《复变函数》(西安交大)习题解答--第2章习题

合集下载

复变函数第二章习题-答案

复变函数第二章习题-答案

故 Re(
五、证明题(每题10分,2题共20分)
1、试证下列函数 f ( z ) e x ( x cos y y sin y) ie x ( y cos y ix sin y) 在 z 平面上解析,
并分别求出其导数.
2、若函数 f ( z ) 与 f z 在区域 D 内都解析,试证: f ( z ) 在区域 D 内必为常数.
5、解 令 z a bi , 则
w z 1 2 2(a 1 bi) 2(a 1) 2b 1 1 1 . 2 2 2 2 2 2 z 1 z 1 (a 1) b (a 1) b (a 1) b z 1 2(a 1) z 1 2b ) 1 ) , Im( . 2 2 2 2 z 1 (a 1) b z 1 (a 1) b
2、若函数 f ( z ) u( x, y) iv( x, y) 在 D 内连续,则 u( x,y)与 v( x,y)都在 D 内连续. ( ) 3、若函数 f( z)在 z0 解析,则 f( z)在 z0 连续. 4、若 f( z)在区域 D 内解析,则|f( z)|也在 D 内解析. 5、cos z 与 sin z 的周期均为 2k . ( ( ( ) ) )
1、×
2、√
3、√ 4、×
5、√
三、填空题(每题2分,10题共20分)
1、 1 2i ,2 i
1 2、 Re( w ) 2
6、 ln 5 i arg tg

4 2k 1 π 3
7、 i 8、 e 2 k
( k 0,1,2,)
3、 7 2i 4、 1 i 5、
由柯西-黎曼定理,故 f z 在 z 平面上解析,且

复变函数习题答案第2章习题详解

复变函数习题答案第2章习题详解

第二章习题详解1. 利用导数定义推出: 1)()1-=n n nzz '(n 为正整数)解: ()()()()()z z z z z n n z nz z z z z z z nn n n n z n n z n∆∆∆∆∆∆∆∆-⎥⎦⎤⎢⎣⎡++-++=-+=--→→ 22100121limlim '()()11210121----→=⎥⎦⎤⎢⎣⎡++-+=n n n n z nz z z z n n nz ∆∆∆ lim 2) 211z z -=⎪⎭⎫⎝⎛'解: ()()2000111111z zz z z z z z z z z z z z z z z -=+-=+-=-+=⎪⎭⎫ ⎝⎛→→→∆∆∆∆∆∆∆∆∆lim lim lim '2. 下列函数何处可导?何处解析? 1)()iy x z f -=2解:设()iv u z f +=,则2x u =,y v -=x x u 2=∂∂,0=∂∂y u ,0=∂∂xv,1-=∂∂y v 都是连续函数。

只有12-=x ,即21-=x 时才满足柯西—黎曼方程。

()iy x z f -=∴2在直线21-=x 上可导,在复平面内处处不解析。

2)()3332y i x z f +=解:设()iv u z f +=,则32x u =,33y v =26x x u =∂∂,0=∂∂y u ,0=∂∂xv ,29y y v =∂∂都是连续函数。

只有2296y x =,即032=±y x 时才满足柯西—黎曼方程。

()3332y i x z f +=∴在直线032=±y x 上可导,在复平面内处处不解析。

3)()y ix xy z f 22+=解:设()iv u z f +=,则2xy u =,y x v 2=2y x u =∂∂,xy y u 2=∂∂,xy xv 2=∂∂,2x y v =∂∂都是连续函数。

西安交通大学复变函数习题

西安交通大学复变函数习题

西安交通大学复变函数习题第一章复数与复变函数一、选择题1.当ii z -+=11时,5075100z z z ++的值等于()(A )i (B )i - (C )1 (D )1- 2.设复数z 满足3)2(π=+z arc ,65)2(π=-z arc ,那么=z ()(A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2123+- 3.复数)2(tan πθπθ<<-=i z 的三角表示式是()(A ))]2sin()2[cos(sec θπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是()(A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+zz ,则动点),(y x 的轨迹是()(A )圆(B )椭圆(C )双曲线(D )抛物线6.一个向量顺时针旋转3π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是()(A )2 (B )i 31+(C )i -3 (D )i +37.使得22z z =成立的复数z 是()(A )不存在的(B )唯一的(C )纯虚数(D )实数8.设z 为复数,则方程i z z +=+2的解是()(A )i +-43 (B )i +43 (C )i -43 (D )i --439.满足不等式2≤+-iz iz 的所有点z 构成的集合是()(A )有界区域(B )无界区域(C )有界闭区域(D )无界闭区域 10.方程232=-+i z 所代表的曲线是()(A )中心为i 32-,半径为2的圆周(B )中心为i 32+-,半径为2的圆周(C )中心为i 32+-,半径为2的圆周(D )中心为i 32-,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为()(A )221=+-z z (B )433=--+z z (C ))1(11<=--a azaz (D ))0(0>=-+++c c a a z a z a z z12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ()(A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.00)Im()Im(lim0z z z z x x --→()(A )等于i (B )等于i - (C )等于0 (D )不存在14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是()(A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续(C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续15.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为()(A )3- (B )2- (C )1- (D )1二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg3.设43)arg(,5π=-=i z z ,则=z 4.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为 5.以方程i z 1576-=的根的对应点为顶点的多边形的面积为6.不等式522<++-z z 所表示的区域是曲线的内部7.方程1)1(212=----zi iz 所表示曲线的直角坐标方程为8.方程i z i z +-=-+221所表示的曲线是连续点和的线段的垂直平分线9.对于映射zi =ω,圆周1)1(22=-+y x 的像曲线为 10.=+++→)21(lim 421z z iz三、若复数z 满足03)21()21(=+++-+z i z i z z ,试求2+z 的取值范围.四、设0≥a ,在复数集C 中解方程a z z =+22.五、设复数i z ±≠,试证21z z+是实数的充要条件为1=z 或0)(=z IM .六、对于映射)1(21zz +=ω,求出圆周4=z 的像. 七、试证1.)0(0221≠≥z z z 的充要条件为2121z z z z +=+;2.)),,2,1,,,0(021n j k j k z z z j =≠≠≥的充要条件为 n n z z z z z z +++=+++ 2121.八、若0)(lim 0≠=→A z f x x ,则存在0>δ,使得当δ<-<00z z 时有A z f 21)(>. 九、设iy x z +=,试证y x z y x +≤≤+2.十、设iy x z +=,试讨论下列函数的连续性:1.??=≠+=0,00,2)(22z z y x xyz f2.??=≠+=0,00,)(223z z y x y x z f .第二章解析函数一、选择题:1.函数23)(z z f =在点0=z 处是( )(A )解析的(B )可导的(C )不可导的(D )既不解析也不可导 2.函数)(z f 在点z 可导是)(z f 在点z 解析的( )(A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既非充分条件也非必要条件3.下列命题中,正确的是( )(A )设y x ,为实数,则1)cos(≤+iy x(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析(D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析 4.下列函数中,为解析函数的是( )(A )xyi y x 222-- (B )xyi x +2(C ))2()1(222x x y i y x +-+- (D )33iy x +5.函数)Im()(2z z z f =在=z 处的导数( )(A )等于0 (B )等于1 (C )等于1- (D )不存在6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常数=a ( )(A )0 (B )1 (C )2 (D )2-7.如果)(z f '在单位圆1<="" bdsfid="213" f="" p="" 内≡)(z="" 内处处为零,且1)0(-="f" ,那么在1(A )0 (B )1 (C )1- (D )任意常数 8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是(A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数(B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数(C )若)(z f与)(z f 在D 内解析,则)(z f 在D 内是一常数(D )若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数 9.设22)(iy x z f +=,则=+')1(i f ( )(A )2 (B )i 2 (C )i +1 (D )i 22+ 10.ii 的主值为( )(A )0 (B )1 (C )2πe (D )2π-e11.z e 在复平面上( )(A )无可导点(B )有可导点,但不解析(C )有可导点,且在可导点集上解析(D )处处解析 12.设z z f sin )(=,则下列命题中,不正确的是( )(A ))(z f 在复平面上处处解析(B ))(z f 以π2为周期(C )2)(iziz e e z f --= (D ))(z f 是无界的13.设α为任意实数,则α1( )(A )无定义(B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于1 14.下列数中,为实数的是( )(A )3)1(i - (B )i cos (C )i ln (D )i e 23π-15.设α是复数,则( )(A )αz 在复平面上处处解析(B )αz 的模为αz(C )αz 一般是多值函数(D )αz 的辐角为z 的辐角的α倍二、填空题1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(lim2.设iv u z f +=)(在区域D 内是解析的,如果v u +是实常数,那么)(z f 在D 内是 3.导函数xvix u z f ??+??=')(在区域D 内解析的充要条件为 4.设2233)(y ix y x z f ++=,则=+-')2323(i f 5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f 6.函数)Re()Im()(z z z z f -=仅在点=z 处可导7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 8.复数ii 的模为 9.=-)}43Im{ln(i 10.方程01=--ze 的全部解为三、设),(),()(y x iv y x u z f +=为iyx z +=的解析函数,若记)2,2()2,2(),(izz z z iv i z z z z u z z w -++-+=,则0=??z w .四、试证下列函数在z 平面上解析,并分别求出其导数 1.;sinh sin cosh cos )(y x i y x z f -=2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f xx++-=五、设023=+-ze zw w ,求22,dzwd dz dw .六、设??=≠++=0,00,)()(422z z y x iy x xy z f 试证)(z f 在原点满足柯西-黎曼方程,但却不可导.七、已知22y x v u -=-,试确定解析函数iv u z f +=)(. 八、设s 和n 为平面向量,将s按逆时针方向旋转2π即得n .如果iv u z f +=)(为解析函数,则有s vn u n v s u ??-==??,(s ??与n分别表示沿s ,n 的方向导数). 九、若函数)(z f 在上半平面内解析,试证函数)(z f 在下半平面内解析. 十、解方程i z i z 4cos sin =+.第三章复变函数的积分一、选择题:1.设c 为从原点沿x y =2至i +1的弧段,则=+?cdz iy x )(2( )(A )i 6561- (B )i 6561+- (C )i 6561-- (D )i 6561+ 2.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc+-2)1)(1(为( ) (A )2i π (B )2iπ- (C )0 (D )(A)(B)(C)都有可能3.设1:1=z c 为负向,3:2=z c 正向,则=?+=dz zzc c c 212sin ( ) (A )i π2- (B )0 (C )i π2 (D )i π4 4.设c 为正向圆周2=z ,则=-?dz z z)1(cos ( ) (A )1sin - (B )1sin (C )1sin 2i π- (D )1sin 2i π5.设c 为正向圆周21=z ,则=--?dz z z z c23)1(21cos( )(A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-6.设ξξξξd ze zf ?=-=4)(,其中4≠z ,则=')i f π(( )(A )i π2- (B )1- (C )i π2 (D )17.设)(z f 在单连通域B 内处处解析且不为零,c 为B 内任何一条简单闭曲线,则积分dz z f z f z f z f c+'+'')()()(2)( ( )(A )于i π2 (B )等于i π2- (C )等于0 (D )不能确定8.设c 是从0到i 21π的直线段,则积分=?cz dz ze ()(A )21eπ-(B) 21eπ-- (C)i e21π+(D) i e21π-9.设c 为正向圆周0222=-+x y x ,则=-?dz z z c1)4sin(2π( ) (A )i π22(B )i π2 (C )0 (D )i π22- 10.设c 为正向圆周i a i z ≠=-,1,则=-?cdz i a zz 2)(cos ( ) (A )ie π2 (B )eiπ2 (C )0 (D )i i cos 11.设)(z f 在区域D 内解析,c 为D 内任一条正向简单闭曲线,它的内部全属于D .如果)(z f 在c 上的值为2,那么对c 内任一点0z ,)(0z f ( )(A )等于0 (B )等于1 (C )等于2 (D )不能确定 12.下列命题中,不正确的是( ) (A )积分=--ra z dz az 1的值与半径)0(>r r 的大小无关(B )2)(22≤+?cdz iy x,其中c 为连接i -到i 的线段(C )若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析(D )若)(z f 在10<<<="r" 的积分等于零,则<="">)(z f 在0=z 处解析13.设c 为任意实常数,那么由调和函数22y x u -=确定的解析函数iv u z f +=)(是 ( )(A)c iz +2(B ) ic iz +2(C )c z +2(D )ic z +214.下列命题中,正确的是( )(A )设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v = (B )解析函数的实部是虚部的共轭调和函数(C )若iv u z f +=)(在区域D 内解析,则xu为D 内的调和函数(D )以调和函数为实部与虚部的函数是解析函数15.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( )(A )),(),(y x iu y x v + (B )),(),(y x iu y x v -(C )),(),(y x iv y x u - (D )xv i x u ??-??二、填空题1.设c 为沿原点0=z 到点i z +=1的直线段,则=?cdz z 22.设c 为正向圆周14=-z ,则=-+-?c dz z z z 22)4(233.设?=-=2)2sin()(ξξξξπd zz f ,其中2≠z ,则=')3(f 4.设c 为正向圆周3=z ,则=+?cdz zzz 5.设c 为负向圆周4=z ,则=-?c zdz i z e 5)(π 6.解析函数在圆心处的值等于它在圆周上的 7.设)(z f 在单连通域B 内连续,且对于B 内任何一条简单闭曲线c 都有0)(=?c dz z f ,那么)(z f 在B 内8.调和函数xy y x =),(?的共轭调和函数为9.若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a10.设),(y x u 的共轭调和函数为),(y x v ,那么),(y x v 的共轭调和函数为三、计算积分 1.=+-Rz dz z z z)2)(1(62,其中1,0≠>R R 且2≠R ; 2.=++22422z z z dz.四、设)(z f 在单连通域B 内解析,且满足)(1)(1B x z f ∈<-.试证1.在B 内处处有0)(≠z f ;2.对于B 内任意一条闭曲线c ,都有0)()(=''?cdz z f z f 五、设)(z f 在圆域R a z <-内解析,若)0()()(max R r r M z f ra z <<==-,则),2,1()(!)()n rr M n a fnn . 六、求积分?=1z zdz z e ,从而证明πθθπθ=?0cos )cos(sin d e . 七、设)(z f 在复平面上处处解析且有界,对于任意给定的两个复数b a ,,试求极限=+∞→--R z R dz b z a z z f ))(()(lim并由此推证)()(b f a f =(刘维尔Liouville 定理).八、设)(z f 在)1(><="" bdsfid="471" p="" r="" z="" 内解析,且2)0(,1)0(="=f f ,试计算积分</p><p>?</p><p>=+1</p><p>22</p><p>)</p><p>()1(z dz z</p><p>z f z 并由此得出</p><p>?</p><p>π</p><p>θθθ</p><p>20</p><p>2</p> <p>)(2</p><p>cos d e f i 之值.</p><p>九、设iv u z f +=)(是z 的解析函数,证明</p><p>2</p><p>222</p><p>2</p><p>22</p><p>2</p> <p>2)</p><p>)(1()</p><p>(4)</p><p>)(1ln()</p><p>)(1ln(z f z f y z f x z f +">+?++?.十、若)(22y x u u +=,试求解析函数iv u z f +=)(.第四章级数一、选择题:1.设),2,1(4)1( =++-=a n n ,则n n a ∞→li m ( ) (A )等于0 (B )等于1 (C )等于i (D )不存在2.下列级数中,条件收敛的级数为( )(A )∑∞=+1)231(n ni (B )∑∞=+1!)43(n n n i(C )∑∞=1n nni (D )∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为( )(A )∑∞=+1)1(1n n in(B )∑∞=+-1]2)1([n n n i n (C)∑∞=2ln n nn i (D )∑∞=-12)1(n nn n i 4.若幂级数∑∞=0n n nz c在i z 21+=处收敛,那么该级数在2=z 处的敛散性为( )(A )绝对收敛(B )条件收敛(C )发散(D )不能确定 5.设幂级数∑∑∞=-∞=01,n n n n nn znc z c 和∑∞=++011n n n z n c 的收敛半径分别为321,,R R R ,则321,,R R R 之间的关系是( )(A )321R R R << (B )321R R R >> (C )321R R R <= (D )321R R R == 6.设10<∑∞=02n n n z q 的收敛半径=R ( )(A )q (B )q1(C )0 (D )∞+ 7.幂级数∑∞=1)2(2sinn n z n n π的收敛半径=R ( ) (A ) 1 (B )2 (C )2 (D )∞+8.幂级数∑∞=++-011)1(n n n z n 在1<="" bdsfid="544" p="" 内的和函数为="" (a="" (b="" ))1ln(z="">(D )z +11ln(D) z-11ln 9.设函数z e z cos 的泰勒展开式为∑∞=0n n n z c ,那么幂级数∑∞=0n nn z c 的收敛半径=R ( )(A )∞+ (B )1 (C )2π(D )π 10.级数+++++22111z z z z的收敛域是( ) (A )1<<<="">11.函数21z在1-=z 处的泰勒展开式为( ) (A ))11()1()1(11<++-∑∞=-z z n n n n(B ))11()1()1(111<++-∑∞=--z z n n n n(C ))11()1(11<++-∑∞=-z z n n n (D ))11()1(1 1<++∑∞=-z z n n n12.函数z sin ,在2π=z 处的泰勒展开式为( )(A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n n n(C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n(D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n n n13.设)(z f 在圆环域201:R z z R H <-<内的洛朗展开式为∑∞-∞=-n n nz z c)(0,c 为H 内绕0z 的任一条正向简单闭曲线,那么=-?c dz z z z f 20)()(( )(A)12-ic π (B )12ic π (C )22ic π (D ))(20z f i 'π14.若?--==-+= ,2,1,4,2,1,0,)1(3n n c nn n n ,则双边幂级数∑∞-∞=n nn z c 的收敛域为( ) (A )3141<<<="">+∞<<="" 41="" bdsfid="628" p="" (d="" )+∞<115.设函数)4)(1(1)(++=z z z z f 在以原点为中心的圆环内的洛朗展开式有m 个,那么=m ( )(A )1 (B )2 (C )3 (D )4 二、填空题1.若幂级数∑∞=+0)(n n ni z c在i z =处发散,那么该级数在2=z 处的收敛性为. 2.设幂级数∑∞=0n nnz c与∑∞=0)][Re(n n n z c 的收敛半径分别为1R 和2R ,那么1R 与2R 之间的关系是. 3.幂级数∑∞=+012)2(n n nz i 的收敛半径=R4.设)(z f 在区域D 内解析,0z 为内的一点,d 为0z 到D 的边界上各点的最短距离,那么当d z z <-0时,∑∞=-=)()(n nn z z cz f 成立,其中=n c . 5.函数z arctan 在0=z 处的泰勒展开式为. 6.设幂级数∑∞=0n nnz c的收敛半径为R ,那么幂级数∑∞=-0)12(n n n nz c 的收敛半径为.7.双边幂级数∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 的收敛域为. 8.函数zze e 1+在+∞<<<0内的洛朗展开式为∑∞<="" bdsfid="683" cot="" p="" z="" 在原点的去心邻域r="" .="">-∞=n n nz c,那么该洛朗级数收敛域的外半径=R . 10.函数)(1i z z -在+∞<-三、若函数211z z --在0=z 处的泰勒展开式为∑∞=0n nn z a ,则称{}n a 为菲波那契(Fibonacci)数列,试确定n a 满足的递推关系式,并明确给出n a 的表达式.四、试证明 1.);(11+∞<≤-≤-z ez ee zzz2.);1()1(1)3(<-≤-≤-z ze e z e z五、设函数)(z f 在圆域R z <内解析,∑==nk kk n z k f S 0)(!)0(试证 1.)()(21)(111R r z d z z f iz S n rn n n <<--=+=++?ξξξξξπξ.2.)()()(2)((11R r z d z f iz z S z f r n n n <<-=-?=++ξξξξπξ)。

