中的角;C 中的角是同一三角形中的角,故不能判定两直线平行.D 中内错角∠A=∠ABE,则 EB∥AC.故选 D.点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.(2019 年广东汕尾)在 Rt△ABC 中,∠C=90°,若 sinA= ,则 cosB 的值是( ) A.B.C.D.分析:根据互余两角的三角函数关系进行解答. 解:∵∠C=90°,∴∠A+∠B=90°,∴cosB=sinA,∵sinA= ,∴cosB= .故选 B.点评:本题考查了互余两角的三角函数关系,熟记关系式是解题的关键.8.(2019 年广东汕尾)汽车以 60 千米/时的速度在公路上匀速行驶,1 小时后进入高速路,继续以 100 千 米/时的速度匀速行驶,则汽车行驶的路程 s(千米)与行驶的时间 t(时)的函数关系的大致图象是( ) A.B.C.D.分析:汽车以 60 千米/时的速度在公路上匀速行驶,1 小时后进入高速路,所以前 1 小时路程随时间增大 而增大,后来以 100 千米/时的速度匀速行驶,路程增加变快.据此即可选择. 解:由题意知,前 1 小时路程随时间增大而增大,1 小时后路程增加变快.故选:C. 点评:本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程. 9.(2019 年广东汕尾)如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是 ( ) A.我B.中C.国D.梦分析:利用正方体及其表面展开图的特点解题.解:这是一个正方体的平面展开图,共有六个面,其中面“我”与面“中”相对,面“的”与面“国”相对,“你”与面“梦”相对.故选 D.点评:本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.10.(2019 年广东汕尾)已知直线 y=kx+b,若 k+b=﹣5,kb=6,那么该直线不经过( ) A.第一象限 B.第二象限C.第三象限D.第四象限分析:首先根据 k+b=﹣5、kb=6 得到 k、b 的符号,再根据图象与系数的关系确定直线经过的象限,进而求 解即可.解:∵k+b=﹣5,kb=6,∴k<0,b<0,∴直线 y=kx+b 经过二、三、四象限,即不经过第一象限.故选 A. 点评: 本题考查了一次函数图象与系数的关系,解题的关键是根据 k、b 之间的关系确定其符号.二、填空题(共 6 小题,每小题 5 分,共 30 分)11.(2019 年广东汕尾)4 的平方根是 . 分析:根据平方根的定义,求数 a 的平方根,也就是求一个数 x,使得 x2=a,则 x 就是 a 的平方根,由此 即可解决问题. 解:∵(±2)2=4,∴4 的平方根是±2.故答案为:±2. 点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0 的平方根是 0;负数 没有平方根.12.(2019 年广东汕尾)已知 a+b=4,a﹣b=3,则 a2﹣b2= .分析:根据 a2﹣b2=(a+b)(a﹣b),然后代入求解.解:a2﹣b2=(a+b)(a﹣b)=4×3=12.故答案是:12.点评:本题重点考查了用平方差公式.平方差公式为(a+b)(a﹣b)=a2﹣b2.本题是一道较简单的题目.13.(2019 年广东汕尾)已知 a,b,c 为平面内三条不同直线,若 a⊥b,c⊥b,则 a 与 c 的位置关系是 . 分析:根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行可得答案. 解:∵a⊥b,c⊥b,∴a∥c,故答案为:平行. 点评:此题主要考查了平行线的判定,关键是掌握在同一平面内,如果两条直线同时垂直于同一条直线, 那么这两条直线平行. 14.(2019 年广东汕尾)小明在射击训练中,五次命中的环数分别为 5、7、6、6、6,则小明命中环数的 众数为 ,平均数为 . 分析:根据众数和平均数的概念求解.解:6 出现的次数最多,故众数为 6,平均数为:=6.故答案为:6,6.点评:本题考查了众数和平均数的概念:一组数据中出现次数最多的数据叫做众数;平均数是指在一组数 据中所有数据之和再除以数据的个数. 15.(2019 年广东汕尾)写出一个在三视图中俯视图与主视图完全相同的几何体 . 分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形. 解:球的俯视图与主视图都为圆;正方体的俯视图与主视图都为正方形. 故答案为:球或正方体. 点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 16.