数学建模模拟试题及参考答案

合集下载

数学建模试卷及参考答案

数学建模试卷及参考答案

数学建模试卷及参考答案一、选择题1. 已知函数 $y = 2x^3 - 5x^2 + 3x - 7$,求导数函数 $y'$ 的值。

A) $6x^2 - 10x + 3$\B) $6x - 10x^2 + 3$\C) $6x - 10x + 3$\D) $6x^2 - 10x^2 + 3$答案:A2. 设矩形的长为 $x$,宽为 $y$,满足 $x^2 + y^2 = 25$。

当矩形的面积最大时,求矩形的长和宽。

A) 长为 4,宽为 3\B) 长为 5,宽为 3\C) 长为 4,宽为 2.5\D) 长为 5,宽为 2.5答案:A3. 一条直线过点 $A(1,2)$ 和点 $B(3,-1)$,与另一条直线 $2x + y - 4 = 0$ 平行。

求该直线的方程。

A) $2x - y + 3 = 0$\B) $2x - y - 3 = 0$\C) $-2x + y - 3 = 0$\D) $2x - y - 5 = 0$答案:B4. 已知函数 $y = e^x$,求 $y$ 的微分值。

A) $e^x$\B) $e^x + C$\C) $e^x - C$\D) $C \cdot e^x$答案:A5. 一辆汽车以每小时 60 公里的速度行驶,途中经过两座相距 60 公里的城市。

假设两座城市间有一辆以每小时90 公里的速度行驶的列车,两车同时出发。

求两辆车首次相遇的时间。

A) 0.5 小时\B) 1 小时\C) 1.5 小时\D) 2 小时答案:A二、填空题6. 已知函数 $f(x) = \sin(x)$,求函数 $g(x) = f^{\prime}(x)$。

答案:$g(x) = \cos(x)$7. 若直线 $3x + ky = 2$ 与直线 $2x - y = 3$ 相垂直,则 $k$ 的值为\_\_\_。

答案:$k = 6$8. 设抛物线 $y = ax^2 - 3x + 2$ 的顶点为 $(2,1)$,则 $a$ 的值为\_\_\_。

数学建模试题(带答案)

数学建模试题(带答案)

数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。

试构造模型并求解。

答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。

f 和g 都是连续函数。

椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。

不妨设0)0(,0)0(g >=f 。

当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。

这样,改变椅子的位置使四只脚同时着地。

就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。

证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。

根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。

初中数学模型试题及答案

初中数学模型试题及答案

初中数学模型试题及答案一、选择题(每题3分,共30分)1. 已知一个数的平方是25,那么这个数是()A. 5B. -5C. 5或-5D. 以上都不对答案:C2. 一个等腰三角形的两边长分别为4和6,那么第三边的长度是()A. 2B. 4C. 6D. 无法确定答案:C3. 如果一个角的补角是120°,那么这个角的度数是()A. 60°B. 30°C. 120°D. 180°答案:B4. 计算下列表达式的值:(2x+3)(x-1)()A. 2x^2 - x + 3B. 2x^2 - 5x + 3C. 2x^2 + x - 3D. 2x^2 - x - 3答案:B5. 一个数的绝对值是5,这个数可能是()A. 5B. -5C. 5或-5D. 以上都不对答案:C6. 已知一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是()A. 5B. 7C. 9D. 12答案:A7. 以下哪个选项是不等式的解集:2x - 3 > 5()A. x > 4B. x < 4C. x > 2D. x < 2答案:A8. 一个数的立方是-8,那么这个数是()A. -2B. 2C. -2或2D. 以上都不对答案:A9. 一个圆的半径是3,那么这个圆的面积是()A. 9πB. 18πC. 27πD. 36π答案:C10. 计算下列表达式的值:(3x-2)^2()A. 9x^2 - 12x + 4B. 9x^2 + 12x + 4C. 9x^2 - 6x + 4D. 9x^2 + 6x + 4答案:A二、填空题(每题4分,共20分)11. 如果一个数的平方根是3,那么这个数是______。