复变函数第二章答案

复变函数第二章答案

32页9. 设
f ( z ) u iv 是Z的解析函数, 证明 2 | f ( z ) | )2 | f ( z )|2 (1) ( | f ( z ) | ) ( y x 证 | f ( z ) | u2 v 2 2u ux 2v v x u ux v v x | f (z) | x u2 v 2 2 u2 v 2 2u u y 2v v y u v x v ux | f (z) | 2 2 y 2 u v u2 v 2
z 0 时 ux v y , u y v x
因此 f ( z ) 在除去原点的 复平面上处处 可导 处处 解析
(4) 解
u y 1, 0, v y 0, ux 由 u y v x 得 f ( z ) Im z
f ( z ) Im z y v 0 u y,
33页16. 计算
3
i
Ln 3 ln 3 i 2k

3 e
iБайду номын сангаас
i Ln 3
e
2k [cos(ln 3) i sin(ln 3)]
k 0, 1, 2,...,
e
2k i ln 3
计算

(1 i ) i Ln(1 i ) i (1 i ) e
i
e

ln 2 ( 2k ) i 2 4
ln 2 ln 2 4 i sin ) (cos e 2 2 i 1 4) ln 2 i ( 2k ) Ln( 1 i ) Ln( 2 e
2 4
(
2k )
满足 u y v x f ( z ) x 2 iy 只有在直线 2 x 1 上可导 因此 在复平面上处处 不解析 2 2 (2) f ( z ) xy ix y 2 v x2 y 解 u xy , 2 由 ux v y 得 x y ux y , v y x 2 u y 2 xy , v x 2xy 由 u y v x 得 xy 0

西交大复变函数考查课习题及答案

西交大复变函数考查课习题及答案

西安交通大学现代远程教育考试卷及答案课 程:复变函数(A )专业班号 考试日期 年 月 日 姓 名 学号 期中期末一、单项选择题(每题2分,共20分)1、若函数()z f 在区域D 内解析,则函数()z f 在区域D 内( )A .在有限个点可导B .存在任意阶导数C .在无穷多个点可导D .存在有限个点不可导2、设()f z 在01z <<内解析且()0lim 1z zf z →=,那么 ()()Re ,0s f z =( )A .2i πB .2i π-C .1D .-13、函数()()()411++=z z z z f ,在以0=z 为中心的圆环内的洛朗展式有m 个,则m=()A .1B .2C .3D .44、下列命题正确的是( )A .i i 2<B .零的辐角是零C .仅存在一个数z,使得z z -=1D .iz z i =15、函数()z z f arctan =在0=z 处的泰勒展式为( )A .()∑∞=+-02121n n n n z (z <1) B .()∑∞=+-01221n n n nz (z <1)C .()∑∞=++-012121n n n n z (z <1)D .()∑∞=-0221n nn n z(z <1)6、在下列函数中,()0Re 0==z f s z 的是( )A .()21ze zf z -= B .()z z z z f 1sin -= C .()z z z z f cos sin += D .()ze zf z 111--= 7、设a i ≠,C :i z -=1,则()=-⎰dz i a z z C 2cos ( )A .0B .2i e π C .2ie π D .icosi8、下列函数是解析函数的为( )A .xyi y x 222--B .xyi x +2C .)2()1(222x x y i y x +-+-D .33iy x +9、下列命题中,不正确的是( )A .如果无穷远点∞是()f z 的可去奇点,那么()()Re ,0s f z ∞=B .若()f z 在区域D 内任一点0z 的邻域内展开成泰勒级数,则()f z 在D 内解析C .幂级数的和函数在收敛圆内是解析函数D .函数22e i e iω-=+将带形域()0Im z π<<映射为单位圆1ω< 10、函数()()()2222f z x y x i xy y =--+-在( )处可导。

复变函数与积分第二章(1)答案

复变函数与积分第二章(1)答案

1、函数2)(z z z f =在何处可导?何处不可导?何处解析?何处不解析? 解:2()f z zz =223223()()()()()f z zz x iy x iy x xy i x y y ==-+=+++32u x xy =+ ,23v x y y =+ 223u x y x∂=+∂ ,2u xy y ∂=∂2v xy x ∂=∂ ,223v x y y ∂=+∂ 显然只有当x=y=0时,四个偏导才能满足C-R 方程,因此函数只是在原点,即z=0处可导,但在整个复平面上处处不解析。

2、如果iv u z f +=)(为解析函数,试证u -是v 的共轭调和函数。

证明:由于()f z u iv =+是解析函数,所以有 u v x y∂∂=∂∂ ,u v y x ∂∂=-∂∂ 即()v u x y ∂∂-=∂∂ ,()v u y x ∂∂-=-∂∂ 也就是说,以v 为实部,以–u 为虚部构成的复变函数是一个解析函数,所以–u 是v 的共轭调和函数。

3、由下列条件求解析函数iv u z f +=)(。

(1) i f y x u -=-=)0(,)1(2;(2) (cos sin ),(0)0x u e x y y y f =-=。

解:(1) 2(1),(0)u x y f i =-=-由柯西-黎曼方程得 )12--=∂∂-=∂∂x y u x v ( ① y xu y v 2=∂∂-=∂∂ ② 由式①得)()1()()1(22⎰+--=+--=y g x y g dx x v将所得v 代入式②有 所以,)(2)(2c y y g y y g +=⇒=' []222222)1()(,0)0()1()1()1(2)()1(),(--==⇒-=+-⇒-=+--=++--+-=+=++--=z i z f c i ic i i f ic z i c y x i y x iv u z f cy x y x v 即又(2) (cos sin ),(0)0x u e x y y y f =-=因 []c y y e y x e c ydy ydy y y y x e cydy ydy y ydy x e cdy y e y y y x e dx c dy xu dx y u y x v y e y y y x e yv y y y y x e yu x v z f y y y y x e yu y e y y y x e xu x x y y x y y y x x x y x y x x x x x x x +-=++--=++-=++-+=+∂∂+∂∂-=+-=∂∂----=∂∂-=∂∂---=∂∂+-=∂∂⎰⎰⎰⎰⎰⎰⎰⎰cos sin )cos cos cos sin ()cos sin cos (cos )sin cos (0),(,cos )sin cos ()cos sin sin ()()cos sin sin (cos )sin cos (0000000),()0'0(则的解析性,有由因此ic y y y x ie y y y x e z f x x +-+-=)cos sin ()sin cos ()(由0,0)0(==C f 知,即z x x ze y y y x ie y y y x e z f =-+-=)cos sin ()sin cos ()(。

复变函数习题解答(第2章)

