专题五第2讲 椭圆、双曲线、抛物线
第2讲 椭圆、双曲线、抛物线
第 2 讲 椭圆、双曲线、抛物线
1.(2019·全国卷Ⅱ)若抛物线 y2=2px(p>0)的焦点是
椭圆3xp2+yp2=1 的一个焦点,则 p=(
)
A.2
B.3
C.4
D.8
解析:抛物线 y2=2px(p>0)的焦点坐标为p2,0,椭 圆3xp2+yp2=1 的焦点坐标为(± 2p,0).
(2)双曲线ay22-xb22=1(a>0,b>0)的渐近线方程 y=±abx. 3.抛物线的焦点坐标与准线方程 (1)抛物线 y2=2px(p>0)的焦点 Fp2,0,准线方程 x=-p2. (2)抛物线 x2=2py(p>0)的焦点 F0,p2,准线方程 y=-p2.
因为 y′=x,所以切线 DA 的斜率为 x1,故yx11+-12t=x1. 整理得 2tx1-2y1+1=0. 设 B(x2,y2),同理可得 2tx2-2y2+1=0. 故直线 AB 的方程为 2tx-2y+1=0. 所以直线 AB 过定点0,12. (2)解:由(1)得直线 AB 的方程为 y=tx+12.
所以 x1+32=3x2+32,则 x1=3x2+3.①
因为|y1|=3|y2|,所以 x1=9x2.② 由①,②得 x1=92,x2=12,故|AB|=x1+x2+3=8. 答案:B
4.(2018·天津卷)已知双曲线xa22-by22=1(a>0,b>0)
[变式训练] (1)已知椭圆 C:ay22+1x62=1(a>4)的离心 率是 33,则椭圆 C 的焦距是( )
A.2 2 B.2 6 C.4 2 D.4 6 (2)(2019·全国卷Ⅰ)已知双曲线 C:xa22-by22=1(a>0,b >0)的左、右焦点分别为 F1,F2,过 F1 的直线与 C 的两 条渐近线分别交于 A,B 两点.若F→1A=A→B,F→1B·F→2B=0, 则 C 的离心率为________.
第2讲:椭圆、抛物线、双曲线
1.圆锥曲线的方程与几何性质是高考的重点;2直线与圆锥曲线的位置关系是命题的热点,尤其是有关弦长计算及存在性问题;3.数学运算(数的运算、代数式运算)也是这里的考查要求之一.1.圆锥曲线的定义(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d (d 为M 点到准线的距离). 2.圆锥曲线的标准方程(1)椭圆:x 2a 2+y 2b 2=1(a >b >0)(焦点在x 轴上)或y 2a 2+x 2b 2=1(a >b >0)(焦点在y 轴上);(2)双曲线:x 2a 2-y 2b 2=1(a >0,b >0)(焦点在x 轴上)或y 2a 2-x 2b 2=1(a >0,b >0)(焦点在y 轴上);(3)抛物线:y 2=2px ,y 2=-2px ,x 2=2py ,x 2=-2py (p >0). 3.圆锥曲线的重要性质(1)椭圆、双曲线中a ,b ,c 之间的关系 ①在椭圆中:a 2=b 2+c 2;离心率为e =ca =1-b 2a 2. ②在双曲线中:c 2=a 2+b 2;离心率为e =c a=1+b 2a2.(2)双曲线的渐近线方程与焦点坐标①双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x ;焦点坐标F 1(-c ,0),F 2(c ,0).②双曲线y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程为y =±ab x ,焦点坐标F 1(0,-c ),F 2(0,c ).(3)抛物线的焦点坐标与准线方程①抛物线y 2=2px (p >0)的焦点F ⎝⎛⎭⎫p 2,0,准线方程x =-p2. ②抛物线x 2=2py (p >0)的焦点F ⎝⎛⎭⎫0,p 2,准线方程y =-p 2. 4.弦长问题(1)直线与圆锥曲线相交的弦长设而不求,利用根与系数的关系,进行整体代入.即当斜率为k ,直线与圆锥曲线交于A (x 1,y 1),B (x 2,y 2)时,|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2. (2)过抛物线焦点的弦长 抛物线y 2=2px (p >0)过焦点F 的弦AB ,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .热点一 圆锥曲线的几何性质【例1】 (2017·山东卷)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________. 解析 设A (x 1,y 1),B (x 2,y 2),联立方程:⎩⎪⎨⎪⎧x 2a 2-y 2b 2=1,x 2=2py ,消去x 得a 2y 2-2pb 2y +a 2b 2=0,由根与系数的关系得y 1+y 2=2b 2a2p ,又∵|AF |+|BF |=4|OF |,∴y 1+p 2+y 2+p 2=4×p2,即y 1+y 2=p ,∴2b 2a 2p =p ,即b 2a 2=12⇒b a =22. ∴双曲线渐近线方程为y =±22x .答案 y =±22x探究提高 1.分析圆锥曲线中a ,b ,c ,e 各量之间的关系是求解圆锥曲线性质问题的关键.2.确定椭圆和双曲线的离心率的值及范围,其关键就是确立一个关于a ,b ,c 的方程(组)或不等式(组),再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式.建立关于a ,b ,c 的方程(组)或不等式(组),要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.3.求双曲线渐近线方程关键在于求b a 或ab 的值,也可将双曲线等号右边的“1”变为“0”,然后因式分解得到.【训练1】 (1)(2017·全国Ⅲ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( ) A.63B.33C.23D.13(2)(2016·北京卷)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =________.解析 (1)以线段A 1A 2为直径的圆是x 2+y 2=a 2,直线bx -ay +2ab =0与圆相切,所以圆心(0,0)到直线的距离d =2ab a 2+b 2=a ,整理为a 2=3b 2,即b a =13.∴e =ca =a 2-b 2a=1-⎝⎛⎭⎫b a 2=1-⎝⎛⎭⎫132=63.(2)取B 为双曲线右焦点,如图所示.∵四边形OABC 为正方形且边长为2,∴c =|OB |=22,又∠AOB =π4,∴b a =tan π4=1,即a =b .又a 2+b 2=c 2=8,∴a =2. 答案 (1)A (2)2热点二 直线与圆锥曲线【例2】 (2016·全国Ⅰ卷)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H . (1)求|OH ||ON |; (2)除H 以外,直线MH 与C 是否有其它公共点?说明理由. 解 (1)如图,由已知得M (0,t ),P ⎝⎛⎭⎫t 22p ,t , 又N 为M 关于点P 的对称点,故N ⎝⎛⎭⎫t 2p ,t ,故直线ON 的方程为y =ptx ,将其代入y 2=2px 整理得px 2-2t 2x =0, 解得x 1=0,x 2=2t 2p ,因此H ⎝⎛⎭⎫2t 2p ,2t . 