有机光致变色与存储材料的研究现状

合集下载

光致变色材料在信息存储中的应用

光致变色材料在信息存储中的应用

光致变色材料在信息存储中的应用近年来,光致变色材料在信息存储领域中得到了广泛的应用。

这种材料可以通过光的作用而发生颜色的变化,具备高灵敏度、高稳定性等优点,因此受到了科研工作者和工业界的关注。

本文将从原理、应用实例、前景等方面进行探讨。

一、原理光致变色材料的原理是基于光致效应。

光致效应是指光的作用下,物质原子的能量状态发生变化,从而导致物理性质的改变。

光致变色材料的基本结构由底板、载色层、涂层和光敏介质层等组成。

底板通常为玻璃、塑料等,而载色层则是控制颜色信息的关键层。

涂层可以增加材料的稳定性、增强载色层的透光性、光敏介质层能够使材料实现光致变色。

当光照射在材料上时,光子能量激发光敏介质层的电子,使其跨越禁带运动到载色层。

载色层的颜色就会由此产生改变。

颜色的变化就是信息的存储和传递,由于光照结束后颜色可以保持一定时间,因此光致变色材料被广泛应用于信息存储。

二、应用实例1. 光致变色存储材料尤其是色酰胺类、三苯基甲烷类等大分子型光致变色材料,它们可以感受到较弱的光信号,优良的光储存性能能够与一些高端光储存材料相媲美,有良好的应用前景。

例如,可以将这种材料应用于二维码、条码等信息记录和安全保密领域。

2. 光致变色显示器件光致变色材料还可以应用在新型显示器件上。

利用其颜色的变化,可以制造有机电致变色器件、电致变色液晶器件、自组装膜变色器件等多种新型显示器件。

这类智能材料的应用前景非常广泛,但目前还需要进一步的研究和发展。

3. 光致变色光纤传感器光致变色材料还可以应用于光纤传感器的制造。

利用其颜色的变化来检测温度、压力、电磁场等物理量。

与传统的光纤传感器相比,这种新型光纤传感器具有灵敏度高、稳定性好等特点。

三、前景随着信息储存和传输的日益普及,对光致变色材料的需求将会越来越高。

尤其是信息存储和传输的领域,光致变色材料的应用前景非常广阔。

但需要注意的是,光致变色材料在生产和制造过程中需要严格控制材料的质量和纯净度,保证材料具有一致的性能和稳定性。

光致变色的研究进展_冯晓强

光致变色的研究进展_冯晓强
图 1 俘精酸酐变色 前后分子结构式
为 了 能 在 半导 体 激 光 器 输 出 波 长 780nm 处有足够的吸收, 友田等人研究了杂 环取代基与有色体吸收光谱之间的关系。他 认为, 取代基斥电子能力越强, 有色体最大 吸收波长红移越多。对于相同杂环, 环上斥 电子基也会使得有色体吸收波长红移。樊美 公等人发现吡咯取代的俘精酸酐与四氰基对 苯 醌 二 甲 烷 基 态 所 形 成 的 络 合 物 在 K= 460nm 光作用下发生电子转移反应, 得到的 自由基离子在 780~840nm 范围内有最大吸 收, 且在 840nm 光照下又可形成俘精酸酐和 对苯醌二甲烷。反复测试多次后写入和擦除 态仍有较好的对比度。友田的工作还表明, 杂 环上有斥电子基时, 消色反应 5 值会大大减 小。他认为这是由于受激发的有色体的势能 变化 所致。用 5-二甲基胺吲哚取代俘 精酸 酐, 有 色 体最 大 吸 收 波长 明 显 红 移 至 673nm 。但该化合物在可见光下很难回复到 开环体, 5 值接近 0, 但是实现了非破坏性读 出, 可保证所存信息不被破坏, 作为只读型 介质有较大发展前途。
4
具有推拉型取代结构的偶氮苯更是如此。然 而, 由于偶氮苯基团中推拉电子基团的强度 对顺-反异构体所占的比例有影响, 因此也就 影响了整个写入速度。王江洪等人通过改变 偶氮苯基团中推拉电子基团改进了材料的存 储性能〔5〕。
推拉型偶氮化合物结构简式为
实验时将其掺在高分子聚合物 ( 如 PM M A, PS 等) 中。试验表明, 该材料有较 好的非线性光学特性。魏振乾等人已利用其 非线性及简并 4 波混频系统 ( DF WM ) 获得 了 3 重永久存储信息和 3 重实时存储信 息〔6〕。
第 21 卷 第 3 期 2000 年

有机光致变色与存储材料的研究现状

有机光致变色与存储材料的研究现状

有机光致变色与存储材料的研究现状材料化学摘要本文综述了最近十年来在有机光致变色存储材料方面的进展。

重点介绍了二芳基乙烯化合物光致变色性能的相关内容。

引言21 世纪是信息时代, 海量信息存储与高速传输成为进一步发展信息高技术产业的要求, 光信息存储已成为当今公认的重大科学技术领域的前沿课题之一. 而且随着现代科学技术的迅猛发展, 许多领域的研究开发水平都达到了前所未有的高度, 人类对计算机、电子、生物技术、材料等诸多学科提出了更高的发展要求, 需要更加快速、大容量的信息存储材料, 响应时间上甚至希望能够达到纳秒、皮秒级, 最终的目标是在分子水平甚至原子水平上存储信息. 高性能的有机光致变色材料正是能够满足这种要求的极具潜力的存储材料之一, 因为光致变色材料是以光子方式记录信息, 一旦实用化, 将实现人们所期待的光存储高速度、大容量的特性.基本概念与原理介绍在外界激发源的作用下,一种物质或一个体系发生颜色明显变化的现象称为变色性。

一、光致变色现象(photochromism):光致变色是指一种化合物A受到一定波长(λ1)的光照射时,可发生光化学反应得到产物B,A 和B的颜色(即对光的吸收)明显不同。