(2019 年广东汕尾)如图,把△ABC 绕点 C 按顺时针方向旋转 35°,得到△A′B′C,A′B′交 AC 于点 D.若∠A′DC=90°,则∠A= .分析: 根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A 的度数.解:∵把△ABC 绕点 C 按顺时针方向旋转 35°,得到△A′B′C,A′B′交 AC 于点 D,∠A′DC=90°, ∴∠ACA′=35°,则∠A′=90°﹣35°=55°, 则∠A=∠A′=55°.故答案为:55°. 点评:此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键. 三、解答题(一)(共 3 小题,每小题 7 分,共 21 分) 17.((2019 年广东汕尾)计算:( +π)0﹣2|1﹣sin30°|+( )﹣1. 分析:原式第一项利用零指数幂法则计算,第二项利用特殊角的三角函数值及绝对值的代数意义化简,最 后一项利用负指数幂法则计算即可得到结果. 解:原式=1﹣2× +2=1﹣1+2=2. 点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 18.(2019 年广东汕尾)已知反比例函数 y= 的图象经过点 M(2,1) (1)求该函数的表达式; (2)当 2<x<4 时,求 y 的取值范围(直接写出结果). 分析:(1)利用待定系数法把(2,1)代入反比例函数 y= 中可得 k 的值,进而得到解析式;(2)根据 y= 可得 x= ,再根据条件 2<x<4 可得 2< <4,再解不等式即可.解:(1)∵反比例函数 y= 的图象经过点 M(2,1),∴k=2×1=2,∴该函数的表达式为 y= ;(2)∵y= ,∴x= ,∵2<x<4,∴2< <4,解得: <y<1. 点评:此题主要考查了待定系数法求反比例函数解析式,以及反比例函数的性质,关键是正确确定函数解 析式.19.(2019 年广东汕尾)如图,在 Rt△ABC 中,∠B=90°,分别以点 A、C 为圆心,大于 AC 长为半径画弧,两弧相交于点 M、N,连接 MN,与 AC、BC 分别交于点 D、E,连接 AE. (1)求∠ADE;(直接写出结果) (2)当 AB=3,AC=5 时,求△ABE 的周长.分析:(1)根据题意可知 MN 是线段 AC 的垂直平分线,由此可得出结论; (2)先根据勾股定理求出 BC 的长,再根据线段垂直平分线的性质即可得出结论. 解:(1)∵由题意可知 MN 是线段 AC 的垂直平分线,∴∠ADE=90°;(2)∵在 Rt△ABC 中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN 是线段 AC 的垂直平分线,∴AE=CE, ∴△ABE 的周长=AB+(AE+BE)=AB+BC=3+4=7.点评:本题考查的是作图﹣基本作图,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键. 四、解答题(二)(共 3 小题,每小题 9 分,共 27 分) 20.(2019 年广东汕尾)如图,在平行四边形 ABCD 中,E 是 AD 边上的中点,连接 BE,并延长 BE 交 CD 的延长线于点 F. (1)证明:FD=AB; (2)当平行四边形 ABCD 的面积为 8 时,求△FED 的面积.分析:(1)利用已知得出△ABE≌△DFE(AAS),进而求出即可;(2)首先得出△FED∽△FBC,进而得出= ,进而求出即可.(1)证明:∵在平行四边形 ABCD 中,E 是 AD 边上的中点,∴AE=ED,∠ABE=∠F,在△ABE 和△DFE 中,∴△ABE≌△DFE(AAS),∴FD=AB;(2)解:∵DE∥BC,∴△FED∽△FBC,∵△ABE≌△DFE,∴BE=EF,S△FDE=S 平行四边形 ABCD,∴ = ,∴= ,∴=,∴△FED 的面积为:2. 点评: 此题主要考查了全等三角形的判定与性质以及平行四边形的性质以及相似三角形的判定与性质等 知识,得出 S△FDE=S 平行四边形 ABCD 是解题关键. 21.(2019 年广东汕尾)一个口袋中有 3 个大小相同的小球,球面上分别写有数字 1、2、3,从袋中随机 地摸出一个小球,记录下数字后放回,再随机地摸出一个小球. (1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果; (2)求两次摸出的球上的数字和为偶数的概率. 分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果; (2)由(1)可求得两次摸出的球上的数字和为偶数的有 5 种情况,再利用概率公式即可求得答案. 