2020高一数学寒假作业答案
高一数学寒假作业02 常用逻辑用语(教师版)
高一数学寒假作业专题02常用逻辑用语1.命题:∀x∈Z,2x∈Z的否定为()A.∀x∈Z,2x∉Z B.∃x∈Z,2x∉Z C.∀x∉Z,2x∉Z D.∃x∈Z,2x∈Z 【答案】B【解析】命题:∀x∈Z,2x∈Z为全称量词命题,其否定为∃x∈Z,2x∉Z;故选:B2.“a=1”是“函数f(x)=lg(√x2+1−ax)为奇函数”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件【答案】A【解析】由函数f(x)=lg(√x2+1−ax)为奇函数,即f(−x)=−f(x),即f(−x)+f(x)=0,可得lg(√x2+1+ax)+lg(√x2+1−ax)=lg(x2+1−a2x2)=0,所以x2−a2x2=0,可得a=±1,所以“a=1”是“函数f(x)=lg(√x2+1−ax)为奇函数”的充分不必要条件.故选:A.3.已知命题p:x2+x−2>0,命题q:x−1>0,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】因为命题p:x>1或x<−2,命题q:x>1,所以p是q的必要不充分条件,故选:B4.设a>0且a≠1,则“函数f(x)=a x在R上是减函数”是“函数g(x)=(2−a)x在R上是增函数”的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.非充分必要条件【答案】A【解析】若函数f(x)=a x在R上是减函数,则0<a<1,若函数g(x)=(2−a)x在R上是增函数,则2−a>0,又a>0且a≠1,所以0<a<2且a因为集合(0,1)真包含于集合(0,1)⋃(1,2)所以“函数f(x)=a x在R上是减函数”是“函数g(x)=(2−a)x在R上是增函数”的充分非必要条件.故选:A5.命题“∀x∈[1,2],3x2−a≥0”为真命题的一个充分不必要条件是()A.a≤2B.a≥2C.a≤3D.a≤4【答案】A【解析】若“∀x∈[1,2],3x2−a≥0为真命题,得a≤3x2对于x∈[1,2]恒成立,只需a≤(3x2)min=3,所以a≤2是命题“∀x∈[1,2],3x2−a≥0为真命题的一个充分不必要条件,故选:A.6.2021年1月初,中国多地出现散发病例甚至局部聚集性疫情,在此背景下,各地陆续发出“春节期间非必要不返乡”的倡议,鼓励企事业单位职工就地过年.某市针对非本市户籍并在本市缴纳社保,且春节期间在本市过年的外来务工人员,每人发放1000元疫情专项补贴.小张是该市的一名务工人员,则“他在该市过年”是“他可领取1000元疫情专项补贴”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】只有非本市户籍并在本市缴纳社保的外来务工人员就地过年,才可领取1000元疫情专项补贴,小张是该市的一名务工人员,但他可能是本市户籍或非本市户籍但在本市未缴纳社保,所以“他在该市过年”是“他可领取1000元疫情专项补贴”的必要不充分条件.故选:B.7.若a,b∈R,则“a<b”是“lna<lnb”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要【答案】B【解析】因函数y=lnx在(0,+∞)上单调递增,则lna<lnb⇔0<a<b而a,b∈R,当a<b时,a,b可能是负数或者是0,即lna或lnb可能没有意义,所以“a<b”是“lna<lnb”的必要不充分条件.8.下列四个结论中正确的个数是()(1)设x<0,则4+x2x有最小值时4;(2)若f(x+1)为R上的偶函数,则f(x)的图象关于x=1对称;(3)命题“∃n∈N,2n>1000”的否定为:“∀n∈N,2n≤1000”;(4)命题“已知x,y∈R,若x+y=3,则x=2且y=1”是真命题.A.1B.2C.3D.4【答案】B【解析】(1)∵x<0,∴−x>0,4−x >0,∴4+x2x=x+4x=−(−x+4−x),∴(−x)+(4−x )≥2√(−x)(4−x)=4,当且仅当x=−2时取等号,∴4+x2x≤−4,∴(1)错;(2)∵函数y=f(x+1)为偶函数,∴函数y=f(x+1)的图象关于y轴对称,∵y=f(x+1)的图象是由y=f(x)的图象向左平移一个单位得到的,∴函数y=f(x)的图象关于x=1对称.∴(2)对.(3)由命题的否定可判断正确;(4)令x=4,y=−1,满足x+y=3与x=2且y=1矛盾,∴(4)错.正确个数为两个.故选:B9.下列说法中,错误的是()A.“x,y中至少有一个小于零”是“x+y<0”的充要条件B.已知a,b∈R,则“a2+b2=0”是“a=0且b=0”的充要条件C.“ab≠0”是“a≠0或b≠0”的充要条件D.若集合A是全集U的子集,则x∉∁U A⇔x∈A【答案】AC【解析】对于A,当x=3,y=−2时,满足x,y中至少有一个小于零,但无法推出x+y<0,A 说法错误;对于B,若a2+b2=0,则a=b=0;若a=b=0,则a2+b2=0,即“a2+b2=0”是“a =0且b=0”的充要条件,B说法正确;对于C,当a=0,b=1时,满足a≠0或b≠0,但此时ab=0,即无法推出ab≠0,C说法错误;对于D ,若集合A 是全集U 的子集,则(∁U A )∪A =U ,即命题“x ∉∁U A ”与“x ∈A ”是等价命题,D 说法正确. 故选:AC10.下列选项中,p 是q 的充要条件的是( ) A .p :xy >0,q :x >0,y >0 B .p :A ∪B =A ,q :B ⊆AC .p :三角形是等腰三角形,q :三角形存在两角相等D .p :四边形是正方形,q :四边形的对角线互相垂直平分 【答案】BC 【解析】对于A :由xy >0,得x >0,y >0或x <0,y <0,故P 不是q 的充要条件,故A 错误; 对于B :由A ∪B =A ,则B ⊆A ,若B ⊆A 则A ∪B =A ,故P 是q 的充要条件,故B 正确; 对于C :三角形是等腰三角形⇔三角形存在两角相等,故P 是q 的充要条件,故C 正确; 对于D :四边形的对角线互相垂直且平分⇔四边形为菱形,故p 不是q 的充要条件,故D 错误; 故选:BC11.下列命题中,是真命题的是( ) A .a >1且b >1是ab >1的充分条件B .“x >12”是“1x <2”的充分不必要条件C .命题“∀x <1,x 2<1”的否定是“∃x ≥1,x 2≥1”D .a +b =0的充要条件是ab =−1 【答案】AB 【解析】对于A ,当a >1,b >1时,ab >1,充分性成立,A 正确;对于B ,当x >12时,0<1x <2,充分性成立;当1x <2时,x >12或x <0,必要性不成立,则“x >12”是“1x <2”的充分不必要条件,B 正确;对于C ,由全称命题的否定知原命题的否定为:∃x <1,x 2≥1,C 错误; 对于D ,当a =0,b =0时,a +b =0,此时ab 无意义,充分性不成立,D 错误. 故选:AB.12.下列所给的各组p 、q 中,p 是q 的必要条件是( ) A .p :△ABC 中,∠BAC >∠ABC ,q :△ABC 中,BC >AC ; B .p :a 2<1, q :a <2; C .p :ba<1,q :b <a ;D .p :m ≤1,q :关于x 的方程mx 2+2x +1=0有两个实数解. 【答案】AD【解析】对于A,因为在三角形中大边对大角,小边对小角,反之也成立,所以当∠BAC>∠ABC时,有BC>AC,当BC>AC时,有∠BAC>∠ABC,所以p是q的充要条件;对于B,由a2<1,得−1<a<1,则a<2一定成立,而当a<2时,如a=−2,a2<1不成立,所以p是q的充分不必要条件;对于C,由ba<1可知,当a>0时,b<a;当a<0时,b>a;而当b<a时,若a>0,则b a <1,若a<0,则ba>1,所以p是q的既不充分也不必要条件;对于D,当m=0时,关于x的方程mx2+2x+1=0只有一个实根,若关于x的方程mx2+2x +1=0有两个实数解时,则{m≠0Δ=4−4m>0,得m<1且m≠0,所以p是q的必要不充分条件;故选:AD13.已知“∃x∈R,使得2x2+ax+12≤0”是假命题,则实数的a取值范围为________.【答案】(−2,2)【解析】∵“∃x∈R,使得2x2+ax+12≤0”是假命题,∴命题“∀x∈R,使2x2+ax+12>0”是真命题,∴判别式Δ=a2−4×2×12<0,∴−2<a<2.故答案为:(−2,2).14.若命题p是“对所有正数x,均有x>x2+2”,则¬p是___________.【答案】∃x>0,使得x≤x2+2【解析】解:根据全称命题的否定为特称命题得命题p:“对所有正数x,均有x>x2+2”的否定¬p是:存在正数x,使得x≤x2+2.故答案为:∃x>0,使得x≤x2+2.15.下列四个结论:①“λ=0”是“λa⃗=0⃗⃗”的充分不必要条件;②在△ABC中,“AB2+AC2=B C2”是“△ABC为直角三角形”的充要条件;③若a,b∈R,则“a2+b2≠0”是“a,b全不为0”的充要条件;④若a,b∈R,“a2+b2≠0”是“a,b不全为0”的充要条件.其中正确命题的序号是________.【答案】①④【解析】当λ=0时,λa ⃗=0⃗⃗,当λa ⃗=0⃗⃗时,λ=0或a ⃗=0⃗⃗,①正确; 当△ABC 中∠B =π2,则AC 2=BC 2+AB 2,故②错误; 取a =0,b =1得到a 2+b 2≠0,故③错误;若a 2+b 2≠0,则a ,b 不全为0,若a ,b 不全为0,则a 2+b 2≠0,故④正确; 故答案为:①④.16.在复数范围内,给出下面3个命题:①|a +b |2=a 2+2ab +b 2;②已知z 1、z 2、z 3∈C ,若(z 2−z 1)2+(z 3−z 1)2=0,则z 1=z 2=z 3;③z 是纯虚数⇔z +z =0.其中所有假命题的序号为______. 【答案】①②③ 【解析】①:等号的左边是非负实数,而右边不一定是非负实数,如a =1,b =i ,假命题. ②:取z 1=0,z 2=1,z 3=i ,则(z 2−z 1)2+(z 3−z 1)2=0,但z 1、z 2、z 3互不相等,假命题.③:当z =0时满足z +z =0,但z 不是纯虚数,所以z +z =0推不出z 是纯虚数,假命题. 故答案为:①②③17.已知p:∀x ∈R,ax 2−ax +1>0恒成立,q:∃x ∈R,x 2+x +a =0.如果p,q 中有且仅有一个为真命题,求实数a 的取值范围. 【答案】(−∞,0)⋃(14,4) 【解析】若p 为真命题,当a =0时,可得1>0恒成立,满足题意; 当a ≠0时,则{a >0Δ=(−a )2−4a <0,解得0<a <4,∴当p 为真命题,实数a 的取值范围是[0,4). 若q 为真命题,则有Δ=12−4a ≥0,解得a ≤14, ∴当q 为真命题,实数a 的取值范围是(−∞,14]. ∵p,q 中有且仅有一个为真命题,∴当p 为真命题,q 为假命题时,实数a 的取值范围是[0,4)∩(14,+∞)=(14,4); 当p 为假命题,q 为真命题时,实数a 的取值范围是(−∞,0).综上,当p,q 中有且仅有一个为真命题时,实数a 的取值范围是(−∞,0)⋃(14,4). 18.已知集合M ={x ∣(x +3)(x −5)⩽0},N ={x ∣−m ⩽x ⩽m }. (1)若“x ∈M ”是“x ∈N ”的充分条件,求实数m 的取值范围;(2)当m ⩾0时,若“x ∈M ”是“x ∈N ”的必要条件,求实数m 的取值范围.(1)[5,+∞) (2)[0,3] 【解析】(1)可得M ={x ∣(x +3)(x −5)⩽0}={x ∣−3⩽x ⩽5} 若“x ∈M ”是“x ∈N ”的充分条件,则M ⊆N ,所以{−m ⩽−3m ⩾5,解得m ⩾5,所以实数m 的取值范围为[5,+∞);(2)若“x ∈M ”是“x ∈N ”的必要条件,则N ⊆M , 因为m ⩾0,所以N ≠∅,则{m ⩾0−m ⩾−3m ⩽5,解得0⩽m ⩽3,综上所述,实数m 的取值范围为[0,3].19.将下列命题改写成“若α,则β”的形式,并判断“α⇒β”是否成立. (1)直角三角形的外心在斜边上; (2)有理数是实数;(3)面积相等的两个三角形全等. 【答案】(1)若一个三角形是直角三角形,则该三角形的外心在斜边上.α⇒β成立 (2)若一个数是有理数,则这个数是实数.α⇒β成立(3)若两个三角形的面积相等,则这两个三角形全等.α⇒β不成立 【解析】(1)命题改写成:若一个三角形是直角三角形,则该三角形的外心在斜边上. 由直角三角形的外心是斜边的中点,可知α⇒β成立. (2)命题改写成:若一个数是有理数,则这个数是实数. 实数由有理数和无理数构成,即Q ⊆R ,可知α⇒β成立.(3)命题改写成:若两个三角形的面积相等,则这两个三角形全等.因为两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边、对应高不一定相等,故面积相等的两个三角形不一定全等,可知α⇒β不成立.20.已知命题p :“∀−1⩽x ⩽1,不等式x 2−x −m <0成立”是真命题. (1)求实数m 的取值范围;(2)若q:−4<m −a <4是p 的充分不必要条件,求实数a 的取值范围. 【答案】 (1)(2,+∞); (2)[6,+∞).(1)由题意命题p :“∀−1⩽x ⩽1,不等式x 2−x −m <0成立”是真命题. ∴m >x 2−x 在−1⩽x ⩽1恒成立,即m >(x 2−x)max ,x ∈[−1,1]; 因为x 2−x =(x −12)2−14,所以−14⩽x 2−x ⩽2,即m >2, 所以实数m 的取值范围是(2,+∞);(2)由p 得,设A ={m|m >2},由q 得,设B ={m|a −4<m <a +4}, 因为q:−4<m −a <4是p 的充分不必要条件; 所以q ⇒p ,但p 推不出q , ∴B ⫋A ; 所以a −4⩾2,即a ⩾6, 所以实数a 的取值范围是[6,+∞).21.已知集合A 是函数y =√2−x 2的定义域,集合B ={x |x 2−2ax +a 2−1≤0},其中a ∈R . (1)若a =1,求A⋂B ;(2)若“x ∈A ”是“x ∈B ”的必要条件,求a 的取值范围. 【答案】(1)A⋂B ={x|0≤x <√2}; (2)1−√2<a <√2−1. 【解析】(1)由题设,A ={x|−√2<x <√2},B ={x|a −1≤x ≤a +1}, 由a =1,则B ={x|0≤x ≤2}, ∴A⋂B ={x|0≤x <√2}.(2)由题意知:B ⊆A ,而a +1>a −1恒成立, ∴{a −1>−√2a +1<√2,可得1−√2<a <√2−1. 22.请在①充分不必要条件②必要不充分条件③充要条件这三个条件中任选一个补充在下面的问题中横线部分.若问题中的a 存在,求出a 的取值范围,若问题中的a 不存在,请说明理由.问题:已知集合A {x |0≤x ≤4},B ={x |1−a ≤x ≤1+a }(a >0),是否存在实数a ,使得x ∈A 是x ∈B 成立的______? 【答案】答案见解析. 【解析】选①,则A 是B 的真子集,则1−a ≤0且1+a ≥4(两等号不同时取), 又a >0,解得a ≥3,∴存在a ,a 的取值集合M ={a |a ≥3}选②,则B 是A 的真子集,则1−a ≥0且1+a ≤4(两等号不同时取),又a>0,解得0<a≤1,∴存在a,a的取值集合M={a|0<a≤1}选③,则A=B,则1−a=0且1+a=4,又a>0,方程组无解∴不存在满足条件的a.。
高一数学寒假作业01 集合及其运算(教师版)
高一数学寒假作业专题01集合及其运算1.给出下列表述:①联合国常任理事国;②充分接近√2的实数的全体;③方程x2+x−1=0的实数根④全国著名的高等院校.以上能构成集合的是()A.①③B.①②C.①②③D.①②③④【答案】A【解析】①联合国的常任理事国有:中国、法国、美国、俄罗斯、英国.所以可以构成集合.②中的元素是不确定的,不满足集合确定性的条件,不能构成集合.③方程x2+x−1=0的实数根是确定,所以能构成集合.④全国著名的高等院校.不满足集合确定性的条件,不构成集合.故选:A2.设集合U={1,2,3,4,5},M={1,2},N={2,3},则∁U(M⋃N)=()A.{4,5}B.{1,2}C.{2,3}D.{1,3,4,5}【答案】A【解析】根据题意,易得M⋃N={1,2,3},故∁U(M∪N)={4,5}.故选:A.3.若集合A={x|−1<x<1},B={x|0≤x≤2},则A⋂B=()A.{x|−1<x<1}B.{x|−1<x<2}C.{x|0≤x<1}D.{x|−1<x<0}【答案】C【解析】因为A={x|−1<x<1},B={x|0≤x≤2},所以A⋂B={x|0≤x<1}.故选:C.4.已知集合A满足{1}⊆A⫋{1,2,3,4},这样的集合A有()个A.5B.6C.7D.8【答案】C【解析】由题得集合A={1},{1,2},{1,3},{1,4},{1,2,3},{1,2,4},{1,3,4}.故选:C5.已知集合A={x|y=log2(x+1)},B={x∈Z||x−1|≤1},则A⋂B=()A.{x|−1<x<2}B.{x∈Z|0≤x≤2}C.{x|0≤x<2}D.{0,1}【答案】B【解析】因为A={x|x>−1},B={x∈Z|0≤x≤2},所以A∩B={x∈Z|0≤x≤2}故选:B.6.60名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有40名,参加乙项的学生有35名,则仅参加了一项活动的学生人数为()A.50B.35C.40D.45【答案】D【解析】用集合A表示参加甲项体育活动的学生,用集合B表示参加乙项体育活动的学生,用card(A)来表示有限集合A中的元素个数,于是有:card(A∪B)=card(A)+card(B)−card(A∩B),即:60=40+35−card(A⋂B)⇒card(A⋂B)=15,因此仅参加了一项活动的学生人数为:60−15=45,故选:D7.已知全集U=R,集合A={x|0≤x≤2},B={x|x2−x>0},则图中的阴影部分表示的集合为()A.{x|x≤1或x>2}B.{x|x<0或1<x<2}C.{x|1≤x<2}D.{x|1<x≤2}【答案】A【解析】解不等式可得B={x|x<0或x>1},由题意可知阴影部分表示的集合为∁U(A⋂B)⋂(A⋃B),且A⋂B={x|1<x≤2},A⋃B=R,∴∁U(A⋂B)={x|x≤1或x>2},所以∁U(A⋂B)⋂(A⋃B)={x|x≤1或x>2},故选:A.8.若函数f(x)=√x2−5x+6的定义域是F,g(x)=√x−2+√x−3的定义域是G,则F 和G的关系是()A .G ⊂FB .F ⊂GC .F =GD .F ∩G =∅【答案】A【解析】由题设,x 2−5x +6=(x −2)(x −3)≥0,可得F ={x|x ≤2或x ≥3},又{x −2≥0x −3≥0,可得G ={x|x ≥3},∴G ⊂F .故选:A.9.设P ={x|x ≤3},a =2√2,则下列关系中正确的是( )A .a ⊆PB .a ∈PC .{a }⊆PD .{a }∈P【答案】BC【解析】因为2√2≤3,所以2√2∈{x|x ≤3},即a ∈P ,{a }⊆P故选:BC10.如图所示的阴影部分表示的集合是( )A .M ∩(N ∩P)B .(C U M )∩(N ∩P)C .P ∩[C U (M ∪N)]D .P ∩(C U M )∩(C U N )【答案】CD【解析】A 选项表示的是图1的部分,不合题意,B选项表示的是图2的部分,不合题意CD选项表示的是题干中的阴影部分故选:CD11.已知集合M={2,4},集合M⊆N {1,2,3,4,5},则集合N可以是()A.{2,4}B.{2,3,4}C.{1,2,3,4}D.{1,2,3,4,5}【答案】ABC【解析】因为集合M={2,4},对于A:N={2,4}满足M⊆N {1,2,3,4,5},所以选项A符合题意;对于B:N={2,3,4}满足M⊆N {1,2,3,4,5},所以选项B符合题意;对于C:N={1,2,3,4}满足M⊆N {1,2,3,4,5},所以选项C符合题意;对于D:N={1,2,3,4,5}不是{1,2,3,4,5}的真子集,故选项D不符合题意,故选:ABC.12.集合A ,B 是实数集R 的子集,定义A −B ={x|x ∈A,x ∉B },A ∗B =(A −B )∪(B −A )叫做集合的对称差.若集合A ={y|y =(x −1)2+1,0≤x ≤3},B ={y|y =x 2+1,1≤x ≤3},则以下说法正确的是( )A .A ={y|−1≤y ≤5}B .A −B ={y|1≤y <2}C .B −A ={y|5<y ≤10}D .A ∗B ={y|1<y ≤2}∪{y|5<y ≤10}【答案】BC【解析】A ={y|y =(x −1)2+1,0≤x ≤3}={y |1≤y ≤5},A 错误;B ={y|y =x 2+1,1≤x ≤3}={y |2≤y ≤10},A −B ={x |1≤x <2},B 正确; B −A ={y|5<y ≤10},C 正确;A ∗B =(A −B )∪(B −A )={y|1≤y <2}∪{y|5<y ≤10},D 错误.故选:BC.三、填空题13.已知集合M ={y |y =x,x ≥0},N ={x |y =lg (2x −x 2)},则M⋂N =______.【答案】(0,2)【解析】M ={y |y =x,x ≥0}={y|y ≥0},N ={x |y =lg (2x −x 2)}={x |2x −x 2⟩0}={x|x 2−2x <0}={x|0<x <2}, 所以M ∩N ={x|0<x <2}=(0,2),故答案为:(0,2).14.若集合A ={x ∈R |ax 2−2x +1=0}中只有一个元素,则a =_________.【答案】0或1或0【解析】因集合A ={x ∈R |ax 2−2x +1=0}中只有一个元素,则当a =0时,方程为−2x +1=0,解得x =12,即集合A ={12},则a =0,当a ≠0时,由Δ=22−4a =0,解得a =1,集合A ={1},则a =1,所以a =0或a =1.故答案为:0或115.我们将b −a 称为集合{x |a ≤x ≤b }的“长度”.