答案:912. 一个等差数列的前三项分别是2,5,8,那么第四项是______。

答案:1113. 一个三角形的内角和是______。

答案:180°14. 一个数的相反数是-7,那么这个数是______。

(完整版)数学建模模拟试题及答案

(完整版)数学建模模拟试题及答案

数学建模模拟试题及答案一、填空题(每题 5 分,共 20 分)1.一个连通图能够一笔画出的充分必要条件是.2. 设银行的年利率为 0.2,则五年后的一百万元相当于现在的万元.3. 在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关:(1) 参加展览会的人数n; (2)气温T 超过10o C;(3)冰淇淋的售价p .由此建立的冰淇淋销量的比例模型应为 .4. 如图一是一个邮路,邮递员从邮局 A 出发走遍所有 A长方形街路后再返回邮局 .若每个小长方形街路的边长横向均为 1km,纵向均为 2km,则他至少要走 km .二、分析判断题(每题 10 分,共 20 分)1. 有一大堆油腻的盘子和一盆热的洗涤剂水。

为尽量图一多洗干净盘子,有哪些因素应予以考虑?试至少列出四种。

2. 某种疾病每年新发生 1000 例,患者中有一半当年可治愈 .若 2000 年底时有1200 个病人,到 2005 年将会出现什么结果?有人说,无论多少年过去,患者人数只是趋向 2000 人,但不会达到 2000 人,试判断这个说法的正确性 .三、计算题(每题 20 分,共 40 分)1. 某工厂计划用两种原材料A, B 生产甲、乙两种产品,两种原材料的最高供应量依次为 22 和 20 个单位;每单位产品甲需用两种原材料依次为 1 、1 个单位,产值为 3 (百元);乙的需要量依次为 3、1 个单位,产值为 9 (百元);又根据市场预测,产品乙的市场需求量最多为 6 个单位,而甲、乙两种产品的需求比不超过 5: 2,试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由 .(2) 原材料的利用情况 .2. 两个水厂A1 , A2将自来水供应三个小区B1 , B2 , B3 , 每天各水厂的供应量与各小区的需求量以及各水厂调运到各小区的供水单价见下表 .试安排供水方案,使总供水费最小?四、 综合应用题(本题 20 分)某水库建有 10 个泄洪闸,现在水库的水位已经超过安全线,上游河水还在不断地流入 水库.为了防洪,须调节泄洪速度 .经测算,若打开一个泄洪闸, 30 个小时水位降至安全线, 若打开两个泄洪闸, 10 个小时水位降落至安全线 .现在,抗洪指挥部要求在 3 个小时内将水 位降至安全线以下,问至少要同时打开几个闸门?试组建数学模型给予解决 .注:本题要求按照五步建模法给出全过程 .小区 单价/元水厂A1A供应量 / t170B34B11 07 1B26数学建模 06 春试题模拟试题参考解答一、填空题(每题 5 分,共 20 分)1. 奇数顶点个数是 0 或 2;2. 约 40.1876 ;3. N = Kn(T10) / p, (T > 10 0 C), K 是比例常数; 4. 42.二、分析判断题(每题 10 分,共 20 分)1. 解: 问题与盘子、水和温度等因素直接相关,故有相关因素:盘子的油腻程度,盘子的温度,盘子的尺寸大小;洗涤剂水的温度、浓度; 刷洗地点 的温度等.注:列出的因素不足四个,每缺一个扣 2.5 分。

高中数学建模试题及答案

高中数学建模试题及答案

高中数学建模试题及答案一、单项选择题(每题3分,共30分)1. 数学建模的一般步骤不包括以下哪一项?A. 问题提出B. 模型假设C. 模型求解D. 数据收集答案:D2. 在数学建模中,模型的验证通常不包括以下哪一项?A. 模型的逻辑性检验B. 模型的适用性检验C. 模型的稳定性检验D. 模型的美观性检验答案:D3. 以下哪一项不是数学建模中常用的方法?A. 微分方程B. 线性规划C. 概率论D. 文学创作答案:D4. 在数学建模中,以下哪一项不是模型的要素?A. 模型的假设B. 模型的变量C. 模型的参数D. 模型的结论答案:D5. 数学建模中,以下哪一项不是模型的分类?A. 确定性模型B. 随机性模型C. 静态模型D. 动态模型答案:C6. 在数学建模中,以下哪一项不是模型的构建过程?A. 模型的假设B. 模型的建立C. 模型的求解D. 模型的发表答案:D7. 数学建模中,以下哪一项不是模型的分析方法?A. 数值分析B. 符号计算C. 图形分析D. 文字描述答案:D8. 在数学建模中,以下哪一项不是模型的优化方法?A. 线性规划B. 非线性规划C. 动态规划D. 统计分析答案:D9. 数学建模中,以下哪一项不是模型的应用领域?A. 工程技术B. 经济管理C. 生物医学D. 音乐艺术答案:D10. 在数学建模中,以下哪一项不是模型的评估标准?A. 模型的准确性B. 模型的简洁性C. 模型的可解释性D. 模型的复杂性答案:D二、填空题(每题4分,共20分)1. 数学建模的一般步骤包括:问题提出、模型假设、模型建立、模型求解、模型分析、模型验证和______。