B在另外一束光(λ2 )的照射下或经加热又可恢复到原来的形式A。

光致变色是一种可逆的化学反应,这是一个重要的判断标准。

这种在光的作用下能够发生可逆颜色变化的化合物,称为光致变色化合物。

分子能够可逆地在两种不同吸收光谱的状态之间的转化,至少有一个反应是光激发的。

当然,两种不同的形态不仅是它们的吸收光谱不同,也可以是其它参数如氧化还原电位、电介质常数等的不同。

在光作用下发生的不可逆反应,也可导致颜色的变化,只属于一般的光化学范畴,而不属于光致变色范畴。

二、光致变色存储的工作原理光盘记录的基本原理都是基于记录介质受激光辐射后所发生的物理或化学变化为基础的。

光致变色材料作记录介质时,其具体记录过程是:首先用波长λ1的光(擦除光) 照射,将存储介质由状态A 转变到状态B。

2023年光致变色材料行业市场分析现状

2023年光致变色材料行业市场分析现状

2023年光致变色材料行业市场分析现状光致变色材料是一种能够在受到阳光或紫外线照射后改变颜色的材料。

它具有广泛的应用领域,如光致变色眼镜、光致变色涂料、光致变色纺织品等。

随着人们对环境保护和健康的关注度提高,光致变色材料的需求也越来越大。

本文将对光致变色材料行业的市场分析现状进行概述。

光致变色材料行业的市场规模不断扩大,其主要驱动因素包括技术进步、产品多样化和市场需求增长。

随着人们对可持续发展的要求不断提高,光致变色材料在节能减排、智能家居等领域的应用也越来越广泛。

例如,光致变色节能窗户可以根据天气情况自动调节透光度,降低空调的使用频率,实现能源的节约。

光致变色材料行业的发展受到技术水平的限制。

目前,光致变色材料的技术主要以有机化合物为主,热变色性能较差,耐候性较低。

此外,光致变色材料的生产成本较高,导致产品价格较贵。

这些因素限制了光致变色材料在一些领域的广泛应用。

光致变色材料行业的竞争格局较为激烈,市场份额主要被几家大型企业垄断。

这些企业拥有较强的研发实力和生产能力,能够推出更具创新性和竞争力的产品。

此外,光致变色材料行业的进入壁垒较高,包括技术门槛、资金实力和市场渠道等,使得新进入者难以进入市场。

因此,光致变色材料行业的竞争主要集中在已有企业之间。

光致变色材料行业的发展前景广阔。

随着技术的不断进步和市场需求的增长,光致变色材料的应用领域将进一步扩展。

例如,光致变色材料可以用于智能手机和电视屏幕的显示,通过自动调节屏幕亮度和色彩,减少对眼睛的损伤。

此外,光致变色材料还可以应用于智能建筑、智能家居等领域,提高生活质量和节约能源。

总的来说,光致变色材料行业市场分析现状显示其发展前景广阔。

虽然行业面临一些技术和市场挑战,但随着技术的不断进步和市场需求的增长,光致变色材料有望在更多领域得到应用并带动行业的快速发展。

2024年光致变色材料市场前景分析

2024年光致变色材料市场前景分析

2024年光致变色材料市场前景分析引言光致变色材料是一种能够通过受到光照射而改变颜色的材料。

随着科技的进步和消费者对个性化产品的需求增加,光致变色材料市场的前景变得越来越广阔。

本文将对光致变色材料市场的前景进行深入分析。

市场规模与趋势根据市场调研数据显示,光致变色材料市场近年来呈现快速增长的趋势。

预计到2025年,光致变色材料市场规模将达到xx亿美元。

这主要受到以下几个因素的推动:1. 科技进步随着科技的不断进步,光致变色材料的研发和制造技术不断改善。

新材料的开发和创新使得光致变色材料的性能更加优越,能够满足不同领域的需求,如可穿戴设备、智能家居、汽车等。

2. 消费者需求现代消费者对个性化产品的需求不断增加,光致变色材料能够赋予产品独特的外观和功能,满足消费者对个性化的追求。

例如,光致变色材料可以用于制作变色眼镜、手机壳等个性化产品,增加了产品的附加值。

3. 环保意识随着环保意识的增强,人们对于传统染料和涂料的使用开始产生担忧。

光致变色材料作为一种绿色环保材料,具有可再生、可降解的特性,受到了越来越多的关注和应用。

市场应用前景光致变色材料市场具有广阔的应用前景,主要体现在以下几个方面:1. 电子产品光致变色材料可以应用于各种电子产品中,如手机壳、智能手表表带等。

通过光致变色材料,电子产品的外观可以根据用户的喜好和环境变化而改变,提升产品的吸引力和用户体验。

2. 纺织品光致变色材料在纺织行业中的应用也具有巨大的潜力。

通过在纺织品中添加光致变色材料,可以制作出具有色彩变化功能的衣物、鞋袜等产品,满足消费者对时尚和个性化的需求。

3. 建筑材料光致变色材料在建筑材料中的应用前景广阔。

通过在建筑外墙、屋顶等部位添加光致变色材料,可以实现建筑外观的色彩变化和节能效果的提升,为建筑带来更多的功能和美感。

市场竞争与挑战虽然光致变色材料市场前景广阔,但也面临着一定的竞争与挑战:1. 技术创新竞争光致变色材料市场的竞争主要来自于不同企业间的技术创新能力。

文献综述:有机光电材料的研究现状及挑战

文献综述:有机光电材料的研究现状及挑战

文献综述:有机光电材料的研究现状及挑战有机光电材料是一类具有光电活性的有机材料,其研究涉及到材料科学、物理化学、生物学等多个领域。

近年来,有机光电材料的研究成果越来越丰富,大量的新型有机光电材料不断涌现。

本文将简要综述有机光电材料的研究现状及挑战。

一、有机光电材料的研究现状1. 有机发光材料有机发光材料具有高亮度、高效率、长寿命等优点,广泛应用于显示器、照明、传感器等领域。

目前,有机发光材料的研究主要集中在发展新型的荧光染料和荧光聚合材料,以及探索其在太阳能电池、生物成像、信息存储等领域的应用。

2. 有机光电检测材料有机光电检测材料是另一类研究热点。

随着数字化和智能化的加速发展,光电检测材料已成为高科技领域的关键材料之一。

目前常见的有机光电检测材料有聚合物、小分子、富勒烯等,其在光电器件、生物传感器、光伏器件等领域展现出良好的应用前景。

3. 有机光催化材料有机光催化材料是指通过光催化反应来实现化学反应的材料。

在光催化材料领域,通过改变有机半导体材料的组成、晶体结构等方面来提高材料的光催化性能,从而实现更高效、更经济的应用。

此外,有机光催化材料还可以用于环境修复、污水处理、空气净化等领域。

二、有机光电材料的挑战1. 稳定性问题尽管有机光电材料具有许多优点,但其稳定性问题是限制其广泛应用的主要因素之一。

有机光电材料的稳定性主要受到环境因素(如温度、湿度、氧气)的影响,同时也与其自身的化学结构有关。

因此,如何提高有机光电材料的稳定性是其研究的重要方向。

2. 效率问题尽管有机光电材料的发光效率和光电转换效率较高,但在实际应用中仍存在效率问题。

这主要是由于有机光电材料的载流子传输性能和界面效应等问题引起的。

因此,如何提高有机光电材料的效率也是其研究的重要方向。

3. 制造成本问题有机光电材料的制造成本较高,这也是限制其广泛应用的原因之一。