复变函数习题解答(第2章)

p90第二章习题(一)[ 1, 6, 9, 14(3), 26 ]1. 设连续曲线C : z = z(t), t∈[α, β],有z’(t0) ≠ 0 (t0∈[α, β]),试证曲线C在点z(t0)有切线.【解】首先,因为当t →t0时,(z(t) -z(t0))/(t-t0) →z’(t0) ≠ 0,故| (z(t) -z(t0))/(t-t0) | → | z’(t0)| ≠ 0,因此存在δ> 0,使得∀t∈[α, β],当0 < | t-t0 | < δ时,有| (z(t) -z(t0))/(t-t0) |≠ 0,故| z(t) -z(t0) |≠ 0,即z(t) ≠z(t0).此时,存在唯一确定的过点z(t0)以及点z(t) (t ≠t0)的割线:(y(t) -y(t0))(X-x(t0)) + (x(t) -x(t0))(Y-y(t0)) = 0.此方程等价于(y(t) -y(t0))/(t-t0) · (X-x(t0)) + (x(t) -x(t0))/(t-t0) · (Y-y(t0)) = 0.当t→t0时,有y’(t0) (X-x(t0)) + x’(t0)) (Y-y(t0)) = 0.因为z’(t0) ≠ 0,故y’(t0)2 + x’(t0)2≠ 0.直线y’(t0) (X-x(t0)) + x’(t0)) (Y-y(t0)) = 0就是曲线C在点z(t0)处的切线.[这里采用的切线的定义:切线是指割线的极限位置的直线.在这个题目的证明中,我们主要说明两点:第一,当t充分接近t0 (t≠t0),有唯一确定的割线过点z(t0)和z(t);第二,当t →t0 (t≠t0)时,过z(t0)和z(t)的割线确实有“极限位置”] 6. 若函数f(z)在区域D内解析,且满足下述条件之一,试证f(z)在D内为常数.(6.1) 在D内f’(z) = 0;【解】设f(z) = u(x, y) + i v(x, y),(x, y)∈D.由f’(z) = 0及f’(z) = u x + i v x,知u x = v x = 0;由Cauchy-Riemann方程,v y = u x = 0,u y = -v x = 0;因u x = u y = 0,故u在区域D内为常数.因v x = v y = 0,故v在区域D内为常数.所以,f(z) = u(x, y) + i v(x, y)在区域D内为常数.(6.2) ( f(z))*在D内解析;【解】因f(z) = u(x, y) + i v(x, y)在区域D内解析,由Cauchy-Riemann方程,u x = v y,v x = -u y;因( f(z))* = u(x, y) -i v(x, y)在区域D内解析,由Cauchy-Riemann方程,u x = -v y,v x = u y;因此得到u x = u y = v x = v y = 0,所以u, v都在区域D内为常数.所以,f(z) = u(x, y) + i v(x, y)在区域D内为常数.(6.3) | f(z) |在D内为常数;【解】若| f(z) |在D内恒为零,则在D内f(z) = 0 (常数).若在D内| f(z) | = c > 0,则f(z) · ( f(z))* = c2.因f(z)在D内解析且f(z) ≠ 0,故( f(z))* = c2/ f(z)在D内解析.由(2)知f(z)在区域D内为常数.(6.4) Re( f(z))或Im( f(z))在D内为常数.【解】设f(z) = u(x, y) + i v(x, y).若u(x, y) = Re( f(z))在D内为常数,则u x = u y = 0.由Cauchy-Riemann方程,v x = -u y = 0,v y = u x = 0;所以v(x, y) = Im( f(z))也在D内为常数.故f(z)在区域D内为常数.9. 试证下面的定理:设f(z) = u(r, θ) + i v(r, θ),z = r e iθ,若u(r, θ), v(r, θ)在点(r, θ)是可微的,且满足极坐标的Cauchy-Riemann方程:∂u/∂r = (1/r)∂v/∂θ,∂v/∂r = (-1/r)∂u/∂θ(r > 0),则f(z)在点z是可微的,并且f’(z) = (cosθ-i sinθ)(∂u/∂r + i∂v/∂r) = (r/z)(∂u/∂r + i∂v/∂r).【解】注意到在点(r, θ)处,因为r > 0,r, θ也是(x, y)的可微函数,并且,r x = x/r = cosθ,r y = y/r = sinθ;θx = -y/r2 = - sinθ/r,θy = x/r2 = cosθ /r.所以u, v也是(x, y)的可微函数.由求导的链锁法则,我们有u x = u r·r x + uθ·θx = ((1/r)vθ)· cosθ + (-r v r) · (- sinθ/r)= vθ · (cosθ /r) + v r · sinθ= vθ ·θy + v r ·r y= v y;以及v x = v r·r x + vθ·θx = ((-1/r)uθ)· cosθ + (r u r) · (- sinθ/r)= uθ · (- cosθ /r) + u r · (- sinθ)= - (uθ ·θy + u r ·r y)= -u y;即满足Cauchy-Riemann方程,故f(z)在点z是可微的,且f’(a) = u x + i v x = (vθ · (cosθ /r) + v r · sinθ) + i (uθ · (- cosθ /r) + u r · (- sinθ))= (r u r · (cosθ /r) + v r · sinθ) + i ((-r v r) · (- cosθ /r) + u r · (- sinθ))= (cosθ-i sinθ)(∂u/∂r + i∂v/∂r)= (r/z)(∂u/∂r + i∂v/∂r).[ r = √(x2 + y2)在(x, y) ≠ (0, 0)处有连续的偏导数,所以是可微的.θ作为(x, y)函数在(x, y) ≠ (0, 0)处的可微性的证明如下(参考第一章习题13的解答):设D1 = { z∈ | Re(z) > 0},D2 = { z∈ | Im(z) > 0},D3 = { z∈ | Im(z) < 0},D4 = { z∈ | Re(z) < 0}.则 \{0} = D1⋂D2⋂D3⋂D4.在D1上,θ = arctan(y/x) + 2k1π;在D2上,θ = arccot(x/y) + 2k2π;在D3上,θ = arccot(x/y) -π + 2k3π;在D4上,θ = arctan(y/x) + π + 2k4π.不论在那个区域D j上,θ都有连续的偏导数,因此θ在 \{0}上是可微的.] 14. 试验证:(3) lim z→ 0 ( z–z cos z )/( z– sin z ) = 3.【解】因分母z– sin z的一阶导数1 – cos z在原点处的值为0,故此题不能直接用L’Hospital法则(第2题的结论).但可对lim z→ 0 sin z / z用L’Hospital法则.开始以为这个题目应该放在后面的章节,可是终究不甘心,考虑再三,退到sin z 最原始的定义,发现可以以它的实部和虚部为实变量展开.先用L’Hospital法则,lim z→ 0 sin z / z = cos 0 = 1,得到sin z = z + o(z),z→ 0.所以1 – cos z = 2 sin 2(z/2) = 2 ( z/2 + o(z) )2 = z2/2 + o(z2),z→ 0.而sin z = sin(x + i y) = exp( i (x + i y) ) – exp( –i (x + i y) )/(2 i)= (exp(–y)(cos x + i sin x) – exp(y)(cos x–i sin x))/(2 i)= (exp(y) + exp(–y)) sin x + i (exp(y) – exp(–y)) cos x )/2注意到当k + m≥ 3时,o(x k y m) = o(| z |3),z→ 0;故sin z = (1 + y2/2 + o(y3)) (x–x3/6 + o(x4) ) + i (y + y3/6 + o(y4)) (1 –x2/2 + o(x3))= (x + i y ) – (x3 + i 3x2y– 3xy2/2 –i y3 )/6 + o(z3) = z–z3/6 + o(z3),z→ 0.所以,( z–z cos z )/( z– sin z ) = z (1 – cos z )/( z– sin z )= z (z2/2 + o(z2))/(z3/6 + o(z3)) → 3,z→ 0.26. 试证:在将z平面适当割开后,函数f(z) = ( (1 – z ) z2 )1/3能分出三个单值解析分支.并求出在点z = 2取负值的那个分支在z = i处的值.【解】根据课本p83的结论,1和0是仅有的支点,∞不是支点.所以,将z平面沿从0到1的直线段I = { z∈ | Im(z) = 0, 0 ≤ Re(z) ≤ 1 }割开后,就能保证变点z不会单绕0或1转一周,因此在G= \I上函数f(z)就能分出三个单值解析分支.设g(z) = ((1 – z ) z2 )1/3是在点z = 2取负值的那个分支.设arg g(2) = π + 2kπ ( k∈ ).又设C是G内一条从2到i的任一曲线,当变点z沿着曲线C从2到i时,z的辐角的连续增量为∆C arg z = π/2 + 2k0π ( k0∈ ),因此∆C arg (z2 )= π + 4k0π,相应地,1 –z的辐角的连续增量为∆C arg (1 –z )= 3π/2 + 2k0π ( m∈ ),所以g(z)的辐角的连续增量为∆C arg g(z) = (π + 3π/4 + 6k0π)/3 = 7π/12 + 2k0π.根据课本p84的结论,g(i) = | g(i) | · exp( i ∆C arg g(z)) · exp( i arg g(2))= | ((1 –i )i2 )1/3 | · exp( i (7π/12 + 2k0π)) · exp( i (π + 2kπ))= - 21/6 · exp( 7πi/12 ).[从上述的做法中可以看出,我们不妨(事实上也常常地)取k, k0 = 0,并不会造成任何影响.这类题目用辐角的连续增量来考虑是方便的,否则就有可能陷入辐角难以选择的困境,因为那时我们已经忘记了要求辐角是随着变点z连续变化的.设z = r1 exp( iθ1),1 –z = r2 exp( iθ2),那么g(z) = (r12 r2 )1/3 exp( i (2θ1 + θ2 + 2kπ)/3) (k是0, 1, 2之一).当z = 2时,r1(2)= 2,r2(2)= 1;θ1(2) = 0,θ2(2)= π.由于g(2) = 21/3 exp( i (π + 2kπ)/3) < 0,故只能k = 1.当z = i时,r1(i)= 1,r2(i)= 21/2;θ1(i) = π/2,θ2(i) = 7π/4.所以g(i) = (21/2)1/3 exp( i (2(π/2) + 7π/4 + 2π)/3) = - 21/6 · exp( 7πi/12 ).但是,为什么θ2(i) = 7π/4而不是θ2(i) = –π/4 ?事实上,当初的θ1(2)和θ2(2)一旦选定,就决定了其这个单值解析分支中其他点的辐角选择,因为我们要求辐角是连续变化的.确定i的辐角θ1(i)时,要保证z从2到i的过程中,θ1(z)是连续变化的.故应该取θ1(i) = π/2.(增加了π/2)但1 –i的辐角θ2(i),则应该是从z = 2时θ2(2)= π开始连续变化到z = i时所得到的辐角θ2(i),也就是说,θ2从π开始增加了3π/4,因此θ2(i) = π + 3π/4 = 7π/4.特别强调的是:这里的θj(z)的连续变化,应该是随着同一个变点z来变化的.比如,如果我们认为z绕割线I反向地从2转到i,那么,θ1(i) = - 3π/2,这时,θ2(i) = π- 5π/4 = -π/4,显然,如此计算g(i)也会得到上述的结果.至此,我们应该可以看出,两种做法的本质是相同的.]∀∃∅-⨯±≠≥·◦≤≡⊕⊗≅αβχδεφγηιϕκλμνοπθρστυϖωξψζ∞∙︒ℵℜ℘∇∏∑⎰ ⊥∠ √§ψ∈∉⊆⊂⊃⊇⊄⊄∠⇒♣♦♥♠§ #↔→←↑↓⌝∨∧⋃⋂⇔⇒⇐∆∑ΓΦΛΩ∂∀m∈ +,∃m∈ +,★〈α1, α2, ..., αn〉lim n→∞,+n→∞∀ε > 0,∑u n,∑n≥ 1u n,m∈ ,∀ε > 0,∃δ> 0,【解】⎰[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]。

西安交通大学复变函数试卷及参考答案

西安交通大学复变函数试卷及参考答案
1【B】;2【D】;3【C】;4【B】;5【C】
三证明:因为 ,由连续性的概念,取 >0,存在 ,
使当 时,有:
从而 即: 即: .
四解: 的参数方程为 , ,
五求 在圆环域 和 内的罗朗展开式。
六解:由于奇偶性, = = .
七证明:由题意得,
欲证 ,只需要证明:
由于 ,故
又 =
代入前面 ,可得: =
二.选择题(每题4分,共20分)
1 是函数 的【】
A一级极点B本性奇点C可去奇点D零点
2函数 ( ; 为复常数)的解析区域是:【】
A复平面B扩充复平面
C除去原点的复平面D除去原点与负实轴的复平面
3设 为正向圆周 ,则积分 的值为【】
A4B C0D
4函数 在复平面上的所有有限奇点处留数的和:【】
A4B1C-1D2
5分式线性映射 将上半平面 映为上半平面 , , ,则映射 可能为:【】
A ,B ,C ,D
三设函数 在 连续,且 ,求证:可以找到 的一个邻域,使函数 在此邻域的内取值不为零。
四计算积分 ,其中 是从点A(1,0)到B(-1,0)的上半个圆周。
五求 在圆环域 和 内的罗朗展开式。
六计算 , 。
七设 在 上解析,且为分式线性映射, , 将 映为 ,证明:
故不等式得证。
又因为 ,则:
共2页第2页
课程复变函数答案
二.填空(每题4分,共40分)
1. 的指数形式:
2
3
4函数 解析,则则
5
6
7函数 的奇点: ,二级极点; 为一级极点(说出类型,如果是极点,则要说明阶数)
8将函数 展开为 的幂函数:
9设 的正向,求积分 1/2