答案:模型报告2. 在数学建模中,模型的假设应该满足______、______和______。

答案:科学性、合理性、可行性3. 数学建模中,模型的求解方法包括解析方法和______。

答案:数值方法4. 数学建模中,模型的分析方法包括______、______和______。

(完整版)数学建模试卷(附答案)

(完整版)数学建模试卷(附答案)

2.设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元.3.在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关: (1)参加展览会的人数n ;(2)气温T 超过10℃;(3)冰淇淋的售价由此建立的冰淇淋销量的比例模型应为 。

二、简答题:(25分)1、建立数学模型的基本方法有哪些?写出建模的一般步骤。

(5分)2、 写出优化模型的一般形式和线性规划模型的标准形式。

(10分) 三、(每小题15分,共60分)1、设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。

2、1968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。

随后,美国又从澳大利亚引入了介壳虫的天然捕食者——澳洲瓢虫。

后来,DDT 被普通使用来消灭害虫,柠檬园主想利用DDT 进一步杀死介壳虫。

谁料,DDT 同样杀死澳洲瓢虫。

结果,介壳虫增加起来,澳洲瓢虫反倒减少了。

试建立数学模型解释这个现象。

3.建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的捕捞量数学建模 参考答案2.约40.18763.p T Kn N /)10(-=,(T ≥10℃),K 是比例常数 二、1、建立数学模型的基本方法:机理分析法,统计分析法,系统分析法2、优化模型的一般形式将一个优化问题用数学式子来描述,即求函数 ,在约束条件下的最大值或最小值,其中 为设计变量(决策变量), 为目标函数为可行域三、1、解:设Pn 表示t=n 时的市场价格,由供求平衡可知:)()(1n n p f p =-ϕ9431+-=+-n n kp p即: kp k p n n 531+-=- .,...,,,)(m i h i 210==x )(x f u =.,...,,),)(()(p i g g i i 2100=≥≤x x x)(x f Ω∈x Ω∈=x x f u )(max)min(or .,...,,,)(..m i h t s i 210 ==x .,...,,),)(()(p i g g i i 2100=≥≤x x经递推有:kk p kkk k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑Λ0p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。

数学建模试卷及参考答案

数学建模试卷及参考答案

数学建模试卷及参考答案数学建模试卷及参考答案一.概念题(共3小题,每小题5分,本大题共15分)1、一般情况下,建立数学模型要经过哪些步骤(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。

2、学习数学建模应注意培养哪几个能力(5分) 答:观察力、联想力、洞察力、计算机应用能力。

3、人工神经网络方法有什么特点(5分) 答:(1)可处理非线性^;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。

二、模型求证题(共2小题,每小题10分,本大题共20分)1、某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) `证明:记出发时刻为t=a,到达目的时刻为t=b,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t),t 是一天内时刻变量,则f(t),g(t)在[a,b]是连续函数。

作辅助函数F(t)=f(t)-g(t),它也是连续的,则由f(a)=0,f(b)>0和g(a)>0,g(b)=0,可知F (a )<0, F(b)>0, 由介值定理知存在t0属于(a,b)使F(t0)=0, 即f(t0)=g(t0) 。

2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢(15分) {解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,k=1,2,........,k x ,k y =0,1,2,3。

将二维向量k s =(k x ,k y )定义为状态。

安全渡河条件下的状态集合称为允许状态集合,记做S 。

初中数学建模试题及答案

初中数学建模试题及答案

初中数学建模试题及答案一、单项选择题(每题3分,共30分)1. 某工厂生产一批零件,原计划每天生产100个,实际每天生产120个,原计划需要30天完成,实际需要多少天完成?A. 20天B. 25天C. 30天D. 35天答案:B2. 一个长方体的长、宽、高分别为2厘米、3厘米、4厘米,求其体积。

A. 12立方厘米B. 24立方厘米C. 36立方厘米D. 48立方厘米答案:C3. 某商店销售一种商品,进价为50元,售价为70元,若打8折销售,利润率为多少?A. 20%B. 30%C. 40%D. 50%答案:B4. 一个圆的半径为5厘米,求其面积。