因此,如何降低有机光电材料的制造成本,如通过改进制造工艺、优化器件结构等方法,也是其研究的重要方向。

有机光电材料的光致变色性能研究

有机光电材料的光致变色性能研究

有机光电材料的光致变色性能研究近年来,有机光电材料在科学研究和工业应用中逐渐崭露头角。

其中,光致变色性能作为有机光电材料的重要特性之一备受关注。

本文旨在探讨有机光电材料的光致变色性能研究,以期加深人们对该领域的了解,并探索其应用前景。

1. 光致变色性能的基本原理有机光电材料的光致变色性能是指在光照射下,材料的颜色、透明度或各项物理性质发生可逆性改变。

这一性能的实现主要依赖于分子结构的设计和调控。

通过改变材料中的电子结构、共轭系统以及有机基团的取代位置和类型等控制因素,可以实现有机光电材料的光致变色效果。

2. 光致变色性能的研究方法为了深入研究有机光电材料的光致变色性能,科学家们采用了多种方法和技术。

其中,光谱分析是常用的一种方法。

通过利用UV-Vis吸收光谱、红外光谱以及拉曼光谱等技术,可以分析材料在不同光照条件下的吸收、反射、透射等特性变化,从而揭示其变色机制。

此外,热分析技术、电化学分析和X射线衍射等手段也可以为研究人员提供更加详尽的信息。

3. 光致变色性能的影响因素有机光电材料的光致变色性能受多个因素影响。

一方面,材料的共轭结构对其光致变色效果有显著影响。

通过合理设计材料结构,如引入共轭体系、调控共轭长度和扩展共轭范围等,可以提高材料的光敏感性和色彩变化范围。

另一方面,外界环境因素,如光照强度、温度和湿度等也会对光致变色性能产生影响。

因此,在研究和应用中需充分考虑这些影响因素。

4. 光致变色性能的应用展望有机光电材料的光致变色性能具有广阔的应用前景。

首先,该性能可应用于光存储器件领域,用于数据存储和信息传输。

其次,在光敏显示技术中,光致变色材料能够通过改变颜色和透明度,实现显示屏的切换和层次感的表达。

此外,光致变色性能还可以用于制备可调控的光学滤波器和光学开关等器件,应用于光电子学和信息科学领域。

总结:有机光电材料的光致变色性能是该领域的研究热点之一。

通过深入探索其基本原理、研究方法和影响因素,我们可以更好地理解和应用这一特性。

光致变色材料的研究及应用进展

光致变色材料的研究及应用进展

光致变色材料的研究及应用进展光致变色材料的研究一直是材料科学领域的热点之一、其中最常见的光致变色材料是所谓的“可逆光致变色材料”,它们可以根据外界光照的强度和波长,发生可逆的颜色变化。

这些材料中最重要的一类是热致变色材料,它们能够通过吸收光能量来改变分子结构,从而实现颜色的调控。

具体来说,当这些材料受到短波光照射时,其分子内部的电子会发生跃迁,从而导致分子结构的改变,进而导致颜色的变化。

近年来,光致变色材料的研究进展迅速。

一方面,研究人员发现了越来越多的新型光致变色材料,并对其性质和机理进行了深入研究。

例如,一种名为“钙钛矿”的材料在光致变色方面表现出了很高的潜力。

由于其特殊的晶体结构,钙钛矿材料可以通过光致变色来实现对太阳能的高效转换。

另一方面,研究人员也致力于改进光致变色材料的性能,以提高其应用的可行性。

其中一个主要的挑战是提高材料的稳定性,以保证其变色性能的持久性。

为此,研究人员通过控制材料的晶体结构、添加稳定剂等方式,有效提高了光致变色材料的稳定性。

除了在材料研究方面的进展,光致变色材料的应用领域也得到了快速发展。

其中一个重要的应用领域是可视化光学器件。

例如,光致变色材料可以用于制造可调光度的镜头。

通过对光致变色材料施加外部光源,镜头的光学参数可以进行调节,从而实现对光的传播和聚焦的控制。

这种能够实现实时调整的光学器件在光学通信、光学成像等领域有着广泛的应用前景。

此外,光致变色材料还可以用于制造可调光罩、可反射屏等光学器件,以及可调光度的眼镜、墙纸等消费品。

另一个重要的应用领域是可穿戴技术。

光致变色材料可以用于制造智能显色眼镜、智能表带等可穿戴设备。

这些设备中的光致变色材料可以根据所处环境的不同,改变自身的颜色和透明度,从而提供更好的使用体验。

例如,智能显色眼镜可以根据光照的强度和波长,调整镜片的光透过率,从而达到护眼和保护视力的效果。

通过光致变色材料的应用,可穿戴技术的功能性和舒适性得到了极大的提升。

光致变色材料的研究及其应用

光致变色材料的研究及其应用

光致变色材料的研究及其应用近年来,随着科技的进步,光致变色材料的研究越来越受到人们的关注。

光致变色材料是一种能够在光的作用下改变颜色的材料,它具有很好的应用前景,例如在生物医学、电子设备、光学器件等领域中均有广泛的应用。

在本文中,将探讨光致变色材料的研究及其应用。

一、光致变色材料的研究现状光致变色材料是一类具有特殊结构的材料,它能够在光的照射下改变颜色。

这一特性使得光致变色材料在很多方面都具有很好的应用前景。

近年来,随着各种新型光致变色材料的研究,在化学、物理等领域中,对其性能和应用的探索也越来越深入。

目前,光致变色材料的研究主要集中在以下几个方面:1.合成新型光致变色材料化学合成新型材料是光致变色材料研究的重要方向之一。

通过改变材料的分子结构,可以获得不同种类的光致变色材料,比如氧化锆、氧化铈、氧化钛等。

2.探究光致变色材料的结构与性能光致变色材料研究的另一个方向是探究其结构与性能之间的关系。

例如,通过研究材料的晶体结构和分子结构,可以探究其光致变色机理。

3.探索光致变色材料的应用领域除了合成新型材料和研究结构与性能关系之外,探究光致变色材料在各个领域的应用也是研究的一个热点。

例如,在环保领域,光致变色材料可用于污染物检测中;在生物医学领域,光致变色材料可用于药物输送;在电子设备领域,光致变色材料可用于制造柔性显示器等。

二、光致变色材料的应用现状光致变色材料的应用范围广泛,以下是几个典型的应用:1.生物医学领域生物医学领域是光致变色材料的一个重要应用领域。

在生物医学领域中,光致变色材料可以用来制备病毒检测器、蛋白质检测器、生物传感器等。

例如,利用光致变色材料作为药物输送载体,能够使药物精确地传递到病变组织中,从而实现精准治疗。

2.电子设备领域在电子设备领域中,光致变色材料的应用非常广泛。

比如,可用于制造柔性显示器、人工晶体、光学存储器等。

其中,光学存储器是光致变色材料的一个重要应用领域。

通过在材料上写入信息,可以实现高容量、高速度、低功耗的数据存储。

光致变色材料的研究及应用进展

光致变色材料的研究及应用进展

光致变色材料的研究及应用进展吕沙东北林业大学材料科学与工程学院,黑龙江哈尔滨摘要:本文通过论述光致变色材料的研究及应用进展这一内容,可以清晰直观地了解到,当前我国的高技术研究领域重点将注意力放到了光致变色材料的研究上,对于光致变色材料来说,光致变色是材料在受到光照射程度下,所产生的一些化学反应,这种在光的照射下,可以呈现五颜六色的变色材料,其已经有150年的历史了,对于光致变色材料的研究具有很重要的意义,其发展还有更为远大的前景。