复变函数第二章答案

复变函数第二章答案

第二章第二章 解析函数解析函数1.用导数定义,求下列函数的导数:.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z D ®+D -D0()Re()Re lim z z z z z z zz D ®+D +D -=D 0Re Re Re limz z z z z z zz D ®D +D +D D =D0Re lim(ReRe )z zz z z z D ®D =+D +D00Re lim(Re )lim(Re ),z x y zx z z z z z x i y D ®D ®D ®D D =+=+D D +D当0z ¹时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =× 解: 22222222()||()()()(),f z z z z z z z zx y x iy x x y iy x y =×=××=×=++=+++这里2222(,)(),(,)().u x y x x y v x y y x y =+=+2222222,2,2,2.x y y x u x y x v x y y u xy v xy =++=++==要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x yu u v v 均连续,故2().f z z z =×仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+-解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=-226,6,33,y x y u xy v xy v x y =-==-四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az bc d cz d++至少有一不为零解: 当0c ¹时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点, 222()()()()()()()()().()()az b f z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +¢¢=+¢¢++-++=++-+-==++ 当0c =时,显然有0d ¹,故()az b f z d +=在复平面上处处解析,且()a f z d ¢=. 4.若函数()f z 在区域D 内解析,并满足下列条件之一,试证()f z 必为常数. (1) ()f z 在区域D 内解析; (2) 2;v u =(3) arg ()f z 在D 内为常数; (4) (,,).au bv c a b c +=为不全为零的实常数 证 (1) 因为()f z 在D 中解析,所以满足C R -条件条件,,u v u v x y y x¶¶¶¶==-¶¶¶¶又()f z u iv =-也在D 中解析,也满足C R -条件条件()(),.u v u v x y y x¶¶-¶¶-==-¶¶¶¶ 从而应有0u u v v x y x y¶¶¶¶====¶¶¶¶恒成立,故在D 中,u v 为常数, ()f z 为常数. (2) 因()f z 在D 中解析且有2()f z u iu =+,由C R -条件,有2,2.u uu x y u u u yx ¶¶ì=ﶶïí¶¶ï=-ﶶî 则可推出0u u x y¶¶==¶¶,即u C =(常数).故()f z 必为D 中常数. (3) 设()f z u iv =+,由条件知arctan v C u =,从而22(/)(/)0,0,1(/)1(/)v u v u yx v u v u ¶¶¶¶==++计算得计算得2222()/0v uu u v u xxu v ¶¶-¶¶=+,2222()/0,v uu u v u yy u v ¶¶-¶¶=+化简,利用C R -条件得条件得0,0.uu u v yx u u u v xy ¶¶ì--=ﶶïí¶¶ï-=ﶶî 所以0,u u x y ¶¶==¶¶同理0,v vx y ¶¶==¶¶即在D 中,u v 为常数,故()f z 在D 中为常数. (4) 法一:设0,a ¹则()/,u c bv a =-求导得求导得,,u b v u b v xa x ya y ¶¶¶¶=-=-¶¶¶¶由C R -条件条件,,u b u v b vx a y x a y ¶¶¶¶==¶¶¶¶ 故,u v 必为常数,即()f z 在D 中为常数. 设0,0,0a b c =¹¹则bv c =,知v 为常数,又由C R -条件知u 也必为常数,所以()f z 在D 中为常数. 法二:等式两边对,x y 求偏导得:00x x y y au bv au bv +=ìí+=î,由C R -条件,我们有条件,我们有0,00x y x x y y au bu u a b bu au u b a -=-ìæöæö=íç÷ç÷+=èøîèø即, 而220a b+¹,故0x y u u ==,从而u 为常数,即有()f z 在D 中为常数. 5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z xy¶¶¢+=¶¶证: 设 222(),|()|,f z u i v f z u v =+=+ 222(),|()|()().uuu u f z i f z x yx y ¶¶¶¶¢¢=-=+¶¶¶¶ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v xyx y u u v v u u v vu v u v x x x x y y y y ¶¶¶¶+=+++¶¶¶¶éù¶¶¶¶¶¶¶¶=+++++++êú¶¶¶¶¶¶¶¶ëû又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u u v v u v xyx y¶¶¶¶=+==+=¶¶¶¶则22222222()|()|4(()())4|()|.u u f z f z x yxy¶¶¶¶¢+=+=¶¶¶¶6.由下列条件求解解析函数().f z u iv =+ (1)22()(4);u x y x xy y =-++ 解: 因22363,u v x xy y x y ¶¶==+-¶¶所以所以 22(363)v x xy y dy =+-ò22333(),x y xy y x j =+-+又222263(),363,()3,v u xy y x x xy y x x xxj j ¶¶¢¢=++=--=-¶¶而所以 则3()x x C j =-+.故2222222233332222222233()()(4)(33)(1)()(1)()2(1)2(1)(1)()2(1)(1)(2)(1)f z u ivx y x xy y i x y xy y x C i x x iy y i x iy x y i xy i Ciz i x y xyi iz i Cii z x y xyi Ci i z Ci=+=-++++--+=-+--+-+--+=---×-+=---+=-+ (2) 23;v xy x =+解: 因23,2,v v y x xy¶¶=+=¶¶由()f z 解析,有22,2().u v x u xdx x y x yf ¶¶====+¶¶ò又23,u v y y x ¶¶=-=--¶¶而(),u y y f ¶¢=¶所以()23,y y f ¢=--则2()3.y y y C f =--+故 22()3(23).f z x y y C i xy x =--+++ (3) 2(1),(2);u x y f i =-=-解: 因2,2(1),u u y x x y ¶¶==-¶¶由()f z 的解析性,有2(1),v ux x y ¶¶=-=--¶¶22(1)(1)(),v x d x x y f =--=--+ò 又2,v uy y x ¶¶==¶¶而(),v y yf ¶¢=¶所以2()2,(),y y y y C f f ¢==+则22(1),v x y C =--++故22()2(1)((1)),f z x y i x y C =-+--++由(2)f i =-得(2)(1),f i C i =-+=-推出0.C =即2222()2(1)(21)(21)(1).f z x y i y x x i z z i z =-+-+-=-+-=--7.设sin ,pxv e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+解: 要使(,)v x y 为调和函数,则有0.xx yyv v v D =+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.xy y x uv u v ==-1(,)cos cos (),1sin ()sin .pxpx x px px y u x y u dx e ydx e y y pu e y y pe y pf f ===+¢=-+=-òò()3i 33)i 3p),i p p p.22ee e e ==c t 3(1)l n 2(2)4l n22l n 2244ln 224cos(ln 2)sin(ln 2).44i i k k i k k ee ei p p p p p p pp p p éù++-+êúëûéù+-++-êúëû+-==éù=-+-êúëû(4) 33;i- 解: 3(3)ln3(3)(ln32)3ii i k i eep---+==(3)l n 323l n 32227(c o s l n3s i n l n 3).i k k i ik ee eee i p p p-+-=×=×=-。

复变函数与积分变换 第二章课后答案

复变函数与积分变换 第二章课后答案

e z sin z e z sin z 则 dz z 2i dz 2 z 2i z 4 z 3 z 2 i 1
2i
e 2i sin 2i e 2i sin 2i e 2i sin 2i e 2i sin( 2i ) 2i 2i 2i 2i 2i 2 2 sin 2i e 2i e 2i sin 2i cosh 2i . 2
i
i
i i
= 2 cos i .
7. 沿指定曲线的正向计算下列各积分: (1)

C
ez dz , C : z 2 1 ; z2 dz (a 0) , C : z a a ; z a2
2
(2)
C
(3)
C
eiz 3 dz , C : z 2i ; 2 z 1 2 f ( z) dz , C : z 1 ; f ( z ) 在 z 1 上解析, z0 1 ; z z0
z 0
0.
4
(8) f ( z ) 有四个奇点, 其中 z i在c 内,作互不相交互不包含且 在 C 内的小圆周 c1和c2 包含 i 与-i,则
c1
(z
2
1 dz 1 dz 2 4)( z i ) z i c2 ( z 4)( z i ) z i
(2) 由于被积函数在全平面上解析,利用柯西积分定理得