若集合M ={x |m ≤x ≤m +2022},N ={x |n −2023≤x ≤n },且M ,N 都是集合{x |0≤x ≤2024}的子集,则集合M ∩N 的“长度”的最小值为______.【答案】2021【解析】由题意得,M的“长度”为2022,N的“长度”为2023,要使M∩N的“长度”最小,则M,N分别在{x|0≤x≤2024}的两端.当m=0,n=2024时,得M={x|0≤x≤2022},N={x|1≤x≤2024},则M∩N={x|1≤x≤2022},此时集合M∩N的“长度”为2022−1=2021;当m=2,n=2023时,M={x|2≤x≤2024},N={x|0≤x≤2023},则M∩N={x|2≤x≤2023},此时集合M∩N的“长度”为2023−2=2021.故M∩N的“长度”的最小值为2021.故答案为:202116.当两个集合中有一个集合为另一集合的子集时称这两个集合之间构成“全食”,当两个集合有公共元素,但互不为对方子集时称两集合之间构成“偏食”.对于集合A={−12,12,1},B={x|ax2+1=0,a≤0},若A与B构成“全食”,或构成“偏食”,则a的取值集合为__________ _.【答案】{0,−1,−4}【解析】当A与B构成“全食”即B⊆A时,当a=0时,B=∅;当a≠0时,B={√−1a ,−√−1a},又∵B⊆A,∴a=−4;当A与B构成构成“偏食”时,A⋂B≠∅且B⊈A,∴a=−1.故a的取值为:0,−1,−4,故答案为:{0,−1,−4}17.已知集合A={x|1≤x≤4},B={x|2<x<5},C={x|a−1≤x≤a+1},且B∪C= B.(1)求实数a的取值范围;(2)若全集U=A⋃(B⋃C),求∁U B.【答案】(1)(3,4);(2)∁U B={x|1≤x≤2}.【解析】(1)由B∪C=B,可知C⊆B,又∵B={x|2<x<5},C={x|a−1≤x≤a+1},∴2<a−1<a+1<5,解得:3<a<4,∴实数a的取值范围是(3,4).(2)依题意得,U=A⋃(B⋃C)=A⋃B,又A={x|1≤x≤4},B={x|2<x<5},∴U={x|1≤x<5},∴∁U B={x|1≤x≤2}.18.设全集U=R,集合A={x|x−6x+5≤0},B={x|x2+5x−6≥0},求:(1)A∩∁U B;(2)(∁U A)∪(∁U B).【答案】(1)A⋂∁U B={x|−5<x<1};(2)(∁U A)∪(∁U B)={x|x<1或x>6}.【解析】(1)由x−6x+5≤0可得{(x−6)(x+5)≤0x+5≠0,解得:−5<x≤6,所以A={x|−5<x≤6},由x2+5x−6≥0,可得(x−1)(x+6)≥0,解得:x≤−6或x≥1,所以B={x|x≤−6或x≥1},所以∁U B={x|−6<x<1},所以A⋂∁U B={x|−5<x<1}.(2)由(1)知A={x|−5<x≤6},所以∁U A={x|x≤−5或x>6},所以(∁U A)∪(∁U B)={x|x<1或x>6}.19.已知集合A={x|log2(x+1)<4},B={x|4x>8},C={x|a−1≤x≤2a+1}.(1)计算A⋂B;(2)若C⊆(A∩B),求实数a的取值范围.【答案】(1){x∣32<x<15}(2)(−∞,−2)∪(52,7)【解析】(1)由log2(x+1)<4得log2(x+1)<log224,又函数y=log2x在(0,+∞)上单调递增,则0<x+1<24即A={x∣−1<x<15},由4x>8,得x>32,即B={x∣x>32},则A ∩B ={x ∣32<x <15}.(2)因为C ⊆(A ∩B ),当C =∅时,2a +1<a −1,即a <−2;当C ≠∅时,由C ⊆(A ∩B ),可得{2a +1⩾a −1,a −1>32,2a +1<15,即52<a <7,综上,a 的取值范围是(−∞,−2)∪(52,7).20.已知集合A ={x|a ≤x ≤a +3},B ={x|x <−6或x >1}.(1)若A⋂B =∅,求a 的取值范围;(2)若A ∪B =B ,求a 的取值范围.【答案】(1){a|−6≤a ≤−2};(2){a|a <−9或a >1}.【解析】(1)因为A⋂B =∅,所以{a ≥−6a +3≤1,解得:−6≤a ≤−2, 所以a 的取值范围是{a|−6≤a ≤−2}.(2)因为A ∪B =B ,所以A ⊆B ,所以a +3<−6或a >1,解得:a <−9或a >1, 所以a 的取值范围是{a|a <−9或a >1}.21.已知集合P ={x|x 2+4x =0},Q ={x|x 2−4mx −m 2+1=0}.(1)若1∈Q ,求实数m 的值;(2)若P⋃Q =P ,求实数m 的取值范围.【答案】(1)m =−2±√6.(2)−√55<m <√55或m =−1. 【解析】(1)由1∈Q 得1−4m −m 2+1=0,即m 2+4m −2=0,解得m =−2±√6;(2)因为P⋃Q =P ,所以Q ⊆P ,由P ={0,−4}知Q 可能为∅,{0},{−4},{0,−4};①当Q =∅,即x 2−4mx −m 2+1=0无解,所以Δ=16m 2+4m 2−4=20m 2−4<0, 解得−√55<m <√55;②当Q={0},即x2−4mx−m2+1=0有两个等根为0,所以依据韦达定理知{Δ=0,0=4m,0=1−m2所以m无解;③当Q={−4},即x2−4mx−m2+1=0有两个等根为−4,所以依据韦达定理知{Δ=0,−8=4m,16=1−m2所以m无解;③当Q={0,−4},即x2−4mx−m2+1=0有两个根为0,−4,所以依据韦达定理知{Δ>0,−4=4m,0=1−m2解得m=−1;综上,−√55<m<√55或m=−1.22.已知集合A={x|3−a≤x≤3+a},B={x|x2−4x≥0}.(1)当a=2时,求A⋂B;(2)若a>0,且“x∈A”是“x∈∁R B”的充分不必要条件,求实数a的取值范围.【答案】(1)[4,5](2)0<a<1【解析】(1)x2−4x=x(x−4)≥0,解得x≤0或x≥4,所以B=(−∞,0]∪[4,+∞)a=2时,A=[1,5],所以A∩B=[4,5].(2)∁R B=(0,4),因为“x∈A”是“x∈∁R B”的充分不必要条件,所以A是∁R B的真子集,且A≠∅;∴{3−a>03+a<4所以实数a的取值范围为:0<a<1.。
高一数学必修1和2寒假作业含答案解析
高一年级寒假课程学习效果验收考试数学试卷考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级和学号填写在相应位置上.3.本次考试时间120分钟,满分150分.第Ⅰ卷(共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.满足A ∪{-1,1}={-1,0,1}的集合A 共有( )A .2个B .4个C .8个D .16个2.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .f (x )=1x 2B .f (x )=x 2+1C .f (x )=x 3D .f (x )=2-x 3.如果直线ax +3y +1=0与直线2x +2y -3=0互相垂直,那么a 的值等于( )A .3B .-13C .-3 D.134.已知正方形的周长为x ,它的外接圆的半径为y ,则y 关于x 的解析式为( )A .y =12x B .y =24x C .y =28x D .y =216x 5.方程x -1=lg x 必有一个根的区间是( )A .(0.1,0.2)B .(0.2,0.3)C .(0.3,0.4)D .(0.4,0.5) 6.已知f (x )=⎩⎪⎨⎪⎧ x 2, (x >0),2,(x =0),0,(x <0),则f {f [f (-2)]}的值为( ) A .0 B .2C .4D .87.某单位职工工资经过六年翻了三番,则每年比上一年平均增长的百分率是( )(下列数据仅供参考:2=1.41,3=1.73,33=1.44,66=1.38)A .38%B .41%C .44%D .73% 8.比较1.513.1、23.1、213.1的大小关系是( ) A .23.1<213.1<1.513.1 B .1.513.1<23.1<213.1C .1.513.1<213.1<23.1 D .213.1<1.513.1<23.1 9.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积是球的表面积的( ) A.316B.916C.38D.5810.已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y +2=0C .x +y -3=0D .x -y +3=011.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( ) A.6πB .43πC .46πD .63π12.如图所示,将等腰直角△ABC 沿斜边BC 上的高AD 折成一个二面角,此时∠B ′AC =60°,那么这个二面角大小是( )A .90°B .60°C .45°D .30°第Ⅱ卷(共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.方程x 2+y 2-x +y +m =0表示一个圆,则m 的范围是________.14.下列四个命题:①若a ∥b ,a ∥α,则b ∥α;②若a ∥α,b ⊂α,则a ∥b ;③若a ∥α,则a 平行于α内所有的直线;④若a ∥α,a ∥b ,b ⊄α,则b ∥α.其中正确命题的序号是________.15.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x ,x ≤0.若f (a )=12,则a =______. 16.某几何体的三视图如图所示,则该几何体的体积为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知集合A ={x ||x -a |<4},B ={x |x 2-4x -5>0}.(1)若a =1,求A ∩B ;(2)若A ∪B =R ,求实数a 的取值范围.18.(12分)设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ).(1)若l 在两坐标轴上的截距相等,求l 的方程.(2)若l 不经过第二象限,求实数a 的取值范围.19.(12分)已知圆C :x 2+y 2+2x -4y +3=0.(1)若圆C 的切线在x 轴和y 轴上的截距相等,且截距不为零,求此切线的方程;(2)从圆C 外一点P (x 1,y 1)向该圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求使得|PM |取得最小值的点P 的坐标.20.(12分)已知f (x )为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式f (x )=14x -a 2x (a ∈R ). (1)写出f (x )在[0,1]上的解析式;(2)求f (x )在[0,1]上的最大值.21.(12分)如图,在三棱柱ABC —A 1B 1C 1中,AA 1⊥BC ,∠A 1AC =60°,A 1A=AC =BC =1,A 1B = 2.(1)求证:平面A 1BC ⊥平面ACC 1A 1;(2)如果D 为AB 中点,求证:BC 1∥平面A 1CD .22.(12分)如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.(1)求证:平面ABE ⊥平面B 1BCC 1;(2)求证:C 1F ∥平面ABE ;(3)求三棱锥E -ABC 的体积.详解答案1.B [由题意知A ={0}或A ={0,-1}或A ={0,1}或A ={-1,0,1},共4个.故选B.]2.A [A 中f (x )=1x 2是偶函数,且在(-∞,0)上是增函数,故A 满足题意.B 中f (x )=x 2+1是偶函数,但在(-∞,0)上是减函数.C 中f (x )=x 3是奇函数.D 中f (x )=2-x 是非奇非偶函数.故B ,C ,D 都不满足题意.]3.C [由两直线垂直可得2a +3×2=0,所以a =-3,故选C.]4.C [正方形的对角线长为24x ,从而外接圆半径为y =12×24x =28x .] 5.A [设f (x )=lg x -x +1,f (0.1)=lg0.1-0.1+1=-0.1<0,f (0.2)=lg0.2-0.2+1≈0.1>0, f (0.1)f (0.2)<0.]6.C [∵-2<0,∴f (-2)=0,∴f [f (-2)]=f (0)=2>0,f {f [f (-2)]}=f (2)=4.故选C.]7.B [设职工原工资为p ,平均增长率为x ,则p (1+x )6=8p ,x =68-1=2-1=41%.]8.D [∵1.513.1=1.5-3.1=(11.5)3.1, 213.1=2-3.1=(12)3.1, 又幂函数y =x 3.1在(0,+∞)上是增函数,12<11.5<2, ∴(12)3.1<(11.5)3.1<23.1,故选D.] 9.A [如图所示的过球心的截面图,r =R 2-14R 2=32R , S 圆S 球=π(32R )24πR 2=316.] 10.D [圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0.]11.B [利用截面圆的性质先求得球的半径长.如图,设截面圆的圆心为O ′,M 为截面圆上任一点,则OO ′=2,O ′M =1, ∴OM =(2)2+1=3,即球的半径为3,∴V =43π(3)3=43π.] 12.A [连接B ′C ,则△AB ′C 为等边三角形,设AD =a ,则B ′D =DC =a ,B ′C =AC =2a ,所以∠B ′DC =90°.]13.(-∞,12) 解析 D 2+E 2-4F =(-1)2+12-4m >0,得m <12. 14.④解析 ①中b 可能在α内;②a 与b 可能异面或者垂直;③a 可能与α内的直线异面或垂直. 15.2或-1解析 当a >0时,log 2a =12,则a =2;当a ≤0时,2a =12,则a =-1. 16.24解析 由俯视图可以判断该几何体的底面为直角三角形,由正视图和左视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图(1)所示,故该几何体的直观图如图(2)所示.在图(1)中,V 棱柱ABC -A 1B 1C 1=S △ABC ·AA 1=12×4×3×5=30,V 棱锥P -A 1B 1C 1=13S △A 1B 1C 1·PB 1=13×12×4×3×3=6.故几何体ABC -P A 1C 1的体积为30-6=24.故选C.17.解 (1)当a =1时,A ={x ||x -1|<4}={x |-3<x <5},x 2-4x -5>0⇒x <-1或x >5,则B ={x |x <-1或x >5}.A ∩B ={x |-3<x <-1}.(2)根据题意,得A ={x |a -4<x <a +4},B ={x |x <-1或x >5},若A ∪B =R ,则有⎩⎪⎨⎪⎧a -4<-1a +4>5, 解可得1<a <3,∴a 的取值范围是1<a <3.18.解 (1)令x =0,得y =a -2.令y =0,得x =a -2a +1(a ≠-1). 由a -2=a -2a +1,解得a =2,或a =0. ∴所求直线l 的方程为3x +y =0,或x +y +2=0.(2)直线l 的方程可化为y =-(a +1)x +a -2.∵l 不过第二象限,∴⎩⎪⎨⎪⎧-(a +1)≥0,a -2≤0. ∴a ≤-1.∴a 的取值范围为(-∞,-1].19.解 (1)∵切线在两坐标轴上的截距相等且截距不为零,∴设切线方程为x +y =a (a ≠0),又∵圆C :(x +1)2+(y -2)2=2,∴圆心C (-1,2)到切线的距离等于圆的半径2, ∴|-1+2-a |2=2⇒a =-1,或a =3,则所求切线的方程为x +y +1=0或x +y -3=0. (2)∵切线PM 与半径CM 垂直,∴|PM |2=|PC |2-|CM |2,∴(x 1+1)2+(y 1-2)2-2=x 21+y 21,∴2x 1-4y 1+3=0,∴动点P 的轨迹是直线2x -4y +3=0.|PM |的最小值就是|PO |的最小值,而|PO |的最小值为O 到直线2x -4y +3=0的距离d =3510.此时P 点的坐标为(-310,35). 20.解 (1)∵f (x )为定义在[-1,1]上的奇函数,且f (x )在x =0处有意义,∴f (0)=0, 即f (0)=140-a20=1-a =0.∴a =1.设x ∈[0,1],则-x ∈[-1,0].∴f (-x )=14-x -12-x =4x -2x.又∵f (-x )=-f (x ),∴-f (x )=4x -2x .∴f (x )=2x -4x .(2)当x ∈[0,1]时,f (x )=2x -4x =2x -(2x )2,∴设t =2x (t >0),则f (t )=t -t 2.∵x ∈[0,1],∴t ∈[1,2].当t =1时,取最大值,最大值为1-1=0.21.证明 (1)因为∠A 1AC =60°,A 1A =AC =1,所以△A 1AC 为等边三角形.所以A 1C =1.因为BC =1,A 1B =2,所以A 1C 2+BC 2=A 1B 2.所以∠A 1CB =90°,即A 1C ⊥BC .因为BC ⊥A 1A ,BC ⊥A 1C ,AA 1∩A 1C =A 1,所以BC ⊥平面ACC 1A 1.因为BC ⊂平面A 1BC ,所以平面A 1BC ⊥平面ACC 1A 1.(2) 连接AC 1交A 1C 于点O ,连接OD .因为ACC 1A 1为平行四边形,所以O 为AC 1的中点.因为D 为AB 的中点,所以OD ∥BC 1.因为OD ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .22.(1)证明 在三棱柱ABC -A1B 1C 1中,BB 1⊥底面ABC ,所以BB 1⊥AB .又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1,又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1.(2)证明 取AB 的中点G ,连接EG ,FG . 因为E ,F 分别是A 1C 1,BC 的中点,所以FG ∥AC ,且FG =12AC . 因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形. 所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3.所以三棱锥E -ABC 的体积V =13S △ABC ·AA 1 =13×12×3×1×2=33.。
[2020高一数学寒假作业答案]一遍过数学必修一答案
[2020高一数学寒假作业答案]一遍过数学必修一答案参考答案题号123456789101112答案DDDADDBCACBC13.;14.4;15.0.4;16.②③17.(1)∵A中有两个元素,∴关于的方程有两个不等的实数根,∴,且,即所求的范围是,且;……6分(2)当时,方程为,∴集合A=;当时,若关于的方程有两个相等的实数根,则A也只有一个元素,此时;若关于的方程没有实数根,则A没有元素,此时,综合知此时所求的范围是,或.………13分18解:(1),得(2),得此时,所以方向相反19.解:⑴由题义整理得,解方程得即的不动点为-1和2.…………6分⑵由=得如此方程有两解,则有△=把看作是关于的二次函数,则有解得即为所求.…………12分20.解:(1)常数m=1…………………4分(2)当k<0时,直线y=k与函数的图象无交点,即方程无解;当k=0或k1时,直线y=k与函数的图象有唯一的交点,所以方程有一解;当0所以方程有两解.…………………12分21.解:(1)设,有,2取,则有是奇函数4(2)设,则,由条件得在R上是减函数,在[-3,3]上也是减函数。
6当x=-3时有最大值;当x=3时有最小值,由,,当x=-3时有最大值6;当x=3时有最小值-6.8(3)由,是奇函数原不等式就是10由(2)知在[-2,2]上是减函数原不等式的解集是1222.解:(1)由数据表知,(3)由于船的吃水深度为7米,船底与海底的距离不少于4.5米,故在船航行时水深米,令,得.解得.取,则;取,则.故该船在1点到5点,或13点到17点能安全进出港口,而船舶要在一天之内在港口停留时间最长,就应从凌晨1点进港,下午17点离港,在港内停留的时间最长为16小时.。
高一数学(必修一)寒假作业
高一数学(必修一)寒假作业一、选择题:(每题5分,满分60分) 1、下列四个集合中,是空集的是( )A }33|{=+x xB },,|),{(22R y x x y y x ∈-=C },01|{2R x x x x ∈=+-D }0|{2≤x x2.设A={a ,b},集合B={a+1,5},若A∩B={2},则A ∪B= ( )A 、{1,2}B 、{1,5}C 、{2,5}D 、{1,2,5} 3.函数21)(--=x x x f 的定义域为 ( )A 、[1,2)∪(2,+∞)B 、(1,+∞)C 、[1,2)D 、[1,+∞) 4.设f ,g 都是由A 到A 的映射,其对应法则如下表(从上到下):则与)]1([g f 相同的是 ( ) A .)]3([f gB .)]2([f gC .)]4([f gD .)]1([f g5、下图是指数函数○1x a y =、○2 x b y =、○3 x c y =、○4 x d y =的图象,则d c b a ,,,与1的大小关系是( )A .b a d c <<<<1B .a b c d <<<<1C .a b d c <<<<1D .b a d c <<<<16.函数y= | lg (x-1)| 的图象是 ( )7. 已知3.0log 2=a ,3.02=b ,2.03.0=c ,则c b a ,,三者的大小关系是 ( ) A 、c b a >> B 、c a b >> C 、a c b >> D 、a b c >>8.函数y=ax 2+bx+3在(]1,-∞-上是增函数,在[)+∞-,1上是减函数,则 ( ) A 、b>0且a<0 B 、b=2a<0 C 、b=2a>0 D 、a ,b 的符号不定9.函数]1,0[在xa y =上的最大值与最小值的和为3,则=a ( )A 、21 B 、2 C 、4 D 、41表1 映射f 的对应法则 原像 1 2 3 4 像 3 4 2 1表2 映射g 的对应法则原像 1 2 3 4 像 4 3 1 210.设⎭⎬⎫⎩⎨⎧----∈3,2,1,21,31,21,1,2,3α,则使αx y =为奇函数且在(0,+∞)上单调递减的α值的个数为 ( )A 、1B 、2C 、3D 、411.已知实数00a b ≥≥,且1a b +=,则2211a b +++()()的取值范围为 ( )A .9[5]2,; B .9[2∞,+); C .9[0]2,; D .[05],。