所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其它公共点,理由如下: 直线MH 的方程为y -t =p 2t x ,即x =2tp (y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其它公共点.探究提高 1.判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程的判别式来确定;2.弦长计算公式:直线AB 与圆锥曲线有两个交点A (x 1,y 1),B (x 2,y 2),则弦长|AB |=1+k 2·(x 1+x 2)2-4x 1x 2,其中k 为弦AB 所在直线的斜率.3.对于弦的中点问题常用“根与系数的关系”或“点差法”求解,在使用根与系数的关系时,要注意使用条件Δ>0,在用“点差法”时,要检验直线与圆锥曲线是否相交.【训练2】 (2017·北京卷)已知抛物线C :y 2=2px 过点P (1,1),过点⎝⎛⎭⎫0,12作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点. (1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.解 (1)把P (1,1)代入y 2=2px ,得p =12,所以抛物线C 的方程为y 2=x ,焦点坐标为⎝⎛⎭⎫14,0,准线方程为x =-14. (2)证明 当直线MN 斜率不存在或斜率为零时,显然与抛物线只有一个交点不满足题意,所以直线MN (也就是直线l )斜率存在且不为零.由题意,设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +12,y 2=x ,消去y 得4k 2x 2+(4k -4)x +1=0. 考虑Δ=(4k -4)2-4×4k 2=16(1-2k ),由题可知有两交点,所以判别式大于零,所以k <12.则x 1+x 2=1-k k 2,x 1x 2=14k2.因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1). 直线ON 的方程为y =y 2x 2x ,点B 的坐标为⎝⎛⎭⎫x 1,y 2x 1x 2. 因为y 1+y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2x 2=⎝⎛⎭⎫kx 1+12x 2+⎝⎛⎭⎫kx 2+12x 1-2x 1x 2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2=(2k -2)×14k 2+1-k2k2x 2=0.所以y 1+y 2x 1x 2=2x 1.故A 为线段BM 的中点.1.(2016·全国Ⅰ卷)已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A.(-1,3)B.(-1,3)C.(0,3)D.(0,3)2.(2017·全国Ⅲ卷)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( ) A.x 28-y 210=1 B.x 24-y 25=1 C.x 25-y 24=1 D.x 24-y 23=1 3.(2017·全国Ⅱ卷)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.4.(2017·全国Ⅱ卷)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →. (1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .1.(2016·全国Ⅱ卷)设F 为抛物线C :y 2=4x 的焦点,曲线y =kx (k >0)与C 交于点P ,PF ⊥x 轴,则k =( )A.12B.1C.32D.22.(2017·全国Ⅰ卷)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( ) A.13B.12C.23D.323.(2017·邯郸质检)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若FP →=4FQ →,则|QF |等于________.45分钟) 经典常规题高频易错题4.(2017·佛山调研)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,右焦点为F (1,0).(1)求椭圆E 的标准方程;(2)设点O 为坐标原点,过点F 作直线l 与椭圆E 交于M ,N 两点,若OM ⊥ON ,求直线l 的方程.1.(2017·新乡模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点B 是虚轴上的一个顶点,线段BF 与双曲线C 的右支交于点A ,若BA →=2AF →,且|BF →|=4,则双曲线C 的方程为( ) A.x 26-y 25=1 B.x 28-y 212=1 C.x 28-y 24=1 D.x 24-y 26=1 2.(2017·石家庄三模)已知椭圆C 1与双曲线C 2有相同的左右焦点F 1,F 2,P 为椭圆C 1与双曲线C 2在第一象限内的一个公共点,设椭圆C 1与双曲线C 2的离心率分别为e 1,e 2,且e 1e 2=13,若∠F 1PF 2=π3,则双曲线C 2的渐近线方程为( ) A.x ±y =0B.x ±33y =0 C.x ±22y =0 D.x ±2y =03.(2017·潍坊三模)已知抛物线y 2=2px (p >0)上的一点M (1,t )(t >0)到焦点的距离为5,双曲线x 2a 2-y 29=1(a >0)的左顶点为A ,若双曲线的一条渐近线与直线AM 平行.则实数a 的值为________.4.(2017·郴州三模) 在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b ≥1)过点P (2,1),且离心率e =32.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点,求△P AB 面积的最大值.精准预测题参考答案1.【解题思路】方程x 2m 2+n -y 23m 2-n =1表示双曲线,根据一元二次不等式可知m ,n 之间的不等关系,进而分别确定m 2+n 和3m 2-n 的正负,当然也可以分类讨论处理.【答案】∵方程x 2m 2+n -y 23m 2-n=1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2.由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2(其中c 是半焦距),∴焦距2c =2×2|m |=4,解得|m |=1,∴-1<n <3.故选A.2.【解题思路】由渐近线知ba 的值,又由焦点坐标可确定c .【答案】由题设知b a =52,①又由椭圆x 212+y 23=1与双曲线有公共焦点,易知a 2+b 2=c 2=9,②由①②解得a =2,b =5,则双曲线C 的方程为x 24-y 25=1.故选B.3.【解题思路】做出M 到准线的垂线,利用中位线和抛物线的定义即可.【答案】如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2.∵点M 为FN 的中点,PM ∥OF ,∴|MP |=12|FO |=1.