求积分
C
3 z 2 dz 0 .
2. 设 C 是由点 0 到点 3 的直线段与点 3 到点 3 i 的直线段组成的折线,

C
Re zdz .
解 将 C 分为两段,从 z=0 到 z=3, c1 的方程为 z 3 x, 0 x 1,

复变函数1到5章测试题及答案

复变函数1到5章测试题及答案

第一章复数与复变函数(答案)一、选择题1.当时,的值等于(B )ii z -+=115075100z z z ++(A ) (B ) (C ) (D )i i -11-2.设复数满足,,那么(A )z arg(2)3z π+=5arg(2)6z π-==z (A ) (B ) (C ) (D )i 31+-i +-3i 2321+-i 2123+-3.复数的三角表示式是(D ))2(tan πθπθ<<-=i z (A ) (B ))]2sin()2[cos(sec θπθπθ+++i )]23sin()23[cos(sec θπθπθ+++i (C )(D ))]23sin()23[cos(sec θπθπθ+++-i )]2sin()2[cos(sec θπθπθ+++-i 4.若为非零复数,则与的关系是(C )z 22z z -z z 2(A ) (B )z z z z 222≥-z z z z 222=-(C ) (D )不能比较大小z z zz 222≤-5.设为实数,且有,则动点y x ,yi x z yi x z +-=++=11,11211221=+z z 的轨迹是(B )),(y x (A )圆 (B )椭圆 (C )双曲线 (D )抛物线6.一个向量顺时针旋转,对应的复数为,则原向量对应的复数是(A )3πi 31-(A ) (B ) (C ) (D )2i 31+i -3i+37.使得成立的复数是(D )22z z =z(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数8.设为复数,则方程的解是(B )z i z z +=+2(A ) (B ) (C ) (D )i +-43i +43i -43i --439.满足不等式的所有点构成的集合是(D )2≤+-iz iz z (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域10.方程所代表的曲线是(C )232=-+i z (A )中心为,半径为的圆周 (B )中心为,半径为2的圆周i 32-2i 32+-(C )中心为,半径为的圆周 (D )中心为,半径为2的圆周i 32+-2i 32-11.下列方程所表示的曲线中,不是圆周的为(B )(A ) (B )221=+-z z 433=--+z z (C ) (D ))1(11<=--a azaz )0(0>=-+++c c a a z a z a z z 12.设,则(C ),5,32,1)(21i z i z z z f -=+=-=12()f z z -=(A ) (B ) (C ) (D )i 44--i 44+i 44-i 44+-13.(D )000Im()Im()limz z z z z z →--(A )等于 (B )等于 (C )等于 (D )不存在i i -014.函数在点处连续的充要条件是(C )),(),()(y x iv y x u z f +=000iy x z +=(A )在处连续 (B )在处连续),(y x u ),(00y x ),(y x v ),(00y x (C )和在处连续(D )在处连续),(y x u ),(y x v ),(00y x ),(),(y x v y x u +),(00y x15.设且,则函数的最小值为(A )C z ∈1=z zz z z f 1)(2+-=(A ) (B ) (C ) (D )3-2-1-1二、填空题1.设,则)2)(3()3)(2)(1(i i i i i z ++--+==z 22.设,则)2)(32(i i z +--==z arg 8arctan -π3.设,则 43)arg(,5π=-=i z z =z i 21+-4.复数的指数表示式为 22)3sin 3(cos )5sin5(cos θθθθi i -+ie θ165.以方程的根的对应点为顶点的多边形的面积为 i z 1576-=6.不等式所表示的区域是曲线(或522<++-z z 522=++-z z ) 的内部1)23()25(2222=+y x 7.方程所表示曲线的直角坐标方程为 1)1(212=----zi iz 122=+y x 8.方程所表示的曲线是连接点 和 的线段的垂i z i z +-=-+22112i -+2i -直平分线9.对于映射,圆周的像曲线为zi =ω1)1(22=-+y x ()2211u v -+=10. =+++→)21(lim 421z z iz 12i -+三、若复数满足,试求的取值范围.z 03)21()21(=+++-+z i z i z z 2+z((或))]25,25[+-25225+≤+≤-z 四、设,在复数集中解方程.0≥a C a z z =+22(当时解为或10≤≤a i a )11(-±±)11(-+±a 当时解为)+∞≤≤a 1)11(-+±a 五、设复数,试证是实数的充要条件为或.i z ±≠21zz+1=z Im()0z =六、对于映射,求出圆周的像.)1(21zz +=ω4=z (像的参数方程为.表示平面上的椭圆)π≤θ≤⎪⎩⎪⎨⎧θ=θ=20sin 215cos 217v u w 1)215()217(2222=+v u 七、设,试讨论下列函数的连续性:iy x z +=1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f 2..⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f (1.在复平面除去原点外连续,在原点处不连续;)(z f 2.在复平面处处连续))(z f 第二章 解析函数(答案)一、选择题:1.函数在点处是( B )23)(z z f =0=z(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导2.函数在点可导是在点解析的( B ))(z f z )(z f z (A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件3.下列命题中,正确的是( D )(A )设为实数,则y x ,1)cos(≤+iy x (B )若是函数的奇点,则在点不可导0z )(z f )(z f 0z (C )若在区域内满足柯西-黎曼方程,则在内解析v u ,D iv u z f +=)(D (D )若在区域内解析,则在内也解析)(z f D )(z if D 4.下列函数中,为解析函数的是( C )(A ) (B )xyi y x 222--xyi x +2(C ) (D ))2()1(222x x y i y x +-+-33iy x +5.函数在处的导数( A ))Im()(2z z z f =0z =(A )等于0 (B )等于1 (C )等于 (D )不存在1-6.若函数在复平面内处处解析,那么实常)(2)(2222x axy y i y xy x z f -++-+=数( C )=a (A ) (B ) (C ) (D )0122-7.如果在单位圆内处处为零,且,那么在内( C ))(z f '1<z 1)0(-=f 1<z ≡)(z f (A ) (B ) (C ) (D )任意常数011-8.设函数在区域内有定义,则下列命题中,正确的是( C ))(z f D (A )若在内是一常数,则在内是一常数)(z f D )(z f D (B )若在内是一常数,则在内是一常数))(Re(z f D )(z f D (C )若与在内解析,则在内是一常数)(z f )(z f D )(z f D(D )若在内是一常数,则在内是一常数)(arg z f D )(z f D 9.设,则( A )22)(iy x z f +==+')1(i f (A ) (B ) (C ) (D )2i 2i +1i 22+10.的主值为( D )ii (A ) (B ) (C ) (D )012πe 2eπ-11.在复平面上( A )ze (A )无可导点 (B )有可导点,但不解析(C )有可导点,且在可导点集上解析 (D )处处解析12.设,则下列命题中,不正确的是( C )z z f sin )(=(A )在复平面上处处解析 (B )以为周期)(z f )(z f π2(C ) (D )是无界的2)(iziz e e z f --=)(z f 13.设为任意实数,则( D )αα1(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于114.下列数中,为实数的是( B )(A ) (B ) (C ) (D )3)1(i -i cos i ln e 23π-15.设是复数,则( C )α(A )在复平面上处处解析 (B )的模为αz αz αz(C )一般是多值函数 (D )的辐角为的辐角的倍αz αz z α二、填空题1.设,则i f f +='=1)0(,1)0(=-→zz f z 1)(limi +12.设在区域内是解析的,如果是实常数,那么在内是 常数iv u z f +=)(D v u +)(z f D3.导函数在区域内解析的充要条件为 可微且满足x vix u z f ∂∂+∂∂=')(D xvx u ∂∂∂∂, 222222,xvy x u y x v x u ∂∂-=∂∂∂∂∂∂=∂∂4.设,则2233)(y ix y x z f ++==+-')2323(i f i 827427-5.若解析函数的实部,那么或iv u z f +=)(22y x u -==)(z f ic xyi y x ++-222为实常数ic z +2c 6.函数仅在点处可导)Re()Im()(z z z z f -==z i 7.设,则方程的所有根为 z i z z f )1(51)(5+-=0)(='z f 3,2,1,0),424sin 424(cos 28=π+π+π+πk k i k 8.复数的模为ii ),2,1,0(2L ±±=π-k ek 9.=-)}43Im{ln(i 34arctan -10.方程的全部解为01=--ze),2,1,0(2L ±±=πk i k 三、试证下列函数在平面上解析,并分别求出其导数z 1.();sinh sin cosh cos )(y x i y x z f -=;sin )(z z f -='2.());sin cos ()sin cos ()(y ix y y ie y y y x e z f xx++-=.)1()(ze z zf +='四、已知,试确定解析函数.22y x v u -=-iv u z f +=)((.为任意实常数)c i z i z f )1(21)(2++-=c 第三章 复变函数的积分(答案)一、选择题:1.设为从原点沿至的弧段,则( D )c x y =2i +1=+⎰cdz iy x )(2(A )(B ) (C ) (D )i 6561-i 6561+-i 6561--i 6561+2.设为不经过点与的正向简单闭曲线,则为( D)c 11-dz z z zc ⎰+-2)1)(1((A )(B ) (C ) (D )(A)(B)(C)都有可能2iπ2iπ-03.设为负向,正向,则( B )1:1=z c 3:2=z c =⎰+=dz zzc c c 212sin (A )(B ) (C ) (D )i π2-0iπ2iπ44.设为正向圆周,则( C)c 2=z =-⎰dz z zc2)1(cos (A ) (B ) (C ) (D )1sin -1sin 1sin 2i π-1sin 2i π5.设为正向圆周,则 ( B)c 21=z =--⎰dz z z z c23)1(21cos(A ) (B ) (C ) (D ))1sin 1cos 3(2-i π01cos 6i π1sin 2i π-6.设,其中,则( A )ξξξξd ze zf ⎰=-=4)(4≠z =')i f π((A ) (B ) (C ) (D )i π2-1-i π217.设在单连通域内处处解析且不为零,为内任何一条简单闭曲线,则积分)(z f B c B( C )dz z f z f z f z f c⎰+'+'')()()(2)((A )于 (B )等于 (C )等于 (D )不能确定i π2i π2-08.设是从到的直线段,则积分( A )c 0i 21π+=⎰cz dz ze (A ) (B) (C) (D) 21eπ-21eπ--i e21π+ie21π-9.设为正向圆周,则( A )c 0222=-+x y x =-⎰dz z z c1)4sin(2π(A )(B ) (C ) (D )i π22i π20i π22-10.设为正向圆周,则( C)c i a i z ≠=-,1=-⎰cdz i a zz 2)(cos (A ) (B )(C ) (D )ie π2eiπ20i i cos 11.设在区域内解析,为内任一条正向简单闭曲线,它的内部全属于.如果)(z f D c D D 在上的值为2,那么对内任一点,( C ))(z f c c 0z )(0z f (A )等于0 (B )等于1 (C )等于2 (D )不能确定12.下列命题中,不正确的是( D )(A )积分的值与半径的大小无关⎰=--ra z dz az 1)0(>r r (B ),其中为连接到的线段2)(22≤+⎰cdz iy xc i -i (C )若在区域内有,则在内存在且解析D )()(z g z f ='D )(z g '(D )若在内解析,且沿任何圆周的积分等于零,则)(z f 10<<z )10(:<<=r r z c 在处解析)(z f 0=z 13.设为任意实常数,那么由调和函数确定的解析函数是 ( D)c 22y x u -=iv u z f +=)((A) (B ) (C ) (D )c iz +2ic iz +2c z +2ic z +214.下列命题中,正确的是(C)(A )设在区域内均为的共轭调和函数,则必有21,v v D u 21v v =(B )解析函数的实部是虚部的共轭调和函数(C )若在区域内解析,则为内的调和函数iv u z f +=)(D xu∂∂D (D )以调和函数为实部与虚部的函数是解析函数15.设在区域内为的共轭调和函数,则下列函数中为内解析函数的是( ),(y x v D ),(y x u D B )(A ) (B )),(),(y x iu y x v +),(),(y x iu y x v -(C ) (D )),(),(y x iv y x u -xv i x u ∂∂-∂∂二、填空题1.设为沿原点到点的直线段,则 2c 0=z i z +=1=⎰cdz z 22.设为正向圆周,则c 14=-z =-+-⎰c dz z z z 22)4(23i π103.设,其中,则 0 ⎰=-=2)2sin()(ξξξξπd zz f 2≠z =')3(f 4.设为正向圆周,则=+⎰cdz zzz c 3=z i π65.设为负向圆周,则 c 4=z =-⎰c z dz i z e 5)(π12iπ6.解析函数在圆心处的值等于它在圆周上的 平均值7.设在单连通域内连续,且对于内任何一条简单闭曲线都有,)(z f B B c 0)(=⎰cdz z f 那么在内 解析)(z f B 8.调和函数的共轭调和函数为xy y x =),(ϕC x y +-)(21229.若函数为某一解析函数的虚部,则常数 -323),(axy x y x u +==a 10.设的共轭调和函数为,那么的共轭调和函数为 ),(y x u ),(y x v ),(y x v ),(y x u -三、计算积分1.,其中且;⎰=+-R z dz z z z)2)(1(621,0≠>R R 2≠R (当时,; 当时,; 当时,)10<<R 021<<R i π8+∞<<R 202..(0)⎰=++22422z z z dz四、求积分,从而证明.()⎰=1z zdz z e πθθπθ=⎰0cos )cos(sin d e i π2五、若,试求解析函数.)(22y x u u +=iv u z f +=)(((为任意实常数))321ln 2)(ic c z c z f ++=321,,c c c 第四章 级 数(答案)一、选择题:1.设,则( C )),2,1(4)1(L =++-=n n nia n n n n a ∞→lim (A )等于 (B )等于 (C )等于 (D )不存在01i2.下列级数中,条件收敛的级数为( C )(A ) (B )∑∞=+1)231(n n i ∑∞=+1!)43(n nn i (C ) (D )∑∞=1n n n i ∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为(D )(B ) (B )∑∞=+1)1(1n n i n ∑∞=+-1]2)1([n n n in (C) (D )∑∞=2ln n n n i ∑∞=-12)1(n n nn i 4.若幂级数在处收敛,那么该级数在处的敛散性为( A )∑∞=0n n nz ci z 21+=2=z (A )绝对收敛 (B )条件收敛(C )发散 (D )不能确定5.设幂级数和的收敛半径分别为,则∑∑∞=-∞=01,n n n n nnznc z c∑∞=++011n n n z n c 321,,R R R 之间的关系是( D )321,,R R R (A ) (B ) 321R R R <<321R R R >>(C ) (D )321R R R <=321R R R ==6.设,则幂级数的收敛半径( D )10<<q ∑∞=02n n n z q =R (A ) (B )(C ) (D )q q10∞+7.幂级数的收敛半径( B )∑∞=1)2(2sinn n z n n π=R(A )(B ) (C ) (D )122∞+8.幂级数在内的和函数为( A )∑∞=++-011)1(n n n z n 1<z (A ) (B ))1ln(z +)1ln(z -(D ) (D) z +11lnz-11ln 9.设函数的泰勒展开式为,那么幂级数的收敛半径( C )z e z cos ∑∞=0n n n z c ∑∞=0n nn z c =R (A ) (B ) (C )(D )∞+12ππ10.级数的收敛域是( B )L +++++22111z z z z(A ) (B ) (C ) (D )不存在的1<z 10<<z +∞<<z 111.函数在处的泰勒展开式为( D)21z1-=z (A )(B ))11()1()1(11<++-∑∞=-z z n n n n)11()1()1(111<++-∑∞=--z z n n n n (C ) (D ))11()1(11<++-∑∞=-z z n n n )11()1(11<++∑∞=-z z n n n 12.函数,在处的泰勒展开式为( B )z sin 2π=z (A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n nn (C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n (D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n nn 13.设在圆环域内的洛朗展开式为,为内)(z f 201:R z z R H <-<∑∞-∞=-n n nz z c)(0c H 绕的任一条正向简单闭曲线,那么( B )0z =-⎰c dz z z z f 20)()((A) (B ) (C ) (D )12-ic π12ic π22ic π)(20z f i 'π14.若,则双边幂级数的收敛域为( A )⎩⎨⎧--==-+=L L ,2,1,4,2,1,0,)1(3n n c nn n n ∑∞-∞=n nn z c (A )(B ) 3141<<z 43<<z (C )(D )+∞<<z 41+∞<<z 3115.设函数在以原点为中心的圆环内的洛朗展开式有个,那么)4)(1(1)(++=z z z z f m ( C )=m (A )1 (B )2 (C )3 (D )4二、填空题1.若幂级数在处发散,那么该级数在处的收敛性为 发散∑∞=+0)(n n ni z ci z =2=z 2.设幂级数与的收敛半径分别为和,那么与之间的关∑∞=0n nnz c∑∞=0)][Re(n n n z c 1R 2R 1R 2R系是 .12R R ≥3.幂级数的收敛半径∑∞=+012)2(n n nz i =R 224.设在区域内解析,为内的一点,为到的边界上各点的最短距离,那么)(z f D 0z d 0z D 当时,成立,其中d z z <-0∑∞=-=0)()(n n nz z cz f 或=n c ),2,1,0()(!10)(L =n z f n n ().)0,2,1,0()()(21010d r n dz z z z f irz z n <<=-π⎰=-+L 5.函数在处的泰勒展开式为 .z arctan 0=z )1(12)1(012<+-∑∞=+z z n n n n 6.设幂级数的收敛半径为,那么幂级数的收敛半径为∑∞=0n nn z c R ∑∞=-0)12(n n n n z c 2R .7.双边幂级数的收敛域为 .∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 211<-<z 8.函数在内洛朗展开式为 .zze e 1++∞<<z 0nn nn z n z n ∑∑∞=∞=+00!11!19.设函数在原点的去心邻域内的洛朗展开式为,那么该洛朗级数z cot R z <<0∑∞-∞=n n nz c收敛域的外半径 .=R π10.函数在内的洛朗展开式为)(1i z z -+∞<-<i z 1∑∞=+--02)()1(n n n n i z i三、若函数在处的泰勒展开式为,则称为菲波那契(Fibonacci)211z z --0=z ∑∞=0n nn z a {}n a 数列,试确定满足的递推关系式,并明确给出的表达式.n a n a (,)2(,12110≥+===--n a a a a a n n n )),2,1,0(}251()251{(5111L =--+=++n a n n n 四、求幂级数的和函数,并计算之值.∑∞=12n nz n ∑∞=122n n n (,)3)1()1()(z z z z f -+=6五、将函数在内展开成洛朗级数.)1()2ln(--z z z 110<-<z ()n n nk k z k n z z z z z z )1(1)1(()2ln(111)1()2ln(001-+--=-⋅⋅-=--∑∑∞==+第五章 留 数(答案)一、选择题:1.函数在内的奇点个数为 ( D )32cot -πz z2=-i z (A )1 (B )2 (C )3 (D )42.设函数与分别以为本性奇点与级极点,则为函数)(z f )(z g a z =m a z =)()(z g z f 的( B )(A )可去奇点 (B )本性奇点(C )级极点 (D )小于级的极点m m 3.设为函数的级极点,那么( C )0=z zz e xsin 142-m =m(A )5 (B )4 (C)3 (D )24.是函数的( D )1=z 11sin)1(--z z (A)可去奇点 (B )一级极点(C ) 一级零点 (D )本性奇点5.是函数的( B )∞=z 2323z z z ++(A)可去奇点 (B )一级极点(C ) 二级极点 (D )本性奇点6.设在内解析,为正整数,那么( C )∑∞==)(n n n z a z f R z <k =]0,)([Re kz z f s (A ) (B ) (C ) (D )k a k a k !1-k a 1)!1(--k a k 7.设为解析函数的级零点,那么='],)()([Re a z f z f s ( A )a z =)(z f m (A) (B ) (C ) (D )m m -1-m )1(--m 8.在下列函数中,的是( D )0]0),([Re =z f s (A )(B )21)(ze zf z -=z z z z f 1sin )(-=(C ) (D) z z z z f cos sin )(+=ze zf z 111)(--=9.下列命题中,正确的是( C )(A )设,在点解析,为自然数,则为的)()()(0z z z z f mϕ--=)(z ϕ0z m 0z )(z f 级极点.m (B )如果无穷远点是函数的可去奇点,那么∞)(z f 0]),([Re =∞z f s (C )若为偶函数的一个孤立奇点,则0=z )(z f 0]0),([Re =z f s(D )若,则在内无奇点0)(=⎰c dz z f )(z f c 10. ( A )=∞],2cos[Re 3ziz s (A ) (B ) (C ) (D )32-32i 32i32-11. ( B)=-],[Re 12i e z s iz (A ) (B ) (C ) (D )i +-61i +-65i +61i +6512.下列命题中,不正确的是( D)(A )若是的可去奇点或解析点,则)(0∞≠z )(z f 0]),([Re 0=z z f s (B )若与在解析,为的一级零点,则)(z P )(z Q 0z 0z )(z Q )()(],)()([Re 000z Q z P z z Q z P s '=(C )若为的级极点,为自然数,则0z )(z f m m n ≥)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-=(D )如果无穷远点为的一级极点,则为的一级极点,并且∞)(z f 0=z )1(zf )1(lim ]),([Re 0zzf z f s z →=∞13.设为正整数,则( A )1>n =-⎰=211z ndz z (A) (B ) (C )(D )0i π2niπ2i n π214.积分( B )=-⎰=231091z dz z z (A ) (B ) (C ) (D )0i π2105iπ15.积分( C )=⎰=121sin z dz z z (A ) (B ) (C ) (D )061-3i π-iπ-二、填空题1.设为函数的级零点,那么 9 .0=z 33sin z z -m =m 2.函数在其孤立奇点处的留数zz f 1cos1)(=),2,1,0(21L L ±±=+=k k z k ππ.=]),([Re k z z f s 2)2()1(π+π-k k3.设函数,则 0 }1exp{)(22zz z f +==]0),([Re z f s 4.设为函数的级极点,那么 .a z =)(z f m ='],)()([Re a z f z f s m -5.设,则 -2 .212)(zzz f +==∞]),([Re z f s 6.设,则 .5cos 1)(z z z f -==]0),([Re z f s 241-7.积分.=⎰=113z zdz e z 12iπ8.积分.=⎰=1sin 1z dz z i π2三、计算积分.()⎰=--412)1(sin z z dz z e z z i π-316四、设为的孤立奇点,为正整数,试证为的级极点的充要条件是a )(z f m a )(z f m ,其中为有限数.b z f a z m az =-→)()(lim 0≠b 五、设为的孤立奇点,试证:若是奇函数,则;a )(z f )(z f ]),([Re ]),([Re a z f s a z f s -=若是偶函数,则.)(z f ]),([Re ]),([Re a z f s a z f s --=。