高一数学寒假作业05 函数的概念与表示(教师版)
高一数学寒假作业专题05函数的概念与表示1.已知函数f(x)={2−x ,x ≤0f(x −1),x >0,则f(2021)=( )A .2B .12C .1D .4【答案】C 【解析】当x >0时,f (x )=f (x −1),故在x >0时,f (x )为周期函数,最小正周期为1,因为2021>0,所以f (2021)=f (2021×1+0)=f (0),又因为当x ≤0时,f (x )=2−x ,所以f (0)=20=1,所以f(2021)=1 故选:C2.函数f(x)=√x +1+1x−1的定义域是( )A .[-1,+∞)B .(-1,1)∪(1,+∞)C .(1,+∞)D .[-1,1)∪(1,+∞)【答案】D 【解析】要使函数f(x)=√x +1+1x−1有意义, 必须满足{x +1≥0x −1≠0,解得x ≥−1,且x ≠1,所以函数f(x)=√x +1+x x−1的定义域是[−1,1)⋃(1,+∞), 故选:D.3.函数f(x)={2x 2,0≤x <1,2,1≤x <2,3,x ≥2的值域是( )A .RB .[0,+∞)C .[0,3]D .[0,2]∪{3}【答案】D 【解析】当0≤x <1时,f(x)∈[0,2); 当1≤x <2时,f(x)=2; 当x ⩾2时,f(x)=3,根据分段函数的性质可知,f(x)的值域为[0,2]⋃{3}. 故选:D .4.已知函数f (x )满足2f (x )+f (1x)=x ,则f (2)=( )A .12B .1C .76D .2【答案】C 【解析】由已知可得{2f (x )+f (1x )=x 2f (1x )+f (x )=1x ,解得f (x )=2x 2−13x,其中x ≠0,因此,f (2)=76. 故选:C.5.函数y =f (x )的图象与直线x =1的公共点有( ) A .0个 B .1个 C .0或1个 D .无数个【答案】C 【解析】当x =1在函数f (x )的定义域内时,函数y =f (x )的图象与直线x =1有一个公共点(1,f (1));当x =1不在定义域内时,函数y =f (x )的图象与直线x =1没有公共点. 故选:C.6.下列函数f (x )与g (x )表示同一函数的是( ) A .f (x )=x 2−1x−1和g (x )=x +1B .f (x )=1和g (x )=x 0C .f (x )=x +1和g (x )=√x 2+2x +1D .f (x )=x 和g (x )=lne x【答案】D 【解析】 对A ,f (x )=x 2−1x−1=x +1,定义域为{x |x ≠1},g (x )=x +1定义域为R ,故不是同一函数,故错误; 对B ,f (x )=1定义域为R ,g (x )=x 0=1,定义域为{x |x ≠0},故不是同一函数,故错误; 对C ,g (x )=√x 2+2x +1=√(x +1)2=|x +1|, 由f (x )=x +1,解析式不同,故不是同一函数,故错误; 对D ,f (x )=x 定义域为R ,g (x )=lne x =x 定义域为R ,故是同一函数,故正确; 故选:D7.某校要召开学生代表大会,规定各班每10人推选一名代表,当班人数除以10的余数大于6时,再增选一名代表,则各班推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x]([x]表示不大于x 的最大整数,如[π]=3,[4]=4)可表示为( ) A .y =[x+210] B .y =[x+310]C .y =[x+410]D .y =[x+510]【答案】B【解析】设班级人数的个位数字为n,令x=10m+n,(m∈N),当0≤n≤6时,y=m,当7≤n≤9时,y=m+1,综上,函数关系式为y=[x+310].故选:B.8.若函数f(x)={a x,x>1(4−a2)x+2,x≤1是R上的增函数,则实数a的取值范围为()A.(1,8)B.(1,+∞)C.[2,4]D.[4,8)【答案】D【解析】分段函数f(x)在R上为单调递增函数,需满足在各段内单调的基础上还得满足在临界点上左边界的值不大于右边界的值,即a>1且4−a2>0,a1≥4−a2+2,解得4≤a<8,故选:D.9.下列关于函数f(x)=1|x|+1的叙述正确的是()A.f(x)的定义域为{x|x≠0},值域为{y|y≥1}B.函数f(x)为偶函数C.当x∈[−1,0)时,f(x)有最小值2,但没有最大值D.函数g(x)=f(x)−x2+1有1个零点【答案】BC【解析】对A,f(x)的定义域为{x|x≠0},因为1|x|>0,所以1|x|+1>1,故值域为{y|y>1},所以A错误;对B,因为f(−x)=1|x|+1=f(x),所以f(x)是偶函数,B正确;对C,当x∈[−1,0)时,f(x)=1|x|+1≥2,所以C正确;对D,如图,f(x)=1|x|+1与y=x2−1有两个交点,所以g(x)有2个零点,所以D错误.故选:BC.10.下列各组函数是同一个函数的是()A.f(x)=√x+1⋅√x−1与g(x)=√x2−1B.f(x)=√−x3与g(x)=x√−xC.f(x)=√x2与g(x)=1|x|D.f(x)=(√x)2x与g(x)=(√x)2【答案】CD【解析】A选项,f(x)的定义域为{x|x≥1},g(x)的定义域为{x|x≤−1或x≥1},不是同一个函数. B选项,f(x)=√−x3,x≤0,f(x)=√−x⋅x2=−x√−x≠g(x),不是同一个函数.C选项,f(x)=√x2=1|x|=g(x),是同一个函数.D选项,f(x)=(√x)2x =1(x>0),g(x)=(√x)2=1(x>0),,是同一个函数.故选:CD11.已知函数f(√x−1)=2x+√x−3,则()A.f(1)=7B.f(x)=2x2+5xC.f(x)的最小值为−258D.f(x)的图象与x轴只有1个交点【答案】AD【解析】令t=√x−1≥−1,得√x=t+1,则x=(t+1)2,得f(√x−1)=f(t)=2t2+5t,故f(x)=2x2+5x,x∈[−1,+∞),f(1)=7,A正确,B错误.f(x)=2x2+5x=2(x+54)2−258,所以f(x)在[−1,+∞)上单调递增,f(x)min=f(−1)=−3,f(x)的图象与x轴只有1个交点,C错误,D正确.故选:AD12.已知函数f(x)=ln(1+x)−ln(1−x),则下列说法正确的是()A .f (x )的定义域为(−1,1)B .f (x )是奇函数C .f (x )是减函数D .若f (x )<0,则−1<x <0 【答案】ABD 【解析】由{1+x >01−x >0,得−1<x <1,所以函数f (x )的定义域为(−1,1),故选项A 正确; 因为f (x )=ln (1+x )−ln (1−x ),所以f (−x )=ln (1−x )−ln (1+x )=−f(x), 所以f (x )是奇函数,故选项B 正确;易知y =ln (1+x )在(−1,1)内单调递增,y =−ln (1−x )在(−1,1)内单调递增, 所以函数f (x )=ln (1+x )−ln (1−x )在在(−1,1)内单调递增,故选项C 错误; 由f (x )<0,得ln (1+x )−ln (1−x )<0,即ln (1+x )−ln (1−x )<0,所以ln (1+x )<ln (1−x ),所以0<1+x <1−x ,解得−1<x <0,故选项D 正确. 故选:ABD.13.设函数y =√1+2x +a ⋅4x ,若函数在(−∞,1]上有意义,则实数a 的取值范围是_____.【答案】[−34,+∞) 【解析】设t =2x ,∵x ∈(−∞,1],∴0<t ≤2.则原函数有意义等价于1+t +at 2≥0在t ∈(0,2]上恒成立, ∴a ≥−t+1t 2,设f (t )=−1+t t 2=−(1t +12)2+14,∵0<t ≤2,所以1t ∈[12,+∞),∴f (t )≤f (12)=−34,∴a ≥−34.故答案为:[−34,+∞)14.已知函数f(x)=ln 2−x2+x −2,若f (a )=1,则f (-a )=_______【答案】−5 【解析】因为f (x )=ln 2−x2+x −2,所以f (−x )=ln 2+x2−x −2,∴f (x ) +f (−x )=ln 2−x2+x +ln 2+x2−x −4=ln [(2−x2+x )×(2+x2−x )]−4=−4, 则f (a )+f (−a )=−4,又因为f(a)=1,所以f(−a)=−5.故答案为:−5.15.直角梯形ABCD ,如图(1),动点P 从B 点出发,沿B →C →D →A 运动,设点P 运动的路程为x ,△ABP 的面积为f (x ).如果函数y =f (x )的图象如图(2)所示,则△ABC 的面积为__.【答案】16 【解析】由题意结合图(2)可知:BC =4,CD =9−4=5,AD =14−9=5, 过D 作DG ⊥AB∴AG =3,由此可求出AB =3+5=8. S △ABC =12AB ⋅BC =12×8×4=16. 故答案为:16.16.已知函数f (x )={x 3+1,x >00,x =0x 3−1,x <0,则不等式f (2−x 2)+f (−x )≥0的解集为___________.【答案】[−2,1] 【解析】∵函数f(x)={x 3+1,x >00,x =0x 3−1,x <0,当x >0时,−x <0,∴f(−x)=−x 3−1=−f(x), 当x <0时,−x >0,∴f(−x)=−x 3+1=−f(x), ∴f(x)为奇函数,又x >0时,f(x)=x 3+1>1单调递增,x <0时,f(x)=x 3−1<−1单调递增,f(0)=0,∴f(x)在在R 上单调递增,∴原不等式即:f (2−x 2)≥−f(−x)=f(x), 则2−x 2≥x ,解得:−2≤x ≤1. 故答案为:[−2,1]17.已知f (x )={(6−a)x −4a,x <1,log a x,x ≥1,是R 上的增函数,求a 的取值范围.【答案】65≤a <6 【解析】f (x )是R 上的增函数,则当x ≥1时,y =log a x 是增函数,∴a >1. 又当x <1时,函数y =(6-a )x -4a 是增函数.∴6-a >0,∴a <6. 又(6-a )×1-4a ≤log a 1,得a ≥65. ∴65≤a <6.18.求抽象函数的定义域.(1)已知函数f (x )=√1−x +√x +3,求函数f (x +1)的定义域; (2)已知函数f (3x +1)的定义域为(−1,6],求f (2x −5)的定义域. 【答案】 (1)[−4,0]; (2)(32,12]. 【解析】(1)由f (x )=√1−x +√x +3, 得{1−x ≥0x +3≥0,解得:−3≤x ≤1, ∴函数f (x )=√1−x +√x +3的定义域为[−3,1], 由−3≤x +1≤1,得−4≤x ≤0, 即函数f (x +1)的定义域为[−4,0]. (2)∵函数f (3x +1)的定义域为(−1,6], ∴−1<x ≤6,则−2<3x +1≤19, 即函数f (x )的定义域为(−2,19], 由−2<2x −5≤19,得32<x ≤12, ∴f (2x −5)的定义域为(32,12].19.已知函数f (x )满足对任意x 1,x 2∈R ,都有f(x 1+x 2)=f(x 1)f(x 2),f (x )>0 恒成立.且当x <0时,f (x )>1.(1)求f(0):(2)判断f(x)在R上的单调性,并证你的结论:(3)解不等式f(x)f(1-2x)>1.【答案】(1)f(0)=1;(2)f(x)在R上单调递减,证明见解析;(3)(1,+∞).【解析】(1)对任意x1,x2∈R,都有f(x1+x2)=f(x1)f(x2),令x1=x2=0,可得f(0)=f2(0),又f(x)>0,∴f(0)=1;(2)函数f(x)在R上递减.证明如下:设x1<x2,则x1−x2<0,则f(x1−x2)>1且f(x2)>0.∴f(x1)=f(x1−x2+x2)=f(x1−x2)f(x2)>f(x2),则函数f(x)在R上单调递减;(3)由(1)可知,f(0)=1,∴f(x)f(1−2x)>1=f(0),又对任意x1,x2∈R,都有f(x1+x2)=f(x1)f(x2),∴f(x+1−2x)>f(0),根据函数f(x)在R上单调递减可得,1−x<0,∴x>1,故不等式的解集为(1,+∞).20.(1)已知f(x)是一次函数,且满足2f(x+3)−f(x−2)=2x+21,求f(x)的解析式;(2)已知f(x)为二次函数,且满足f(0)=1,f(x−1)−f(x)=4x,求f(x)的解析式.【答案】(1)f(x)=2x+5;(2)f(x)=−2x2−2x+1.【解析】(1)设f(x)=ax+b(a≠0),则2f(x+3)−f(x−2)=2[a(x+3)+b]−[a(x−2)+b]=2ax+6a+2b−ax+2a−b=ax+8a+b=2x+21,所以a =2,b =5, 所以f(x)=2x +5. (2)因为f (x )为二次函数, 设f(x)=ax 2+bx +c(a ≠0). 由f(0)=1,得c =1. 又因为f(x −1)−f(x)=4x ,所以a(x −1)2+b(x −1)+c −(ax 2+bx +c)=4x , 整理,得−2ax +a −b =4x ,求得a =−2,b =−2, 所以f(x)=−2x 2−2x +1. 21.已知函数f (x )=a⋅2x +12x −1的图象经过点(1,3).(1)求a 的值(2)证明:函数f (x )是奇函数 【答案】 (1)a =1; (2)证明见解析. 【解析】(1)因为函数f (x )=a⋅2x +12x −1的图象经过点(1,3),所以3=a⋅21+121−1,解得:a =1.(2)由(1)知:f (x )=2x +12x −1,由2x −1≠0可得x ≠0,所以f (x )=2x +12x −1的定义域为{x|x ≠0}关于原点对称, f (−x )=2−x +12−x −1=(2−x +1)⋅2x (2−x −1)⋅2x=1+2x 1−2x=−2x +12x −1=−f (x ),所以函数f (x )是奇函数. 22.已知函数f(x)=x 21+x 2.(1)求f(2)+f (12),f(3)+f (13)的值; (2)求证:f(x)+f (1x )是定值;(3)求f(2)+f(3)+⋯+f(2022)+f (12)+f (13)+⋯+f (12022)的值. 【答案】 (1)1;1 (2)证明见解析 (3)2021 【解析】【分析】 (1)f(x)=x 21+x 2,f(2)+f (12)=41+4+141+14=1,f(3)+f (13)=91+9+191+19=1.(2)f(x)+f (1x )=x 21+x 2+(1x)21+(1x)2=x 21+x 2+11+x 2=1.(3)f(2)+f(3)+⋯+f(2022)+f (12)+f (13)+⋯+f (12022)[f(2)+f (12)]+[f(3)+f (13)]+⋯+[f(2022)+f (12022)]=2021×1=2021.。
高一数学寒假作业(人教A版必修一)集合的概念与运算word版含解析
高一数学寒假作业(人教A版必修一)集合的概念与运算1.已知集合A={y|x2+y2=1}和集合B={y|y=x2},则A∩B等于( )A.(0,1) B.[0,1]C.(0,+∞) D.{(0,1),(1,0)}【答案】 B2.设全集U=M∪N={1,2,3,4,5},M∩∁UN={2,4},则N=( )A.{1,2,3} B.{1,3,5}C.{1,4,5} D.{2,3,4}【解析】由M∩∁UN={2,4}可得集合N中不含有元素2,4,集合M中含有元素2,4,故N={1,3,5}.【答案】 B3.设集合U={x|x<5,x∈N*},M={x|x2-5x+6=0},则∁U M=( ).A.{1,4} B.{1,5} C.{2,3} D.{3,4}【解析】U={1,2,3,4},M={x|x2-5x+6=0}={2,3},∴∁U M={1,4}.【答案】 A4.若A={2,3,4},B={x|x=n·m,m,n∈A,m≠n},则集合B中的元素个数是( ).A.2 B.3 C.4 D.5【解析】B={x|x=n·m,m,n∈A,m≠n}={6,8,12}.【答案】 B5.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的( ).A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件【解析】若N⊆M,则需满足a2=1或a2=2,解得a=±1或a=± 2.故“a=1”是“N⊆M”的充分不必要条件.【答案】 A6.设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x 24+3y 24=1,B ={y |y =x 2},则A ∩B =( ). A .[-2,2]B .[0,2]C .[0,+∞)D .{(-1,1),(1,1)}【解析】 A ={x |-2≤x ≤2},B ={y |y ≥0},∴A ∩B ={x |0≤x ≤2}=[0,2].【答案】 B7.已知集合M ={x|(x -1)2<4,x∈R},N ={-1,0,1,2,3},则M∩N=( )A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3} 【答案】 A8.若集合A ={x|x 2-2x -16≤0},B ={y|C 5y≤5},则A∩B 中元素个数为( )A .1个B .2个C .3个D .4个 【答案】 D【解析】 A =[1-17,1+17],B ={0,1,4,5},∴A∩B 中有4个元素.故选D.9.若集合M ={0,1,2},N ={(x ,y)|x -2y +1≥0且x -2y -1≤0,x ,y∈M},则N 中元素的个数为( )A .9B .6C .4D .2 【答案】 C【解析】 N ={(x ,y)|-1≤x-2y≤1,x ,y∈M},则N 中元素有:(0,0),(1,0),(1,1),(2,1).10.已知集合A ={1,3,zi}(其中i 为虚数单位),B ={4},A∪B=A ,则复数z 的共轭复数为( )A .-2iB .2iC .-4iD .4i 【答案】 D【解析】 由A∪B=A ,可知B ⊆A ,所以zi =4,则z =4i=-4i ,所以z 的共轭复数为4i ,故选D. 11.设集合M ={y|y =2sinx ,x∈[-5,5]},N ={x|y =log 2(x -1)},则M∩N=( )A .{x|1<x≤5}B .{x|-1<x≤0}C.{x|-2≤x≤0} D.{x|1<x≤2}【答案】 D【解析】∵M={y|y=2sinx,x∈[-5,5]}={y|-2≤y≤2},N={x|y=log2(x-1)}={x|x>1},∴M∩N={y|-2≤y≤2}∩{x|x>1}={x|1<x≤2}.12.设函数f(x)=lg(1-x2),集合A={x|y=f(x)},B={y|y=f(x)},则图中阴影部分表示的集合为( )A.[-1,0] B.(-1,0)C.(-∞,-1)∪[0,1) D.(-∞,-1]∪(0,1)【答案】 D13.已知集合A={-1,0},B={0,1},则集合∁A∪B(A∩B)=( )A.∅B.{0}C.{-1,1} D.{-1,0,1}【答案】 C【解析】∵A∩B={0},A∪B={-1,0,1},∴∁A∪B(A∩B)={-1,1}.14.已知P={x|4x-x2≥0},则集合P∩N中的元素个数是( )A.3 B.4C.5 D.6【答案】 C【解析】因为P={x|4x-x2≥0}={x|0≤x≤4},且N是自然数集,所以集合P∩N中元素的个数是5,故选C.15.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.【解析】∵3∈B,又a2+4≥4,∴a+2=3,∴a=1.【答案】 116.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},则实数a的值为________.【解析】 若a =4,则a2=16∉(A∪B),所以a =4不符合要求,若a2=4,则a =±2,又-2∉(A∪B),∴a =2.【答案】 217.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合;②集合A ={n |n =3k ,k ∈Z}为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合.其中正确结论的序号是________.【答案】 ②18.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 6x +1≥1,x ∈R ,B ={x |x 2-2x -m <0},若A ∩B ={x |-1<x <4},则实数m 的值为________.【解析】 由6x +1≥1,得x -5x +1≤0, ∴-1<x ≤5,∴A ={x |-1<x ≤5}.又∵B ={x |x 2-2x -m <0},A ∩B ={x |-1<x <4},∴有42-2×4-m =0,解得m =8.此时B ={x |-2<x <4},符合题意,故实数m 的值为8.【答案】 819.若集合A ={-1,3},集合B ={x |x 2+ax +b =0},且A =B ,求实数a ,b .解 ∵A =B ,∴B ={x |x 2+ax +b =0}={-1,3}.∴⎩⎪⎨⎪⎧ -a =-1+3=2,b = -1 ×3=-3,∴a =-2,b =-3.20.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求适合下列条件的a 的值.(1)9∈(A ∩B );(2){9}=A ∩B .解 (1)∵9∈(A ∩B ),∴9∈A 且9∈B ,∴2a -1=9或a 2=9,∴a =5或a =-3或a =3,经检验a =5或a =-3符合题意.∴a =5或a =-3.(2)∵{9}=A ∩B ,∴9∈A 且9∈B ,由(1)知a =5或a =-3.当a =-3时,A ={-4,-7,9},B ={-8,4,9},此时A ∩B ={9},当a =5时,A ={-4,9,25},B ={0,-4,9},此时A ∩B ={-4,9},不合题意.∴a =-3.21.设A ={x |x 2-8x +15=0},B ={x |ax -1=0}.(1)若a =15,试判定集合A 与B 的关系; (2)若B ⊆A ,求实数a 组成的集合C .∴1a =3或1a =5,即a =13或a =15, ∴C =⎩⎨⎧⎭⎬⎫0,13,15. 22.设集合A ={x2,2x -1,-4},B ={x -5,1-x,9},若A∩B={9},求A∪B.解 由9∈A,可得x2=9或2x -1=9,解得x =±3或x =5.当x =3时,A ={9,5,-4},B ={-2,-2,9},B 中元素重复,故舍去;当x =-3时,A ={9,-7,-4},B ={-8,4,9},A∩B={9}满足题意,故A∪B={-7,-4,-8,4,9}; 当x =5时,A ={25,9,-4},B ={0,-4,9},此时A∩B={-4,9}与A∩B={9}矛盾,故舍去.综上所述,A∪B={-8,-4,4,-7,9}.23.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a ,9},分别求适合下列条件的a 的值.(1)9∈A∩B; (2){9}=A∩B .【答案】(1)a=5或a=-3 (2)a=-3【解析】(1)∵9∈A∩B且9∈B,∴9∈A.∴2a-1=9或a2=9.∴a=5或a=±3.而当a=3时,a-5=1-a=-2,故舍去.∴a=5或a=-3.(2)∵{9}=A∩B,∴9∈A∩B.∴a=5或a=-3.而当a=5时,A={-4,9,25},B={0,-4,9},此时A∩B={-4,9}≠{9},故a=5舍去.∴a=-3.讲评9∈A∩B与{9}=A∩B意义不同,9∈A∩B说明9是A与B的一个公共元素,但A与B允许有其他公共元素.而{9}=A∩B说明A与B的公共元素有且只有一个9.24.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(∁U A)∩B=∅,试求实数m的值.【答案】m=1或m=22};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2. 经检验知m=1和m=2符合条件.∴m=1或2.。