A. 78.5平方厘米B. 157平方厘米C. 78.5平方分米D. 157平方分米答案:A5. 一个班级有50名学生,其中男生占60%,女生占40%,求男生和女生各有多少人?A. 男生30人,女生20人B. 男生30人,女生20人C. 男生25人,女生25人D. 男生35人,女生15人答案:B6. 某工厂生产一批零件,原计划每天生产100个,实际每天生产120个,原计划需要30天完成,实际需要多少天完成?A. 20天B. 25天C. 30天D. 35天答案:B7. 一个长方体的长、宽、高分别为2厘米、3厘米、4厘米,求其体积。

A. 12立方厘米B. 24立方厘米C. 36立方厘米D. 48立方厘米答案:C8. 某商店销售一种商品,进价为50元,售价为70元,若打8折销售,利润率为多少?A. 20%B. 30%C. 40%D. 50%答案:B9. 一个圆的半径为5厘米,求其面积。

A. 78.5平方厘米B. 157平方厘米C. 78.5平方分米D. 157平方分米答案:A10. 一个班级有50名学生,其中男生占60%,女生占40%,求男生和女生各有多少人?A. 男生30人,女生20人B. 男生30人,女生20人C. 男生25人,女生25人D. 男生35人,女生15人答案:B二、填空题(每题4分,共20分)1. 一个长方体的长、宽、高分别为3厘米、4厘米、5厘米,其体积为____立方厘米。

数学建模试卷及答案

数学建模试卷及答案

《数学模型》试卷一、基本问题。

(本大题共2小题,每小题20分,共40分)1.在七项全能中对于跳高运动的记分点方法由下式给出:c b m a P )(-=其中m c b a ,348.1,0.75,84523.1===是跳的高度(按cm 计)。

求跳的高度为183cm 的记分点,并确定积分1000点需要跳的高度。

2.铁匠用直条铁做蹄铁,把直条铁弯成通常铁蹄的形状。

为求得铁条需要的长度,要测量蹄的宽度(W 英寸),并用下列形式的公式:b aW L +=求得需要的条长度(L 英寸)。

试用下列数据求的a 和b 的估计值。

并得出该公式的估计式。

宽W (英寸) 长L (英寸)6.50 12.005.75 13.50二、渔场捕捞问题。

(本大题共3小问,每小问20分。

满分共60分。

)三、在渔场中捕鱼,从长远利益而言,通常希望既使渔场中鱼量保持不变,又能达到最大的捕获量。

假设:(1)在无捕捞的情况下,鱼量的变化符合Logistic 模型:)1(Nx rx dt dx -=,其中:r 为固有增长率,N 是渔场资源条件下最大鱼量;(2)在捕捞的情况下,设单位时间的捕捞量与渔场中的鱼量成正比。

1.建立在有捕捞的情况下,渔场的产量模型;2.研究该模型鱼量的稳定性;3.找出该模型下适合的捕捞量。

《数学建模》考试卷(答案)一、1.解:把183,348.1,0.75,84523.1====m c b a 代入记分公式,得348.1)0.75183(84523.1)(-⨯=-=c b m a P =348.110884523.1⨯(=1016.5)由公式c b m a P )(-=,有c b m a P )(-=,解得公式:b a P m c +=1)( 把1000,348.1,0.75,84523.1====P c b a 代入上式,得b aP m c +=1)( 0.7594.5410.75)84523.11000(74184.0348.11+=+= (=106.7+75.0=181.7)2.解:把两组数据00.12,50.6==L W 和50.13,75.5==L W 分别代入公式 b aW L +=得方程组:⎩⎨⎧+=+=b a b a 75.55.135.60.12 解得:⎩⎨⎧=-=252b a 所以b a ,的估计值为:25,2^^=-=b a 。

数学建模模拟试题及参考答案

数学建模模拟试题及参考答案

《数学建模》模拟试题一、(02')人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少。

二、(02')雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在六题中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式。

三、(03')要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学,模型讨论是否跑都越快,淋雨量越少。

将人体简化成一个长方体,高m a 5.1=(颈部以下),宽m b 5.0=厚m c 2.0=,设跑步距离,1000m d =跑步最大速度s m v m /5=,雨速s m u /4= ,降雨量h cm w /2=,记跑步速度为v ,按以下步骤进行讨论;(1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量(2)雨从迎面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为θ,如图1建立总淋雨量与速度v 及参数θ,,,,,,w u d c b a 之间的关系,问速度v 多大,总淋雨量最少,计算030,0==θθ时的总淋雨量。