解:(1)画树状图得:则共有 9 种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有 5 种情况, ∴两次摸出的球上的数字和为偶数的概率为: .点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可 能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为: 概率=所求情况数与总情况数之比. 22.(2019 年广东汕尾)已知关于 x 的方程 x2+ax+a﹣2=0 (1)若该方程的一个根为 1,求 a 的值及该方程的另一根; (2)求证:不论 a 取何实数,该方程都有两个不相等的实数根. 分析:(1)将 x=1 代入方程 x2+ax+a﹣2=0 得到 a 的值,再根据根与系数的关系求出另一根; (2)写出根的判别式,配方后得到完全平方式,进行解答. 解:(1)将 x=1 代入方程 x2+ax+a﹣2=0 得,1+a+a﹣2=0,解得,a= ;方程为 x2+ x﹣ =0,即 2x2+x﹣3=0,设另一根为 x1,则 1x1=﹣ ,x1=﹣ .(2)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4≥0, ∴不论 a 取何实数,该方程都有两个不相等的实数根. 点评:本题考查了根的判别式和根与系数的关系,要记牢公式,灵活运用.五、解答题(三)(共 3 小题,第 23、24 小题各 11 分,第 25 小题 10 分,共 32 分) 23.(11 分)(2019 年广东汕尾)某校为美化校园,计划对面积为 1800m2 的区域进行绿化,安排甲、乙两 个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的 2 倍,并且在独立完成面 积为 400m2 区域的绿化时,甲队比乙队少用 4 天. (1)求甲、乙两工程队每天能完成绿化的面积分别是多少 m2? (2)若学校每天需付给甲队的绿化费用为 0.4 万元,乙队为 0.25 万元,要使这次的绿化总费用不超过 8 万元,至少应安排甲队工作多少天? 分析:(1)设乙工程队每天能完成绿化的面积是 xm2,根据在独立完成面积为 400m2 区域的绿化时,甲 队比乙队少用 4 天,列出方程,求解即可; (2)设至少应安排甲队工作 x 天,根据这次的绿化总费用不超过 8 万元,列出不等式,求解即可.解:(1)设乙工程队每天能完成绿化的面积是 xm2,根据题意得: ﹣ =4,解得:x=50 经检验 x=50 是原方程的解, 则甲工程队每天能完成绿化的面积是 50×2=100(m2), 答:甲、乙两工程队每天能完成绿化的面积分别是 100m2、50m2; (2)设至少应安排甲队工作 x 天,根据题意得:0.4x+×0.25≤8,解得:x≥10,答:至少应安排甲队工作 10 天. 点评:此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程和不等式,解分式方 程时要注意检验. 24.(2019 年广东汕尾)如图,在 Rt△ABC 中,∠ACB=90°,以 AC 为直径的⊙O 与 AB 边交于点 D,过点 D 作⊙O 的切线,交 BC 于 E. (1)求证:点 E 是边 BC 的中点; (2)求证:BC2=BD•BA; (3)当以点 O、D、E、C 为顶点的四边形是正方形时,求证:△ABC 是等腰直角三角形.分析: (1)利用切线的性质及圆周角定理证明; 形证明; (3)利用正方形的性质证明. 证明:(1)如图,连接 OD.∵DE 为切线,∴∠EDC+∠ODC=90°; ∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD, ∴∠EDC=∠ECD,∴ED=EC;∵AC 为直径,∴∠ADC=90°, ∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=DB. ∴EB=EC,即点 E 为边 BC 的中点; (2)∵AC 为直径,∴∠ADC=∠ACB=90°,又∵∠B=∠B(2)利用相似三角∴△ABC∽△CDB,∴,∴BC2=BD•BA;(3)当四边形 ODEC 为正方形时,∠OCD=45°;∵AC 为直径,∴∠ADC=90°,∴∠CAD=∠ADC﹣∠OCD=90°﹣45°=45° ∴Rt△ABC 为等腰直角三角形. 点评:本题是几何证明题,综合考查了切线性质、圆周角定理、相似三角形、正方形、等腰直角三角形等 知识点.试题着重对基础知识的考查,难度不大.25.