基于此,本文重点从关注光致变色材料的研究及应用进展进行思考和探索,并提出相应的建议,愿与大家共享。

关键词:变色材料;研究;应用进展一、不同类型光致变色材料的研究(一)有机光致变色材料有机光致变色材料具有修饰高,色泽丰富,光响应快等优点,大多数可以在200~400nm 的紫外光下活化。

对于某些有机物,该范围可以扩展到430nm,但可见光可以激活很少的有机物质。

颜色变化的机制主要包括双键的断裂和组合(键的均裂,键的分裂),异构体形成(质子转移互变异构化,顺反异构化),酸诱导变色,周环反应,氧化还原反应等。

有许多类型的有机光致变色材料,通过引入特定的官能团改性可以实现不同的研究目的。

目前,大多数研究主要是二芳基乙烯,俘精酸酐,螺吡喃,螺恶嗪,偶氮苯,席夫碱。

二芳基乙烯和俘精酸酐衍生物均表现出不可逆的光致变色性质,并且可用于光学存储器,开放式光学开关装置和显示器;通过光照产生的螺吡喃,萘并吡喃,螺恶嗪和偶氮苯的异构体表现出热力学不稳定性。

对于使用类型,给出了二芳基乙烯和螺吡喃有机光致变色材料的以下描述。

(二)二芳基乙烯类二芳基乙烯通过循环反应产生两种不同形式的开环和闭环。

原理图如图1所示。

这两种形式可以在不同波长的光的作用下相互转换。

吸收光谱的物理和化学性质,折射率,介电常数,氧化还原等也在转化过程中发生变化。

与其他光致变色材料相比,具有热稳定性好,抗疲劳,化学反应谱大,光敏性高,化学反应速度快等特点。

光致变色材料的研究及应用进展

光致变色材料的研究及应用进展

Journal of Advances in Physical Chemistry 物理化学进展, 2018, 7(3), 139-146Published Online August 2018 in Hans. /journal/japchttps:///10.12677/japc.2018.73017Research and Application Progress ofPhotochromic MaterialsYue SunCollege of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu SichuanReceived: Aug. 5th, 2018; accepted: Aug. 18th, 2018; published: Aug. 27th, 2018AbstractPhotochromic materials, as an important subject in the field of high technology, have wide appli-cation value and development prospect. According to different types, this paper summarizes the research progress and related applications of organic photochromic materials, inorganic pho-tochromic materials and inorganic-organic hybrid photochromic materials, and briefly discusses the future development trend.KeywordsPhotochromatism, Research Progress, Application, Development Trend光致变色材料的研究及应用进展孙悦西南石油大学化学化工学院,四川成都收稿日期:2018年8月5日;录用日期:2018年8月18日;发布日期:2018年8月27日摘要光致变色材料作为当前高科技领域研究的重要课题,具有广阔的应用价值和发展前景。

光致变色材料

光致变色材料

光致变色材料光致变色材料是一种特殊的材料,它能够在受到光照的作用下发生颜色的变化。

这种材料通常被应用在光学器件、显示屏、传感器等领域,具有广泛的应用前景。

光致变色材料的研究和开发已经取得了一定的进展,但仍然面临着一些挑战和难题。

本文将对光致变色材料的基本原理、应用领域以及未来发展方向进行介绍和探讨。

光致变色材料的基本原理是通过吸收光能量,从而改变材料的电子结构,进而引起颜色的变化。

这种材料通常包括有机化合物、无机化合物以及复合材料等。

在受到光照后,这些材料的分子或者晶格结构会发生变化,从而导致颜色的改变。

这种变色的过程是可逆的,即当光源消失时,材料的颜色会恢复到原来的状态。

光致变色材料的基本原理为其在光学器件和显示屏等领域的应用提供了可能。

在光学器件方面,光致变色材料可以用于制备可调节光学滤波器和光学镜片。

通过控制材料的光致变色特性,可以实现对光的波长和强度进行调节,从而实现滤波和调焦的功能。

这种材料在激光器、相机镜头等光学器件中有着广泛的应用前景。

同时,光致变色材料还可以用于制备光学存储介质,通过控制材料的变色状态,可以实现信息的存储和读取。

在显示屏方面,光致变色材料可以用于制备可变色显示屏和全彩显示屏。

通过控制材料的光致变色特性,可以实现显示屏的颜色和亮度的调节,从而实现高分辨率和高对比度的显示效果。

这种材料在电子产品、智能手机、平板电脑等显示设备中有着广泛的应用前景。

同时,光致变色材料还可以用于制备光电调制器件,通过控制材料的变色状态,可以实现光信号的调制和解调。

在传感器方面,光致变色材料可以用于制备光学传感器和光电探测器。

通过控制材料的光致变色特性,可以实现对光信号的探测和转换,从而实现光信号的测量和检测。

这种材料在光通信、光电子、光生物学等领域有着广泛的应用前景。

同时,光致变色材料还可以用于制备光敏材料,通过控制材料的变色状态,可以实现光照强度和光谱的测量和检测。

未来,光致变色材料的研究和开发将会朝着多功能、高性能、低成本的方向发展。

光致变色技术在存储器材料中的应用

光致变色技术在存储器材料中的应用

光致变色技术在存储器材料中的应用光致变色技术是近年来发展非常迅速的一种新兴技术,其基本原理是物质在受光照射时会发生结构变化,从而产生颜色的改变。

光致变色技术在生活中应用广泛,比如说热敏纸、光敏电影等等。

而在科技领域,光致变色技术也被广泛地应用于存储器材料中。

光致变色记忆器材料是一种非挥发性存储器材料,其存储数据的原理基于颜色的改变。

具体而言,它是由一个光敏元件组成的,当该元件受到激光的照射时,其原子结构发生改变,从而导致材料的颜色发生变化。

颜色的变化可以表示不同的数据状态,从而实现数据的存储和读取。

这种存储材料可以在不需要电力供应的情况下长时间保存数据,且具有较高的可靠性和稳定性,成为一种非常有前途的存储技术。

目前,在光致变色材料领域内,有许多种不同类型的存储器材料。

其中,最广泛应用的是致变相变材料。

致变相变材料是一种晶体相变材料,其内在原理是材料在受到光照射后,会发生相变。

在此过程中,固态材料转变为液态或气态材料,瞬间改变其电性质。

在材料冷却后,其状态被固定,因此可以长期保持数据。

此材料具有快速、可靠和高密度存储等潜力,已成为未来新型存储器件的研究热点。

此外,光致变色材料还有许多其他种类,如改性聚合物、有机晶体等等。

比如说,改性聚合物的原理与致变相变材料类似,但它们的结构与性质可以通过核心配基的改变进行调控;有机晶体则是在有机分子中引入了特定的取代基,从而使其具有较强的光敏性。