高一数学寒假作业及答案
高一数学寒假作业及答案集合及其运算一、填空题:(本大题共10小题,每小题5分,共50分) 1.集合{}5,4,3,2,1=M 的子集个数是 ▲2.如果集合A={x|ax 2+2x +1=0}中只有一个元素,则a 的值是 ▲ 3.设A={x|1<x <2},B={x|x <a}满足A ⊆B ,则实数a 的取值范围是 ▲4.满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是 ▲ 5.全集I={0,1,2,3,4},集合A={0,1,2,3},B={2,3,4},则A C I ∪B C I = ▲6.集合A={a 2,a +1,-1},B={2a -1,| a -2 |, 3a 2+4},A ∩B={-1},则a 的值是 ▲ 7.已知集合M={(x ,y)|4x +y=6},P={(x ,y)|3x +2y=7},则M ∩P 等于 ▲ 8.设集合A={x|x ∈Z 且-10≤x ≤-1},B={x|x ∈Z 且|x|≤5 },则A ∪B 中元素的个数为 ▲ 9.集合M={a|a-56∈N ,且a ∈Z},用列举法表示集合M= ▲ 10.设集合A={x|x 2+x -6=0},B={x|mx +1=0},且A ∪B=A ,则m 的取值范围是 ▲ 答案:1. 2.3. 4. 5. 6. 7. 8. 9. 10. 二、解答题:(共4题,11题10分,12题12分13、14题14分,共50分) 11.已知集合A ={x |-1<x <3},A ∩B =∅,A ∪B =R ,求集合B .12.已知集合A={-3,4},B={x|x2-2px+q=0},B≠φ,且B⊆A,求实数p,q的值.13.已知集合A={x∈R|x2-2x-8=0},B={x∈R|x2+ax+a2-12=0},B⊆A,求实数a的取值集合.14.集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}. (1)若A∩B=A∪B,求a的值;(2)若∅A∩B,A∩C=∅,求a的值.高一数学寒假作业(二)函 数(A )一、填空题:(本大题共10小题,每小题5分,共50分) 1.已知函数5)(-=ax x f ,f(-1)=1,则=)3(f ▲ 2.函数223)(-+=x x x g 的值域为 ▲ 3.把函数x x x f 2)(2-=的图象向左平移1个单位长度,再向下平移2个单位长度,得到函数图象对应解析式为 ▲4.一次函数)(x f ,满足 19))((+=x x f f ,则)(x f = ▲ 5.下列函数:①y=2x +1②y=3x 2+1③y=x2④y=2x 2+x +1,其中在区间(0,+∞)上不是增函数的函数是 ▲ (填序号)6.函数)(x f 的图像与函数g(x)=3-2x 关于坐标原点对称,则=)(x f ▲7. 函数2x x y -=)(R x ∈的递减区间为 ▲8.已知函数f(x)=a-121+x ,若f(x)为奇函数,则a = ▲ 9.得到函数3lg 10x y +=的图像只需把函数lg y x =的图像上所有的点 ▲10.已知二次函数)()(2R x c bx ax x f ∈++=的部分对应值如下表:则函数)(x f 的最 ▲ 值为 ▲答案:1. 2.3. 4. 5. 6. 7. 8. 9. 10.二、解答题:(共4题,11题10分12题12分,13、14题14分,共50分) 11.已知)1(11)(-≠+=x xx f ,)(,2)(2R x x x g ∈+=. (1)求)2(),2(g f 的值;(2)求)]2([g f 的值.12.函数f(x)在其定义域(-1,1)上单调递增,且f(a-1)<f(1-a 2), 求a 的取值范围。
常州市高一数学寒假作业-习题精编(含答案) (2)
常州市高一数学寒假作业-习题精编2一、选择题(本大题共12小题,共60.0分)1.如图所示的Venn图中,若A={1,2,3,4,5},B={3,4,5,6,7},则阴影部分表示的集合是()A. {1,2,3,4,5,6,7}B. {1,2,3,4,5}C. {3,4,5,6,7}D. {1,2,6,7}2.若a>b,则下列各式正确的是()A. a-2>b-2B. 2-a>2-bC. -2a>-2bD. a2>b23.下列函数中,能用二分法求零点的是()A. B.C. D.4.下列选项中,两个函数表示同一个函数的是()A. y=,y=1B. y=,y=|x|C. y=x,y=ln e xD. y=,y=5.在正方体ABCD-A1B1C1D1中,异面直线AD1和B1C所成的角是()A. 30°B. 45°C. 60°D. 90°6.已知幂函数f(x)=x a的图象经过点(2,),则函数f(x)为()A. 奇函数且在(0,+∞)上单调递增B. 偶函数且在(0,+∞)上单调递减C. 非奇非偶函数且在(0,+∞)上单调递增D. 非奇非偶函数且在(0,+∞)上单调递减7.已知函数f(x)=,若f(f(-1)=6,则实数a的值为()A. 1B.C. 2D. 48.函数y=1g(1-x)+的定义域是()A. [-2,1]B. [-1,1)C. [-1,2]D. (1,2]9.在如图所示的多面体ABCDB1C1D1中,四边形ABCD、四边形BCC1B1、四边形CDC1C1都是边长为6的正方形,则此多面体ABCDB1C1D1的体积()A. 72B. 144C. 180D. 21610.函数f(x)=|x3|•ln的图象大致为()A. B.C. D.11.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n②若α⊥γ,β⊥γ,则α∥β③若α⊥β,m⊂α,则m⊥β④若α∥β,β∥γ,m⊥α,则m⊥γ其中正确命题的序号是()A. ①和②B. ①和④C. ②和③D. ③和④12.若函数y=f(x)图象上存在不同的两点A,B关于y轴对称,则称点对[A,B]是函数y=f(x)的一对“黄金点对”(注:点对[A,B]与[B,A]可看作同一对“黄金点对”).已知函数f(x)=,则此函数的“黄金点对“有()A. 0对B. 1对C. 2对D. 3对二、填空题(本大题共4小题,共20.0分)13.若a=log3,b=()0.5,则a、b的大小关系是______.(用“<”连接)14.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为4的直角三角形,俯视图是半径为2的四分之一圆周和两条半径,则这个几何体的体积为______.15.直三棱柱ABC-A1B1C1,内接于球O,且AB⊥BC,AB=3.BC=4.AA1=4,则球O的表面积______.16.已知偶函数f(x),x∈R,满足f(1-x)=f(1+x),且当0<x<1时,f(x)=ln(x+),e为自然数,则当2<x<3时,函数f(x)的解析式为______.三、解答题(本大题共6小题,共70.0分)17.化简或求下列各式的值.(Ⅰ)(2a3b)•(-5a b)÷(4);(Ⅱ)(lg5)2+lg5•lg20+.18.已知集合A={x|x2-7x+6<0},B={x|4-t<x<t},R为实数集.(Ⅰ)当t=4时,求A∪B及A∩∁R B;(Ⅱ)若A∪B=A,求实数t的取值范围.19.在长方体ABCD-A1B1C1D1中,求证:(Ⅰ)AB∥平面A1B1C;(Ⅱ)平面ABB1A1⊥平面A1BC.20.已知函数f(x)=-,若x∈R,f(x)满足f(-x)=-f(x).(Ⅰ)求实数a的值;(Ⅱ)判断函数f(x)(x∈R)的单调性,并说明理由;(Ⅲ)若对任意的t∈R,不等式f(t2-4t)+f(-k)<0恒成立,求k的取值范围.21.如图所示,已知长方形ABCD,AD=2CD=4,M、N分别为AD、BC的中点,将长方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD.(1)求证:直线CM⊥面DFN;(2)求点C到平面FDM的距离.22.已知函数f(x)=ax2-4ax+1+b(a>0)的定义域为[2,3],值域为[1,4];设g(x)=.(Ⅰ)求a,b的值;(Ⅱ)若不等式g(2x)-k2x≥0在x∈[1,2]上恒成立,求实数k的取值范围.答案和解析1.【答案】D【解析】【分析】本题考查根据Venn图表示集合的关系,集合的交集、并集运算,是基础题.根据图象确定阴影部分的集合元素特点,利用集合的交集和并集进行求解即可.【解答】解:阴影部分对应的集合为{x|x∈A∪B且x∉A∩B},因为A={1,2,3,4,5},B={3,4,5,6,7},所以A∪B={1,2,3,4,5,6,7},A∩B={3,4,5},∴阴影部分的集合为{1,2,6,7},故选:D.2.【答案】A【解析】解:因为a>b,所以a-2>b-2,故选项A正确,2-a<2-b,故选项B错误,-2a>-2b,故选项C错误,a2,b2无法比较大小,故选项D错误,故选:A.由不等式的基本性质,逐一检验即可.本题考查了不等式的基本性质,属简单题.3.【答案】D【解析】解:由题意以及零点判定定理可知:只有选项D能够应用二分法求解函数的零点,故选:D.利用零点判定定理以及函数的图象,判断选项即可.本题考查了的判定定理的应用,二分法求解函数的零点,是基本知识的考查.4.【答案】C【解析】解:A.的定义域为{x|x≠0},y=1的定义域为R,定义域不同,不是同一个函数;B.和y=|x|的解析式不同,不是同一函数;C.y=x的定义域为R,y=ln e x=x的定义域为R,定义域和解析式都相同,是同一个函数;D.,,解析式不同,不是同一个函数.故选:C.根据函数的定义域,即可判断选项A的两个函数不是同一个函数,根据函数解析式不同,即可判断选项B,D的两函数都不是同一个函数,从而为同一个函数的只能选C.考查函数的定义,判断两函数是否为同一个函数的方法:看定义域和解析式是否都相同.5.【答案】D【解析】解:∵AD1∥BC1,∴正方体ABCD-A1B1C1D1的面对角线AD1和面对角线B1C所成的角就是直线B1C和BC1的夹角,∵BCC1B1是正方形,∴直线B1C和BC1垂直,∴正方体ABCD-A1B1C1D1的面对角线AD1和面对角线B1C所成的角为90°.故选D.正方体ABCD-A1B1C1D1的面对角线AD1和面对角线B1C所成的角就是直线B1C和BC1的夹角,由此能求出结果.本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.6.【答案】C【解析】解:幂函数f(x)=x a的图象经过点(2,),∴2a=,解得a=,∴函数f(x)=,∴函数f(x)是非奇非偶函数且在(0,+∞)上单调递增.故选:C.求出a=,从而函数f(x)=,由此得到函数f(x)是非奇非偶函数且在(0,+∞)上单调递增.本题考查命题真假的判断,考查幂函数的性质等基础知识,考查运算求解能力,是基础题.7.【答案】A【解析】解:函数f(x)=,若f(f(-1)=6,可得f(-1)=4,f(f(-1))=f(4)=4a+log24=6,解得a=1.故选:A.利用分段函数的解析式,由里及外逐步求解函数值得到方程求解即可.本题考查分段函数的应用,函数值的求法,考查计算能力.8.【答案】B【解析】解:要使原函数有意义,则:;解得-1≤x<1;∴原函数的定义域是:[-1,1).故选:B.可看出,要使得原函数有意义,则需满足,解出x的范围即可.考查函数定义域的概念及求法,对数函数的定义域,一元二次不等式的解法.9.【答案】B【解析】解:把该几何体不成正方体ABCD-A1B1C1D1,此多面体ABCDB1C1D1的体积V=V-V=63-=144.故选:B.把该几何体不成正方体ABCD-A1B1C1D1,此多面体ABCDB1C1D1的体积V=V-V,即可.考查四棱锥体积的求法,考查化归与转化思想、数形结合思想,是中档题.10.【答案】A【解析】解:f(-x)=|x3|•ln=)=-|x3|•ln=-f(x),则函数f(x)是奇函数,图象关于原点对称,排除B,D,f()=ln=ln<0,排除C,故选:A.判断函数的奇偶性和对称性,利用特殊点的函数值是否对应进行排除即可.本题主要考查函数图象的识别和判断,利用函数奇偶性和特殊值进行排除是解决本题的关键.11.【答案】B【解析】解:①若m⊥α,n∥α,则m⊥n成立,故①正确,②若α⊥γ,β⊥γ,则α∥β不成立,两个平面没有关系,故②错误③若α⊥β,m⊂α,则m⊥β不成立,可能m与β相交,故③错误,④若α∥β,β∥γ,m⊥α,则m⊥γ,成立,故④正确,故正确的是①④,故选:B.根据空间直线和平面平行,垂直的性质分别进行判断即可.本题主要考查命题的真假判断,涉及空间直线和平面平行和垂直的判定和性质,考查学生的空间想象能力.12.【答案】D【解析】解:由题意知函数f(x)=2x,x<0关于y轴对称的函数为y=2-x=()x,x>0,作出函数f(x)和y=()x,x>0的图象,由图象知当x>0时,f(x)和y=()x,x>0的图象有3个交点.所以函数f(x)的““黄金点对“有3对.故选:D.根据“黄金点对“,只需要作出当x<0时,函数f(x)关于y对称的函数的解析式以及图象,利用两个图象交点个数进行求解即可.本题主要考查分段函数的应用,结合“黄金点对“的定义,作出当x<0时,函数f(x)关于y对称的函数的解析式以及图象,利用数形结合是解决本题的关键.13.【答案】a<b【解析】解:;∴a<b.故答案为:a<b.容易看出,,从而可得出a,b的大小关系.考查对数函数的单调性,减函数的定义,指数函数的值域.14.【答案】【解析】解:由三视图可知几何体为圆锥的,圆锥的底面半径为1,母线长为2,∴圆锥的高为.∴V=××π×12×=.故答案为:.几何体为圆锥的,根据三视图的数据计算体积即可.本题考查了圆锥的三视图和体积计算,属于基础题.15.【答案】41π【解析】解:直三棱柱中,易知AB,BC,BB1两两垂直,可知其为长方体的一部分,利用长方体外接球直径为其体对角线长,可知其直径为=,∴=41π,故答案为:41π.利用三线垂直联想长方体,而长方体外接球直径为其体对角线长,容易得到球半径,得解.此题考查了三棱柱外接球,难度不大.16.【答案】f(x)=ln(x-2+)【解析】解:因为f(x)是偶函数,满足f(1-x)=f(1+x),所以f(1+x)=f(x-1),所以f(x)周期是2.当2<x<3时,0<x-2<1,所以f(x-2)=ln(x-2+)=f(x),所以函数f(x)的解析式为f(x)=ln(x-2+).故答案为:f(x)=ln(x-2+).由f(1-x)=f(1+x),再由偶函数性质得到函数周期,再求当2<x<3时f(x)解析式.本题考查函数的奇偶性,周期性应用求解析式,属于中档题.17.【答案】解:(Ⅰ)原式=;(Ⅱ)原式=lg5(lg5+lg20)+lg4=2(lg5+lg2)=2.【解析】(Ⅰ)进行分数指数幂的运算即可;(Ⅱ)进行对数的运算即可.考查分数指数幂和对数的运算,以及对数的换底公式.18.【答案】解:(Ⅰ)解二次不等式x2-7x+6<0得:1<x<6,即A,当t=4时,B=,C R B=,所以A∪B=,A∩C R B=,故答案为:A∪B=,A∩C R B=(Ⅱ)由A∪B=A,得:B⊆A,①当4-t≥t即t≤2时,B=∅,满足题意,②B≠∅时,由B⊆A得:,解得:2<t≤3,综合①②得:实数t的取值范围为:t≤3,故答案为:t≤3.【解析】(Ⅰ)由二次不等式的解法得:A,由集合的交、并、补的运算得:B=,C R B=,所以A∪B=,A∩C R B=,(Ⅱ)由集合间的包含关系得:因为A∪B=A,得:B⊆A,讨论①B=∅,②B≠∅时,运算即可得解本题考查了二次不等式的解法、集合的交、并、补的运算及集合间的包含关系,属简单题.19.【答案】证明:(Ⅰ)在长方体ABCD-A1B1C1D1中,∵AB∥A1B1,且AB⊄平面A1B1C,A1B1⊂平面A1B1C,∴AB∥平面A1B1C.(Ⅱ)在长方体ABCD-A1B1C1D1中,∵BC⊥AB,BC⊥BB1,AB∩BB1=B,∴BC⊥平面ABB1A1,∵BC⊂平面A1BC,∴平面ABB1A1⊥平面A1BC.【解析】(Ⅰ)推导出AB∥A1B1,由此能证明AB∥平面A1B1C.(Ⅱ)推导出BC⊥AB,BC⊥BB1,从而∴BC⊥平面ABB1A1,由此能证明平面ABB1A1⊥平面A1BC.本题考查线面平行、面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.20.【答案】解:(Ⅰ)函数f(x)=-,x∈R,且f(-x)=-f(x),∴-=-+,∴a=+=+=1;(Ⅱ)f(x)=-是定义域R上的单调减函数,证明如下:任取x1、x2∈R,且x1<x2,则f(x1)-f(x2)=(-)-(-)=-=,由(+1)(+1)>0,当x1<x2时,<,∴->0,∴f(x1)>f(x2),∴f(x)是定义域R上的单调减函数;(Ⅲ)对任意的t∈R,不等式f(t2-4t)+f(-k)<0恒成立,则f(t2-4t)<-f(-k)=f(k),根据f(x)是定义域R上的单调减函数,得t2-4t>k,设f(t)=t2-4t,t∈R,则f(t)=(t-2)2-4≥-4,∴k的取值范围是k<-4.【解析】(Ⅰ)根据f(-x)=-f(x)代入求得a的值;(Ⅱ)f(x)是定义域R上的单调减函数,利用定义证明即可;(Ⅲ)根据题意把不等式化为t2-4t>k,求出f(t)=t2-4t的最小值,即可得出k的取值范围.本题考查了函数的奇偶性与单调性应用问题,也考查了不等式恒成立问题,是中档题.21.【答案】证明:(1)∵长方形ABCD,AD=2CD=4,M、N分别为AD、BC的中点,将长方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD.∴DN⊥CM,CM⊥FN,又DN∩FN=N,∴CM⊥平面DFN.解:(2)以M为原点,MN为x轴,MA为y轴,ME为z轴,建立空间直角坐标系,则C(2,-2,0),D(0,-2,0),F(2,0,2),M(0,0,0),=(2,-2,0),=(0,-2,0),=(2,0,2),设平面FDM 的法向量=(x,y,z),则,取x=1,得=(1,0,-1),∴点C到平面FDM的距离d ===.【解析】(1)推导出DN⊥CM,CM⊥FN,由此能证明CM⊥平面DFN.(2)以M为原点,MN为x轴,MA为y轴,ME为z轴,建立空间直角坐标系,利用向量法能求出点C到平面FDM的距离.本题考查线面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.22.【答案】解:(Ⅰ)∵函数f(x)=ax2-4ax+1+b(a>0)其图象对称轴为直线x=2,函数的定义域为[2,3],值域为[1,4],∴,解得:a=3,b=12;(Ⅱ)由(Ⅰ)得:f(x)=3x2-12x+13,g(x)==.若不等式g(2x)-k2x≥0在x∈[1,2]上恒成立,则k≤()2-2()+1在x∈[1,2]上恒成立,2x∈[2,4],∈[,],当=,即x=1时,()2-2()+1取最小值,故k ≤.【解析】本题考查二次函数在闭区间上的最值,考查函数恒成立问题问题,考查数形结合与等价转化、函数与方程思想的综合应用,是中档题.(Ⅰ)根据函数f(x)=ax2-4ax+1+b(a>0)的定义域为[2,3],值域为[1,4],其图象对称轴为直线x=2,且g(x)的最小值为1,最大值为4,列出方程可得实数a,b的值;(Ⅱ)若不等式g(2x)-k2x≥0在x∈[1,2]上恒成立,分离变量k,在x∈[1,2]上恒成立,进而得到实数k的取值范围.第11页,共11页。
寒假作业11 第1章立体几何初步检测题基础篇-2020-2021学年北师大版高一数学(必修2)
参考答案
1.B
【分析】
根据棱柱的特点一一分析即可得解.