(2019 年广东汕尾)如图,已知抛物线 y= x2﹣ x﹣3 与 x 轴的交点为 A、D(A 在 D 的右侧),与 y 轴的交点为 C. (1)直接写出 A、D、C 三点的坐标; (2)若点 M 在抛物线上,使得△MAD 的面积与△CAD 的面积相等,求点 M 的坐标; (3)设点 C 关于抛物线对称轴的对称点为 B,在抛物线上是否存在点 P,使得以 A、B、C、P 四点为顶 点的四边形为梯形?若存在,请求出点 P 的坐标;若不存在,请说明理由.分析:(1)令 y=0,解方程 x2﹣ x﹣3=0 可得到 A 点和 D 点坐标;令 x=0,求出 y=﹣3,可确定 C 点坐标;(2)根据抛物线的对称性,可知在在 x 轴下方对称轴右侧也存在这样的一个点;再根据三角形的等面积 法,在 x 轴上方,存在两个点,这两个点分别到 x 轴的距离等于点 C 到 x 轴的距离; (3)根据梯形定义确定点 P,如图所示:①若 BC∥AP1,确定梯形 ABCP1.此时 P1 与 D 点重合,即可求 得点 P1 的坐标;②若 AB∥CP2,确定梯形 ABCP2.先求出直线 CP2 的解析式,再联立抛物线与直线解析 式求出点 P2 的坐标. 解:(1)∵y= x2﹣ x﹣3,∴当 y=0 时, x2﹣ x﹣3=0,解得 x1=﹣2,x2=4.当 x=0,y=﹣3.∴A 点坐标为(4,0),D 点坐标为(﹣2,0),C 点坐标为(0,﹣3);(2)∵y= x2﹣ x﹣3,∴对称轴为直线 x==1.∵AD 在 x 轴上,点 M 在抛物线上, ∴当△MAD 的面积与△CAD 的面积相等时,分两种情况: ①点 M 在 x 轴下方时,根据抛物线的对称性,可知点 M 与点 C 关于直线 x=1 对称, ∵C 点坐标为(0,﹣3),∴M 点坐标为(2,﹣3); ②点 M 在 x 轴上方时,根据三角形的等面积法,可知 M 点到 x 轴的距离等于点 C 到 x 轴的距离 3.当 y=4 时, x2﹣ x﹣3=3,解得 x1=1+ ,x2=1﹣ ,∴M 点坐标为(1+ ,3)或(1﹣ ,3).综上所述,所求 M 点坐标为(2,﹣3)或(1+ ,3)或(1﹣ ,3); (3)结论:存在. 如图所示,在抛物线上有两个点 P 满足题意: ①若 BC∥AP1,此时梯形为 ABCP1. 由点 C 关于抛物线对称轴的对称点为 B,可知 BC∥x 轴,则 P1 与 D 点重合, ∴P1(﹣2,0).∵P1A=6,BC=2,∴P1A≠BC,∴四边形 ABCP1 为梯形; ②若 AB∥CP2,此时梯形为 ABCP2. ∵A 点坐标为(4,0),B 点坐标为(2,﹣3),∴直线 AB 的解析式为 y= x﹣6,∴可设直线 CP2 的解析式为 y= x+n,将 C 点坐标(0,﹣3)代入,得 b=﹣3,∴直线 CP2 的解析式为 y= x﹣3.∵点 P2 在抛物线 y= x2﹣ x﹣3 上,∴ x2﹣ x﹣3= x﹣3,化简得:x2﹣6x=0,解得 x1=0(舍去),x2=6,∴点 P2 横坐标为 6,代入直线 CP2 解析式求得纵坐标为 6,∴P2(6,6). ∵AB∥CP2,AB≠CP2,∴四边形 ABCP2 为梯形. 综上所述,在抛物线上存在一点 P,使得以点 A、B、C、P 四点为顶点所构成的四边形为梯形;点 P 的坐 标为(﹣2,0)或(6,6). 点评: 本题是二次函数的综合题型,其中涉及到的知识点有抛物线与坐标轴的交点坐标求法,三角形的 面积,梯形的判定.综合性较强,有一定难度.运用数形结合、分类讨论及方程思想是解题的关键.。
2019年广东汕尾中考数学试卷及答案
【导语】中考频道⼩编提醒参加2019中考的所有考⽣,⼴东汕尾2019年中考将于6⽉中旬陆续开始举⾏,⼴东汕尾中考时间具体安排考⽣可点击进⼊“”栏⽬查询,请⼴⼤考⽣提前准备好准考证及考试需要的⽤品,然后顺顺利利参加本届初中学业⽔平考试,具体如下:为⽅便考⽣及时估分,中考频道将在本次中考结束后陆续公布2019年⼴东汕尾中考数学试卷及答案信息。
考⽣可点击进⼊⼴东汕尾中考频道《、》栏⽬查看⼴东汕尾中考数学试卷及答案信息。
中考科⽬语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。
)考试必读可以在中考前⼀天下午去考场看看,熟悉⼀下考场环境。
确定去考场的⽅式,是坐公共汽车、出租车还是骑⾃⾏车等;确定去考场的⾏车路线。
在校内去考场的路上,⼀旦发⽣意外,要及时求助于监考⽼师或警察。
中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。
涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。
不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。