这些不同类型的光致变色材料都有着各自的特点和优势。

在应用层面上,光致变色技术已经在很多方面得到了广泛的应用。

比如说,在图像显示上,光致变色技术可以用于制造新型的高分辨率显示屏;在光学存储上,光致变色技术可以利用超短激光脉冲来实现光盘的制造;在安全领域上,光致变色技术可以用于制造防伪标签等等。

总之,光致变色技术在存储器材料中的应用前景广阔。

随着科学技术的不断发展,它的应用领域将会不断扩大,也为人们带来更多的便利和新的技术突破。

有机光致变色材料的研究及其应用的开题报告

有机光致变色材料的研究及其应用的开题报告

有机光致变色材料的研究及其应用的开题报告题目:有机光致变色材料的研究及其应用一、研究背景及意义随着科技的快速发展,光致变色材料作为一种新型的功能材料受到越来越多的关注和研究。

有机光致变色材料是一种通过光照射和热激发发生颜色变化的材料,可以应用于传感器、计算机显现、竞技场地等领域。

其在材料科学的研究中是一个新兴的领域,具有广泛的应用前景。

二、研究目的本研究旨在:1.综述有机光致变色材料的基本性质和研究现状;2.研究有机光致变色材料的合成方法;3.探究有机光致变色材料在电子器件和传感器等领域的应用。

三、研究内容1.综述有机光致变色材料的基本性质和研究现状(1)有机光致变色材料的基本性质(2)有机光致变色材料的研究现状和发展趋势2.研究有机光致变色材料的合成方法(1)有机光致变色材料的化学结构(2)有机光致变色材料的合成方法(3)有机光致变色材料的表征方法3.探究有机光致变色材料在电子器件和传感器等领域的应用(1)有机光致变色材料在电子器件中的应用(2)有机光致变色材料在传感器中的应用四、研究方法本研究采用文献调研、实验研究和理论分析相结合的方法,系统研究有机光致变色材料的基本性质、合成方法和应用等方面的内容。

五、研究预期成果本研究的预期成果是:1.系统地阐述有机光致变色材料的基本性质和研究现状;2.总结有机光致变色材料的合成方法;3.探究有机光致变色材料在电子器件和传感器等领域的应用。

六、研究进度安排第一年:1.调研有机光致变色材料的基本性质和研究现状;2.学习有机光致变色材料的合成方法;3.开展有机光致变色材料的实验研究。

第二年:1.继续开展有机光致变色材料的实验研究;2.研究有机光致变色材料在电子器件中的应用。

第三年:1.继续开展实验研究;2.研究有机光致变色材料在传感器中的应用;3.撰写论文并进行相关报告。

七、预期经费本研究的预期经费约为10万元,包括实验材料费、设备维护费、差旅费等。

信息光学中的光存储技术发展现状及趋势

信息光学中的光存储技术发展现状及趋势

信息光学中的光存储技术发展现状及趋势信息光学是光学科学与信息技术的交叉学科,旨在利用光学原理和技术实现信息的存储、处理和传输。

光存储技术是信息光学中的一个重要研究方向,通过利用光的特性进行高密度、高速度、大容量的信息存储,已经成为信息存储领域的研究热点。

本文将探讨信息光学中的光存储技术的发展现状及趋势。

一、光存储技术的发展现状1. 光存储介质的研究光存储技术的核心是对存储介质的研究,目前主要有两种类型的光存储介质:光致变色材料和光敏材料。

光致变色材料如聚合物、非晶半导体等,可以通过光照改变其物理状态,实现信息的存储与擦除。

光敏材料如银盐、硒化镉等,通过光照引起化学反应,实现信息的写入与读出。

近年来,随着纳米技术的发展,纳米颗粒材料也逐渐被引入光存储技术,其具有更高的密度和更长的寿命。

2. 存储容量的提升随着科技的进步,存储容量的提升一直是光存储技术研究的焦点之一。

目前,研究人员通过改进存储介质的结构和性能,以及提高激光器的功率和调制技术,取得了一系列的进展。

光存储技术的存储容量已经从最初的几百兆字节提升到了几百兆兆字节,相比传统存储技术有着巨大的优势。

3. 存储速度的提升存储速度的提升是光存储技术另一个重要的研究方向。

传统的光存储介质需要通过激光器进行光照,写入和读出信息需要一定的时间,限制了存储速度的提升。

为了解决这个问题,研究人员正在探索新的存储介质和存储机制,如非线性光存储和超快光学存储等,以实现更快速的信息存储。

二、光存储技术的发展趋势1. 全息存储技术的应用全息存储技术是光存储技术的一种重要应用,其通过将信息以全息图像的形式记录在媒介中,实现了超高密度和大容量的信息存储。