【详解】
对于A,棱柱的上下底面可以是三角形或者是梯形,故A不正确;
对于B,面最少的就是三棱柱,共有五个面,B正确;
对于C,长方体是棱柱,但是上下、左右、前后都是互相平行的,C不正确;
对于D,斜棱柱的侧面可以不是矩形,D错误.
2.C
【分析】
由已知条件将四个点的位置定下来,可得选项.
【详解】
因为空间四点A,B,C,D不共面,所以这四个点的位置如三棱锥的顶点和底面三角形的顶点,所以只有C选项正确,
若A,B,C,D四点中有三点共线,则空间四点A,B,C,D共面,与题设矛盾,故A错误;
若直线 与 相交,则空间四点A,B,C,D共面,故B不正确;
对于选项C:由平行公理知:平行于同一条直线的两条直线互相平行;故选项C正确;
选项D是直线与平面垂直的性质定理,不是公理.
故选:D.
5.D
【分析】
由圆柱、圆锥、圆台的三视图确定几何体形状.
【详解】
由三视图知原组合体上面是一个圆锥,下面是一个圆柱,只有D相符.
故选:D.
6.A
【分析】
由题意可知正四棱锥底面正方形边长为 ,高为 ,利用椎体体积公式即可求解.
对于②,若 ,则由面面平行的性质定理可得 ,故正确;
对于③,若 ,则由线面垂直的判定定理可得 ,故正确;
对于④,当 时,l可能在 内,可能与 平行,可能相交,所以不一定有 ,故错误,
故选:B
【点睛】
此题考查线线、线面、面面关系的判断,属于基础题
11.C
【分析】
连接 、 ,证明出 ,可得出异面直线 与直线 所成的角为 ,分析 的形状,进而可得出结果.
吉林省长春市第二实验中学2020-2021学年高一下学期假期作业测试数学试卷含答案
长春二实验中学高一年级寒假作业测试数学试题本试卷分选择题和非选择题两部分共22题,共150分,共2页。
考试时间为120分钟。
第Ⅰ卷 选择题一、单项选择题:本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知全集Z U =,{}2,1,1,2--=A ,{}0232=++=x x x B ,则()B C A U = ( A )A.{}2,1 B.{}2,1-- C.{}2,1- D.{}2,1- 2. 命题“0x R ∃∈,20010x x ++<”的否定为( C )A. 0x R ∃∈,20010x x ++≥ B. 0x R ∃∉,20010x x ++≥C. x R ∀∈,210x x ++≥D. x R ∀∉,210x x ++≥3. 函数)23(log 32-=x y 的定义域是 ( D )A.[]2,1B.⎪⎭⎫ ⎝⎛1,32C.⎥⎦⎤⎢⎣⎡1,32 D.⎥⎦⎤ ⎝⎛1,324.已知圆心为O 的圆形金属板的半径OA =2,在该板上截取一块扇形板AOB ,其圆心角的弧度数为3π,则该扇形板的面积为( C ) A .92π B .922π C .32πD .34π5. 函数()f x 是定义在R 上的偶函数,且在(),0-∞上为减函数,则以下关系正确的是( B ) A. ()()()13f f f π<<- B. ()()()13f f f π<-< C. ()()()13f f f π<<-D. ()()()31f f f π-<<6. 设3121⎪⎭⎫ ⎝⎛=a ,2131⎪⎭⎫ ⎝⎛=b ,3.0log 2=c ,则( B )A.b a c <<B.a b c <<C.c b a <<D.c a b << 7. 函数a x x f x --=12)(的一个零点在区间()2,1内,则实数a 的取值范围是(D ) A.()2,1 B.⎪⎭⎫ ⎝⎛27,0 C.()2,0 D.⎪⎭⎫ ⎝⎛27,18.已知51cos sin -=+αα⎪⎭⎫⎝⎛<<παπ2,则=αtan ( A ) A. 43-B.34-C.43D.4334--或 9.已知函数)sin()(ϕω+=x A x f ⎪⎭⎫⎝⎛<<->>22,0,0πϕπωA 的部分图象如图所示,它可由函数x y sin =的图象变换而得,这个变换可以是(A )A .向左平移6π个单位长度,再将横坐标变为原来的21倍,纵坐标变为原来的2倍 B .向左平移12π个单位长度,再将横坐标变为原来的21倍,纵坐标变为原来的2倍C .向左平移6π个单位长度,再将横坐标变为原来的2倍,纵坐标变为原来的21倍 D .向左平移12π个单位长度,再将横坐标变为原来的2倍,纵坐标变为原来的21倍 10.函数112)(--=x x x f 与()21)(3+-=x x g 的图象的所有交点的横坐标与纵坐标之和为( B ) A .12B .6C .4D .2二、多项选择题:本题共2小题,每小题5分,共10分。
高一数学寒假作业06 函数的单调性与最值(教师版)
高一数学寒假作业专题06函数的单调性与最值1.定义域为R的函数f(x)满足:对任意的x1,x2∈R,有(x1−x2)⋅(f(x1)−f(x2))>0,则有()A.f(−2)<f(1)<f(3)B.f(1)<f(−2)<f(3)C.f(3)<f(−2)<f(1)D.f(3)<f(1)<f(−2)【答案】A【解析】定义域在R上的函数f(x)满足:对任意的x1,x2∈R,有(x1−x2)⋅(f(x1)−f(x2))>0,可得函数f(x)是定义域在R上的增函数,所以f(−2)<f(1)<f(3).故选:A.2.下列命题是真命题的是()A.函数f(x)=−3x−2在[2,3]上是减函数最大值为−11B.函数f(x)=−1x 在[1,2]是增函数,最小值为−12C.函数f(x)=−x2+2x在区间[0,2]先减再增,最小值为0D.函数f(x)=x2−2x在区间[0,2]先减再增,最大值为0【答案】D【解析】选项A,由一次函数的单调性知,f(x)=−3x−2在[2,3]上是减函数,最大值为f(2)=−3×2−2=−8,故A错误;选项B,由反比例函数的单调性可知,f(x)=−1x在[1,2]是增函数,最小值为f(1)=−1,故B错误;选项C,函数f(x)=−x2+2x为开口向下的二次函数,对称轴为x=1,故在[0,1)单增,在(1,2]单减,先增再减,故C错误;选项D,函数f(x)=x2−2x为开口向上的二次函数,对称轴为x=1,故在[0,1)单减,在( 1,2]单增,先减再增,最大值为f(0)=f(2)=0,故D正确故选:D3.若奇函数f(x)在区间[3,7]上单调递增,且最小值为5,则f(x)在区间[-7,-3]上()A.单调递增且有最大值-5B.单调递增且有最小值-5C.单调递减且有最大值-5D.单调递减且有最小值-5【答案】A【解析】因为f (x )在区间[3,7]上单调递增,且最小值为5,所以f (3)=5.由奇函数在对称区间上单调性相同,可知f (x )在区间[-7,-3]上单调递增, 且有最大值f (−3)=−f (3)=−5. 故选:A .4.已知函数f (x )=x 2−x +1,函数g (x )=ax −1,对于任意x 1∈[1,2],总存在x 2∈[−1,1],使得g (x 2)=f (x 1)成立,则实数a 的取值范围是( ) A .(−∞,−4]B .[4,+∞)C .(−∞,−4]∪[4,+∞)D .(−∞,−4)⋃(4,+∞)【答案】C 【解析】因为f(x)=x 2−x +1,则f (x )在 [1,2]上为单调递增函数, 所以 f (x )的值域为 [1,3],记为A =[1,3], (1)当a >0时, g (x )在 [−1,1]上为增函数,所以 g (x )的值域为[−a −1,a −1],记为 B =[−a −1,a −1], 由题意可得 A ⊆B , {−a −1⩽1a −1⩾3解得 a ≥4, (2)当 a <0时,g (x )在 [−1,1] 上为减函数,故g (x )的值域为[a −1 ,−a −1],记为 C =[a −1 ,− a −1 ], 由题意可知A ⊆B , {−a −1≥3a −1≤1解得 a ≤−4,综上所述,实数 a 的取值范围是(−∞,−4]∪[4,+∞). 故选:C5.对于每一个实数x ,设f (x )取y =4x +1,y =x +2,y =−2x +4三个函数值中的最小值,则f (x )的最大值为( ) A .1 B .23C .43D .83【答案】D 【解析】因为f (x )取y =4x +1、y =x +2、y =−2x +4三个函数中的最小值, 所以可根据y =4x +1、y =x +2、y =−2x +4图像绘出f (x )的图像, 如图:联立{y =x +2y =−2x +4,解得(23,83),f (x )的最大值为83,故选:D.6.函数f (x )=|x |(2−x )的单调递增区间是( ) A .[0,1] B .[−1,0] C .[−1,1] D .[0,2]【答案】A 【解析】当x ≥0时,f(x)=x(2−x)=−x 2+2x ,开口向下,对称轴为x =1,故其递增区间是[0,1];当x <0时,f(x)=−x(2−x)=x 2−2x ,开口向上,对称轴为x =1,在x <0时,f(x)单调递减,综上:f (x )=|x |(2−x )的单调递增区间是[0,1]. 故选:A.7.下列函数中为增函数的是( ) A .f (x )=1x+1 B .f (x )=x 13C .f (x )=(23)xD .f (x )=lg (x 2+1)【答案】B 【解析】对于A 选项,函数f (x )=1x+1在定义域上不单调; 对于B 选项,函数f (x )=x 13为R 上的增函数;对于C 选项,函数f (x )=(23)x为R 上的减函数;对于D 选项,函数f (x )=lg (x 2+1)的定义域为R ,内层函数u =x 2+1在(−∞,0)上为减函数,在(0,+∞)上为增函数,而外层函数y =lgu 为增函数,故函数f (x )的减区间为(−∞,0),增区间为(0,+∞). 故选:B.8.已知定义在(0,+∞)上的函数f (x )满足:对任意正数a 、b ,都有f (ab )=f (a )⋅f (b )≠0,且当x >1时,f (x )<1,则下列结论正确的是( ) A .f (x )是增函数,且f (x )<0B .f (x )是増函数,且f (x )>0C.f(x)是减函数,且f(x)<0D.f(x)是减函数,且f(x)>0【答案】D【解析】法一:取f(x)=1x(x>0),满足题干条件,则f(x)是减函数,且f(x)>0;法二:当x>0时,f(x)=f(√x⋅√x)=[f(√x)]2>0.设x1>x2>0,则x1x2>1,由已知,f(x1x2)<1.所以f(x1)−f(x2)=f(x1x2⋅x2)−f(x2)=f(x1x2)f(x2)−f(x2)=f(x2)[f(x1x2)−1]<0,即f(x1)<f(x2),所以f(x)是减函数,故选:D.9.已知函数f(x)=x−bx2+1是奇函数,则下列选项正确的有()A.b=0B.f(x)在区间(1,+∞)单调递增C.f(x)的最小值为−12D.f(x)的最大值为2【答案】AC【解析】函数f(x)=x−bx2+1是奇函数,则f(0)=0,代入可得b=0,故A正确;由f(x)=x−bx2+1=xx2+1=1x+1x,对勾函数y=x+1x在(1,+∞)上单调递增,所以f(x)=1x+1x在(1,+∞)上单调递减,故B错误;由y=x+1x ∈(−∞,−2]⋃[2,+∞),所以f(x)=1x+1x∈[−12,0)∪(0,12],所以f(x)min=−12,故C正确、D错误.故选:AC10.已知函数f(x)=|x|−x2,则下列说法正确的是()A.f(x)的最大值为14B.f(x)在(−1,0)上是增函数C.f(x)>0的解集为(−1,1)D.f(x)+2x≥0的解集为[0,3]【答案】AD【解析】f(−x)=|−x|−(−x)2=|x|−x2=f(x),所以f (x )是偶函数, 在x ≥0时,f(x)=−x 2+x , 图象为开口向下的抛物线的部分, 对称轴为x =12,在(0,12)内单调递增,在(12,+∞)上单调递减, 最大值为f (12)=−14+12=14,∴函数f(x)=|x|−x 2在R 上的最大值为14, 在(−1,−12)内单调递增,在(−12,0)内单调递减, 故A 正确,B 错误;由于f (0)=0,f (1)=0,f (−1)=0,结合函数的单调性和偶函数的性质画出图象如图所示. 可知f (x )>0的解集为(−1,0)∪(0,1), 故C 错误;f(x)+2x ={−x 2+3x,x ≥0,−x 2+x,x <0 画出图象如图所示:由图象可得不等式f(x)+2x ≥0的解集为[0,3],故D 正确. 故选:AD.11.对于函数f(x)=x1+|x|(x∈R),下列判断正确的是()A.f(−x)+f(x)=0B.当m∈(0,1)时,方程f(x)=m总有实数解C.函数f(x)的值域为[−1,1]D.函数f(x)的单调区间为(−∞,0)【答案】AB【解析】f(−x)+f(x)=−x1+|−x|+x1+|x|=0,故A正确;因为−|x|≤x≤|x|,所以−1<−|x|1+|x|≤x1+|x|≤|x|1+|x|<1,∴f(x)的值域为(−1,1),因此当m∈(0,1)时,方程f(x)=m总有实数解,故B正确;故C错误;f(x)={x1+x ,x≥0x 1−x ,x<0,x≥0,f′(x)=1(1+x)2>0所以f(x)在[0,+∞)单调递增;由于与f(−x)+f(x)=0知f(x)为奇函数,所以函数f(x)在(−∞,0)也单调递增,且在x=0时连续,故f(x)的单调增区间为(−∞,+∞),故D错误;故选:AB.12.已知函数f(x)=−2x+1(x∈[−2,2]),g(x)=x2−2x,(x∈[0,3]),则下列结论正确的是()A.∀x∈[−2,2],f(x)>a恒成立,则实数a的取值范围是(−∞,−3)B.∃x∈[−2,2],f(x)>a恒成立,则实数a的取值范围是(−∞,−3)C.∃x∈[0,3],g(x)=a,则实数a的取值范围是[−1,3]D.∀x∈[−2,2],∃t∈[0,3],f(x)=g(t)【答案】AC【解析】在A中,因为f(x)=−2x+1(x∈[−2,2])是减函数,所以当x=2时,函数取得最小值,最小值为−3,因此a<−3,A正确;在B中,因为f(x)=−2x+1(x∈[−2,2])减函数,所以当x=−2时,函数取得最大值,最大值为5,因此a<5,B错误;在C中,g(x)=x2−2x=(x−1)2−1(x∈[0,3]),所以当x=1时,函数取得最小值,最小值为−1,当x=3时,函数取得最大值,最大值为3,故函数的值域为[−1,3],由g(x)= a有解,知a∈[−1,3],C正确;在D 中,∀x ∈[−2,2],∃t ∈[0,3],f(x)=g(t)等价于f(x)的值域是g(t)的值域的子集,而f(x)的值域是[−3,5],g(t)的值域[−1,3],D 错误. 故选:AC13.函数f (x )=2xx 2+1,x ∈[−1,1]的最大值是__________.【答案】1 【解析】任取x 1,x 2∈[−1,1],且−1≤x 1<x 2≤1, 则f (x 1)−f (x 2)=2x 1x12+1−2x 2x22+1=2x 1(x 22+1)−2x 2(x 12+1)(x 12+1)(x 22+1)=2(x 1−x 2)(1−x 1x 2)(x 12+1)(x 22+1), ∵−1≤x 1<x 2≤1∴根据不等式的性质可得x 1−x 2<0,x 1x 2<1, ∵x 12+1>0,x 22+1>0∴f (x 1)−f (x 2)<0,即f (x 1)<f (x 2), ∴函数f (x )=2xx 2+1在[−1,1]上单调递增,∴函数f (x )=2xx 2+1在[−1,1]上的最大值是f (1)=2×112+1=1. 故答案为:1.14.函数f(x)=√x 2−3x +2的单调递增区间是____________. 【答案】[2,+∞) 【解析】x 2−3x +2≥0,x ≤1或x ≥2,y =√u 是增函数,u =x 2−3x +2在(−∞,1]上递减,在[2,+∞)上递增, 所以f(x)的增区间是[2,+∞). 故答案为:[2,+∞).15.对任意的x ∈(0,+∞),不等式(x −a +ln xa )(−3x 2+ax +10)≤0恒成立,则实数a =______. 【答案】√5 【解析】由题可知,x ∈(0,+∞)且ln xa 成立,则a ∈(0,+∞)因为对任意的x ∈(0,+∞),不等式(x −a +ln xa )(−3x 2+ax +10)≤0恒成立等价于不等式[(x +lnx )−(a +lna )](−3x 2+ax +10)≤0恒成立记f (x )=x +lnx,g (x )=−3x 2+ax +10,则f (x )在(0,+∞)上单调递增当0<x <a 时,f (x )<f (a ),即(x +lnx )−(a +lna )<0恒成立,则−3x 2+ax +10≥0所以{g (0)=10≥0g (a )=−3a 2+a ⋅a +10=−2a 2+10≥0,得0<a ≤√5当x =a 时,不等式显然成立当x >a 时,f (x )>f (a ),即(x +lnx )−(a +lna )>0恒成立,则−3x 2+ax +10≤0 因为函数g (x )=−3x 2+ax +10=−3(x −a 6)2+a 212+10在(a,+∞)上单调递减所以x >a 时,g (x )<g (a )=−2a 2+10≤0,得a ≥√5因为对任意的x ∈(0,+∞),该不等式恒成立,故应取交集则a =√5 故答案为:√516.若函数f (x )={mx −1,x >1−x +1,x ≤1,满足:对任意的x 1≠x 2,都有f (x 1)≠f (x 2),则m 的取值范围为____________. 【答案】(−∞,0)∪(0,1] 【解析】依题意知函数f (x )的图象与直线y =a (a ∈R )最多只有一个交点. 当x ≤1时,函f (x )单调递减且f (x )≥0;当x >1时,若m =0,f (x )=−1,此时不合题意; 若m <0时,函数f (x )单调递增且f (x )=m x−1<0,满足题意;若m >0时,当x >1时,函数f (x )=m x−1单调递减,此时只需m −1≤0,即0<m ≤1.综上,m 的取值范围为(−∞,0)∪(0,1]. 故答案为:(−∞,0)∪(0,1].17.已知函数f(x)=x +1x.(1)判断函数f (x )在[1+∞)上的单调性,并用单调性的定义证明;(2)当x ∈[0,1]时,不等式f (4x )−f (2x )−k ≤0恒成立,求实数k 的取值范围. 【答案】(1)函数f (x )是[1+∞)上的增函数,证明见解析 (2)k ≥6 【解析】 【分析】(1)任取x 1,x 2∈[1,+∞),且x 1<x 2,f (x 2)−f (x 1)=(x 2+1x 2)−(x 1+1x 1)=x 2−x 1+1x 2−1x 1=(x 2−x 1)(x 2x 1−1)x 2x 1,∵x 1,x 2∈[1,+∞),且x 1<x 2,x 2−x 1>0,x 2x 1>1, ∴f (x 2)−f (x 1)>0即f (x 1)<f (x 2),∴函数f (x )是[1,+∞)上的增函数 (2)f (4x )−f (2x )−k ≤0⇒4x +14x −(2x+12x)−k ≤0 ⇔4x +14x −(2x +12x)≤k 令t =2x +12x ,x ∈[0,1]⇒t ∈[2,52] 原问题等价于t 2−t −2≤k令ℎ(t )=t 2−t −2,t ∈[2,52]⇒ℎ(t )max =ℎ(52)=74 ∴k ≥74.18.函数f (x )是R 上的偶函数,且当x >0时,函数的解析式为f(x)=2x −1 (1)求f (-1)的值∶(2)用定义证明f (x )在(0,+∞)上是减函数; (3)求当x <0时,函数的解析式. 【答案】 (1)1;(2)证明见解析; (3)f(x)=−2x −1. 【解析】 【分析】(1)f(−1)=f(1)=1;(2)证明:任取0<x 1<x 2,则f(x 1)−f(x 2)=2x 1−1−2x 2+1=2(x 1−x 2)x 1x 2,所以x 1x 2>0,x 2−x 1>0 ,即f(x 1)>f(x 2),所以f(x)在(0,+∞)上是减函数;(3)任取x <0,则−x >0,故f(−x)=−2x −1=f(x),即x <0时,函数的解析式为f(x )=−2x −1.19.已知函数f (x )=x 2+2x. (1)用定义证明:f (x )在区间[1,+∞)上是增函数;(2)设集合A =[1,2],B ={x |x 3+x 2−ax +2<0},若A ⊆B ,求实数a 的取值范围. 【答案】 (1)证明见解析 (2)(7,+∞) 【解析】 (1)设x 1>x 2≥1,则f (x 1)−f (x 2)=(x 12−x 22)+(2x 1−2x2)=(x 1−x 2)(x 1+x 2)+2(x 2−x 1)x 1x 2=(x 1−x 2)(x 1+x 2−2x 1x 2).因为x 1>x 2≥1,则x 1−x 2>0,x 1+x 2>2,x 1x 2>1,从而0<2x 1x 2<2,x 1+x 2−2x 1x 2>0.所以f (x 1)−f (x 2)>0,即f (x 1)>f (x 2).所以f(x)在区间[1,+∞)上是增函数. (2)因为A ⊆B ,则当x ∈[1,2]时,不等式x 3+x 2−ax +2<0恒成立, 即a >x 2+2x +x 恒成立.设g(x)=x 2+2x +x ,则当x ∈[1,2]时,a >g(x)max 即可.因为f(x)=x 2+2x 和y =x 在[1,2]上都是增函数,则g(x)在[1,2]上是增函数. 所以当x ∈[1,2]时,g(x)max =g(2)=7,故a 的取值范围是(7,+∞). 20.已知f(x)=2x+1−32x −1.(1)判断函数f (x )在(0,+∞)上的单调性,并用定义证明;(2)若f(x)≥k ⋅2x ,k >0在区间[1,2]上恒成立,求实数k 的取值范围;(3)若存在实数b >a >0,使得函数f (x )在(a ,b )上的值域是(m2a ,m2b ),求实数m 的取值范围. 