有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。
中考数学为了能让⼴⼤考⽣及时⽅便获取⼴东汕尾中考数学试卷答案信息,特别整理了《2019⼴东汕尾中考数学试卷及答案》发布⼊⼝供⼴⼤考⽣查阅。
数学真题/答案[解析]专题推荐参加2019中考的考⽣可直接查阅各科2019年⼴东汕尾中考试题及答案信息!考试须知⼀、考⽣凭《准考证》(社会⼈员须持准考证及⾝份证)提前15分钟进⼊指定试室(英语科提前20分钟)对号⼊座,并将《准考证》放在桌⼦左上⾓,以便查对。
考⽣除带必要的⽂具,如2B铅笔、⿊⾊字迹的钢笔或签字笔、直尺、圆规、三⾓板、橡⽪外,禁⽌携带任何书籍、笔记、资料、报刊、草稿纸以及各种⽆线通讯⼯具(如寻呼机、移动电话)、电⼦笔记本等与考试⽆关的物品(数学科考试可带指定型号的计算器)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.
二、填空题(共6小题,每小题5分,共30分)
11.(2019年广东汕尾)4的平方根是.
分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.
分析:A、原式利用完全平方公式展开得到结果,即可做出判断;
B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;
C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;
D、原式不能合并,错误.
解:A、原式=a2+b2+2ab,错误;B、原式=a3,正确;
C、原式=a6,错误;D、原式不能合并,错误,故选B
2.(2019年广东汕尾)下列电视台的台标,是中心对称图形的是( )
A. B. C. D.
分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断得出.
解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,故此选项正确;
B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;
∵MN是线段AC的垂直平分线,∴AE=CE,
∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=7.
点评:本题考查的是作图﹣基本作图,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.
四、解答题(二)(共3小题,每小题9分,共27分)
20.(2019年广东汕尾)如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.
解:将19400000000用科学记数法表示为:1.94×1010.故选:A.
点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5.(2019年广东汕尾)下列各式计算正确的是( )
A.(a+b)2=a2+b2B.a•a2=a3C.a8÷a2=a4D.a2+a3=a5
2019年广东省汕尾市中考数学试卷
一、选择题(共10小题,每小题4分,共40分)
1.(2019年广东汕尾)﹣2的倒数是( )
A.2B. C.﹣ D.﹣0.2
分析:根据乘积为1的两数互为倒数,即可得出答案.
解:﹣2的倒数为﹣ .故选C.
点评:此题考查了倒数的定义,属于基础题,关键是掌握乘积为1的两数互为倒数.
17.((2019年广东汕尾)计算:( +π)0﹣2|1﹣sin30°|+( )﹣1.
分析:原式第一项利用零指数幂法则计算,第二项利用特殊角的三角函数值及绝对值的代数意义化简,最后一项利用负指数幂法则计算即可得到结果.
解:原式=1﹣2× +2=1﹣1+2=2.
点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
在△ABE和△DFE中 ,∴△ABE≌△DFE(AAS),∴FD=AB;
(2)解:∵DE∥BC,∴△FED∽△FBC,∵△ABE≌△DFE,
∴BE=EF,S△FDE=S平行四边形ABCD,∴ = ,∴ = ,∴ = ,
∴△FED的面积为:2.
点评:此题主要考查了全等三角形的判定与性质以及平行四边形的性质以及相似三角形的判定与性质等知识,得出S△FDE=S平行四边形ABCD是解题关键.
A. B. C. D.
分析:汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程增加变快.据此即可选择.