又|BP |=|AO |=2,∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3,故|FN |=2|MF |=6.故填6. 4.【解题思路】(1)相关点法求轨迹, (2)利用向量处理垂直问题.【答案】(1)解 设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP →=(x -x 0,y ),NM →=(0,y 0), 由NP →=2NM →得x 0=x ,y 0=22y ,因为M (x 0,y 0)在C 上,所以x 22+y 22=1,因此点P 的轨迹方程为x 2+y 2=2.(2)证明 由题意知F (-1,0),设Q (-3,t ),P (m ,n ),则OQ →=(-3,t ),PF →=(-1-m ,-n ),OQ →·PF →=3+3m -tn ,OP →=(m ,n ),PQ →=(-3-m ,t -n ),由OP →·PQ →=1,得-3m -m 2+tn -n 2=1,经典常规题又由(1)知m 2+n 2=2.故3+3m -tn =0.所以OQ →·PF →=0,即OQ →⊥PF →,又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .1.【解题思路】由PF ⊥x 轴结合P 点在抛物线上确定P 点坐标. 【答案】因为抛物线方程是y 2=4x ,所以F (1,0).又因为PF ⊥x 轴,所以P (1,2),把P 点坐标代入曲线方程y =k x (k >0),即k1=2,所以k =2.故选D.2.【解题思路】12APF S PF d =⋅△(d 为A 到PF 的距离). 【答案】由c 2=a 2+b 2=4得c =2,所以F (2,0),将x =2代入x 2-y 23=1,得y =±3,所以|PF |=3. 又A 的坐标是(1,3),故△APF 的面积为12×3×(2-1)=32.故选D.3.【解题思路】过点Q 作l 的垂线,利用三角形相似,对应边成比例处理.【答案】过点Q 作QQ ′⊥l 交l 于点Q ′,因为FP →=4FQ →,所以|PQ |∶|PF |=3∶4,又焦点F 到准线l 的距离为4,所以|QF |=|QQ ′|=3.故填3.4.【解题思路】(1)由离心率和焦点坐标联立方程求出a ,b , (2) OM ⊥ON ⇔OM →·ON →=0,结合韦达定理处理.【答案】解 (1)依题意可得⎩⎪⎨⎪⎧1a =22,a 2=b 2+1,解得a =2,b =1.∴椭圆E 的标准方程为x 22+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),①当MN 垂直于x 轴时,直线l 的方程为x =1,不符合题意;②当MN 不垂直于x 轴时,设直线l 的方程为y =k (x -1).联立得方程组⎩⎪⎨⎪⎧x 22+y 2=1,y =k (x -1),消去y得(1+2k 2)x 2-4k 2x +2(k 2-1)=0,∴x 1+x 2=4k 21+2k 2,x 1·x 2=2(k 2-1)1+2k 2. ∴y 1·y 2=k 2[x 1x 2-(x 1+x 2)+1]=-k 21+2k 2.∵OM ⊥ON ,∴OM →·ON →=0. ∴x 1·x 2+y 1·y 2=k 2-21+2k 2=0,∴k =±2.故直线l 的方程为y =±2(x -1).1.【解题思路】由BA →=2AF →可确定A 点坐标,A 点在双曲线上,又|BF →|=4由勾股定理可得,列方程组解出a ,b .【答案】设A (x ,y ),∵右焦点为F (c ,0),点B (0,b ),线段BF 与双曲线C 的右支交于点A ,且BA →=2AF →, ∴x =2c 3,y =b 3,代入双曲线方程,得4c 29a 2-19=1,且c 2=a 2+b 2,∴b =6a 2.高频易错题精准预测题∵|BF →|=4,∴c 2+b 2=16,∴a =2,b =6,∴双曲线C 的方程为x 24-y 26=1.故选D.2.【解题思路】共焦点相同,再e 1e 2=13再可得椭圆与双曲线的a ,b ,c 的关系,结合定义可得|PF 1|,|PF 2|.【答案】设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0),双曲线C 2:x 2m 2-y 2n 2=1,依题意c 1=c 2=c ,且e 1e 2=13,∴m a =13,则a =3m ,① 由圆锥曲线定义,得|PF 1|+|PF 2|=2a ,且|PF 1|-|PF 2|=2m ,∴|PF 1|=4m ,|PF 2|=2m . 在△F 1PF 2中,由余弦定理,得:4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cosπ3=12m 2, ∴c 2=3m 2,则n 2=c 2-m 2=2m 2,因此双曲线C 2的渐近线方程为y =±2x ,即x ±22y =0.故选C.3.【解题思路】利用抛物线定义求出点M 的坐标,再两直线平行,斜率相等. 【答案】由题设1+p2=5,∴p =8.不妨设点M 在x 轴上方,则M (1,4),由于双曲线的左顶点A (-a ,0),且直线AM 平行一条渐近线,∴41+a =3a,则a =3.故填3.4.【解题思路】(1)列方程组求解,(2)在涉及弦长的问题中,应熟练地利用根与系数关系,设而不求计算弦长;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解. 【答案】解(1)∵e 2=c 2a 2=a 2-b 2a 2=34,∴a 2=4b 2.又4a 2+1b2=1,∴a 2=8,b 2=2. 故所求椭圆C 的方程为x 28+y 22=1.(2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2),联立⎩⎨⎧y =12x +m ,x 28+y22=1,消去y 得x 2+2mx +2m 2-4=0,判别式Δ=16-4m 2>0,即m 2<4.又x 1+x 2=-2m ,x 1·x 2=2m 2-4, 则|AB |=1+14×(x 1+x 2)2-4x 1x 2=5(4-m 2), 点P 到直线l 的距离d =|m |1+14=2|m |5. 因此S △P AB =12d |AB |=12×2|m |5×5(4-m 2)=m 2(4-m 2)≤m 2+(4-m 2)2=2,当且仅当m 2=2时上式等号成立,故△P AB 面积的最大值为2.。
专题五 第二讲 椭圆、双曲线、抛物线的定义、方程与性质
考点一 考点二 考点三 课后训练 提升能力
首页 上页 下页 尾页
考点一 圆锥曲线的定义与标准方程
[全练——快速解答]
1根.据(20双17曲·高线考C全的国渐卷近Ⅲ线)已方知程双为曲y=线 25Cx:,xa22-by22=1(a>0,b>0) 的可一知条ba=渐近25线.①方程为 y= 25x,且与椭圆1x22+y32=1 有公共焦点, 则 A又所.x8C2椭以-的圆a1y方2021+x=22程+b12为=y32(=9.②B1 的)B焦.x4点2-坐y52标=为1 (3,0)和(-3,0), C根所.x52据以-①Cy42②=的可1方知程为a2=x42-4D,.yx542b2=-2=1y3. 椭圆离心率求法·T10
学科素养 通过对椭圆、双曲线、抛物线的定义、 方程及几何性质的考查,着重考查了
数学抽象、数学建模与数学运算三大
核心素养.