【答案】(1)单调递增,证明见解析; (2)0<k ≤512; (3)0<m <4−2√3. 【解析】 (1)∵f(x)=2x+1−32x −1,即f (x )=2−12x −1在(0,+∞)上单调递增,证明:∀x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 1)−f (x 2)=2−12x 1−1−(2−12x 2−1)=2x 1−2x 2(2x 1−1)(2x 2−1), 由0<x 1<x 2,可得1<2x 1<2x 2, ∴2x 1−1>0,2x 2−1>0,2x 1−2x 2<0, 可得2x 1−2x 2(2x 1−1)(2x 2−1)<0,即f (x 1)<f (x 2), ∴函数f (x )在(0,+∞)上为增函数; (2)∵f(x)≥k ⋅2x ,k >0在区间[1,2]上恒成立, 令t =2x ,t ∈[2,4],可得2x −1>0,11 / 13 由f(x)≥k ⋅2x 得,2x+1−32x −1≥k ⋅2x 即为2t −3≥kt(t −1),∴kt 2−(k +2)t +3≤0(k >0)在[2,4]上恒成立,∴{4k −2(k +2)+3≤016k −4(k +2)+3≤0,即有{k ≤12k ≤512, 即 k ≤512,又k >0,∴0<k ≤512;(3)若存在实数b >a >0,使得函数f (x )在(a ,b )上的值域是(m 2a ,m 2b ),又函数f (x )在(0,+∞)上单调递增,可得f(a)=m2a ,f(b)=m2b ,则m >0, 可得2a +1−3=m2a (2a −1),2b +1−3=m2b (2b −1),则方程m2x (2x −1)−2x +1+3=0有两个不等的正根,设t =2x ,t >1,可得mt 2−(m +2)t +3=0有两个大于1的根,设ℎ(t )=mt 2−(m +2)t +3,m >0,可得{ Δ>0m+22m >1ℎ(1)>0m >0,即 {(m +2)2−12m >00<m <2m −m −2+3>0 解得0<m <4−2√3,故实数m 的取值范围为0<m <4−2√3.21.设函数f (x )对任意实数x ,y 都有f (x +y )=f (x )+f (y ),且x >0时,f (x )<0,f (1)=−2.(1)求证:f (x )是奇函数;(2)求f (x )在[−3,3]上的最大值与最小值.【答案】(1)证明见解析;(2)最大值为6,最小值为−6.【解析】(1)令x =y =0,得f (0)=f (0)+f (0)=2f (0),所以f (0)=0,令y =−x ,得f (x −x )=f (x )+f (−x )=f (0),所以f (−x )=−f (x ),所以f (x )是奇函数.(2)设x 1<x 2∈R ,则x 2−x 1>0,所以f (x 2)−f (x 1)=f (x 2)+f (−x 1)=f (x 2−x 1)<0,可得f (x 2)<f (x 1),即f (x 1)>f (x 2),所以f (x )在R 上是减函数,f (2)=f (1)+f (1)=−4,f (3)=f (2)+f (1)=−4−2=−6,所以f(−3)=−f(3)=−(−6)=6,所以f(x)在[−3,3]上的最大值为f(−3)=6,最小值为f(3)=−6.22.已知函数f(x)=log132−kxx−2为奇函数.(1)求常数k的值;(2)判断并证明函数f(x)在(2,+∞)上的单调性(3)求函数f(x)在[4,+∞)上的值域.【答案】(1)k=−1(2)单调递增,证明见解析(3)[−1,0)【解析】(1)函数f(x)=log132−kxx−2为奇函数,则f(x)+f(−x)=0⇒log132−kxx−2+log132+kx−x−2=0,化简得到log13(2−kxx−2×2+kx−x−2)=log131,即log13k2x2−4x2−4=log131⇒k2x2−4=x2−4⇒k=±1,当k=1时,f(x)=log132−xx−2不符合对数函数的定义,故舍去;故k=−1.(2)由第一问得到f(x)=log13x+2x−2,设ℎ(x)=x+2x−2,x>2,任取x1>x2∈(2,+∞),ℎ(x1)−ℎ(x2)=x1+2x1−2−x2+2x2−2=4(x2−x1)(x1−2)(x2−2),因为x1>x2∴x2−x1<0,∵(x1−2)(x2−2)>0∴ℎ(x1)<ℎ(x2),故得到函数ℎ(x)在(2,+∞)上是单调递减的,外层函数y=log13x是单调递减的,由复合函数单调性,得到函数f(x)在(2,+∞)上是单调递增的.(3)由第二问得到函数f(x)在(2,+∞)上是单调递增的,故得到函数f(x)在[4,+∞)上也是增的,f(x)=log13x+2x−2,令g(x)=x+2x−2=1+4x−2,x∈[4,+∞),g(x)∈(1,3],12/ 13∴f(x)∈[−1,0)故函数值域为:[−1,0).13/ 13。
高一数学寒假作业:(二)(Word版含答案)
高一数学寒假作业(二)一、选择题,每小题只有一项是正确的。
1.已知全集{}1,2,3,4U =,集合{}{}1,2,2A B == ,则∁U (A ∪B ) =( )A .{}134,, B .{}34, C . {}3 D . {}4 2.已知集合A ={x|a -1≤x≤a+2},B ={x|3<x <5},则使A ⊇B 成立的实数a 的取 值范围是 ( ) A.{a|3<a≤4}<a <4} D.φ3.函数 的定义域为M , 的定义域为N ,则M ∩N =( )A .[-2,+∞)B .[-2,2)C .(-2,2)D .(-∞,2) 4.下列式子中成立的是 ( )A.1122log 4log 6< B. 0.30.311()()23> C. 3.4 3.511())22<( D.32log 2log 3>5.下列函数是偶函数的是 ( )A. 2lg y x = B. 1()2x y = C. 21y x =- ,(11]x ∈- D. 1y x -= 6.已知函数()2030x x x fx x log ,,⎧>=⎨≤⎩, 则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是( )A .9B .19 C .9- D .19- 7.下列各个对应中,构成映射的是 ( )8.设()f x 是定义在R 上的偶函数,对任意的x R ∈,都有(2)(2)f x f x -=+,且当[2,0]x ∈-时,1()()12x f x =-,则在区间(2,6]-内关于x 的方程2()log (2)0f x x -+=的零点的个数是( )A .1B .2C .3D .49.若函数()(1)(0xxf x k a a a -=-->且1)a ≠在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是( )二、填空题10.函数32,1()log 1x x f x x x ⎧≤=⎨>⎩,,则(f f =__________11.若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B 。
寒假作业含答案
高一寒假作业数学注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知集合{}1,2,3A =, ()(){}|120, B x x x x =+−<∈Z ,则A B 等于( )A . {}1B . {}1,2C . {}0,1,2,3D . {}1,0,1,2,3−2.点)在直线:10l ax y −+=上,则直线l 的倾斜角为( )A . 120°B . 60°C .45°D . 30°3.函数()f x =的定义域是( )A . {|23}x x <<B .{|23}x x x <>或C .{|23}x x x ≤≥或D .{|23}x x x <≥或4.一个球被两个平行平面截后所得几何体形如我国的一种民族打击乐器“鼓”,该“鼓”的三视图如图所示,则球的表面积为( ) A . 5π B . 10π C . 20πD .5.设,x y 为正数,且34x y =,当3x py =时,p 的值为( ) A . 3log 4 B . 4log 3 C . 36log 2 D . 3log 26.定义域为D 的奇函数()f x ,当0x >时,()()12f x f ≤=.给出下列命题:①[1,1]D −;②对任意, |()|2x D f x ∈≤;③存在0x D ∈,使得0()0f x =;④存在1x D ∈,使得1()1f x =.其中所有正确的命题的个数为( )A .0B .1C . 2D .37.如图,1111ABCD A B C D −为正方体,下列结论错误..的是( )A . 11BD CB D ∥平面 B . 1AC BD ⊥C . 111AC CBD ⊥平面 D . 异面直线AD 与1CB 所成角为60°8.定义在R 上的偶函数()f x 的图象关于直线1x =对称,当[0,1]x ∈时,()21f x x =−+,设函数|1|1()(13)2x g x x − =−<<,则函数()f x 与()g x 的图象交点个数为( )A . 3B . 4C . 5D . 69.如图1,直线EEEE 将矩形纸AAAAAAAA 分为两个直角梯形AAAAEEEE 和AAAAEEEE ,将梯形AAAAEEEE 沿边EEEE 翻折,如图2,在翻折的过程中(平面AAAAEEEE 和平面AAAAEEEE 不重合),下面说法正确的是( )图1 图2A . 存在某一位置,使得AAAA ∥平面AAAAEEEEB . 在翻折的过程中,AAEE ∥平面AAAAEE 恒成立C . 存在某一位置,使得AAEE ⊥平面AAAAEEEE D.在翻折的过程中,AAEE ⊥平面AAAAEEEE 恒成立10.我国魏晋时期的数学家刘徽创立了割圆术,也就是用内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长,这种用极限思想解决数学问题的方法是数学史上的一项重大成就.现作出圆222x y +=的一个内接正八边形,使该正八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该正八边形的一条边所在直线的为( )A .1)0x y +−−= B .1)0x y += C .1)0x y −+= D .1)0x y −−+=11.设集合{|48}x A x =>,集合2{|210,0}B x x ax a =−−≤>,若A B 中恰含有一个整数,则实数a 的取值范围是( )A .34,43B .41,3C .3,4 +∞D .(1,)+∞12.在直角坐标系内,已知(3,3)A 是C 上一点,折叠该圆两次使点A 分别与圆上不相同的两点(异于点A )重合,两次的折痕方程分别为xx −yy +1=0和xx +yy −7=0,若C 上存在点P ,使90MPN ∠=°,其中M 、N 的坐标分别为(,0)m −、(,0)m ,则m 的最大值为( )A . 4B . 5C . 6D . 7第II 卷(非选择题)二、填空题13.已知过点(1,)A m −和(,5)B m 的直线与310x y −−=平行,则m 的值为______. 14.给定下列四个命题:①过直线外一点可作无数条直线与已知直线平行;②如果一条直线不在这个平面内,那么这条直线就与这个平面平行; ③垂直于同一直线的两条直线可能相交、可能平行也可能异面; ④若两个平面分别经过两条垂直直线,则这两个平面互相垂直。
高一上学期数学寒假作业(每天一套)(含答案) (6)
高一上学期数学寒假作业06一、选择题(本大题共12小题,共60.0分)1.设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=()A. {x|0<x≤1}B. {x|0<x<1}C. {x|1≤x<2}D. {x|0<x<2}2.直线x-2y+1=0关于直线x=1对称的直线方程是()A. x+2y-1=0B. 2x+y-1=0C. 2x+y-3=0D. x+2y-3=03.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()4.已知a=log2e,b=ln2,c a,b,c的大小关系为()A. a>b>cB. b>a>cC. c>b>aD. c>a>b5.已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A. 若m∥α,n∥α,则m∥nB. 若m⊥α,n⊂α,则m⊥nC. 若m⊥α,m⊥n,则n∥αD. 若m∥α,m⊥n,则n⊥α6.函数y=-x4+x2+2的图象大致为()7.x2+y2-4y所截得的弦长为()A. B. 28.根据有关资料,汽车二级自动驾驶仪能够处理空间复杂度的上限M约为1010,目前人类可预测的地面危机总数N约为36×230.()(参考数据:lg2≈0.30,lg3≈0.48)9.设四面体的六条棱的长分别为2,2,2,2和的两条棱是异面直线,则该四面体的外接球的表面积为()A. 5πB. 20πC. 12πD. 3π10.已知函数f(x)=ln x)+1,f(a)=4,则f(-a)=()A. -4B. 2C. -2D. 311.如图,在正方形SG1G2G3中,E、F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE、SF及EF把这个正方形折成一个四面体,使G1、G2、G3三点重合,重合后的点记为G,那么,二面角S-EF-G的正切值是()A. C. 2 D. 312.设函数f(x)f(x)+f(1的x的取值范围是()A. ()B. (-∞,0)C.D.二、填空题(本大题共4小题,共20.0分)13.已知函数f(x)g(x)=f(x)所有零点之积为______.15.过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为______.16.如图,在棱长为1的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为______.三、解答题(本大题共6小题,共70.0分)17.(Ⅰ(Ⅱ)在△ABC中,∠B,∠C的内角平分线分别为x=0,y=x,A(3,-1),求BC 边所在的直线方程.18.如图,在正方体ABCD-A1B1C1D1中.(Ⅰ)求证:B1D⊥平面A1C1B;(Ⅱ)求BD1与平面A1C1B所成角的正弦值.19.设函数f(x)是二次函数,且f(x+1)-f(x-1)=3x-2对一切实数x成立,若f(0)=1.(Ⅰ)求f(x)的表达式;(Ⅱ)设A={x|f(x)=x,x∈R},B={x|f(f(x))=x,x∈R}.(i)求证A⊆B;(ii)若2∈A,函数f(x)在区间[m,m+1]上的最小值大于2,求实数m的取值范围.20.视某地全体中小学生为群体S,S的人均回家时间是指某次S中成员从学校到家的平均用时.S的成员以乘私家车方式或绿色出行(乘公交、骑自行车、步行、家长骑电动车接)方式回家.调查发现:当S中x%(0<x<100)的成员乘私家车时,乘私家车群体的人均回家时间为f(x)均回家时间不受x的影响,恒为40分钟,根据上述分析结果回答下列问题:(Ⅰ)当x在什么范围内时,绿色出行群体的人均回家时间小于乘私家车群体的人均回家时间?(Ⅱ)求该地中小学生群体S的人均回家时间g(x)的表达式,讨论g(x)的单调性,求g(x)的最小值,并说明其实际意义.21.如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P-AC-D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.22.已知圆C经过点P(1,3),Q(2,0),且圆心在直线y=x+1上.(Ⅰ)求圆C的标准方程;(Ⅱ)已知点A与点Q关于y轴对称,点B在圆C上(与点A不重合),记AB的中点为M,且|OA|=|OM|,求直线AB的方程.答案和解析1.【答案】B【解析】【分析】本题考查了集合的化简与运算问题,是基础题.根据补集、交集的定义即可求出.【解答】解:∵A={x|0<x<2},B={x|x≥1},∴∁R B={x|x<1},∴A∩(∁R B)={x|0<x<1},故选B.2.【答案】D【解析】解:解法一(利用相关点法)设所求直线上任一点(x,y),则它关于x=1对称点为(2-x,y)在直线x-2y+1=0上,∴2-x-2y+1=0化简得x+2y-3=0故选答案D.解法二:根据直线x-2y+1=0关于直线x=1对称的直线斜率是互为相反数得答案A或D,再根据两直线交点在直线x=1选答案D故选:D.设所求直线上任一点(x,y),关于x=1的对称点求出,代入已知直线方程,即可得到所求直线方程.本题采用两种方法解答,一是相关点法:求轨迹方程法;法二筛选和排除法.本题还有点斜式、两点式等方法.3.【答案】A【解析】【分析】本题看出简单几何体的三视图的画法,是基本知识的考查.直接利用空间几何体的三视图的画法,判断选项的正误即可.【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.故选:A.4.【答案】D【解析】【分析】本题考查了对数函数及其性质的运用,比较大小,考查了对数运算和变形能力,属于基础题.根据对数函数的单调性和对数运算法则,求出a、b、c的大致范围,即可作出比较.【解答】则a,b,c的大小关系c>a>b,故选D.5.【答案】B【解析】【分析】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟这些定理是迅速解题的关键,注意观察空间的直线与平面的模型,属于基础题.A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断.【解答】解:A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,n⊂α,则m⊥n,故B正确;C.若m⊥α,m⊥n,则n∥α或n⊂α,故C错;D.若m∥α,m⊥n,则n∥α或n⊂α或n⊥α或n与α相交,故D错.故选B.6.【答案】D【解析】【分析】本题主要考查函数的图象的识别和判断,利用函数过定点以及判断函数的单调性是解决本题的关键.属于基础题.根据函数图象的特点,求函数的导数利用函数的单调性进行判断即可.【解答】解:函数过定点(0,2),排除A,B.函数的导数f′(x)=-4x3+2x=-2x(2x2-1),由f′(x)>0得2x(2x2-1)<0,得x<0<x由f′(x)<0得2x(2x2-1)>0,得x x<0,此时函数单调递减,排除C,也可以利用f(1)=-1+1+2=2>0,排除A,B,故选D.7.【答案】A【解析】解:根据题意:直线方程为:y,∵圆x2+y2-4y=0,∴圆心为:(0,2),半径为:2,圆心到直线的距离为:d=1,∴弦长为故选:A.先由题意求得直线方程,再由圆的方程得到圆心和半径,再求得圆心到直线的距离,即可求解.8.【答案】B【解析】解:汽车二级自动驾驶仪能够处理空间复杂度的上限M约为1010,目前人类可预测的地面危机总数N约为36×230.两边取常用对数,可得-6×0.48-30×0.30=-1.88.故选:B.本题考查对数的运算性质,考查运算求解能力,是基础题.9.【答案】A【解析】【分析】将四面体放在长方体中,设长方体的长、宽、高分别为x、y、z,根据题中条件列勾股定理,可得出长方体的体对角线长,即为四面体的外接球直径,再利用球体表面积公式可得出答案.本题考查球体表面积的计算,解决本题的关键在于找出合适的模型计算处球体的半径,考查计算能力,属于中等题.【解答】解:如下图所示,四面体ABCD AC=AD=BC=BD=2,可将四面体ABCD放在长方体AEDF-GBHC,设BG=x,CG=y,AG=z,2(x2+y2+z2)=10,则x2+y2+z2=5,设四面体ABCD的外接球直径为2R,则(2R)2=x2+y2+z2=5,因此,该四面体外接球的表面积为4πR2=π×(2R)2=5π.故选:A.10.【答案】C【解析】【分析】根据对数函数的运算性质,结合条件建立方程关系进行求解即可.本题主要考查函数值的计算,结合对数函数的运算性质进行转化是解决本题的关键.【解答】解:∵f(a)=4,。
高一数学寒假作业:(九)(Word版含答案)
高一数学寒假作业(九)一、选择题,每小题只有一项是正确的。
1.下列四个函数中,与y=x 表示同一个函数的是( ) A.()2x y =B.33x y =C.2x y = D.xx y 2= 2.已知函数122()(1)a f x a a x -=--为幂函数,则a = ( )A .1- 或 2B .2- 或 1C .1-D .13.以下是定义域为R 的四个函数,奇函数的为-----------------------------( )A .y =x 3 B .y =2x C .y =x 2+1 D .2x y =4.若定义在R 上的偶函数)(x f 和奇函数)(x g 满足x e x g x f =+)()(,则=)(x g ( ) A x x e e -- B)(21x x e e -+ C )(21x x e e -- D )(21x x e e -- 5.已知正方体的棱长为2,则其外接球的半径为A .2B .32C .22D .36.在空间四边形ABCD 中,AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点, 如果GH 、EF 交于一点P ,则( ) A .P 一定在直线BD 上 B .P 一定在直线AC 上C .P 在直线AC 或BD 上D .P 既不在直线BD 上,也不在AC 上7.当a 为任意实数时,直线()110a x y a --++=恒过定点C ,则以C 为圆心,的圆是( )A. 22240x y x y +-+=B. 22240x y x y +++=C. 22240x y x y ++-= D. 22240x y x y +--= 8.下列函数中与函数y x =表示同一函数的是( )A .y =B .y =.2y = D .2x y x=9.下列所给4个图象中,与所给3件事吻合最好的顺序为(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