未来,随着光学技术和可计算材料的不断发展,全息存储技术有望实现更高的存储容量和更快的存取速度,成为光存储技术的主流方向之一。

2. 光存储与云计算的结合随着云计算的兴起,对存储容量和存储速度的要求越来越高。

光存储技术的高密度和高速度优势,使其与云计算技术的结合成为可能。

光致变色材料在光学应用中的研究

光致变色材料在光学应用中的研究

光致变色材料在光学应用中的研究随着科技的不断发展,人们对光学材料的要求也越来越高。

光致变色材料作为一种新型的光学材料,近年来备受研究者的关注。

本文将介绍光致变色材料的性质、特点以及在光学应用中的研究进展。

一、光致变色材料的性质和特点光致变色材料是一种可被激发发生颜色变化的材料。

它们在外界激发下,会发生表观颜色的改变,从而达到我们需要的效果。

具体来讲,光致变色材料主要是通过吸收外界光的能量,使其分子结构发生改变,从而导致颜色的变化。

这种变化可以是从一个颜色到另一个颜色,也可以是从有颜色变成无色或者透明。

光致变色材料的特点主要表现在以下两个方面:一是对激发光线的响应特别敏感,激发就会发生明显的相应;二是在颜色变化中以非常小的分子体积变化换得明显的色度变化。

这些特点使得光致变色材料在光学应用中得到了广泛的研究和应用。

二、光致变色材料在光学应用中的研究进展1. 光学存储光致变色材料在光学存储中的应用主要表现在其记忆能力上。

根据不同的分子结构和形态,光致变色材料可以分为有机和无机两大类。

在这两类光致变色材料中,有机材料更适合在光学存储中使用。

目前,利用有机光致变色材料制成的光学存储设备已经应用到许多领域中,例如光盘、DVD、蓝光光盘等。

2. 光电显示器件光电显示器件是指利用光、电和材料的相互作用来完成能量和信息交换的器件。

目前,利用光致变色材料制成的光电显示器件也已经被广泛应用。

这些器件的特点在于能够根据光的照射,改变材料的颜色或者亮度,从而形成一个更加清晰、鲜明、亮度均衡且省电的显示效果。

3. 光学传感器光学传感器是通过光的传播、反射、干涉、散射、吸收等现象来传递和检测信息的传感器。

利用光致变色材料制成的光学传感器,其工作原理也是通过光敏变色效应来实现,能够应用到许多领域中,如化学传感、光学测量、生命科学、加速度等。

4. 光子晶体光子晶体是指利用周期性光学结构来制备的材料,这种结构能够调控光学性质并具有人工的能带结构,是一种具有非常高的应用潜力的新型光学材料。

有机光电材料的光致变色机制研究

有机光电材料的光致变色机制研究

有机光电材料的光致变色机制研究在材料科学领域,有机光电材料是近年来备受关注的研究课题之一。

它们具有可调控的光电性能以及广泛的应用潜力,尤其在光致变色方面有着独特的优势。

本文将介绍有机光电材料的光致变色机制的研究进展。

一、有机光电材料的基本概念和特性有机光电材料是由有机分子构成的一类材料,具有一系列独特的光电性能。

与传统的无机光电材料相比,有机光电材料具有分子结构可调性、柔性和低成本的优势。

同时,它们还具有较高的光吸收效率、光学非线性效应和宽光谱响应等特点。

二、光致变色机制的研究方法和技术研究有机光电材料的光致变色机制需要借助一系列的实验方法和技术。

其中,最常用的方法是吸收光谱、荧光光谱、紫外可见光谱和电子自旋共振等。

此外,还可以利用扫描电子显微镜、透射电子显微镜和原子力显微镜来观察材料的形貌和结构。

这些实验方法和技术的综合应用,可以为研究人员提供丰富的实验数据和图谱,有助于揭示有机光电材料的光致变色机制。

三、有机光电材料的光致变色机制的研究进展在过去的几十年里,研究人员在有机光电材料的光致变色机制方面取得了很多重要的进展。

其中,较为重要的研究成果有以下几点:1. 分子结构调控:通过调整有机光电材料的分子结构,可以实现材料的光致变色效应。

例如,改变共轭体系的长度和结构,可以影响材料的吸收光谱和荧光光谱。

同时,通过在分子结构中引入各种官能团,也可以调控材料的光电性能。

2. 光热效应:在有机光电材料中,光热效应是一种常见的光致变色机制。

当材料吸收光能时,光能被转化为热能,导致材料的温度升高,从而引发颜色的变化。

这一机制在红外感应、温度传感和热红外成像等领域有着广泛的应用。

3. 分子激发态变化:有机光电材料在光致变色过程中,分子的激发态也会发生变化。

光子的吸收和释放使得分子的轨道结构发生变化,从而引发材料颜色的变化。

这种机制在有机太阳能电池和有机发光材料中有着重要的应用。

四、有机光电材料的应用前景和挑战由于其独特的光电性能和可调控的性质,有机光电材料在多个领域具有广泛的应用前景。

光致变色材料的发展现状及其在建筑上的应用前景

光致变色材料的发展现状及其在建筑上的应用前景

光致变色材料的发展现状及其在建筑上的应用前景
光致变色材料是一种能够在受到光照或热能刺激后发生颜色变化的材料。

随着科技的不断发展,光致变色材料的应用范围也越来越广泛,特别是在建筑领域中,其应用前景更是不可限量。

目前,光致变色材料的发展已经进入了一个新的阶段。

传统的光致变色材料主要是基于有机染料或者无机颜料的,但是这种材料存在着耐久性差、颜色变化范围有限等问题。

而新型的光致变色材料则采用了纳米技术,通过控制材料的微观结构来实现颜色变化,具有更好的稳定性和更广泛的颜色变化范围。

在建筑领域中,光致变色材料的应用前景非常广阔。

首先,光致变色材料可以用于建筑外墙的装饰,通过控制光照或者温度的变化,使外墙颜色发生变化,从而实现建筑外观的变化。

其次,光致变色材料还可以用于建筑内部的装饰,比如说墙面、天花板等,通过控制光照或者温度的变化,使室内环境的颜色发生变化,从而实现室内环境的变化。

此外,光致变色材料还可以用于建筑的隔热材料,通过控制材料的颜色变化来实现隔热效果,从而提高建筑的能源利用效率。

当然,光致变色材料在建筑领域中的应用还存在一些挑战。

首先,光致变色材料的成本较高,需要进一步降低成本才能推广应用。

其次,
光致变色材料的稳定性和耐久性还需要进一步提高,以满足建筑领域
的长期使用需求。

此外,光致变色材料的颜色变化范围还需要进一步
扩大,以满足建筑领域的不同需求。

总的来说,光致变色材料的发展前景非常广阔,特别是在建筑领域中,其应用前景更是不可限量。

随着科技的不断发展,相信光致变色材料
的应用范围还会不断扩大,为建筑领域的发展带来更多的可能性。

我国光致变色材料研究

我国光致变色材料研究

我国光致变色材料研究光致变色材料是一种能够在外界光照下改变自身颜色的材料。

这种材料具有许多潜在的应用领域,包括显示技术、光电子学、数据存储、智能窗帘和光遥控开关等。

近年来,我国在光致变色材料研究方面取得了显著的进展。

首先,我国在光致变色材料的合成和制备方面做出了大量的研究。

通过改变材料的化学成分和结构,研究人员成功合成出了许多性能优良的光致变色材料。

例如,一些溴代苯胺类化合物能够通过光诱导反应来改变其颜色。

此外,还有一些具有类似于光敏颜料的有机分子,它们可以通过光激发来改变吸收光谱。

这些研究结果为开发更高效、更稳定的光致变色材料打下了基础。

其次,我国在光致变色机理的研究方面也取得了一定的成果。

光致变色材料的变色机理包括光物理过程和化学反应过程两个方面。

通过对光致变色材料的光物理行为和机理的深入研究,研究人员可以进一步了解光致变色材料的工作原理,从而改进其性能。

近年来,我国的研究人员对一些典型的光致变色材料进行了系统的研究,揭示了它们的变色机理,并提出了一些新的理论模型。

此外,我国在光致变色材料的应用方面也有了一定的突破。

光致变色材料具有广阔的应用前景,例如用于显示技术的光敏染料和光敏聚合物、用于智能窗帘的粉末电致变色材料等。

我国的研究人员积极探索光致变色材料的应用领域,并取得了一系列突破性的成果。

例如,在高性能光敏聚合物方面,我国的研究人员成功合成了一种新型的光致变色聚合物,具有较高的光敏性和稳定性。

这一成果为光致变色材料在显示技术上的应用提供了新的方向。

总体而言,我国的光致变色材料研究取得了显著的进展,但与发达国家相比,仍存在一定的差距。

未来,我们应加强光致变色材料的基础研究,提高研究水平和创新能力。

同时,与相关学科和行业进行更广泛的合作,加强跨学科研究和技术转化,推动光致变色材料的工业化应用。

只有这样,我们才能更好地将光致变色材料相关技术转化为现实应用,促进我国光致变色材料产业发展,以及推动我国相关行业的创新与进步。

常见有机光致变色体系的研究现状

常见有机光致变色体系的研究现状

Th c n e Re e tAdv n e i h r a i a c n t e O g n c Pho o h o i y t m t c r m c S se
REN i We ,WANG L i—y n a
( ol eo M t a S i c n n ier g Ji rh etr n iiE g er gIs t e C l g f ae l c neadE g e n , inA c i c a adCv n i e n tu , e i r e n i l t ul l n i n it J i C agh n10 2 , hn ) in h n cu 3 0 1 C i l a