考情分析 明确方向
考查角度及命题 年份 卷别
位置
命题分析及学科素养
抛物线与圆的综 命题分析
Ⅰ卷
合问题·T10
1.圆锥曲线的定义、方程与性质是每年高
线与双曲线的位置关 空题的形式考查,常出现在第 4~
系·T11 双曲线的渐近线方
11 或 15~16 题的位置,着重考查 圆锥曲线的几何性质与标准方程,
Ⅱ卷 程·T5
2018
椭圆的离心率·T12
双曲线的离心率·T11
难度中等. 2.圆锥曲线的综合问题多以解答题 的形式考查,常作为压轴题出现在 第 20 题的位置,一般难度较大.
3.(2018·惠州模拟)已知 F1,F2 是双曲线ay22-xb22=1(a>0,b>
0)的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的
高考数学:专题五 第二讲 椭圆、双曲线、抛物线课件
考点与考题
第二讲
本 讲 栏 目 开 关
图形
考点与考题
范围 顶点 对称性 |x|≤a,|y|≤b (± a,0)(0,± b) |x|≥a (± a,0) x≥0 (0,0)
第二讲
关于 x 轴,y 轴和原点对称 (± c,0) 长轴长 2a, 短轴长 2b c e=a b2 = 1- 2 a (0<e<1) 实轴长 2a, 虚轴长 2b c e=a b2 = 1+ 2 a (e>1)
解析 由 x2-y2=2 知,a2=2,b2=2,c2=a2+b2=4,
∴a= 2,c=2.
又∵|PF1|-|PF2|=2a,|PF1|=2|PF2|,
∴|PF1|=4 2,|PF2|=2 2.
又∵|F1F2|=2c=4,
4 22+2 22-42 ∴由余弦定理得 cos∠F1PF2= 2×4 2×2 2 3 = . 4
∴直线 AF 的方程为 y=2 2(x-1). y=2 2x-1, 联立直线与抛物线的方程 2 y =4x,
1 x=2, x= , 2 解之得 或 y=2 2. y=- 2 1 由图知 B2,- 2,
考点与考题
1 1 ∴S△AOB= |OF|· A-yB|= ×1×|2 2+ 2| |y 2 2 3 = 2.故选 C. 2
答案 2 7-5
题型与方法
第二讲
方法提炼 何性质.
研究圆锥曲线的几何性质,实质是求参数a、b、c或者
建立a、b、c的关系式(等式或不等式),然后根据概念讨论相应的几
本 讲 栏 目 开 关
题型与方法
第二讲
本 讲 栏 目 开 关
变式训练 2 (1)若点 P 为共焦点的椭圆 C1 和双曲线 C2 的一个交点, F1、F2 分别是它们的左、右焦点,设椭圆离心率为 e1,双曲线离心率 1 1 → → 为 e2,若PF1· 2=0,则 2+ 2等于 PF (B ) e1 e2 A.1 B.2 C.3 D.4
2021届高考二轮数学人教版课件:第2部分 专题5 第2讲 椭圆、双曲线、抛物线
D.x32-y2=1
第二部分 专题五 解析几何
高考二轮总复习 • 数学
返回导航
【解析】
由题意可得菱形的一个内角为60°,ab=
3 3
,一条对角线
的长为c,另一条对角线的长为 33c,
所以12c·33c=2 3 3,c=2,而a2+b2=c2=4,
解得:a2=3,b2=1, 双曲线C的方程为x32-y2=1,
第二部分 专题五 解析几何
高考二轮总复习 • 数学
返回导航
2.(2020·运城三模)已知双曲线C:
x2 a2
-
y2 b2
=1(a>0,b>0)的两条渐近
线与曲线x+ 3|y|=c(c= a2+b2)围成一个面积为233的菱形,则双曲线
C的方程为
( D)
A.x62-y22=1
B.x22-y62=1
C.x2-y32=1
的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的
中心为原点,焦点F1,F2均在x轴上,C的面积为2 3 π,过点F1的直线交
C于点A,B,且△ABF2的周长为8,则C的标准方程为
(C )
A.x42+y2=1
B.x32+y42=1
C.x42+y32=1
D.1x62 +43y2=1
(4)(2020·北京昌平区期末)抛物线y2=2px上一点M到焦点F(1,0)的距 离等于4,则p=__2__;点M的坐标为__(_3_,__±_2__3_)__.
第二部分 专题五 解析几何
高考二轮总复习 • 数学
返回导航
(文科) 年份 卷别
Ⅰ卷
Ⅱ卷 2020
Ⅲ卷
题号 11 9
7、14
考查角度
高三数学二轮复习-专题五第二讲-椭圆、双曲线、抛物线课件
抛物线的方程及几何性质
(5分)(2011·山东)设M(x0,y0)为抛物线C: x2=8y上一点,F为抛物线C的焦点,以F为 圆心、|FM|为半径的圆和抛物线C的准线相交, 则y0的取值范围是
A.(0,2)
B.[0,2]
C.(2,+∞)
D.[2,+∞)
【标准解答】 ∵x2=8y, ∴焦点F的坐标为 (0,2), 准线方程为y=-2.
∴c2=a2-b2=8.∴e=ac=2 4 2=
2 2.
答案 D
4.(2011·辽宁)已知F是抛物线y2=x的焦点,A,B是该
抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的 距离为
3 A.4
B.1
5
7
C.4
D.4
解析 ∵|AF|+|BF|=xA+xB+12=3,∴xA+xB=52.
解析 由于直线AB的斜率为-ba,故OP的斜率为-ba,
直线OP的方程为y=-bax.
与椭圆方程ax22+by22=1联立,解得x=±
2 2 a.
因为PF1⊥x轴,所以x=- 22a,
从而- 22a=-c,即a= 2c. 又|F1A|=a+c= 10+ 5, 故 2c+c= 10+ 5,解得c= 5, 从而a= 10.所以所求的椭圆方程为1x02 +y52=1. 答案 1x02 +y52=1
又双曲线的离心率e= a2a+b2= a7,所以 a7=247, 所以a=2,b2=c2-a2=3, 故双曲线的方程为x42-y32=1.