(3))雨从背面吹来,雨线方向与跑步方向在同一铅直平面内,且与人体的夹角为∂,如图2建立总淋雨量与速度v 及参数∂,,,,,,w u d c b a 之间的关系,问速度v 多大,总淋雨量最少,计算030=θ时的总淋雨量。

四、(03')建立铅球掷远模型,不考虑阻力,设铅球初速度为v ,出手高度为h 出手角度为α(与地面夹角),建立投掷距离与α,,h v 的关系式,并在h v ,一定的条件下求最佳出手角度。

参考答案一、人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。

数学建模习题及答案

数学建模习题及答案

第一部分课后习题1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。

学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。

(2)2.1节中的Q值方法。

(3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。

你能解释这种方法的道理吗。

如果委员会从10人增至15人,用以上3种方法再分配名额。

将3种方法两次分配的结果列表比较。

(4)你能提出其他的方法吗。

用你的方法分配上面的名额。

2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。

比如洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。

试用比例方法构造模型解释这个现象。

(1)分析商品价格C与商品重量w的关系。

价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。

(2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w的增加c减少的程度变小。

解释实际意义是什么。

3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。

假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):先用机理分析建立模型,再用数据确定参数4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应多大(如图)。

若知道管道长度,需用多长布条(可考虑两端的影响)。

如果管道是其他形状呢。

5.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便、有效的排列方法,使加工出尽可能多的圆盘。

数学建模试题(带答案)大全

数学建模试题(带答案)大全

(14 分)
得分
四、(满分 10 分) 雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度 g 有关,其中粘
滞系数的量纲[ ]= L1MT 1 1,用量纲分析方法给出速度 v 的表达式.
解:设 v , , , g 的关系为 f ( v , , , g ) =0.其量纲表达式为
[ v ]=LM0T-1,
学分 5 4 4
4
数据结构
3
5
应用统计
4
6
计算机模拟 3
7
计算机编程 2
8
预测理论
2
9
数学实验
3
所属类别 数学 数学 数学;运筹学
数学;计算机 数学;运筹学
计算机;运筹学 计算机 运筹学 运筹学;计算机
先修课要求
微积分;线性代 数 计算机编程 微积分;线性代 数 计算机编程
应用统计 微积分;线性代 数
由 U 0, U 0 可得到最优价格:
p1
p2
1
T
1
3T
p1 2b [a b(q0
)] 4
P2 2b [a b(q0 4 )]
前期销售量
T、(2 a
0

bp1
)dt
后期销售量
T
T /2 (a p2 )dt
总销售量
Q0
=
aT
bT 2
(
p1
p2 )
在销售量约束条件下 U 的最大值点为
~p1
a b
Q0 bT
T 8
,
P~2
a b
Q0 bT
T 8
7. (1)雨水淋遍全身, s 2(ab bc ac) 2*(1.5*0.5 0.5*0.2 1.5*0.2) 2.2m2

数学建模3D试题及答案

数学建模3D试题及答案

数学建模3D试题及答案
试题:
1. 假设一个立方体的体积为27立方厘米,求其边长。

2. 一个球体的半径为3厘米,求其表面积。

3. 已知一个圆柱体的底面半径为2厘米,高为5厘米,求其体积。

4. 一个长方体的长、宽、高分别为4厘米、3厘米、2厘米,求其对
角线的长度。

5. 一个正四面体的边长为a,求其体积。

答案:
1. 立方体的体积公式为V=a³,其中a为边长。

已知体积V=27立方厘米,所以a³=27,解得a=3厘米。

2. 球体的表面积公式为S=4πr²,其中r为半径。

已知半径r=3厘米,所以S=4π×3²=36π平方厘米。

3. 圆柱体的体积公式为V=πr²h,其中r为底面半径,h为高。

已知
底面半径r=2厘米,高h=5厘米,所以V=π×2²×5=20π立方厘米。

4. 长方体对角线的长度公式为d=√(l²+w²+h²),其中l、w、h分
别为长、宽、高。

已知长l=4厘米,宽w=3厘米,高h=2厘米,所以
d=√(4²+3²+2²)=√(16+9+4)=√29厘米。

5. 正四面体的体积公式为V=(a³√2)/12,其中a为边长。

所以体积V=(a³√2)/12。

小学数学建模试题及答案

小学数学建模试题及答案

小学数学建模试题及答案
一、选择题
1. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是多少平方厘米?
A. 50
B. 100
C. 150
D. 200
答案:B
2. 一个班级有40名学生,其中男生人数是女生人数的两倍,那么这个班级有多少名男生?
A. 16
B. 20
C. 24
D. 28
答案:C
二、填空题
3. 如果一个数乘以3后再加上5等于22,那么这个数是______。