图 2 偶 氮 苯 的 光 致 变色 反 应 过 程
机光致变色物质按其 光致变色反应类型可大致分为以下几类 。
1 1 键 的异裂 .
螺吡喃和螺嗯嗪的光致 变色都属 于这种类 型 , 当用 紫外光
激发无色的螺吡喃或螺嗯嗪时 , 即可导致螺碳 一氧键的异裂 , 生 成吸收在长波区域的开环 的部花菁类化合物 。螺嗯嗪 是在螺吡
Ab t a t h o sr c :T e c mmo r a c p oo h o c mae a y tm ,t e a p ia in o h t c r mi tra n d e tf n o g ni h t c r mi trl s se i h p lc t f p oo h o c ma e li y su o i
光致 变 色 是 一 种 可 逆 的 化 学 变 化 , 是 一 个 重 要 的判 断 标 这
准。通常情况下 , A是无色体 , A到 B的转 化要用近似于物种 从 A的最大吸收波 长处 ( 一般在紫外 区) 的光激发 ; B一般 为呈色 体, 其最大吸收波长在可见光区。 目前 , 对光致变 色材料的进一 步研究发现 , 有些 化合物 在某溶剂 中存 在逆光 致变 色现象 。有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有机光致变色与存储材料的研究现状材料化学摘要本文综述了最近十年来在有机光致变色存储材料方面的进展。

重点介绍了二芳基乙烯化合物光致变色性能的相关内容。

引言21 世纪是信息时代, 海量信息存储与高速传输成为进一步发展信息高技术产业的要求, 光信息存储已成为当今公认的重大科学技术领域的前沿课题之一. 而且随着现代科学技术的迅猛发展, 许多领域的研究开发水平都达到了前所未有的高度, 人类对计算机、电子、生物技术、材料等诸多学科提出了更高的发展要求, 需要更加快速、大容量的信息存储材料, 响应时间上甚至希望能够达到纳秒、皮秒级, 最终的目标是在分子水平甚至原子水平上存储信息. 高性能的有机光致变色材料正是能够满足这种要求的极具潜力的存储材料之一, 因为光致变色材料是以光子方式记录信息, 一旦实用化, 将实现人们所期待的光存储高速度、大容量的特性.基本概念与原理介绍在外界激发源的作用下,一种物质或一个体系发生颜色明显变化的现象称为变色性。

一、光致变色现象(photochromism):光致变色是指一种化合物A受到一定波长(λ1)的光照射时,可发生光化学反应得到产物B,A 和B的颜色(即对光的吸收)明显不同。

B在另外一束光(λ2 )的照射下或经加热又可恢复到原来的形式A。

光致变色是一种可逆的化学反应,这是一个重要的判断标准。

这种在光的作用下能够发生可逆颜色变化的化合物,称为光致变色化合物。

分子能够可逆地在两种不同吸收光谱的状态之间的转化,至少有一个反应是光激发的。

当然,两种不同的形态不仅是它们的吸收光谱不同,也可以是其它参数如氧化还原电位、电介质常数等的不同。

在光作用下发生的不可逆反应,也可导致颜色的变化,只属于一般的光化学范畴,而不属于光致变色范畴。

二、光致变色存储的工作原理光盘记录的基本原理都是基于记录介质受激光辐射后所发生的物理或化学变化为基础的。

光致变色材料作记录介质时,其具体记录过程是:首先用波长λ1的光(擦除光) 照射,将存储介质由状态A 转变到状态B。

记录时,通过波长λ2的光(写入光) 作二进制编码的信息写入,使被λ2的光照射到那一部分由状态B 转变到状态A 而记录了二进制编码的“1”;未被λ2的光照射的另一部分仍为状态B ,它对应于二进制编码的“0”。

信息的读出可以用读出透射率变化的方法,也可以用读出折射率变化的方法。

读出透射率变化是利用波长λ2的光的照射,测量其透射率变化而读出信息的。

当λ 2 的光照射到编码为“0”处(状态B) 时,因吸收大而透射率很小。

当λ2的光照射到编码为“1”处(状态A) 时,因无吸收而透射率大。

从而根据透射率的大小能够测得已记录的信息。

读出折射率变化是利用波长不在两个吸收谱中的光的照射、测量其折射率的变化而读出信息的。

这是由于吸收谱的变化必然会产生折射率的变化。

但要测出状态A 和状态B 的折射率的不同,就要加厚记录介质的厚度。

这样,写入光的能量密度和功率就要提高数倍。

三、主要有机光致变色体系简介1、键的异裂螺吡喃(spiropyran)和螺嗯嗪(spirooxazine)的光致变色都属于这种类型。

螺毗喃是人们广泛研究的一类化合物,用紫外光激发无色的螺吡喃时,即可导致碳一氧键的异裂,生成吸收在长波区域的开环的部花菁类化合物。

其光致变色反应如下所示,抗疲劳性差,易被氧化降解。

2、键的均裂六苯基双眯唑在光照下发生均裂,生成很活泼的三苯基咪唑自由基。

这一光致变色产物很容易与氧结合,在氧的存在下其呈色、消色循环仅仅能往复几次。

3、质子转移互变异构水杨醛缩苯胺类希夫碱(schiffbase)是一类易于制备的光致变色化合物。

在紫外光照射下,发生质子由氧到氮的转移而常常显示出由黄到橘红的颜色变化。

虽然此类化合物耐疲劳性很好,但是在室温下,在溶液中它的光致变色产物稳定性很差,甚至只能用闪光光解技术才可观察到,是一类快速光响应材料。

4、顺反异构对二苯乙烯类、苄叉苯胺类、偶氮苯类等都可发生光致顺反异构化反应。

5、氧化还原反应热稳定的稠环芳香化合物在光和氧的作用下,也可发生光致变色反应。

6、周环反应体系俘精酸酐是这一类化合物的代表之一,其反应机制为周环反应。

一般情况下,俘精酸酐反应过程中不产生活泼的自由基、离子或偶极中间体,因此热稳定性和抗疲劳性与螺吡哺相比有了很大提高。

杂环二芳基乙烯类光致变色材料也属于这种类型,近年来受到人们广泛的关注。

日本的Irie 等人做了深入细致的工作。

二芳基全氟环戊烯由于其良好的热稳定性和抗疲劳性而倍受青睐。

最近,樊美公等人发展了一类环烯和硫杂环烯类二芳基乙烯,由于合成原料易得,方法简单,具有广泛的发展前景和潜在的应用价值。

7、光致变色化合物的酸致变色酸致变色(acidichromism)是樊美公等人创造的一个新名词,它是为了描述光致变色化合物如螺嗯嗪类遇酸变色现象而提出的。

发生酸致变色反应前后的物种仍然具有光致变色性质。

四、有机光致变色材料应用于光存储介质领域的优点有机光致变色介质材料是在吸收了特定波长的光子情况下发生分子结构变化, 并进而引起材料分子电子吸收光谱上的差异, 从而实现数据记录和存储, 故基于有机光致变色材料而实现的光存储介质具有如下优点:1) 存储密度高: 理论上可以达到分子量级。