2020建平中学高一寒假1
建平中学高一数学寒假作业12020.02高一数学寒假作业1(集合、不等式中易错问题分析)(一)集合中的代表元素问题:1. 2{|23,}A x y x x x ==+-∈R ,2{|23,}B y y x x x ==+-∈R ,求A B I .2. 2{(,)|23,}A x y y x x x ==+-∈R ,{(,)|23,}B x y y x x ==-∈R ,求A B I .(二)集合元素的互异性问题:设集合2{|20}A x x x a =--=,集合2{|(2)(4)0}B x x x x a =-⋅-+=,分别求集合A 、B 中元素之和.(三)集合中对空集问题:1. 已知2{|40}A x x x =+=,22{|2(1)10,}B x x a x a x =+++-=∈R ,若A B B =I , 求实数a 的取值集合T .2. 已知集合2{|320}M x x x =-+=,2{|220,}N x x x k k =++=∈R 满足M N =∅I ,求k 的取值范围.(四)补集问题:1. 已知集合{|2}A x x =≥,(1)全集T =R ,求A 的补集;(2)I +=R ,求A 的补集.2.(1){|0}A x =≥,全集I =R ,求A 的补集;(2){|lg 0}A x x =>,全集I =R ,求A 的补集;(五)用区间表示集合时端点的开闭问题:求下列不等式的解集:1. (3)(5)0x x -+≥; 2.305x x -≥+; 3. 305x x ->+.(六)命题和充要条件:判断命题A 、B 的推出关系:1. :1A a >;:1B a ≥2. 2:1A x <;:1B x <3. :A a b >;22:B a b >4. 2:3x A y >⎧⎨>⎩;5:6x y B xy +>⎧⎨>⎩拓展:x m A y n >⎧⎨>⎩;:x y m n B xy mn+>+⎧⎨>⎩,写出A 的充要条件.5. 命题p :关于x 的不等式10mx -≥的解集为A ,且2A ∈,命题q :关于x 的方程220x x m -+=有两个不相等的正数根.(1)若命题q 为真命题,求实数m 的范围;(2)命题p 和命题q 中至少有一个是假命题,求实数m 的范围;(3)命题p 和命题q 中有且只有一个是真命题,求实数m 的范围.6. 对任意实数a 、b 、c ,给出下列命题:①“a b =”是“ac bc =”充要条件;②“5a +是无理数”是“a 是无理数”的充要条件;③“a b >”是“22a b >”的充分条件;④“5a <”是“3a <”的必要条件;其中真命题的题号是(七)含参数问题的讨论:1. 若集合2{|210}A x ax x =++=中只有一个元素,则实数a 的值是2. 若集合2{|20,}A x ax x a =++=∈R 至多含有一个元素,则a 的取值范围是3. 解关于x 的不等式2032x a x x -≥-+.参考答案(一)1. [4,)-+∞2. {(0,3)}-(二)A :当1a <-,A =∅;当1a =-,元素之和为1;当1a >-,元素之和为2;B :当4a ≥,元素之和为2;当4a <,元素之和为6(三)1. (,1]{1}-∞-U2. 4k ≠-且12k ≠-(四)1.(1){|2}x x <;(2){|02}x x <<2.(1)(,0)-∞;(2)(,1]-∞(五)1. (,5][3,)-∞-+∞U2. (,5)[3,)-∞-+∞U3. (,5)(3,)-∞-+∞U (六)1. A B ⇒2. A B ⇒3. A B ⇒/,B A ⇒/4. A B ⇒ 拓展:A B ⇒/,B A ⇒/,()()0x y m n x m y n +>+⎧⎨-->⎩ 5.(1)(0,1);(2)1(,)[1,)2-∞+∞U ;(3)1(0,)[1,)2+∞U6. ②④(七) 1. 0或1 2. 1{0}[,)8+∞U 3. 当1a <,[,1)(2,)a +∞U ;当1a =,(2,)+∞;当12a <<,(1,](2,)a +∞U ; 当2a =,(1,2)(2,)+∞U ;当2a >,(1,2)[,)a +∞U。
山东省华侨中学2024-2025学年高一数学寒假作业【11】(含答案)
寒假作业(十一)一、选择题:1. 算法的三种基本结构是 ( )A. 依次结构、模块结构、条件结构B. 依次结构、循环结构、模块结构C. 依次结构、条件结构、循环结构D. 模块结构、条件结构、循环结构2. 给出以下四个问题,①输入一个数x,输出它的相反数.②求面积为6的正方形的周长.③求三个数a,b,c中的最大数.④求函数.1.2{)(≥-<+= xx xxxf的函数值. 其中不须要用条件语句来描述其算法的有( )A. 1个B. 2个C. 3个D. 4个3.要从已编号(1-50)的50枚最新研制的某型号导弹中随机抽取5枚来进行放射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是( ).A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,324.某单位有老年人27人,中年人54人,青年人81人,为了调查他们身体状况的某项指标,需从他们中抽取一个容量为36的样本,适合抽取样本的方法是( ).A.抽签法 B.系统抽样C.随机数表法D.分层抽样二、填空题:5.某工厂生产 A,B,C 三种不同型号的产品,产品数量之比依次为2∶3∶5.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号的产品有16件,那么此样本的容量n=___________.6.已知x,y之间的一组数据:x 1.08 1.12 1.19 1.28y 2.25 2.37 2.40 2.55 y与x之间的线性回来方程yˆ=bx+a 必过定点_________.三、解答题7.【选做】(统计)某校100位学生期中考试语文成果的频率分布直方图如图4所示,其中成果分组区间是:[)50,60、[)60,70、[)70,80、[)80,90、[]90,100.(Ⅰ)求图中a 的值;(Ⅱ)依据频率分布直方图,估计这100名学生语文成果的平均分;(Ⅲ)若这100名学生的语文成果某些分数段的人数(x )与数学成果相应分数段的人数(y )之比如下表所示,求数学成果在[)50,90之外的人数.分数段[)50,60 [)60,70 [)70,80 [)80,90 :x y 1:1 2:1 3:4 4:5寒假作业(十一)答案:1.C2.B3.B 解析:依据系统抽样的规则,1到10一段,11到20一段,如此类推,每段10个号码,那么每一段上都应当有号码.4.D解析:总体是由差异明显的几部分组成的.16×(2+3+5)=80.5.答案:80.解析:n=26.答案:(1.167 5,2.392 5).解析:必过四组数据的平均数,即(1.167 5,2.392 5).7.解析:(Ⅰ)由()a+++⨯=,解得0.00520.020.030.04101a=.(Ⅱ)0.05550.4650.3750.2850.059573⨯+⨯+⨯+⨯+⨯=.(Ⅲ)这100位学生语文成果在[)80,90的分别有570,80、[)50,60、[)60,70、[)人、40人、30人、20人,依据表中所给比例,数学成果在[)70,80、50,60、[)60,70、[) [)50,90之80,90的分别有5人、20人、40人、25人,共90人,所以数学成果在[)外的人数有10人.。
高一数学寒假作业同步练习题函数的应用含解析
函数的应用1.函数()1x f x e x =++零点所在的区间是( )A .()0,1B .()1,0-C .()2,1--D .()1,2【答案】C 【详解】()00120f e =+=>,()11120f e e =++=+>,()111110f e e ---=-+=>,()2222110f e e ---=-+=-<,()2222130f e e =++=+>()()210f f ∴-⋅-< ()f x ∴零点所在区间为()2,1--故选:C 。
2.函数()11,01,0x f x x x x ⎧+>⎪=⎨⎪+≤⎩的零点是()A .1-B .0C .1D .2【答案】A【详解】当0x >时,令0f x ,则110x+=,解得1x =-,不满足0x >,舍去;当0x ≤时,令0fx,则10x +=,解得1x =-,满足0x ≤.所以,函数()f x 的零点是1-.故选:A.3.下列函数中,在()1,1-内有零点且单调递增的是( ) A .212y x =-B .3y x =-C .13log y x =D .31xy =-【答案】D 【详解】对于A ,212y x =-,为二次函数,在(1,0)-上为减函数,不符合题意;对于B ,3y x =-,在(1,1)-上为减函数,不符合题意;对于C,13y log x =,其定义域为(0,)+∞,在(1,0)-上没有定义,不符合题意;对于D,31x y =-,在(1,1)-上有零点0x =,且在(1,1)-为增函数,符合题意;故选:D4.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系( 2.718kx by ee +==⋯为自然对数的底数,k b ,为常数)。
若该食品在0℃的保鲜时间是192h ,在22℃的保鲜时间是48h ,则该食品在33℃的保鲜时间是( ) A .16h B .20h C .24h D .26h【答案】C【详解】由题可知当0x =时,192y =;当22x =时,48y =,2219248bk b e e +⎧=∴⎨=⎩,解得1119212b k e e ⎧=⎪⎨=⎪⎩,则当33x =时,()3333111192242k bk b y e ee +⎛⎫==⋅=⨯= ⎪⎝⎭.故选:C.5.某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,杂志的单价每提高0。
浙江省杭州市2023-2024学年高一下学期寒假作业检测(开学考试)数学试卷含答案
杭州钱江学校高一数学寒假作业检测(答案在最后)一、单选题:本题共8小题,每小题5分,共40分.每小题给出的选项中,只有一项是符合题目要求.1.已知集合{}|02A x x =<<,集合{}|11B x x =-<<,集合{}|10C x mx =+>,若()A B C ⊆ ,则实数m 的取值范围为()A.{}|21m m -≤≤ B.1|12m m ⎧⎫-≤≤⎨⎬⎩⎭C.1|12m m ⎧⎫-≤≤⎨⎬⎩⎭D.11|24m m ⎧⎫-≤≤⎨⎬⎩⎭【答案】B 【解析】【分析】求出A ∪B ={x |﹣1<x <2},利用集合C ={x |mx +1>0},(A ∪B )⊆C ,分类讨论,可得结论.【详解】由题意,A ∪B ={x |﹣1<x <2},∵集合C ={x |mx +1>0},(A ∪B )⊆C ,①m <0,x 1m -<,∴1m -≥2,∴m 12≥-,∴12-≤m <0;②m =0时,C =R,成立;③m >0,x 1m ->,∴1m-≤-1,∴m ≤1,∴0<m ≤1,综上所述,12-≤m ≤1,故选:B .【点睛】此题考查了并集及其运算,以及集合间的包含关系,考查分类讨论的数学思想,属于中档题.2.三角函数值1sin ,2sin ,3sin 的大小顺序是A.123sin sin sin >> B.213sin sin sin >>C.132sin sin sin >> D.3 2 1sin sin sin >>【答案】B 【解析】【分析】先估计弧度角的大小,再借助诱导公式转化到090θ<< 上的正弦值,借助正弦函数在090θ<< 的单调性比较大小.【详解】解:∵1弧度≈57°,2弧度≈114°,3弧度≈171°.∴sin 1≈sin 57°,sin 2≈sin 114°=sin 66°.sin 3≈171°=sin 9°∵y =sin x 在090θ<< 上是增函数,∴sin 9°<sin 57°<sin 66°,即sin 2>sin 1>sin 3.故选B .【点睛】本题考查了正弦函数的单调性及弧度角的大小估值,是基础题.3.设a =log 54,b =(log 53)2,c =log 45,则()A.a <c <b B.b <c <aC.a <b <cD.b <a <c【答案】D 【解析】【详解】∵a =log 54<log 55=1,b =(log 53)2<(log 55)2=1,c =log 45>log 44=1,所以c 最大单调增,所以又因为所以b<a 所以b<a<c.故选D .4.已知函数74sin 20,66ππ⎛⎫⎛⎫⎡⎤=+∈ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭y x x 的图象与直线y m =有三个交点的横坐标分别为()123123,,x x x x x x <<,那么1232x x x ++的值是()A.34πB.4π3 C.5π3D.3π2【答案】C 【解析】【分析】先作出74sin 20,66ππ⎛⎫⎛⎫⎡⎤=+∈ ⎪ ⎪⎢⎝⎭⎣⎦⎝⎭y x x 的图像,结合图像利用对称性即可求得结果.【详解】先作出函数74sin 20,66y x x ππ⎛⎫⎛⎫⎡⎤=+∈ ⎪⎪⎢⎥⎝⎭⎣⎦⎝⎭的图象,如图,令4sin 246y x π⎛⎫=+=± ⎪⎝⎭,可得6x π=和23x π=,所以由对称性可得1223242,26333x x x x ππππ+=⨯=+=⨯=,故123523x x x π++=,故选:C.5.设(),0,παβ∈,()5sin 13αβ+=,1tan 22α=,则cos β的值是()A.1665-B.1665C.3365- D.3365【答案】A 【解析】【分析】根据半角公式得出α的正切值,继而得出其正弦值和余弦值,再根据α的取值范围和题意判断出π,π2αβ⎛⎫+∈ ⎪⎝⎭,并得出αβ+的余弦值,最后根据恒等变换公式计算[]cos cos ()βαβα=+-即可.【详解】22tan142tan tan 12231tan 2αααα=⇒==>- ,因为(),0,παβ∈,ππ,42α⎛⎫∴∈ ⎪⎝⎭,且4sin cos 3αα=,又223sin cos 1cos 5ααα+=⇒=,得4sin 5α=.因为()0,πβ∈,则π3π,42αβ⎛⎫+∈⎪⎝⎭,又5sin()132αβ+=<,所以π,π2αβ⎛⎫+∈ ⎪⎝⎭,12cos()13αβ∴+=-,[]16cos cos ()cos()cos sin()sin 65βαβααβααβα=+-=+++=-.故选:A.6.设函数()2sin()f x x ωϕ=+,x R ∈,其中0ω>,||ϕπ<.若5()28f π=,(08f 11π=,且()f x 的最小正周期大于2π,则A.23ω=,12πϕ= B.23ω=,12ϕ11π=-C.13ω=,24ϕ11π=- D.13ω=,724πϕ=【答案】A 【解析】【详解】由题意125282118k k ωππϕπωπϕπ⎧+=+⎪⎪⎨⎪+=⎪⎩,其中12,k k Z ∈,所以2142(2)33k k ω=--,又22T ππω=>,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕπ<得12πϕ=,故选A.【考点】求三角函数的解析式【名师点睛】有关sin()y A x ωϕ=+问题,一种为提供函数图象求解析式或某参数的范围,一般先根据图象的最高点或最低点确定A ,再根据周期或12周期或14周期求出ω,最后再利用最高点或最低点坐标满足解析式,求出满足条件的ϕ值,另一种时根据题目用文字形容的函数图象特点,如对称轴或曲线经过的点的坐标,根据题意自己画出图象,再寻求待定的参变量,题型很活,求ω或ϕ的值或最值或范围等.7.设()|31|x f x =-,c b a <<且()()()f c f a f b >>,则下列关系中一定成立的是A .3c >3bB.3b >3aC.3c +3a >2D.3c +3a <2【答案】D 【解析】【分析】画出()|31|x f x =-的图象,利用数形结合,分析可得结果.【详解】作出()131xf x =-的图象,如图所示,要使c b a <<,且()()()f c f a f b >>成立,则有0c <且0a >,313c a ∴<<,()()13,31c a f c f a ∴=-=-,又()()f c f a >,1331c a ∴->-,即332a c +<,故选D.【点睛】通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.8.已知()f x 是偶函数,且()f x 在[0,)+∝上是增函数,若()()12f ax f x +≤-在1,12x ⎡⎤∈⎢⎥⎣⎦上恒成立,则实数a 的取值范围是()A.[﹣2,1] B.[﹣5,0]C.[﹣5,1]D.[﹣2,0]【答案】D 【解析】【分析】利用函数的奇偶性和单调性,可得|ax +1|≤|x ﹣2|对112x ⎡⎤∈⎢⎥⎣⎦恒成立,再分离参数利用函数单调性求最值即可求解【详解】由题意可得|ax +1|≤|x ﹣2|对112x ⎡⎤∈⎢⎥⎣⎦,恒成立,得x ﹣2≤ax +1≤2﹣x 对112x ⎡⎤∈⎢⎥⎣⎦,恒成立,从而3x a x -≥且1x a x -≤对112x ⎡⎤∈⎢⎥⎣⎦,恒成立,又3x y x -=单调递增∴a ≥﹣21xy x-=;单调递减,所以a ≤0,即a ∈[﹣2,0],故选D .【点睛】本题考查的是不等式、函数性质以及恒成立有关的综合类问题.在解答的过程当中充分体现了函数的性质、恒成立的思想以及问题转化的能力,属于中档题.二、多选题:本题共4小题,共20分.每小题给出的选项中,有多项符合题目要求.9.存在函数()f x 满足:对任意x ∈R 都有()A.()sin cos f x x =B.()sin sin 2f x x =C.()cos cos 2f x x =D.()sin sin 3f x x=【答案】CD 【解析】【分析】分别取0x =、x π=可得()01f =、()01f =-,A 错误;同理,取3x π=、23x π=可得(22f =、(22f =-,B 错误;利用三角恒等变换将cos 2x 整理为关于cos x 的二次函数可判断C ;同理可判断D.【详解】A :取0x =时,sin 0,cos 1x x ==,()01f =,取x π=时,sin 0,cos 1x x ==-,()01f =-,故A 不正确;B :取3x π=时,sin ,sin 222x x ==,(22f =,取23x π=时,sin ,sin 222x x ==-,(22f =-,故B 错误;C :()2cos cos 22cos 1f x x x ==-,令cos ,[1,1]t x t =∈-,则()221f t t =-,C 正确;D :()sin sin 3sin(2)sin 2cos cos 2sin f x x x x x x x x==+=+222sin (1sin )(12sin )sin x x x x=⨯-+-⨯3332sin 2sin sin 2sin 3sin 4sin x x x x x x=-+-=-令sin ,[1,1]t x t =∈-,则()334,[1,1]f t t t t =-∈-,D 正确.故选:CD10.下列不等式中,正确的是().A.13π13πtan tan 45< B.ππsincos 57⎛⎫<- ⎪⎝⎭C.ππsin 55> D.ππtan 55>【答案】BC 【解析】【分析】利用诱导公式及三角函数的单调性判断A 、B ,利用三角函数线证明当π02x <<时sin tan <<x x x ,即可判断C 、D.【详解】对于A :13πππtantan 3πtan 1444⎛⎫=+== ⎪⎝⎭,13π2π2πtantan 3πtan 0555⎛⎫=-=-< ⎪⎝⎭,所以13π13πtan tan 45>,故A 错误;对于B :因为ππππ7654<<<,且sin y x =在π0,2⎛⎫ ⎪⎝⎭上单调递增,cos y x =在π0,2⎛⎫⎪⎝⎭上单调递减,所以1πππ2sin sin sin 26542=<<=,又πππcos cos cos 7762⎛⎫-=>= ⎪⎝⎭,所以ππsincos 57⎛⎫<- ⎪⎝⎭,故B 正确;对于C 、D :首先证明当π02x <<时sin tan <<x x x ,构造单位圆O ,如图所示:则()1,0A ,设π0,2POA x ⎛⎫∠=∈ ⎪⎝⎭,则()cos ,sin P x x ,过点A 作直线AT 垂直于x 轴,交OP 所在直线于点T ,由=tan ATx OA,得=tan AT x ,所以()1,tan T x ,由图可知OPA TOA OPA S S S << 扇形,即21111sin 11tan 222x x x ⨯⨯<⨯⨯<⨯⨯,即sin tan <<x x x π02x ⎛⎫<< ⎪⎝⎭,所以ππsin 55>,ππtan 55<,故C 正确,D 错误;故选:BC11.关于函数()|ln |2||f x x =-,下列描述正确的有()A.()f x 在区间(1,2)上单调递增B.()y f x =的图象关于直线2x =对称C.若1212,()(),x x f x f x ≠=则124x x +=D.()f x 有且仅有两个零点【答案】ABD 【解析】【分析】作出函数()f x 的图象,由图象观察性质判断各选项.