答案 x42-y32=1
圆锥曲线是高考考查的重点,一般会涉及到 圆锥曲线的定义、离心率、圆锥曲线的几何 性质及直线与圆锥曲线的位置关系等. 在命题 中体现知识与能力的综合,一般地,选择题、 填空题的难度属中档偏下,解答题综合性较 强,能力要求较高,故在复习的过程中,注 重基础的同时,要兼顾直线与圆锥曲线的综 合问题的强化训练,尤其是对推理、运算能 力的训练.
专题五 第二讲 椭圆、双曲线、抛物线
[联知识 串点成面]
1.定义式:||PF1|-|PF2||=2a(2a<|F1F2|) 2.标准方程:
焦点在 x 轴上:ax22-by22=1(a>0,b>0), 焦点在 y 轴上:ay22-bx22=1(a>0,b>0), 焦点不明确:mx2+ny2=1(mn<0).
B.x92-2y72 =1 D.2x72 -y92=1
[解析] 由双曲线ax22-by22=1(a>0,b>0)的一条渐近线方程是 y= 3 x,则ba= 3①,抛物线 y2=24x 的准线方程为 x=-6,知-c= -6,c=6, a2+b2=6②,由①②得 a=3,b=3 3,则双曲线 的方程为x92-2y72 =1.
∴b2=2a2.c2=a2+b2=3a2.∴e=ac= 3.
答案:B
[悟方法 触类旁通] 1.使用双曲线定义时注意点在双曲线的哪一个分支上. 2.对于双曲线的离心率与渐近线的关系.若已知渐近线而不
明确焦点位置,那么离心率一定有两解. 3.直线与双曲线的交点比椭圆复杂,要注意结合图形分
析.尤其是直线与双曲线有且只有一个交点⇔Δ=0或l平行 于渐近线.
解析:因为P到C1D1的距离即为P到C1的距离,所以在面 BC1内,P到定点C1的距离与P到定直线BC的距离相等, 由圆锥曲线的定义知动点P的轨迹为抛物线. 答案:D
点击下图进入战考场
[做考题 查漏补缺] (2011·四川高考)过点 C(0,1)的椭圆xa22+by22=1(a>b>0)的离心 率为 23.椭圆与 x 轴交于两点 A(a,0)、B(-a,0).过 点 C 的直线 l 与椭圆交于另一点 D,并与 x 轴交于 点 P.直线 AC 与直线 BD 交于点 Q. (1)当直线 l 过椭圆右焦点时,求线段 CD 的长; (2)当点 P 异于点 B 时,求证:OP ·OQ 为定值.
数学(理)高考二轮复习:专题五第二讲《椭圆、双曲线、抛物线的定义、方程与性质》课件(共46张PPT)
a2+b2=25
a2=20
依题意1=ba×2
,解得b2=5 ,∴双曲线 C 的方程为
2x02 -y52=1.
第二讲 椭圆、双曲线、抛物线的定义、方程与性质
考点一
课前自主诊断
课堂对点补短 限时规范训练 上页 下页
试题
通解 优解
考点一
考点二
考点三
2.设 F1,F2 分别为椭圆x42+y2=1 的左、右焦点,点 P 在椭圆上,
第二讲 椭圆、双曲线、抛物线的定义、方程与性质 课前自主诊断 课堂对点补短
考点三 直线与椭圆、双曲线、抛物线的位置关系
限时规范训练 上页 下页
试题
解析
考点一 考点二
考点三
6.(2016·高考全国Ⅰ卷)设圆 x2+y2+2x-15=0 的圆心为 A,直 线 l 过点 B(1,0)且与 x 轴不重合,l 交圆 A 于 C,D 两点,过 B 作 AC 的平行线交 AD 于点 E. (1)证明|EA|+|EB|为定值,并写出点 E 的轨迹方程; (2)设点 E 的轨迹为曲线 C1,直线 l 交 C1 于 M,N 两点,过 B 且 与 l 垂直的直线与圆 A 交于 P,Q 两点,求四边形 MPNQ 面积 的取值范围.
10,点 P(2,1)在 C 的一条渐近线上,则 C 的方程为( A )
A.2x02 -y52=1
B.x52-2y02 =1
C.8x02-2y02 =1
D.2x02-8y02 =1
第二讲 椭圆、双曲线、抛物线的定义、方程与性质
考点一
课前自主诊断
课堂对点补短
限时规范训练 上页 下页
试题
解析
考点一 考点二 考点三
长即可表示出面积,解方程求 b 即可. 由题意知双曲线的渐近线方程为 y=±b2x,圆的方程为 x2+y2=4,
大学数学(高数微积分)专题五第2讲椭圆双曲线(课堂讲义)
热点分类突破
(2)设∠F1PF2=θ,
本
由||PPFF11||- =4|P|PFF2|2=| 2a,
得|PF1|=83a, |PF2|=23a,
讲 栏 目
由余弦定理得cos θ=17a82-a2 9c2=187-98e2.
开
关 ∵θ∈(0,180°],∴cos θ∈[-1,1),-1≤187-98e2<1,
|x|≥a
本
讲 栏
几
顶点
(±a,0),(0,±b)
(±a,0)
目 开
何 对称性
关于x轴,y轴和原点对称
关 性 焦点
(±c,0)
x≥0
(0,0) 关于x轴对称
(p2,0)
质
长轴长2a,短轴 实轴长2a,
轴
长2b
虚轴长2b
主干知识梳理
几 离心率 e=ac=
1-ba22 e=ac=
1+ba22 e=1
本
3 2.
热点分类突破
∴|AC|=|y2-y1|= 3.
因此菱形的面积S=12|OB|·|AC|=12×2× 3= 3.
(2)假设四边形OABC为菱形.
讲 栏 目
又 x1+x2=-43m,x1x2=2m23-2,
开 关
∴y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2
=2m23-2-4m3 2+m2=m23-2.
又F为△MPQ的垂心,连接PF,则PF⊥MQ, ∴P→F·M→Q=0,
热点分类突破
又P→F=(1-x1,-y1),M→Q=(x2,y2-1), ∴P→F·M→Q=x2+y1-x1x2-y1y2 =x2+x1+m-x1x2-y1y2
5
【步步高】2012届高考数学第二轮复习 专题五第2讲椭圆、双曲线、抛物线课件
3 4 解得 B( , ). 5 5
∴过切点 A,B 的直线方程为 2x+y-2=0.
令 y=0 得 x=1,即 c=1; 令 x=0 得 y=2,即 b=2.