答案:5
4. 一个数的一半加上3等于9,那么这个数是______。

答案:12
三、解答题
5. 一个水池,每天注入水量是前一天的两倍,第一天注入了1升水。

请问第五天注入了多少升水?
答案:第五天注入了32升水。

6. 小明有若干个苹果,他给小华一半,然后又给小华两个,最后自己剩下3个。

问小明最初有多少个苹果?
答案:小明最初有10个苹果。

四、应用题
7. 一个农场有鸡和兔子共35只,脚的总数是94只。

问农场上有多少只鸡和多少只兔子?
答案:农场上有23只鸡和12只兔子。

8. 一个水果店早上卖出了苹果和橘子共100个,其中苹果的数量是橘子的两倍。

问水果店早上卖出了多少个苹果和橘子?
答案:水果店早上卖出了66个苹果和34个橘子。

(完整版)数学建模试卷(附答案)

(完整版)数学建模试卷(附答案)

2.设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元.3.在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关: (1)参加展览会的人数n ;(2)气温T 超过10℃;(3)冰淇淋的售价由此建立的冰淇淋销量的比例模型应为 。

二、简答题:(25分)1、建立数学模型的基本方法有哪些?写出建模的一般步骤。

(5分)2、 写出优化模型的一般形式和线性规划模型的标准形式。

(10分) 三、(每小题15分,共60分)1、设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。

2、1968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。

随后,美国又从澳大利亚引入了介壳虫的天然捕食者——澳洲瓢虫。

后来,DDT 被普通使用来消灭害虫,柠檬园主想利用DDT 进一步杀死介壳虫。

谁料,DDT 同样杀死澳洲瓢虫。

结果,介壳虫增加起来,澳洲瓢虫反倒减少了。

试建立数学模型解释这个现象。

3.建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的捕捞量数学建模 参考答案2.约40.18763.p T Kn N /)10(-=,(T ≥10℃),K 是比例常数 二、1、建立数学模型的基本方法:机理分析法,统计分析法,系统分析法2、优化模型的一般形式将一个优化问题用数学式子来描述,即求函数 ,在约束条件下的最大值或最小值,其中 为设计变量(决策变量), 为目标函数为可行域三、1、解:设Pn 表示t=n 时的市场价格,由供求平衡可知:)()(1n n p f p =-ϕ9431+-=+-n n kp p即: kp k p n n 531+-=- .,...,,,)(m i h i 210==x )(x f u =.,...,,),)(()(p i g g i i 2100=≥≤x x x)(x f Ω∈x Ω∈=x x f u )(max)min(or .,...,,,)(..m i h t s i 210 ==x .,...,,),)(()(p i g g i i 2100=≥≤x x经递推有:kk p kkk k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑Λ0p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。

建模数学试题及答案

建模数学试题及答案

建模数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是线性方程的标准形式?A. \( ax + by = c \)B. \( ax^2 + by^2 = c \)C. \( ax^3 + by^3 = c \)D. \( ax + by + cz = d \)答案:A2. 函数 \( f(x) = x^2 \) 的导数是什么?A. \( 2x \)B. \( x^2 \)C. \( x \)D. \( 1 \)答案:A3. 以下哪个是二阶微分方程?A. \( y' = 2x \)B. \( y'' = 2x \)C. \( y = 2x \)D. \( y' + y = 2x \)答案:B4. 积分 \( \int x^2 dx \) 的结果是?A. \( \frac{x^3}{3} + C \)B. \( x^3 + C \)C. \( 2x^2 + C \)D. \( 3x^2 + C \)答案:A5. 以下哪个是矩阵?A. \( [a] \)B. \( (a, b) \)C. \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \)D. \( \{a, b\} \)答案:C6. 以下哪个是概率论中的随机变量?A. 一个固定的数字B. 一个确定的函数C. 一个可能取不同值的变量D. 一个常数答案:C7. 以下哪个是线性代数中的基本概念?A. 函数B. 微分C. 向量空间D. 积分答案:C8. 函数 \( f(x) = \sin(x) \) 的不定积分是什么?A. \( -\cos(x) + C \)B. \( \cos(x) + C \)C. \( \sin(x) + C \)D. \( \tan(x) + C \)答案:B9. 以下哪个是微分方程?A. \( y = 2x \)B. \( y' = 2x \)C. \( y'' = 2x \)D. \( y''' = 2x \)答案:B10. 以下哪个是统计学中的基本概念?A. 函数B. 微分C. 样本D. 积分答案:C二、填空题(每题2分,共20分)1. 线性方程 \( ax + by = c \) 的斜率是 _______。