解:由题意知,前1小时路程随时间增大而增大,1小时后路程增加变快.故选:C.
点评:本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程.
C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,故此选项错误;
D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误.故选;A.
点评:此题主要考查了中心对称图形的定义,根据定义得出图形形状是解决问题的关键.
3.(2019年广东汕尾)若x>y,则下列式子中错误的是( )
解:(1)∵反比例函数y= 的图象经过点M(2,1),∴k=2×1=2,
∴该函数的表达式为y= ;
(2)∵y= ,∴x= ,∵2<x<4,∴2< <4,解得: <y<1.
点评:此题主要考查了待定系数法求反比例函数解析式,以及反比例函数的性质,关键是正确确定函数解析式.
19.(2019年广东汕尾)如图,在Rt△ABC中,∠B=90°,分别以点A、C为圆心,大于 AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE.
A.x﹣3>y﹣3B. > C.x+3>y+3D.﹣3x>﹣3y
分析:根据不等式的基本性质,进行选择即可.
解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A正确;
B、根据不等式的性质2,可得 > ,故B正确;
C、根据不等式的性质1,可得x+3>y+3,故C正确;
D、根据不等式的性质3,可得﹣3x<﹣3y,故D错误;故选D.
(1)证明:FD=AB;
(2)当平行四边形ABCD的面积为8时,求△FED的面积.
分析:(1)利用已知得出△ABE≌△DFE(AAS),进而求出即可;
(2)首先得出△FED∽△FBC,进而得出 = ,进而求出即可.
(1)证明:∵在平行四边形ABCD中,E是AD边上的中点,∴AE=ED,∠ABE=∠F,
18.(2019年广东汕尾)已知反比例函数y= 的图象经过点M(2,1)
(1)求该函数的表达式;
(2)当2<x<4时,求y的取值范围(直接写出结果).
分析:(1)利用待定系数法把(2,1)代入反比例函数y= 中可得k的值,进而得到解析式;
(2)根据y= 可得x= ,再根据条件2<x<4可得2< <4,再解不等式即可.
点评:本题考查了众数和平均数的概念:一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.
15.(2019年广东汕尾)写出一个在三视图中俯视图与主视图完全相同的几何体.
分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.
解:球的俯视图与主视图都为圆;正方体的俯视图与主视图都为正方形.
21.(2019年广东汕尾)一个口袋中有3个大小相同的小球,球面上分别写有数字1、2、3,从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.
(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;
(2)求两次摸出的球上的数字和为偶数的概率.
故答案为:球或正方体.
点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
16.(2019年广东汕尾)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.
分析:根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.
(1)求∠ADE;(直接写出结果)
(2)当AB=3,AC=5时,求△ABE的周长.
分析:(1)根据题意可知MN是线段AC的垂直平分线,由此可得出结论;
(2)先根据勾股定理求出BC的长,再根据线段垂直平分线的性质即可得出结论.
解:(1)∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°;
(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC= =4,
解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,
则∠A=∠A′=55°.故答案为:55°.
点评:此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.
三、解答题(一)(共3小题,每小题7分,共21分)
解:A和B中的角不是三线八角中的角;
C中的角是同一三角形中的角,故不能判定两直线平行.
D中内错角∠A=∠ABE,则EB∥AC.故选D.
点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
7.(2019年广东汕尾)在Rt△ABC中,∠C=90°,若sinA= ,则cosB的值是( )
点评:本题考查了不等式的性质:
(1)不等式两边加(或减)同一个数(或式子),不等号方向不变.
(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.
(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
4.(2019年广东汕尾)在我国南海某海域探明可燃冰储量约有194亿立方米,数字19400000000用科学记数法表示正确的是( )
解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.
点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
12.(2019年广东汕尾)已知a+b=4,a﹣b=3,则a2﹣b2=.
分析:根据a2﹣b2=(a+b)(a﹣b),然后代入求解.
解:a2﹣b2=(a+b)(a﹣b)=4×3=12.故答案是:12.
9.(2019年广东汕尾)如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是( )
A.我B.中C.国D.梦
分析:利用正方体及其表面展开图的特点解题.
解:这是一个正方体的平面展开图,共有六个面,其中面“我”与面“中”相对,面“的”与面“国”相对,“你”与面“梦”相对.故选D.