复变函数课后习题答案 (2)

复变函数课后习题答案 (2)

习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2.将下列复数化为三角表达式和指数表达式:(1)i(2)1-+(3)(sin cos)r iθθ+(4)(cos sin)r iθθ-(5)1cos sin (02)iθθθπ-+≤≤解:(1)2cos sin22ii i eπππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin )33)sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-)sin()](cos2sin 2)1212i i ππθθ=-+-+(2)12)sin(2)]1212ii πθππθθ-=-+-=(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+- (5=11cos (2)sin (2)3232k i k ππππ=+++1, 0221, 122, 2i k i k i k +=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin (2)]2424k i k ππππ=+++88, 0, 1i i e k e k ππ==⎪=⎩4.设12 ,z z i ==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k iz i e iπ=-=-,(0,1,2,3,4)k=(2)z==11[cos(2)sin(2)]44a k i kππππ=+++,当0,1,2,3k=时,对应的4(1),1),1),)i i i i+-+---6.证明下列各题:(1)设,z x iy=+z x y≤≤+证明:首先,显然有z x y=≤+;其次,因222,x y x y+≥固此有2222()(),x y x y+≥+从而z=≥。

(含答案)复变函数与积分变换习题解析2

(含答案)复变函数与积分变换习题解析2

(含答案)复变函数与积分变换习题解析2习题2.11. 判断下列命题的真假,若真,给出证明;若假,请举例说明.(1)如果()f z 在0z 连续,那么0()f z '存在.(2)如果0()f z '存在,那么)(z f 在0z 解析.(3)如果0z 是()f z 的奇点,那么()f z 在0z 不可导.(4)如果0z 是()f z和()g z 的⼀个奇点,那么0z 也是()()f z g z +和()()f z g z ?的奇点.(5)如果(,)u x y 和(,)v x y 可导,那么()(,)(,)f z u x y iv x y =+亦可导.2.应⽤导数定义讨论函数)Re()(z z f =的可导性,并说明其解析性.3.证明函数在0z =处不可导.习题2.21. 设试证)(z f 在原点满⾜柯西-黎曼⽅程,但却不可导.(提⽰:沿抛物线x y =2趋向于原点)2. 判断下列函数在何处可导,何处解析,并在可导处求出其导数.(1)y ix xy z f222)(+=;(2)i y x y x z f 22332)(+-=;(3)=)(z f232z z -+;(4)22()2(1(2)f z x y i x y y =-+-+). 3.(1 (2 (3)iy x z f 2)(+=;(4 4. (1)iz z z f 2)(3+=;(25. 讨论下列各函数的解析性.(1)3223()33f z x x yi xy y i =+--;(2 (0)z ≠;(3)1(33)x iy ω-=-;(4习题2.31. 证明下列u 或v 为某区域的调和函数,并求解析函数()f z u iv =+.(1)2(1)u x y =-;(2)3223u x x xy =-+;(3)323u x xy =-;(4)23v xy x =+;(5)x y x v 222+-=;(62. 求k 值使22ky x u +=为调和函数,并求满⾜1)(-=i f 的解析函数iv u z f +=)(.3. 设函数iv u z f +=)(是⼀个解析函数,且y x xy y x y x v u 22332233---+-=+,求iv u z f +=)(.4. 证明:如果函数iv u z f +=)(在区域D 内解析,并满⾜下列条件之⼀,则)(z f 是常数.(1(2(3(4(5.5.(1(2)u -是v 的共轭调和函数.6. 如果iv u z f +=)(是z 的解析函数,证明:(1(2习题2.41.(2 (3(4(5(6)()i Ln e ;(7)i 3;(8)i i )1(+;(9)1(34)i i ++;(10))1sin(i +;(11)cos(5)i π+;(12)i ei cos 1++π.2(1 (2)0cos sin =+z z .3. (1 (2 (34.证明:(1)121212sin()sin cos cos sin z z z z z z +=+,212121sin sin cos cos )cos(z z z z z z -=+;2)1cos sin 22=+z z ;(3(4 (55.证明:(1)122=-z sh z ch ;(2)z ch z sh z ch 222=+;(3)cos sin shz shx y ichx y =+,cos sin chz chx y ishx y =+;(4)212121)(shz chz chz shz z z sh +=+,212121)(shz shz chz chz z z ch +=+.复习题⼆⼀、单项选择题1.D2.C3.B4.A5.C6.C7.A8.A9.D 10.C 11.C 12.B⼀、单项选择题1. ). D.z sin2. 下列说法正确的是().A.函数的连续点⼀定不是奇点B.可微的点⼀定不是奇点C.)(z f 在区域D 内解析,则)(z f 在D 内⽆奇点D.不存在处处不可导的函数3. 下列说法错误的是(). A.如果)(z f 在点0z 解析,则)(z f 在点0z 可导B.如果0z 是)(z f 的奇点,则)(0z f '不存在C.如果)(z f 在区域D 内可导,则)(z f 在D 内解析D.如果)(z f 在点0z 可导,则)(z f 在点0z 连续 4. 下列说法正确的是().A.iv u z f +=)(在区域D内解析,则v u ,都是调和函数B.如果v u ,都是区域D 内的调和函数,则iv u +是D 内的解析函数C.如果v u ,满⾜C-R ⽅程,则v u ,都是调和函数D.iv u +是解析函数的充要条件是v u ,都是调和函数5. 设函数iv u z f +=)(解析,则下列命题中错误的是().A.v u ,均为调和函数B.v 是u 的共轭调和函数C.u 是v 的共轭调和函数D.u -是v 的共轭调和函数6. 设函数iv u z f +=)(在区域D 内解析,下列等式中错误的是().7. 设在区域D 内v 为u 的共轭调和函数,则下列函数中为D 内解析函数的是(). A.iu v - B.iu v + C.iv u - D.x x iv u -8. 函数z z z f Im )(2=在0=z 处的导数(). A. 等于0 B. 等于1 C. 等于 -1 D. 不存在9. 下列数中为实数的是().A. 3)1(i -B. i sinC. LniD. i e π-310. 下列函数中是解析函数的是().A.xyi y x 222--B.xyi x +2 C. )2()1(222x x y i y x +-+- D. 33iy x + 11. 设z z f cos )(=,则下列命题中,不正确的是(). A. )(z f 在复平⾯上处处解析 B. )(z f 以π2为周期12. 设Lnz =ω是对数函数,则下列命题正确的是().A. nLnz Lnz n =B. 2121Lnz Lnz z Lnz +=因为x z =是实常数,所以x Lnx Lnz ln ==⼆、填空题在区域D 内三、计算题1. 指出下列函数的解析区域和奇点,并求出其导数.(1)zzezf z sincos)(+-=;(2(3(4(5(62..(1(3(53. 试证下列函数为调和函数,并求出相应的解析函数ivu)(.(1)xu=;(2)xy u=;(3)3223236yxyyxxu+--=;(4(5)yev x sin2=;(64. 已知22y=-,试确定解析函数ivuzf+=)(.5. 函数yxv+=是yxu+=的共轭调和函数吗?为什么?6.(1(2)ie43+;(3)Lni;(4(5(6)i-13;(7(8四、证明题1. 若函数xu和),(yxv都具有⼆阶连续偏导数,且满⾜拉普拉斯⽅程,现令x yvus-=,yxvut+=,则2. 设)(zf与)(zg都在,0()0g z'≠,证明第⼆章习题、复习题参考答案习题2.11.(1)假(2)假(3)假(4)假(5)假2. 函数)zf=处处不可导,处处不解析.习题2.22.(1)在0z =处可导,处处不解析,导数(0)0f '=;(2)在点)0,0(和处可导,处处不解析,导数0)0(='f ,(3)处处可导,(44.(1(25.(1(3.习题2.31.(1)ci iz z z f ++=22)(;(2)ci z z z f +-=32)(;(3)=)(z f 3z ci +;(4)=)(z f 23z iz c ++;(5)c iz iz z f ++=2)(2;(62.1k =-;2()f z z =.3.c y y x y v c x xy x u --+-=+--=23,232323,c i z z z f )1(2)(3-+-=. 习题2.41.(1 (2 (3)k )1(-)(Z k ∈;((5(6(7)3ln 2i k e e π-)(Zk ∈;(9 ((2.(1 (23.(1)正确;(2)正确;(3)正确.复习题⼆⼆、填空题2.0;3.c uv +2(c 为实常数);4.3,1,3-==-=n m l ;5.i +1;6.常数;8.ic ixy y x ++-222或ic z +2(c 为常数);9.i -; 10.πk e 2-),2,1,0(Λ±±=k .三、计算题1.(1(2(3(4(5(6z z z f cot csc )(-='.2.(1)在复平⾯内处处不可导,处处不解析;(2)在0=z 处可导,但在复平⾯内处处不解析,0)0(='f ;(3)在复平⾯内处处不可导,处处不解析;6.(1)4e -;(2))4sin 4(cos 3i e +;(3(4(6 (7。