【详解】根据图象变换作出函数()f x 的图象(()ln 2f x x =-,作出ln y x =的图象,再作出其关于y 轴对称的图象,然后向右平移2个单位,最后把x 轴下方的部分关于x 轴翻折上去即可得),如图,由图象知()f x 在(1,2)是单调递增,A 正确,函数图象关于直线2x =对称,B 正确;12()()f x f x k ==,直线y k =与函数()f x 图象相交可能是4个交点,如图,如果最左边两个交点横坐标分别是12,x x ,则124x x +=不成立,C 错误,()f x 与x 轴仅有两个公共点,即函数仅有两个零点,D 正确.故选:ABD .12.设函数()f x 的定义域为R ,满足()()12f x f x +=,且当(]0,1x ∈时,()()1f x x x =-.若对任意(],x m ∈-∞,都有()89f x ≥-,则实数m 的值可以是()A.94B.73C.52D.83【答案】AB 【解析】【分析】因为(1)2()f x f x +=,可得()2(1)f x f x =-,分段求解析式,结合图象可得.【详解】解:因为(1)2()f x f x +=,()2(1)f x f x ∴=-,函数图象如下所示:(0x ∈ ,1]时,1()(1)[4f x x x =-∈-,0],(1x ∴∈,2]时,1(0x -∈,1],1()2(1)2(1)(2)[2f x f x x x =-=--∈-,0];(2x ∴∈,3]时,1(1x -∈,2],()2(1)4(2)(3)[1f x f x x x =-=--∈-,0],当(2x ∈,3]时,由84(2)(3)9x x --=-解得73x =或83x =,若对任意(x ∈-∞,]m ,都有8()9f x - ,则73m .故选:AB .【点睛】本题考查分段函数的性质的应用,解答的关键是根据函数的性质画出函数图象,数形结合即可得解;三、填空题:本题共4小题,每小题5分,共20分.13.函数()()21256f x log x x =-+-的单调减区间是______.【答案】522,⎛⎫ ⎪⎝⎭【解析】【分析】根据对数函数的定义域及复合函数单调性的判断即可求得单调递减区间.【详解】因为()()21256f x log x x =-+-所以2560x x -+->解得()2,3x ∈因为()12f x log x =为单调递减函数,所以由复合函数单调性判断可知应该取()256f x x x =-+-的单调递增区间,即5,2x ⎛⎫∈-∞ ⎪⎝⎭结合定义域可得函数()()21256f x log x x =-+-的单调减区间是522,⎛⎫⎪⎝⎭【点睛】本题考查了复合函数单调区间的求法,注意对数函数的真数大于0,属于基础题.14.已知0a >,0b >,且111a b +=,则1411a b +--的最小值为___.【答案】4【解析】【分析】由等式111a b +=可得出1a >,1b >以及1a b a =-,代入1411a b +--可得出()14141111a ab a +=+----,利用基本不等式可求得结果.【详解】0a > ,0b >,且111a b +=,得1a >,1b >以及1ab a =-,()14141414111111a a ab a a a ∴+=+=+-≥=------,当且仅当32a =时,等号成立,因此,1411a b +--的最小值为4.故答案为:4.【点睛】本题考查利用基本不等式求最值,解题时注意对定值条件进行化简变形,考查计算能力,属于中等题.15.函数f (x )=log 2(kx 2+4kx +3).①若f (x )的定义域为R ,则k 的取值范围是_____;②若f (x )的值域为R ,则k 的取值范围是_____.【答案】①.[0,34)②.k 34≥【解析】【分析】(1)根据()f x 的定义域为R ,对k 分成0,0,0k k k =><三种情况分类讨论,结合判别式,求得k 的取值范围.(2)当()f x 值域为R 时,由00k >⎧⎨∆≥⎩求得k 的取值范围.【详解】函数f (x )=log 2(kx 2+4kx +3).①若f (x )的定义域为R ,可得kx 2+4kx +3>0恒成立,当k =0时,3>0恒成立;当k >0,△<0,即16k 2﹣12k <0,解得0<k 34<;当k <0不等式不恒成立,综上可得k 的范围是[0,34);②若f (x )的值域为R ,可得y =kx 2+4kx +3取得一切正数,则k >0,△≥0,即16k 2﹣12k ≥0,解得k 34≥.故答案为:(1).[0,34)(2).k 34≥【点睛】本小题主要考查根据对数型复合函数的定义和值域求参数的取值范围,属于中档题.16.函数253sin cos 82y x a x a =+⋅+-在闭区间0,2π⎡⎤⎢⎥⎣⎦上的最大值是1,则=a __________.【答案】32【解析】【分析】令[]cos ,0,1x t t =∈,即求25218y t at a =-++-在[]0,1上的最大值,需要根据对称轴的位置进行分类讨论即可求出结果.【详解】22535sin cos cos cos 82812y x a x a x a x a =+⋅+-=-+⋅+-,令[]cos ,0,1x t t =∈,则25218y t at a =-++-,对称轴2at =,若02a ≤,即0a ≤时,25218y t at a =-++-在0=t 处取得最大值,即51821a -=,解得125a =,与0a ≤矛盾,故不合题意,舍去;若012a <<,即12a <<时,25218y t at a =-++-在2a t =处取得最大值,即25122821a a a a ⎛⎫-+⋅+-= ⎪⎝⎭,即225120a a +-=,解得4a =-或32a =,因为12a <<,所以32a =;若12a ≥,即2a ≥时,25218y t at a =-++-在1t =处取得最大值,即251=1821a a -++-,解得2013a =,与2a ≥矛盾,故不合题意,舍去;综上:32a =.故答案为:32.四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知a ∈R ,集合{}2230A x x x =--≤,{}220B x x ax =--=.(1)若1a =,求A B ⋂;(2)若A B A ⋃=,求实数a 的取值范围.【答案】(1){}2,1-(2)71,3⎡⎤⎢⎥⎣⎦【解析】【分析】(1)首先解一元二次不等式求出集合A ,再根据条件求出集合B ,最后根据交集的定义计算可得;(2)依题意可得B A ⊆,则问题转化为关于x 的方程220x ax --=在区间[]1,3-上有两个不相等的实数根,结合二次函数的性质计算可得.【小问1详解】由2230x x --≤,即()()130x x +-≤,解得13x -≤≤,所以{}{}2230|13A x x x x x =--≤=-≤≤当1a =时{}{}2202,1B x x x =--==-,所以{}2,1A B =- 【小问2详解】因为A B A ⋃=,所以B A ⊆,关于x 的方程220x ax --=,因为280a ∆=+>,所以关于x 的方程220x ax --=必有两个不相等的实数根,依题意关于x 的方程220x ax --=在区间[]1,3-上有两个不相等的实数根,所以()()2213211203320a a a ⎧-<<⎪⎪⎪--⨯--≥⎨⎪--≥⎪⎪⎩,解得713a ≤≤,所以实数a 的取值范围为71,3⎡⎤⎢⎥⎣⎦.18.设集合{}12A x x =-≤≤,{}121B x m x m =-<<+.(1)若B A ⊆,求实数m 的取值范围;(2)若()R B A I ð中只有一个整数2-,求实数m 的取值范围.【答案】(1)(]1,20,2⎡⎤-∞-⎢⎥⎣⎦ ;(2)3,12⎛⎫-- ⎪⎝⎭.【解析】【分析】(1)分B =∅和B ≠∅两种情况讨论,结合B A ⊆列出关于实数m 的不等式(组),解出即可得出实数m 的取值范围;(2)求出集合R A ð,由题意得知B ≠∅,且有1213122213m m m m -<+⎧⎪-≤-<-⎨⎪-<+≤⎩,解该不等式组即可得出实数m 的取值范围.【详解】(1)集合{}12A x x =-≤≤,{}121B x m x m =-<<+.①当B =∅时,121m m -≥+,解得2m ≤-,符合要求;②当B ≠∅时,若B A ⊆,121m m -<+,则12111212m m m m -<+⎧⎪-≥-⎨⎪+≤⎩,解得102m ≤≤.综上,实数m 的取值范围是(]1,20,2⎡⎤-∞-⎢⎥⎣⎦;(2) 集合{}12A x x =-≤≤,{1R A x x ∴=<-ð或}2x >,若()B A R ð中只有一个整数2-,则必有B ≠∅,1213122213m m m m -<+⎧⎪∴-≤-<-⎨⎪-<+≤⎩,解得312m -<<-,因此,实数m 的取值范围是3,12⎛⎫-- ⎪⎝⎭.【点睛】本题考查利用集合的包含关系求参数的取值范围,同时也考查了利用交集与补集的混合运算求参数,解题时要结合题意列出不等式组进行求解,考查分析问题和解决问题的能力,属于中等题.19.设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;(2)求函数22[()][()]124y f x f x ππ=+++的值域.【答案】(1)3,22ππ;(2)331,122⎡-+⎢⎣⎦.【解析】【分析】(1)由函数的解析式结合偶函数的性质即可确定θ的值;(2)首先整理函数的解析式为()sin y a x b ωϕ=++的形式,然后确定其值域即可.【详解】(1)由题意结合函数的解析式可得:()()sin f x x θθ+=+,函数为偶函数,则当0x =时,()02k k Z πθπ+=+∈,即()2k k Z πθπ=+∈,结合[)0,2θ∈π可取0,1k =,相应的θ值为3,22ππ.(2)由函数的解析式可得:22sin sin 124y x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭1cos 21cos 26222x x ππ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭=+11cos 2cos 2226x x ππ⎡⎤⎛⎫⎛⎫=-+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦111cos 2sin 2sin 2222x x x ⎛⎫=--- ⎪ ⎪⎝⎭1331cos 2sin 2222x x ⎛⎫=-- ⎪ ⎪⎝⎭31sin 226x π⎛⎫=+- ⎪⎝⎭.据此可得函数的值域为:1,122⎡-+⎢⎣⎦.【点睛】本题主要考查由三角函数的奇偶性确定参数值,三角函数值域的求解,三角函数式的整理变形等知识,意在考查学生的转化能力和计算求解能力.20.已知函数())2πcos 204f x x x ωωω⎛⎫=-++> ⎪⎝⎭的最小正周期是π.(1)求函数()y f x =的单调递增区间;(2)若对任意的π5π,1212x ⎡⎤∈-⎢⎥⎣⎦,都有()2f x m -≤,求m 的取值范围.【答案】(1)62ππ,π,Zπ3k k k ⎡⎤-+-+∈⎢⎥⎣⎦(2)2,0⎤-⎦【解析】【分析】(1)利用二倍角公式及两角和的余弦公式化简,再根据周期公式求出ω,即可得到函数解析式,最后根据余弦函数的性质求出单调递增区间;(2)由x 的取值范围求出π23x +的范围,即可求出()f x 的值域,由()22m f x m -≤≤+恒成立得到关于m 的不等式组,解得即可.【小问1详解】因为()2πcos 24f x x x ωω⎛⎫=-++ ⎪⎝⎭πcos 224x x ωω⎛⎫=+ ⎪⎝⎭πcos 222x x ωω⎛⎫=++ ⎪⎝⎭cos 22x xωω=132cos 2sin 222x x ωω⎛⎫=- ⎪ ⎪⎝⎭π2cos 23x ω⎛⎫=+ ⎪⎝⎭,又0ω>且函数的最小正周期是π,所以2ππ2T ω==,解得1ω=,所以()π2cos 23f x x ⎛⎫=+ ⎪⎝⎭,令Z ππ2π22π,3k x k k -+≤+≤∈,解得2ππππ,Z 36k x k k ≤--+≤+∈,所以函数()y f x =的单调递增区间为62ππ,π,Z π3k k k ⎡⎤-+-+∈⎢⎥⎣⎦.【小问2详解】当π5π,1212x ⎡⎤∈-⎢⎣⎦,则ππ7π2,366x ⎡⎤+∈⎢⎥⎣⎦,所以πcos 21,32x ⎡⎛⎫+∈-⎢ ⎪⎝⎭⎣⎦,则()f x ⎡∈-⎣,因为对任意的π5π,1212x ⎡⎤∈-⎢⎥⎣⎦,都有()2f x m -≤,即对任意的π5π,1212x ⎡⎤∈-⎢⎣⎦,都有()22f x m -≤-≤,即对任意的π5π,1212x ⎡⎤∈-⎢⎣⎦,都有()22m f x m -≤≤+,所以222m m ⎧+≥⎪⎨-≤-⎪⎩20m ≤≤,即m的取值范围为2,0⎤-⎦.21.已知函数()ln (0,e 2.71828e xaf x x a =->=L 为自然对数的底数).(1)当1a =时,判断函数()f x 的单调性和零点个数,并证明你的结论;(2)当[]1,e x ∈时,关于x 的不等式()2ln f x x a >-恒成立,求实数a 的取值范围.【答案】(1)函数()f x 的零点个数为1个,证明见解析(2)()e 1e,∞++【解析】【分析】(1)利用函数单调性证明,再利用零点存在性定理即可知零点个数.(2)将()2ln f x x a >-转化为ln ln e ln e ln a x x a x x -+-+>,构造函数()e xg x x =+,转化为ln ln a x x ->,即ln ln a x x >+,即()max ln ln a x x >+,求解即可.【小问1详解】函数()f x 的定义域为()0,∞+.当1a =时,函数()e1ln x f x x =-在()0,∞+上单调递减,证明如下:任取()12,0,x x ∈+∞,且12x x <,()()12121212211111ln ln ln ln e e e ex x x x f x f x x x x x -=--+=--211221e e ln e e x x x x x x -=+⋅∵120x x <<,∴21211,e e 0x x x x >->,21ln 0xx ∴>∴()()120f x f x ->,即()()12f x f x >.所以函数()e1ln x f x x =-在()0,∞+上单词递减.又1111(1)ln10,(e)ln e 10e e e ex x f f =-=>=-=-<∴()e 1ln xf x x =-在区间()1,e 上存在零点,且为唯一的零点.∴函数()f x 的零点个数为1个【小问2详解】()2ln f x x a >-可化为ln 2ln e xaa x x +>+.可化为ln e ln ln a x a x x x -+->+.可化为ln ln e ln e ln a x x a x x -+-+>.令()e xg x x =+,可知()e x g x x =+在R 单调递增,所以有ln ln a x x ->,即ln ln a x x>+令()ln h x x x =+,可知()ln h x x x =+在(0,)+∞上单调递增.即()ln h x x x =+在[]1,e 上单调递增,max ()(e)ln e e 1eh x h ==+=+e 1max ln ()e 1ln e a h x +∴>=+=,e 1e a +∴>所以实数a 的取值范围是()e 1e,∞++.【点睛】方法点睛:本题考查不等式的恒成立问题,不等式恒成立问题常见方法:①分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);②数形结合(()y f x =图像在()y g x =上方即可);③讨论最值()min 0f x ≥或()max 0f x ≤恒成立.22.已知函数2()|2|f x x x x a =+-,其中a 为实数.(Ⅰ)当1a =-时,求函数()f x 的最小值;(Ⅱ)若()f x 在[1,1]-上为增函数,求实数a 的取值范围;(Ⅲ)对于给定的负数a ,若存在两个不相等的实数12,x x (12x x <且20x ≠)使得12()()f x f x =,求112x x x +的取值范围.【答案】(Ⅰ)12-(Ⅱ)2a ≤-或0a >;(Ⅲ)见解析【解析】【分析】(Ⅰ)由题可知2222,2()22,2x ax x af x x x x a ax x a⎧-≥=+-=⎨<⎩当1a =-时,222,2()2,2x x x f x x x ⎧+≥-=⎨-<-⎩,分别讨论该函数在各段上的最小值和区间端点值,进而求出在整个定义域上的最小值;(Ⅱ)因为()f x 在[1,1]-上为增函数,分0a >,0a =,0a =三种情况讨论即可(Ⅲ)因为a<0,则()f x 在(,)2a -∞上为减函数,在(,)2a +∞上为增函数,所以122ax x <<,令112x x M x +=,分122aa x ≤<,12x a <两种情况具体讨论即可.【详解】解:2222,2()22,2x ax x a f x x x x a ax x a⎧-≥=+-=⎨<⎩(Ⅰ)当1a =-时,222,2()2,2x x x f x x x ⎧+≥-=⎨-<-⎩所以当12x =-时()()2222f x x x x +=≥-有最小值为1122f ⎛⎫-=- ⎪⎝⎭;当2x =-时,由()()22f x x x =-<-得()1242f -=>-,所以当1a =-时,函数()f x 的最小值为12-(Ⅱ)因为()f x 在[1,1]-上为增函数,若0a >,则()f x 在R 上为增函数,符合题意;若0a =,不合题意;若a<0,则12a≤-,从而2a ≤-综上,实数a 的取值范围为2a ≤-或0a >.(Ⅲ)因为a<0,则()f x 在(,)2a -∞上为减函数,在(,)2a +∞上为增函数,所以122ax x <<,令112x x M x +=1、若122a a x ≤<,则12x x a +=,由20x ≠知22a x a <≤-且20x ≠所以121222221x a x a x a x x a x x x -+=+-=--+令()1ag x x a x=--+,则()g x 在,[上为增函数,在)+∞,(-∞上为减函数(1)当4a ≤-时,2a≤a ->,则()g x 在,[上为增函数,在]a -,[2a上为减函数从而当22ax a <<-且20x ≠所以2()1g x a ≥-+或2()1g x a≤--+(2)当41a -<<-时,2a>且a ->,则()g x 在,[,0)2a上为增函数,在]a -上为减函数从而当22ax a <<-且20x ≠所以2()12ag x >+或2()1g x a ≤-+(3)当10a -≤<时,2a >且a -<,则()g x 在(0,]a -,[,0)2a上为增函数,从而当22ax a <<-且20x ≠所以2()12ag x >+或2()22g x a <-2、若12x a <,则2122222ax x ax =-,2212x x x a=-且2x a>-第21页/共21页2222222211222(,22)(11)1x x x x a x a a x a x x x x a+=+=--∞-∈+---因为221a a-≤-+综上所述,当4a ≤-时,112x x x +的取值范围为(,1]1,)a a -∞--+-++∞ ;当41a -<<-时,112x x x +的取值范围为(,1](1,)2a a +-∞--++∞ ;当10a -≤<时,112x x x +的取值范围为(,22)(1,)2a a -∞-++∞ .【点睛】本题考查函数的综合应用,包括求最值,单调性,分类讨论思想等,属于偏难题目.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020高一数学寒假作业答案
导读:本文是关于2020高一数学寒假作业答案,希望能帮助到您!
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 D D D A D D B C A C B C
13. ; 14. 4 ; 15. 0.4; 16. ②③
17.(1)∵A中有两个元素,∴关于的方程有两个不等的实数根,
∴,且,即所求的范围是,且 ;……6分
(2)当时,方程为,∴集合A= ;
当时,若关于的方程有两个相等的实数根,则A也只有一个元素,此时 ;若关于的方程没有实数根,则A没有元素,此时,
综合知此时所求的范围是,或 .………13分
18 解:
(1) ,得
(2) ,得
此时,所以方向相反
19.解:⑴由题义
整理得 ,解方程得
即的不动点为-1和2. …………6分
⑵由 = 得
如此方程有两解,则有△=
把看作是关于的二次函数,则有
解得即为所求. …………12分
20.解: (1)常数m=1…………………4分
(2)当k 当k=0或k 1时, 直线y=k与函数的图象有唯一的交点,
所以方程有一解;
当0
所以方程有两解.…………………12分
21.解:(1)设,有, 2
取,则有
是奇函数 4
(2)设,则,由条件得
在R上是减函数,在[-3,3]上也是减函数。
6
当x=-3时有最大值 ;当x=3时有最小值,
由,,
当x=-3时有最大值6;当x=3时有最小值-6. 8
(3)由,是奇函数
原不等式就是 10
由(2)知在[-2,2]上是减函数
原不等式的解集是 12
22.解:(1)由数据表知,
(3)由于船的吃水深度为7米,船底与海底的距离不少于4.5米,故在船航行时水深米,令,得 .
解得 .
取,则 ;取,则 .
故该船在1点到5点,或13点到17点能安全进出港口,而船舶要在一天之内在港口停留时间最长,就应从凌晨1点进港,下午17点离港,在
港内停留的时间最长为16小时.。