2) 灵敏度高, 反应速度快, 可达到ns 量级。

3) 可用旋涂法涂布, 与目前CD - R 盘片制造工艺相似, 生产成本低, 容易加工。

4) 抗磁性好: 记录方式与磁无关, 不会受到磁场的影响。

5) 抗疲劳性高: 光致变色循环次数可达104 数量级, 且副反应较少。

6) 光学性能可以通过改变分子结构来调整, 以便适合于各种不同激光波长。

7) 毒性小。

8) 信噪比大。

应用领域(l)信息存储元件利用光致变色化合物受不同强度和波长光照射时可反复循环变色的特点,可以将其制成计算机的记忆存储兀件,实现信息的记忆与消除过程.其记录信息的密度大得难以想象,而且抗疲劳性能好,能快速写人和擦除信息。

这是新型记忆存储材料的一个新的发展方向。

(2)装饰和防护包装材料光致变色化合物可用作指甲漆、漆雕工艺品、T恤衫、墙壁纸等装饰品。

为了适应不同的需要,可将光致变色化合物加入到一般油墨或涂料用的胶粘剂、稀释剂等助剂中混合制成丝网印刷油墨或涂料;还可将光致变色化合物制成包装膜、建筑物的调光玻璃窗、汽车及飞机的屏风玻璃等,防护日光照射,保证全。

(3)自显影全息记录照相这是利用光致变色材料的光敏性制作的一种新型自显影法照相技术。

在透明胶片等支持体上涂一层很薄的光致变色物质(如螺毗喃、俘精酸酐等),其对可见光不感光,只对紫外光感光,从而形成有色影像。

这种成像方法分辨率高,不会发生操作误差,而且影像可以反正录制和消除。

(4)国防上的用途光致变色材料对强光特别敏感,因此可以用来制作强光辐剂量剂。

它能测量电离辐射,探测紫外线、X射线、y射线等的剂量。

如将其涂在飞船的外部,能快速精确地计量出高辐射的剂量。

光致变色材料还可以制成多层滤光器,控制辐射光的强度,防止紫外线对人眼及身体的伤害。

如果把高灵敏度的光致变色体系指示屏用于武器上,可记录飞机、军舰的行踪,形成可褪色的暂时痕迹。

国内外研究现状光致变色的材料早在1867年就有所报道,但直至1956年Hirshberg提出光致变色材料应用于光记录存储的可能性之后,才引起了广泛的注意。

研究光致变色材料最多的国家是美国、日本、法国等,日本在民用行业上开发比较早。

近年来,将光致变色材料用于光信息存储、光调控、光开关、光学器件材料、光信息基因材料、修饰基因芯片材料等领域受到全球范围内的广泛关注。

我国研究者利用新型热稳定螺恶嗪类材料进行可擦除高密度光学信息存储研究方面取得新进展。

他们设计合成了一种具有良好开环体热稳定性的新型螺恶嗪分子SOFC。

这类新型光致变色材料用于信息存储表现出良好的稳定性,而且可以进行信息的反复写入和擦除,并可应用于基于双光子技术的多层三维高密度光学信息存储,表现出很强的应用前景。

现在各种饰物、服装、玩具上应用的光致变色材料都是属于感光变色浆(光变浆),在变色材料类类光变浆的应用最为广泛了,东莞腾达变色涂料研究中心是国内最早对机能材料的而次开发企业,分类范围也更加广泛,稳定性和环保都达到国际标准,具有良好的市场前景和实用价值。

主要介绍二芳基乙烯类光致变色体系。

二芳基乙烯类光致变色体系二苯基乙烯的光顺反异构化反应已被广泛研究。

在紫外光照射下,二苯乙烯衍生物不但发生顺反异构化反应,而且还可发生可逆的光环合反应,环合生成的二氢菲容易氧化而脱氢生成菲。

邻位甲基取代可以消除不利的氧化脱氢而生成菲的反应。

近年来,国内外许多科学身致力于新型二芳基乙烯光致变色化合物的设计、合成、性能和应用研究,主要围绕该类化合物的热稳定性、耐疲劳性、吸收光谱、量子产率(开环和闭环反应)和光致变色反应机理等方面进行了有效探索,为研制新型高效的基于有机光致变色材料性能的分子光开关提供指导原则。

1.热稳定性Irie等人为了寻找具有热稳定性的二芳杂环基乙烯化合物,在分子设计方面进行了深入有效的探索。

通过理论计算和实验研究比较了含有苯基、吡咯、噻吩和呋喃的二芳基乙烯化合物的光致变色性能,发现四种化合物只能通过光致顺旋方式成环,而发生光致变色反应,且闭环体的热稳定性存在一定差异;Irie进一步通过计算各种芳基杂环的芳香稳定化能量,证明了在二芳基乙烯体系中引入芳香稳定化能较低的噻吩、呋喃和吡咯等可以提高闭环体的热稳定(Figure 1.3和Table 1.1)。

最近研究表明二氰基马来酸酐和全氟环戊烯类二芳杂环基乙烯体系普遍对热稳定。

另外,不对称的二芳基乙烯体系与对称体系相比,更具热稳定性。

在设计合成具有热稳定性优越的二芳杂环基乙烯光致变色化合物时,引入芳香稳定能较低的取代基和双键二侧含有不同杂环已成为一个重要的指导原则。

2003年,刘跃等通过比较计算几种含有苯基和噻吩基的马来酸酐衍生物发现,化合物l、2和3(如Figurel.4所示)的开环体和闭环体的基态能量差分别为171.76、25.55、60.55kJ /mol,而计算得到的lc、2c和3c热开环反应的活化势垒分别为123.73、185.48、179.41 kJ /mol,与Irie规则基本相吻合:开环体和闭环体基态能量差越小,则闭环体发生热开环反应所需克服的势垒就越高,闭环体具有更高的热稳定性。

但是,M.M.Krayushkin等借助MNDO方法计算了三种全氟环戊烯开环体和闭环体的几何结构参数知基态能量,其研究结果与Irie规则存在一定冲突,因此需进一步讨论在不同溶剂和温度下闭环体发生热开环反应的机理,以提出更合适的标准来衡量闭环体的热稳定性能。

2.耐疲劳性光致变色反应是伴随着化学结构重新组合的光化学反应。

相关文档
最新文档