复变函数第二章习题解答

复变函数第二章习题解答

习题二解答1、解:1)连续 令iyx z zy x iv y x u z f +=+=+=,11),(),()(2则由222222222212111111zxy izy x zz z+-++-+=++=+显然,),(),,(y x v y x u 在1<z 内连续2)不一致连续 因为取⎪⎭⎫ ⎝⎛>-=+=>∀=δδεδδ11'',1',0,51n inn z i n n z 取显然,()δδδ<+=--+=-1111'''n n nn n n z z但()()()()222222111111''11'11nn n n z z ---⎪⎪⎭⎫⎝⎛+-=+-+δδ()()ε>=->--=-+-=41421412121212222222nn n n n n n n2、()iyx z y x zz f +=+==,222则,0),(,),(22=+=y x v y x y x u0,2,2====y x y x v v y u x u显然上述四个偏导在整个复平面上连续 由R C-条件⎩⎨⎧==⇒⎩⎨⎧==00202y x y x22222222)2()1(2),(,)2()1(1),(xy y x xyy x v xy y x yx y x u +-+-=+-+-+=∴()2zz f =∴只在0=z 处可导,而处处不解析3、证明:()yy x xziUV R C iV U z f D iy x V--+='=∈+=0,0====∴y x yx V V UU),(),,(y x V y x U 在D 内为常数 故)(z f 在D 内为常数 4、证明(1)令()),(),(y x iv y x u z f +=若),(y x u 在D 内为常数,则在D 内,0==y xu u由C-R 条件知,对),(y x v 有在D 内0==y xv v∴),(),,(y x v y x u 在D 内为常数 )(z f在D 内为常数对),(y x v 于D 内为常数时,同理可证得结论 (2)由()222v u z f +=在D 内为常数设()*22cv u =+若0=c 知()0=z f 于D若0≠c ,此时:对()*求偏微分得22022=+=+y y x x vv uu vv uu再由C-R 条件,并讨论二元一次方程组的解,可解出====y x y x v v u u ,由此可得)(z f 在D 内为常数5、证明:若∈z 上半平面,则∈z 下半平面 设()),(),(y x iv y x u z f +=,则()),(),(),(),(y x i y x y x iv y x u z f ψϕ+∆---=)(z f 在上半平面解析),(),,(y x v y x u ⇔在上半平面解析且满足RC -方程x y y x v u v u -==,又()()),(,),,(,y x v y x y x u y x --=-=ψϕ()()()()yy x v y x y x v x yy x u y x y x u x x ∂-∂=∂∂∂-∂-=∂∂∂-∂-=∂∂∂-∂=∂∂,,,,,,ψψϕϕ∴当)(z f 在半平面解析时,),(,,y x y )(x ψϕ在下半平面可微,且满足R C -方程xyy x2222,2222ψϕψϕ-==)(z f ∴在下半平面解析6、证明:(1)xyi y x iy )(x z 2.2222+-=+=xv y v y uy x ux xy y x v y x y x u y x 2,2,2,22),(,),(22==-===-=显然y x y xv v u u,,,在整个复平面连续,且xy x v uy v u -==,2z ∴在复平面解析 (2)yie y e ee xx iyx zsin cos +==-ye v y e v y e u y e u yie y x v y e y x u xy xx xy xx xxcos ,sin ,sin ,cos sin ),(,cos ),(==-====显然,yx y xv v u u,,,在整个复平面上解析,且x y y xv v v u-==,满足C-R 方程z e ∴在整个复平面上解析()()()()[]()xee y x v x ee y x u xeei x e e xe ei x eeieei z yyyyyyyyy yyyizizcos 2),(,sin 2),(cos 2sin 2sin cos 2121sin3--------=+=--+=++-=-=xee u x ee u yyy yyx sin 2,cos 2---=+=x eev x ee v yyy yyx cos 2,sin 2++=--=--yx y x v v u u ,,,在复平面上连续,且满足x y y xv u v u-==,zsin ∴在整个复平面上解析(4)同理z cos 在整个复平面上解析 (5)()xyi y x iy x z 222--=+=xv y v y u x u xy y x v y x y x u y x y x 2,2,2,22),(,),(22-=-=-==-=-=yx y x v v u u ,,,在复平面上连续由得xy y x v u v u ⎪⎩⎪⎨⎧-==⎩⎨⎧==⇒⎩⎨⎧+=--=02222y x y y x x所以2z 只在0=z 处可导,而在整个复平面上均不解析 同理可证z z e z cos ,sin ,在复平面上不解析、7、证明()θθθθθθθθθθθθ∂∂⋅=∂∂∴⎪⎪⎭⎫⎝⎛∂∂+∂∂-∂∂+⋅-=∂∂⋅∂∂+∂∂⋅∂∂=∂∂∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂-===vr ru x uy u r R C r yv r xv y y vxx v v y u x u r yy u r x x u ru r y r x y x iv y x u z f 1cos sin cos sin 22sin cos sin ,cos ),,(),(条件则设()()rv ru y u xu y v x v r yy v r x x v rv x u y u r r yu r xu y yu x x u u ∂∂-=∂∂∴⋅∂∂-⋅∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂⎥⎦⎤⎢⎣⎡∂∂-∂∂=∂∂+-⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂θθθθθθθθθθθθcos sin sin cos sin cos cos sinrv ru vr ru :∂∂-=∂∂∂∂⋅=∂∂∴θθ,1条件是极坐标下的柯西一黎曼8、证明:(1)如同证明)(z f 存在则),(),,(y x v y x u 的偏导数也存在一样归纳可证明:)(z f 的实部和虚部在D 内也有任意阶导数 而xy y xv u u u-==,xy yy xy xxv u v u -==∴,=+∴yy xxv u,同理0=+yy xxv v(2)设()()),(,y x iv y x u z f +=,则()222vu z f +=()()⎥⎥⎦⎤⎢⎢⎣⎡∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂⋅+⎪⎪⎭⎫⎝⎛∂∂=∂∂⎥⎥⎦⎤⎢⎢⎣⎡∂∂+⎪⎭⎫ ⎝⎛∂∂+∂∂+⎪⎭⎫ ⎝⎛∂∂=∂∂∴22222222222222222222y v vy v y u u y uyz f x v v x v x u u x u xz f又0,022222222=∂∂+∂∂=∂∂+∂∂yv xv yu xu且,,xv yu yv xu ∂∂-=∂∂∂∂=∂∂代入整理得:()()()22222222244z f x v x u yz f xz f '=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∂∂+∂∂9、()()()()()[]()[]()()()()()()()()()()()()()()(),1,0,122sin122cos 2122sin 122cos2,1,022ln 22cos 1,1,0,,2,1,0,242ln 2121arg 1ln 11sin 1cos 2122ln 222arg 2ln 2222222221arg 1ln 2122222202arg ln 222ln 2±=+++=+++====-±=+=====±=====+±+⎪⎭⎫⎝⎛++=++++=++==+++-+--++⎪⎭⎫⎝⎛+-⎥⎦⎤⎢⎣⎡++++k k i k k i k e e e e k k is k e eeek e eee i k k i k i i i i Ln i ee e ek i k i Ln k i k i k i i Ln k k i i k i i i i iLnii i ziπππππππππππππππππππ10、()()()()()1111221cos 22222-+-=-+=∴-+==+-+==-z z iLn w z z Ln iw z z ezee eez w ziwiwiwiwiw即故11、证明:()()()()()zz eeiz ee z iz i z e e ieeiee i iz ee z zzzzzzzziz i izi zzcosh cosh 21cos 2cosh sin sinh 212121sin 2sinh =∴+=+=-=∴-⋅-=-=-=-=---+---()()()()()()()222221ln 1ln 11ln 101221sin 1z iz i iiz i w iiz iw iiz eizee eeiz w ziwiwiwiwiw-+-=-+=-+=∴-+==---==-即故()()()()212112212121222222sinh cosh cosh sinh cos sin cos sin )sin()(1sin cos sin cos sinhcoshz z z z iz iz i iz iz i iz iz i z z son iz iz z i iz z z +=--=+-=+=+=--=-212121212121212121sinh sinh coshcosh )sin )(sin (cos cos sin sin cos cos )cos()(cos )cosh(z z z z iz i iz i z iz z iz iz iz iz iz z z i z z +=--+=-=+=+=+yz i y z z siyiy i i iy z ziy iy z iy x sinh cos cosh cos cos )(cos sin cos sin cos sin )sin(+=-+=+=+yx i y x iy i x i iy z iyx iy z iy x sinh sin cosh cos sin )(sin cos cos sin sin cos cos )cos(-=--=-=+ziz i iz dzd z dzd z iz iz i i iz i dz d z dz d sinh sin )(cos cosh cosh cos cos )sin (sinh =-====⋅-=-=12、证明()()⎪⎪⎭⎫⎝⎛∂∂+∂∂=∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=⎪⎭⎫ ⎝⎛-⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂⎪⎪⎭⎫⎝⎛∂∂-∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂-+=-=∂∂=∂∂=∂∂=∂∂-=+=-=+=y u i x u zv y u i xui zux u zy y u zx xu z u y u i x u i y u x u z y y u y x x u z u i zz z z u y x u izy zx izy zx z z iy ,z z x iy x z iy x z 21212121212121)2,2(),(21,21,21,21,2121,同理于是得由),(0,2121212121=∂∂+∂∂=∂∂∴=∂∂+∂∂=∂∂∂∂-=∂∂∂∂=∂∂⎪⎪⎭⎫⎝⎛∂∂+∂∂⋅+∂∂⋅-∂∂⋅=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=∂∂+∂∂=∂∂+=zv iz u zf z f zv izu zf y ux v y v x u:x v y u i y v x u y v i x v i y u i x u zv i z u zf ivu f 成柯西一黎曼条件可以写对于得由柯西一黎曼条件13、解:()()()⎪⎭⎫ ⎝⎛-+=⎪⎪⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+====z z Ln z z Ln z f z z Ln z f ,z e zf e z f z z111111)11(20)1(,)(11从而不解析点无定义在。