高中数学模型试题及答案

高中数学模型试题及答案

高中数学模型试题及答案一、选择题(每题5分,共20分)1. 已知函数f(x)=2x^2-3x+1,下列说法正确的是:A. 函数在x=1处取得最小值B. 函数在x=1处取得最大值C. 函数在x=-1处取得最小值D. 函数在x=-1处取得最大值答案:A2. 一个等差数列的前三项分别为2,5,8,那么这个数列的第五项是:A. 11B. 12C. 13D. 14答案:B3. 若a,b,c是三角形的三边,且满足a^2+b^2=c^2,则三角形的形状是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B4. 已知圆的方程为x^2+y^2-6x-8y+24=0,圆心坐标为:A. (3, 4)B. (-3, -4)C. (3, -4)D. (-3, 4)答案:A二、填空题(每题5分,共20分)5. 函数y=x^3-3x^2+4x-5的导数是_______。

答案:3x^2-6x+46. 已知等比数列的前三项分别为1,2,4,则该数列的通项公式为_______。

答案:2^(n-1)7. 一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是_______。

答案:58. 已知直线y=2x+1与抛物线y=x^2-2x+3相交于两点,这两点的横坐标之和为_______。

答案:2三、解答题(每题10分,共60分)9. 已知函数f(x)=x^3-3x^2+2x+1,求函数的极值点。

答案:函数的一阶导数为f'(x)=3x^2-6x+2,令f'(x)=0,解得x=1和x=2/3。

计算二阶导数f''(x)=6x-6,当x=1时,f''(1)=0,无法判断极值;当x=2/3时,f''(2/3)>0,因此x=2/3是极小值点,函数在x=2/3处取得极小值。

10. 已知等差数列{an}的前三项分别为1,4,7,求该数列的前n项和Sn。

答案:等差数列的通项公式为an=1+3(n-1)=3n-2,前n项和公式为Sn=n(a1+an)/2=n(1+3n-2)/2=(3n^2-n)/2。

数学建模课程模拟试卷与解答

数学建模课程模拟试卷与解答

数学建模模拟试卷与参考解答21 等分酒问题现有一只装满8斤酒的瓶子和两只分别装5斤和3斤酒的空瓶,如何才能将这8斤酒分成两等份?参考解答:手工操作法:设状态向量(a,b,c),其中a代表可装8斤酒的瓶子,b代表可装5斤酒的瓶子,c 代表可装3斤酒的瓶子。

该问题转化为如何将初始状态(8,0,0)达到目标状态(4,4,0).其操作过程必须满足条件:任何两瓶之间操作必须满足其中一个瓶子清空为0或另一个装满。

下面是一个实现步骤:(8,0,0)->(3,5,0)->(3,2,3)->(6,2,0)->(6,0,2)->(1,5,2)->(1,4,3)->(4,4,0)(共经7步操作)2 某工厂的生产流水线需要一种零件,该零件需要订货得到。

已知:(1) 该零件批量订货的每次订货费为5000元。

(2)每个零件的费用为1元。

(3)每个零件每个月的存储费为0.2元。

若该公司平均每月需求量为6000件。

求该公司每年订货几次使总费用最少。

图11.1 不允许缺货的订货存储示意图参考解答:这里我们考虑一般模型。

设单位时间内对零件的需求量为D 件,每次订货量为Q 件,订货的周期为T 。

单位时间的存储费为p C 元。

为方便起见,这里我们把零件的需求看作连续均匀来处理。

考察该模型,厂家开始订货Q 件,然后按单位时间消耗D 件的规律减少,直到为0,完成一个周期,然后重新订货。

费用的产生包括每次的订货费,每天剩余零件的存储费。

还有零件的购买费用。

由于一年内总需求量为常数,即零件的购买费为常数,所以在模型中可暂不考虑购买费用。

一个周期T 内的存储费为1.2p C Q T ,订货费为D C 。

如图11.1,则一个周期T 内的总费用为:1.2p D ST C Q T C =+ (1) 则单位时间内的平均费用为:1//2p D TC ST T C Q C T ==+ (2) 由于 Q T D=(3) .12D p C D TC C Q Q=+ (4) 我们的目的是求平均费用TC 最小时的订货量Q 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学建模》模拟试题
一、(02')
人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少。