2 2 x y ∴a2=b2+c2=5,∴椭圆方程为 + =1. 5 4 2 2 x y 答案 5 + 4 =1 考题分析 本题考查了椭圆的标准方程及简单性质、圆的
② ③
探究提高 椭圆的方程、双曲线的方程、渐近线方程以及抛物 线的方程、准线都是高考的热点.在解题时,要充分利用条件, 构造方程,运用待定系数法求解.
变式训练 2 设抛物线 y2=2px (p>0)的焦点为 F,经过点 F 的 直线交抛物线于 A、B 两点,点 C 在抛物线的准线上,且 BC∥x 轴.证明:直线 AC 经过原点 O.
→ =OM → +ON → ,求动点 Q 设 m 与 y 轴的交点为 N,若向量OQ
的轨迹方程,并说明此轨迹是什么曲线.
解 (1)当直线 l 垂直于 x 轴时,直线方程为 x=1,l 与圆的 两个交点坐标为(1, 3)和(1,- 3),其距离为 2 3,满足 题意. 若直线 l 不垂直于 x 轴,设其方程为 y-2=k(x-1), 即 kx-y-k+2=0.
第2讲
【高考真题感悟】
椭圆、双曲线、抛物线
x2 y2 1 (2011· 江西 )若椭圆 2+ 2= 1 的焦点在 x 轴上,过点(1, ) a b 2 作圆 x2+ y2= 1 的切线,切点分别为 A, B,直线 AB 恰好 经过椭圆的右焦点和上顶点,则椭圆方程是 ________.
解析
由题意可得切点 A(1,0). n-1 2 m 切点 B(m,n)满足m-1=- n , 2 2 m +n =1,
【步步高 通用(理)】2014届高三二轮专题突破 专题五 第2讲
根据椭圆与双曲线的定义可得|PF1|+|PF2|=2 |PF2||=2 3,
1 2 1 2 本 讲 2 栏 (2)方法一 抛物线C:y =8x的准线为l:x=-2,直线y=k(x 目 开 +2)(k>0)恒过定点P(-2,0). 关
两式平方相减得4|PF ||PF |=4×3,所以|PF |· |PF |=3.
专题五 第2讲
联立可得A(4,4 2),B(1,2 2). 4 2-2 2 2 2 ∴kAB= = 3 . 4-1
答案 (1)3
2 2 (2) 3
热点分类突破
专题五 第2讲
(1)对于圆锥曲线的定义不仅要熟记,还要深入理
本 讲 栏 目 开 关
解细节部分:比如椭圆的定义中要求|PF1|+|PF2|>|F1F2|,双 曲线的定义中要求||PF1|-|PF2||<|F1F2|,抛物线上的点到焦 点的距离与到准线的距离相等的转化. (2)注意数形结合,提倡画出合理草图.
为F1、F2,P为这两条曲线的一个交点,则|PF1|· |PF2|的值 等于________. (2)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、 B两点,F为C的焦点.若|FA|=2|FB|,则k=________.
热点分类突破
解析
专题五 第2讲
(1)焦点坐标为(0,± 2),由此得m-2=4,故m=6.
准方程的求解,直线与圆锥曲线的位置关系,常常在知识的 交汇点处命题,有时以探究的形式出现,有时以证明题的形 式出现.该部分题目多数为综合性问题,考查学生分析问题、 解决问题的能力,综合运用知识的能力等,属于中、高档题, 一般难度较大.
主干知识梳理
专题五 第2讲
圆锥曲线的定义、标准方程与几何性质
专题五 第二讲 椭圆、双曲线、抛物线
一、选择题1.(2011·安徽高考)双曲线2x 2-y 2=8的实轴长是( ) A .2 B .2 2 C .4D .4 2解析:双曲线方程可变为x 24-y 28=1,所以a 2=4,a =2,2a =4.答案:C2.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( )A.22B.33C.12D.13解析:由题意知点P 的坐标为(-c ,b 2a )或(-c ,-b 2a ),∵∠F 1PF 2=60°,∴2cb 2a =3,即2ac =3b 2=3(a 2-c 2). ∴3e 2+2e -3=0.∴e =33或e =-3(舍去). 答案:B3.(2011·浙江杭十四中模拟)双曲线x 23-y 2b =1的一条渐近线与圆(x -2)2+y 2=2相交于M 、N 两点且|MN |=2,则此双曲线的焦距是( )A .2 2B .2 3C .2D .4解析:一条渐近线方程为y = b 3x ,圆心到渐近线的距离为2b 3+b =1,b =1,则c =3+1=2,2c =4. 答案:D4.(2011·山东高考)设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)解析:圆心到抛物线准线的距离为p ,即4,根据已知只要|FM |>4即可.根据抛物线定义,|FM |=y 0+2,由y 0+2>4,解得y 0>2,故y 0的取值范围是(2,+∞).答案:C 二、填空题5.(2011·新课标卷)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为__________.解析:根据椭圆焦点在x 轴上,可设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),∵e =22,∴c a =22.根据△ABF 2的周长为16得4a =16,因此a =4,b =22,所以椭圆方程为x 216+y 28=1.答案:x 216+y 28=16.(2011·惠州模拟)过抛物线x 2=2py (p >0)的焦点F 作倾斜角为30°的直线,与抛物线分别交于A 、B 两点(点A 在y 轴左侧),则|AF ||FB |=________. 解析:由已知,得直线方程为y =33x +p2,与x 2=2py 联立消去x 得12y 2-20py +3p 2=0,∵点A 在y 轴左侧, ∴y A =p 6,y B =32p .如图所示,过A 、B 分别作准线的垂线AM 、BN ,由抛物线定义知|AF |=|AM |,|BF |=|BN |,∴|AF ||FB |=|AM ||BN |=p 6+p232p +p 2=13. 答案:137.经过点M (10,83),渐近线方程为y =±13x 的双曲线的方程为________.解析:设双曲线方程为x 2-9y 2=λ,代入点(10,83)∴λ=36.∴双曲线方程为x 236-y 24=1.答案:x 236-y 24=1三、解答题8.(2011·江西高考)已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC =OA +λOB,求λ的值.解:(1)直线AB 的方程是y =22(x -p2),与y 2=2px 联立,从而有4x 2-5px +p 2=0,所以:x 1+x 2=5p 4. 由抛物线定义得:|AB |=x 1+x 2+p =9, 所以p =4,从而抛物线方程是y 2=8x .