复变函数习题解答2

复变函数习题解答2

1 复变函数综合练习题及答案复变函数综合练习题及答案第一部分第一部分 习题习题一. 判断下列命题是否正确,如正确, 在题后括号内填√,否´.(共20题) 1. 在复数范围内31有唯一值1. ( ) 2. 设z=x+iy , 则=z z 22y x +. ( ) 3. 设,2321i z -=则.32arg p=z ( ) 4. z cos =w 是有界函数. ( ) 5. 方程1=ze 有唯一解z=0. ( ) 6. 设函数z g z f (),()在0z 处可导,则)()(z g z f 在点0z 处必可导. ( ) 7. 设函数),(),()(y x iv y x u z f +=在00iy x z +=处可导,则)(00,0)()(y xy u iyvz f ¶¶-¶¶=¢. ( ) 8. 设函数)(z f 在区域D 内一阶可导,则)(z f 在D 内二阶导数必存在. ( ) 9. 设函数)(z f 在0z 处可导, 则)(z f 在0z 处必解析. ( ) 10. 设函数)(z f 在区域D 内可导, 则)(z f 在D 内必解析. ( ) 11. 设),(),,(y x v y x u 都是区域D 内的调和函数,则),(),()(y x iv y x u z f +=是D 内的解析函数. ( ) 12. 设n 为自然数,r 为正实数,则0)(00=-ò=-rz z nz zdz. ( ) 13. 设)(z f 为连续函数,则òò¢=1)()]([)(t t cdt t z t z f dz z f ,其中10,),(t t t z z =分别为曲线c 的起点,终点对应的t 值. ( ) 2 14. 设函数)(z f 在区域D 内解析,c 是D 内的任意闭曲线,则0)(=òcdz z f . ( ) 15. 设函数)(z f 在单连通区域D 内解析, , c c 是D 内的闭曲线,则对于c Dz Î0有)(2)(00z if dz zz z f cp =-ò. ( ) 16. 设幂级数å+¥=0n nn z c 在R z £(R 为正实数)内收敛,则R 为此级数的收敛半径. ( ) 17. 设函数)(z f 在区域D 内解析,Dz Î0,则n n n z z n z fz f )(!)()(000)(-=å+¥=. ( ) 18. 设级数n n nz zc )(0-å+¥-¥=在园环域)(0R r R z z r <<-<内收敛于函数)(z f ,则它是)(z f 在此环域内的罗朗级数. ( ) 19. 设0z 是)(z f 的孤立奇点,如果¥=®)(lim 0z f z z ,则0z 是)(z f 的极点.( ) 20. 设函数)(z f 在圆周1<z 内解析,0=z 为其唯一零点,则ò==1].0),([Re 2)(z z f s i z f dz p ( ) 二. 单项选择题.(请把题后结果中唯一正确的答案题号填入空白处,共20题) 1. 设复数3)22(i z -=,则z 的模和幅角的主值分别为____________. A. 45,8pB. 4,24p C. 47,22p2.)Re(1z z -<是__________区域. A. 有界区域有界区域B. 单连通区域单连通区域C. 多连通区域多连通区域3.下列命题中, 正确的是_____________. A. 零的幅角为零零的幅角为零B. 仅存在一个z 使z z -=1C. iz z i =14.在复数域内,下列数中为实数的是__________. A. i cosB. 2)1(i -C. 38-3 5.设i z +=1,则=)Im(sin z _________. A. sin1ch1 B. cos1sh1 C. cos1ch1 6.函数)(z f =2z 将区域Re(z)<1映射成___________. A. 412v u -<B. 412v u -£C. 214v u -<7.函数)(z f =z 在0=z 处____________. A. 连续连续 B. 可导可导C. 解析解析 8. 下列函数中为解析函数的是_____________. A. )(z f =iy x -2B. )(z f =xshy i xchy cos sin +C.)(z f =3332y i x -9. 设函数),(),()(y x iv y x u z f +=且),(y x u 是区域D 内的调和函数,则当),(y x v 在D 内是_____________时, )(z f 在D 内解析. A. 可导函数可导函数B. 调和函数调和函数C. 共轭调和函数共轭调和函数10. 设0z 是闭曲线c 内一点, n 为自然数,则ò-cnz z dz)(0=________________. A. 0 B. i p 2 C. 0或i p 211. 积分dz z zz ò=-22)1(sin =_______________. A. 1cos B. i p 21cos C. i p 2sin112. 下列积分中,其积分值不为零的是___________________. A. ò=-23z dz z zB. 1sin z zdz z =ò C. ò=15z zdz z e13. 复数项级数å+¥=13n n nz 的收敛范围是________________. A. 1£zB. 1<zC. 1>z14. 设函数)(z f 在多连域D 内解析,210,,c c c 均为D 内闭曲线且210c c c ÈÈ组成4 复合闭路G 且DD ÌG,则___________________. A. 0)()()(21=++òòòc c c dz z f dz z f dz z fB. 0)(=òGdz z fC. òòò-=21)()()(c c c dz z f dz z f dz z f15.函数)(z f =221z e z-在z=0的展开式是_______________________. A. 泰勒级数泰勒级数B. 罗朗级数罗朗级数C. 都不是都不是16. 0=z 是4)(z shzz f =的极点的阶数是_____________. A. 1 B. 3 C. 4 17. 0=z 是411)(z e z f z -=的____________________. A. 本性奇点本性奇点B. 极点极点C. 可去奇点可去奇点18. 设)(z f 在环域)(0R r R z z r<<<-<内解析,则nn nz zc z f )()(0å+¥-¥=-=, 其中系数n c =______________________. A. !)(0)(n z fn , ,2,1,0=nB. !)(0)(n z fn , ,2,1,0±±=nC. ,,2,1,0,)()(2110 ±±=-ò+n d z f i cn z z z p c 为环域内绕0z 的任意闭曲线. 19. 设函数)(z f =1-z e z ,则]2),([Re i z f s p =__________________. A. 0 B. 1 C. i p 220. 设函数)(z f =)1(cos -z e z z,则积分ò=1)(z dz z f =________________. 5 A. i p 2 B. ]0),([Re 2z f s i pC. .2,0,]),([231i z z z f i k k k p p ±=å=三. 填空题填空题 (共14题) 1. 复数方程31i e z-=的解为____________________________________. 2. 设i z 22-=,则z arg =_____________,z ln =___________________________. 3.411<++-z z 表示的区域是___________________________________. 4. 设,sin )(z z z f =则由)(z f 所确定的所确定的 ),(y x u =____________________, ),(y x v =_______________________. 5. 设函数)(z f =îíì=¹+-0,00,sin z z A e z z在0=z 处连续,则常数A=____________. 6. 设函数)(z f =z z z zd z z ò=-++22173,则)1(+¢i f =________________________. 若)(z f =z z z z d z z ò=-+2353,则)(i f ¢¢=________________________. 7. 设函数)(z f 在单连域D 内解析,G(z )是它的一个原函数,且Dz zÎ1,,则ò1)(z z dz z f =_______________________. 8. 当a =________时,xy iarctgy x a z f ++=)ln()(22在区域x>0内解析. 9. 若z=a 为f(z )的m 阶极点,为g(z)的n 阶极点(m>n ),则z=a 为f(z)g(z)的__________阶极点,为)()(z g z f 的____________阶极点. 10. 函数)(z f =tgz 在z=0处的泰勒展开式的收敛半经为_________________. 11. 函数)(z f =zz sin 在z=0处的罗朗展开式的最小成立范围为_____________. 6 12. 设å+¥-¥==n n n z c zz3sin ,则______________________,02==-c c . 13. 积分dz ze z z ò=11=________________________. 14. 留数__________]0,1[Re _,__________]0,1[Re 2sin sin =-=-z e s z e s z z . 四. 求解下列各题求解下列各题(共6题) 1. 设函数)(z f =)(2323lxy x i y nx my +++在复平面可导,试确定常数l n m ,,并求)(z f ¢. 2. 已知,33),(22y x y x u -=试求),(y x v 使),(),()(y x iv y x u z f +=为解析函数且满足i f =)0(. 3. 试讨论定义于复平面内的函数2)(z z f =的可导性. 4. 试证22),(yx y y x u +=是在不包含原点的复平面内的调和函数, 并求),(y x v 使),(),()(y x iv y x u z f +=为解析函数且满足1)(=i f . 5. 证明z e z f =)(在复平面内可导且zz e e =¢)(. 6. 证明òîíì>==-c n n n i z z dz 1,01,2)(0p ,其中n 为正整数,c 是以0z 为圆心,半径为r 的圆周. 五. 求下列积分求下列积分 (共24题) 1. 计算dz z còsin ,其中c 是从原点沿x 轴至)0,1(0z ,然后由0z 沿直线x=1至)1,1(1z 的折线段. 2. ò+cdz z z )]Re(2[,其中c 是从点A(1,0)到点B(-1,0)的上半个圆周. 7 3. ò+-c dz z z )652(2, 其中c 为连接A(1,-1),B(0,0)的任意曲线. 4. dz ze iz ò+p 11. 5. dz z z i z ò=-++21)4)(1(1226. dz z z zz ò=--pp2)1(cos 2. 7. ò=-232)(sin z dz z zp . 8. ò-+=c z z dzI )2()1(2,其中c 为r r z ,=为不等于1,2的正常数. 9. ò++=czz dzI )1)(12(2,其中曲线c 分别为分别为1) 1=-i z2) 23=+i z10. 设c 为任意不通过z =0和z =1的闭曲线,求dz z z e cz ò-3)1(. 11. 23cos sin [](2)z zz e z e I dz z z z ==+-ò . 12. ò=--2)1(12z dz z z z . 用留数定理计算下列各题. 13. dz z z e z z ò=-1302)(,其中0z 为10¹z 的任意复数. 14. dz z e z zò=+222)1(p . 8 15. ò=-24)1(sin z dz z zp . 16. dz z z zz ò=-+12)12)(2(sin p . 17. ò=1z zdz tg p . 18. dz zz z ò=22sin . 19. ò=+-122521z dz z z . 20. dz z z z ò=+-14141. 21. dz iz z z ò=-+122521. 22. dz z zz cò++)4)(1(222,其中c 为实轴与上半圆周)0(3>=y z 所围的闭曲线. 23. dz z z cò++1142,其中c 同上. 24. ò++cdz z z )1)(9(122,其中c 为实轴与上半圆周)0(4>=y z 所围的闭曲线. 六. 求下列函数在奇点处的留数求下列函数在奇点处的留数 (共8题) 1. 421)(z e z f z-=. 2. 1sin )(-=z zz f . 3. 3)1(sin )(z zz f +=. 9 4. 224)1(1)(++=z z z f . 5. 1)(-=z e z z f . 6. 2)1()(-=z z e z f z. 7. 11)(23+--=z z z z f . 8. zz z f sin 1)(+=. 七. 将下列函数在指定区域内展成泰勒级数或罗朗级数将下列函数在指定区域内展成泰勒级数或罗朗级数 (共10题) 1. )2()1(1)(22z z z z f --=110<-<z2. 13232)(2+--=z z zz f231<+z3. 1)(-=z e z f z+¥<-<10z4. 21)(2--=z z z f1) 1<z , 2). 1<z <2, 3). 2<¥<z5. )1(1)(2z z z f -=110<-<z 6. z z f cos )(=+¥<-p z 7. 2)1(1)(z z f +=1<z8. z z z f sin1)(+=p <<z 0 (写出不为零的前四项) 9. )1(cos )(2-=z e z z z f +¥<<z 0 (写出不为零的前三项) 10 10. zz z f sin )(=p <<z 0 (写出不为零的前三项) 11 第二部分第二部分 解答解答一、判断题.(共20题) 1. ×2. √3. ×4. ×5. ×6. ×7. √8. √9. × 10. √ 11. × 12. × 13. √ 14. × 15. √ 16. × 17. × 18. √ 19. √ 20. √二、单项选择题.(共20题) 1. A. 2. B. 3. C.4. A.5. B.6. A.7. A.8. B.9. C. 10. C. 11. B. 12. C. 13. A. 14. B. 15. B. 16. B. 17. A. 18. C. 19. C. 20. B. 三、填空题三、填空题1. ,210)(235(2ln ±±=++,,k k i p p ) 2. 47p ,i 472ln 23p+3.13422<+y x4. xshy y xchy x cos sin - , xchy y xchy x sin cos +5. 16. i p p 2612+- ,p 36-7. )()(01z G z G -8.219. n m + ,n m -10. 2p11. p <<z 012 12. 1 ,-6113. i p14. 0 ,1四、求解下列各题四、求解下列各题1. 由题意得ïîïíì+=+=2323),(),(lxy x y x v y nx my y x u 利用yvnxy x u ¶¶==¶¶2 ,得l n = 222233ly x x v nx my y u --=¶¶-=+=¶¶,得3-=n ,3-=l ,1=m 则 )33(6)(22y x i xy x v i x u z f -+-=¶¶+¶¶=¢ 23iz =2. 由于由于x x uy v 6=¶¶=¶¶ 所以所以ò+==)(66),(x xy xdy y x v j ,)(6x y xv j ¢+=¶¶又由又由yu xv ¶¶-=¶¶,即y x y 6)(6=¢+j所以所以 0)(=¢x j ,C x =)(j (C 为常数)为常数)故 c xy y x v +=6),(,ci z i c xy y x z f +=++-=2223)6(33)(将条件将条件 i f =)0(代入可得1=C ,因此,满足条件i f =)0(的函数i z z f +=23)(3. 由题意知îíì=+=0),(),(22y x v y x y x u ,由于,由于13 02=¶¶==¶¶y v x x u ,02=¶¶-==¶¶x v y y u 可得îíì==00yx 由函数可导条件知,2)(z z f =仅在0=z 处可导。

《复变函数与积分变换》(西安交大-第四版)课后答案

《复变函数与积分变换》(西安交大-第四版)课后答案

所以
Arg i8 − 4i 21 + i = arg i8 − 4i 21 + i + 2kπ = arg(1 − 3i ) + 2kπ
(
)
(

= −arctan3 + 2kπ
2.如果等式 解:由于
ww
w.
解得 x = 1, y = 11 。 4.证明
比较等式两端的实、虚部,得
⎧ 5 x + 3 y − 4 = 34 ⎧ 5 x + 3 y = 38 或⎨ ⎨ ⎩− 3x + 5 y − 18 = 34 ⎩− 3x + 5 y = 52
3.证明虚单位 i 有这样的性质:-i=i-1= i 。
பைடு நூலகம்
kh
1) | z |2 = zz # 6) Re( z ) =
x + 1 + i(y − 3) [x + 1 + i(y − 3)](5 − 3i ) = 5 + 3i (5 + 3i )(5 − 3i ) =
da
2


x + 1 + i(y − 3) = 1 + i 成立,试求实数 x, y 为何值。 5 + 3i
⎛ 1 3i ⎞ ⎛ 1 3i ⎞ Arg⎜ − ⎟ = arg⎜ − ⎟ + 2kπ ⎝ i 1− i ⎠ ⎝ i 1− i ⎠
5 = − arctan + 2kπ , k = 0,±1,±2, " . 3 (3 + 4i )(2 − 5i ) = (3 + 4i )(2 − 5i )(− 2i ) = (26 − 7i )(− 2i ) (3) (2i )(− 2i ) 2i 4

复变函数习题二解答.docx

复变函数习题二解答.docx

第二章部分习题解答1 •试证下列函数在7平面上任何点都不解析。

(2) /(z ) = Rez o色=1色=0空=o 勿’金 >,知1爪)在刁平面上任何点都不解析。

2.下列函数何处可导?何处解析?(1)旳“+的解 (1)由于OXf(z) = xy 2+ix 2y 仅在点“0处可导,在?平面处处不解析。

3•证明:如果函数/(z )=w + /v在区域D 内解析,并满足下列条件之一,那么/⑴ 是常数。

仃)在。

内广^ =°; ⑵雨在D 内解析。

⑶"(z)l 在D 内是一个常数。

解(1)的证明由于/⑵P+必丸,故由引理得纵"=°,根据C.R 条件 即有亏9 = 于是讥乙刃、风兀丿)恒为常数,即/⑵在D 内恒为常数。

(2)若7U) = ^ = u-iv 在区域D 内解析,贝I 」du _ d(- v) _ dv _ d(— v) _ Sudx dy dy ? dy dx dx又f(z) = u^iv 在区域D 内解析,贝IJdu du __dx , 5y dx dy知/(z)在z 平面上任何点都不解析。

du dx(1)在Z 平面上处处连续,且当且仅当 沪0时,6 才满足C~R 条件,故du dv du dv—=— —— --------- dx dy, dy dx结合(1)、(2)两式,有du _ du _dv _dv dx dy dx vy故以在〃内均为常数,分別记之为均=C 19u 2=C 2(C l9C 2为实常数), 则 /(Z ) = M+ ,V =C] +iC 2 =C 为一复常数。

(3)若1%)1在D 内为一常数,记为G,则两边分别对于x 和y 求 偏导,得由于/C)在〃内解析,满足C-R 条件du dv dudv II■I■,dx dy ?dx代入上式又可写得duu---- dx du v ——+ dxSv dv c——=——=U同理,可解得% 巧 故均为常数,分别记为U = C^V = C 29 则 /(z) = u + iv=C {+iC 2=C 为一复常数。

《复变函数》第四版习题解答第2章

《复变函数》第四版习题解答第2章
∂u ∂u ∂u = cosθ + sin θ ∂r ∂x ∂y ∂v ∂v ∂v ∂u ∂u ∂u = (− r sin θ ) + r cosθ = r sin θ + r cosθ = r ∂θ ∂x ∂y ∂y ∂x ∂r

∂u 1 ∂v = 。又 ∂r r ∂θ ∂u ∂u = (− r sin θ ) + ∂u r cosθ ∂θ ∂x ∂y ∂v ∂v ∂v ∂u ∂u = cosθ + sin θ = − cosθ + sin θ ∂r ∂x ∂y ∂y ∂x ⎞ 1 ⎛ ∂u 1 ∂u ∂u =− ⎜ r cosθ − r sin θ ⎟ =− ⎜ ⎟ r ⎝ ∂y r ∂θ ∂x ⎠
习题二解答
1.利用导数定义推出:
1)( z n ) ' = nz n −1 , (n是正整数);
证 1) ( z ) ' = lim
n
1 ⎛1⎞ 2) ⎜ ⎟' = − 2 。 z ⎝z⎠
( z + ∆z ) n − z n 2 n−2 = lim (nz n −1 + Cn z ∆z + " ∆z n −1 ) = nz n −1 z ∆z → 0 ∆ → 0 ∆z 1 1 − 1 1 ⎛1⎞ 2) ⎜ ⎟ ' = lim z + ∆z z = − lim =− 2 ∆z → 0 z ( z + ∆z ) z ∆z ⎝ z ⎠ ∆z →0
∂u ∂ (− v ) ∂v , = =− ∂x ∂y ∂y ∂u ∂ (− v ) ∂u =− = ∂y ∂x ∂x
(1)
又 f ( z ) = u + iv 在区域 D 内解析,则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档