二、(02')
雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在六题中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式。

三、(03')
要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学,模型讨论是否跑都越快,淋雨量越少。

将人体简化成一个长方体,高m a 5.1=(颈部以下),宽m b 5.0=厚m c 2.0=,设跑步距离
,1000m d =跑步最大速度s m v m /5=,雨速s m u /4= ,降雨量h cm w /2=,记跑步速度为v ,按以下步骤进行讨论;
(1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量
(2)雨从迎面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为θ,如图1建立总淋雨量与速度v 及参数θ,,,,,,w u d c b a 之间的关系,问速度v 多大,总淋雨量最少,计算0
30,0==θθ时的总淋雨量。

(3))雨从背面吹来,雨线方向与跑步方向在同一铅直平面内,且与人体的夹角为∂,如图2建立总淋雨量与速度v 及参数∂,,,,,,w u d c b a 之间的关系,问速度v 多大,总淋雨量最少,计算030=θ时的总淋雨量。

四、(03')
建立铅球掷远模型,不考虑阻力,设铅球初速度为v ,出手高度为h 出手角度为α(与地面夹角),建立投掷距离与α,,h v 的关系式,并在h v ,一定的条件下求最佳出手角度。

参考答案
一、人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸
的状态可用()4321,,,x x x x s =表示。

记s 的反状态为()4321'1,1,1,1x x x x s ----=,允许
状态集合为()()()()(){}0,1,0,1,1,1,0,1,1,0,1,1,0,1,1,1,1,1,1,1=S 及他们的5个反状态 决策为乘船方案,记作()4321,,,u u u u d =,当i 在船上时记1=i u ,否则记0=i u ,允许决策集合为()()()(){}0,0,0,1,1,0,0,1,0,1,0,1,0,0,1,1=D
记第k 次渡河前此岸的状态为k s ,第k 次渡河的决策为k d ,则状态转移律为()k k
k k d s s 11-+=+,设计安全过河方案归结为求决策序列,,,,21D d d d n ∈ ,使状态S s k ∈按状态转移律由初始状态()1,1,1,11=s 经n 步达到()0,0,0,01=+n s 。

一个可行的方案
二、1][-=LT v ,M L 3][-=ρ,[]11--=T ML μ,2][-=LT g .
由量纲分析设(),0,,,=g v f μρ 解得(),,0,2/12/1121--==g vr F πππ
2/112/12/32g r --=μρπ于是()μρϕ/2/12/3g r rg v =,ϕ是未定函数.
三、
1) 全身面积22.222m bc ac ab s =++=,淋雨时间s v d
t m 200==,降雨量s m h cm 181024-==ω,所以总淋雨量44.2≈=ωst Q 升
2) 顶部淋雨量v bcd Q θωcos 1=;雨速水平分量θsin u ,方向与v 相反,合速度v u +θsin ,迎面单位时间、单位面积的淋雨量()u v u +θωsin ,迎面淋雨量
()uv v u abd Q +=θωsin 2,所以总淋雨量()v v u a cu u bd Q Q Q ++=+=θθωsin cos 21。

m v v =时Q 最小,15.1,0≈=Q θ升。

55.1,300≈=Q θ升。

3) 与2)不同的是,合速度为v u -αsin ,于是总淋雨量
()()()()⎪⎪⎩⎪⎪⎨⎧>+-=-+≤-+=-+=αααωααωαααωααωsin ,sin cos sin cos sin ,sin cos sin cos u v v
av a c u u bd v u v a cu u bd u v v av a c u u bd v v u a cu u bd Q ,若,0sin cos <-ααa c 即a
c >αtan ,则αsin u v =时Q 最小。

否则m v v =时Q 最小。

当24.0,2,5.12.0tan ,300≈=>=Q s
m v αα升最小。

四、在图中坐标下铅球运动方程为
()()()().sin 0,cos 0,0,00,,0ααv y v x h y x g y
x ====-== 解出()t x ,()t y 后,可以求得铅球掷远为
,cos 2sin cos sin 2/12222ααααv g h g v g v R ⎪⎪⎭
⎫ ⎝⎛++=这个关系还可表为()ααtan cos 2222R h v g R +=
由此计算0*=ααd dR
,得最佳出手角度()gh v v +=-21*2sin α,和最佳成绩gh v g
v R 22*+=设m h 5.1=,s m v /10=,则0*4.41≈α,m R 4.11*=。

相关文档
最新文档