(2)由p =4,4x 2-5px +p 2=0可简化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42);设OC=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22).又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1, 解得λ=0,或λ=2.9.(2011·西安模拟)已知直线l :x =my +1(m ≠0)恒过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F ,且交椭圆C 于A 、B 两点.(1)若抛物线x 2=43y 的焦点为椭圆C 的上顶点,求椭圆C 的方程;(2)对于(1)中的椭圆C ,若直线l 交y 轴于点M ,且MA =λ1AF ,MB →=λ2BF,当m 变化时,求λ1+λ2的值.解:(1)根据题意,直线l :x =my +1(m ≠0)过椭圆C : x 2a 2+y 2b 2=1(a >b >0)的右焦点F , ∴F (1,0).∴c =1,又∵抛物线x 2=43y 的焦点为椭圆C 的上顶点, ∴b = 3.∴b 2=3.∴a 2=b 2+c 2=4.∴椭圆C 的方程为x 24+y 23=1.(2)∵直线l 与y 轴交于M (0,-1m ),设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my +1,3x 2+4y 2-12=0,得 (3m 2+4)y 2+6my -9=0,Δ=144(m 2+1)>0, ∴y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4.∴1y 1+1y 2=2m3(*). 又由MA =λ1AF ,∴(x 1,y 1+1m )=λ1(1-x 1,-y 1),∴λ1=-1-1my 1,同理λ2=-1-1my 2, ∴λ1+λ2=-2-1m (1y 1+1y 2)=-2-23=-83.∴λ1+λ2=-83.10.(2011·杭州模拟)已知直线(1+3m )x -(3-2m )y -(1+3m )=0(m ∈R)所经过的定点F 恰好是椭圆C 的一个焦点,且椭圆C 上的点到点F 的最大距离为3.(1)求椭圆C 的标准方程;(2)设过点F 的直线l 交椭圆于A 、B 两点,若125≤|FA |·|FB |≤187,求直线l 的斜率的取值范围.解:(1)由(1+3m )x -(3-2m )y -(1+3m )=0, 得(x -3y -1)+m (3x +2y -3)=0,由⎩⎪⎨⎪⎧x -3y -1=0,3x +2y -3=0,解得F (1,0). 设椭圆C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),则⎩⎪⎨⎪⎧c =1,a +c =3,a 2=b 2+c 2,解得a =2,b =3,c =1.从而椭圆C 的标准方程为x 24+y 23=1.(2)设过F 的直线l 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1)x 24+y 23=1,得(3+4k 2)x 2-8k 2x +4k 2-12=0. 因点F 在椭圆内,即必有Δ>0,有⎩⎪⎨⎪⎧x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k2,所以|FA |·|FB |=(1+k 2)|(x 1-1)(x 2-1)| =(1+k 2)|x 1x 2-(x 1+x 2)+1|=9(1+k 2)3+4k 2.由125≤9(1+k 2)3+4k2≤187,得1≤k 2≤3, 解得-3≤k ≤-1或1≤k ≤3,所以直线l 的斜率的取值范围为[-3,-1]∪[1,3].。
2020届高考数学大二轮复习冲刺经典专题第二编讲专题专题五解析几何第2讲椭圆、双曲线、抛物线课件文
∴∠F1PF2=60°,由余弦定理可得 4c2=16a2+4a2-2·4a·2a·cos60°, ∴c= 3a,∴b= c2-a2= 2a. ∴ba= 2,∴双曲线 C 的渐近线方程为 y=± 2x.故选 A.
(2)已知 F1,F2 为双曲线ax22-by22=1(a>0,b>0)的左、右焦点,以 F1F2 为直
第二编 讲专题 专题五 解析几何
第2讲 椭圆、双曲线、抛物线
「考情研析」1.考查圆锥曲线的定义、方程及几何性质,特别是椭圆、 双曲线的离心率和双曲线的渐近线. 2.以解答题的形式考查直线与圆锥曲 线的位置关系(弦长、中点等).
1
PART ONE
核心知识回顾
1.圆锥曲线的定义式 (1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|); (2)双曲线:||PF1|-|PF2||=2a(2a<|F1F2|); (3)抛物线:|PF|=|PM|,点 F 不在直线 l 上,PM⊥l 于 M(l 为抛物线的准 线方程).
A.y=± 2x
B.y=±
2 2x
C.y=±2x D.y=±2 2x
答案 A
解析 由题意得,|PF1|=2|PF2|,|PF1|-|PF2|=2a,∴|PF1|=4a,|PF2|= 2a,
由于 P,M 关于原点对称,F1,F2 关于原点对称,∴线段 PM,F1F2 互 相平分,四边形 PF1MF2 为平行四边形,PF1∥MF2,∵∠MF2N=60°,
D. 10
答案 B
解析 设双曲线的右焦点为 F′,取 MN 的中点 P,连接 F′P,F′M, F′N,如图所示,由F→N=3F→M,可知|MF|=|MP|=|NP|.又 O 为 FF′的中点, 可知 OM∥PF′.∵OM⊥FN,∴PF′⊥FN.∴PF′为线段 MN 的垂直平分线.
考研高数总复习专题五第2讲椭圆双曲线(讲义)
热点分类突破
解析
(1)在△ABF中,由余弦定理得
|AF|2=|AB|2+|BF|2-2|AB|· |BF|cos∠ABF, ∴|AF|2=100+64-128=36,∴|AF|=6, 从而|AB|2=|AF|2+|BF|2,则AF⊥BF. 本 1 讲 栏 ∴c=|OF|=2|AB|=5,
目 开 关
热点分类突破
考点三
本 讲 栏 目 开 关
直线与圆锥曲线的位置关系 x2 y2 例3 已知椭圆C: 2+ 2=1(a>b>0)的 a b 2 离心率e= ,点F为椭圆的右焦点, 2 点A、B分别为椭圆的左、右顶点, → → 点M为椭圆的上顶点,且满足MF· FB= 2-1. (1)求椭圆C的方程; (2)是否存在直线l,当直线l交椭圆于P、Q两点时,使点F 恰为△PQM的垂心?若存在,求出直线l的方程;若不存 在,请说明理由.
本 讲 栏 目 开 关
2xB=xA-2, ∴ 2yB=yA
2 yA=8xA, 与 2 yB=8xB,
联立可得A(4,4 2),B(1,2 2). 4 2-2 2 2 2 ∴kAB= = 3 . 4-1
答案 (1)3
2 2 (2) 3
热点分类突破
(1)对于圆锥曲线的定义不仅要熟记,还要深入理
2 2m2-2 4m2 m -2 2 = - +m = . 3 3 3
又F为△MPQ的垂心,连接PF,则PF⊥MQ, → → ∴PF· MQ=0,
热点分类突破
→ =(1-x ,-y ),MQ → =(x ,y -1), 又PF 1 1 2 2
→ → ∴PF· MQ=x2+y1-x1x2-y1y2 =x2+x1+m-x1x2-y1y2
本 讲 栏 目 开 关
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年高考数学能力加强集训:
专题五第2讲 椭圆、双曲线、抛物线
一、选择题(每小题4分,共24分)
1.(2012·贵阳模拟)抛物线y =14x 2
的焦点坐标是 A.⎝ ⎛⎭⎪⎫
116,0 B .(1,0) C.⎝ ⎛⎭
⎪⎫
-116,0
D .(0,1)
解析 把抛物线方程化为标准形式得x 2=4y , ∴焦点坐标为(0,1). 答案 D
2.(2012·黄岗模拟)椭圆短轴的一个端点看长轴的两个端点的视角为120°,则这个椭圆的离心率是
A.1
2 B.22 C.63
D.33
解析 据题意知b a =33,∴e 2
=1-b 2a 2=23,∴e =63. 答案 C
3.(2012·荆州模拟)已知点P 在抛物线y 2=4x 上,则点P 到直线l 1:4x -3y +6=0的距离和到直线l 2:x =-1的距离之和的最小值为
A.3716
B.115 C .2
D .3
解析 易知直线l 2:x =-1是抛物线y 2=4x 的准线,抛物线y 2=4x 的焦点为F (1,0),据抛物线的定义知所求的距离之和的最小值为点F 到直线l 1的距离,即
d =
|4×1-3×0+6|
42+(-3)
2=2. 答案 C
4.(2012·大纲全国卷)已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=
A.1
4 B.3
5 C.3
4
D.45
解析 利用双曲线的定义及余弦定理求解.
由x 2-y 2=2知,a 2=2, b 2=2,c 2=a 2+b 2=4,∴a =2,c =2. 又∵|PF 1|-|PF 2|=2a ,|PF 1|=2|PF 2|, ∴|PF 1|=42,|PF 2|=2 2. 又∵|F 1F 2|=2c =4,
∴由余弦定理得cos ∠F 1PF 2=(42)2+(22)2-422×42×22=3
4.
答案 C
5.已知双曲线x 2a 2-y 2
b 2=1(a >0,b >0)的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为
A .5x 2
-4y 2
5=1
B.x 25-y 2
4=1 C.y 25-x 2
4=1
D .5x 2
-5y 2
4=1
解析 ∵抛物线y 2=4x 的焦点为(1,0),∴c =1;
又e =5,a =15,b 2=c 2-a 2=45,所以该双曲线方程为5x 2
-5y 24=1,故选
D.
答案 D
6.(2012·芜湖模拟)已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是
A .5
B .8 C.5+2
D.17-1
解析 设圆心为C ,则C (0,4),半径r =1,设抛物线的焦点F (1,0),据抛物
线的定义知,点P 到点Q 的距离与点P 到抛物线准线距离之和为|PQ |+|PF |=|PC |-1+|PF |=|PC |+|PF |≥|CF |-1=17-1.
答案 D
二、填空题(每小题5分,共15分)
7.(2012·肇庆模拟)短轴长为5,离心率e =2
3的椭圆的两焦点为F 1,F 2,过F 1作直线交椭圆于A ,B 两点,则△ABF 2的周长为________.
解析 由题知⎩⎪⎨⎪
⎧
2b =5
c a =2
3
即⎩⎪⎨⎪⎧
b =5
2a 2
-b 2a 2=49
,解得⎩⎪⎨
⎪⎧
a =3
2b =52
,
由椭圆的定义知△ABF 2的周长为4a =4×3
2=6. 答案 6
8.已知双曲线kx 2-y 2=1的一条渐近线与直线2x +y +1=0垂直,那么双曲线的离心率为________,渐近线方程为________.
解析 双曲线kx 2-y 2=1的渐近线方程是y =±kx . 又因为一条渐近线方程与直线2x +y +1=0垂直, ∴k =12,k =1
4,
∴双曲线的离心率为e =
1k +11k
=5
2; 渐近线方程为1
2x ±y =0. 答案 52 12x ±y =0
9.(2012·衡水模拟)已知x 2a 2+y 2b 2=1(a >b >0),M ,N 是椭圆的左、右顶点,P 是椭圆上任意一点,且直线PM 、PN 的斜率分别为k 1,k 2(k 1k 2≠0),若|k 1|+|k 2|的最小值为1,则椭圆的离心率为________.
解析 设P (x 0,y 0),不妨设y 0>0,
则k 1=
y 0x 0+a >0,k 2=y 0
x 0-a
<0, ∴|k 1|+|k 2|=k 1-k 2=
y 0x 0+a -y 0x 0-a =2ay 0
a 2-x 20
. 又∵x 20a 2+y 20b 2=1,∴a 2-x 20=a 2
b 2y 2
0,
∴|k 1|+|k 2|=2ay 0a 2b
2y 2
0=2b 2
ay 0.
∵0<y 0≤b ,∴当y 0=b 时,|k 1|+|k 2|的最小值为2b 2ab =2b
a =1, ∴
b a =12,e 2=
c 2a 2=1-b 2a 2=34,∴e =32. 答案 3
2
三、解答题(每小题12分,共36分)
10.如图所示,已知直线l :y =kx +2(k 为常数)过椭圆x 2a 2+y 2
b 2=1(a >b >0)的上顶点B 和左焦点F ,直线l 被圆x 2+y 2=4截得的弦长为d .
(1)若d =23,求k 的值;
(2)若d ≥45
5,求椭圆离心率e 的取值范围. 解析 (1)取圆中弦的中点M ,连接OM . 由平面几何知识,知|OM |=2
k 2+1
=1, 解得k 2=3,k =±3.
∵直线l 过点F 、B ,∴k >0,则k = 3. (2)设圆中弦的中点为M ,连接OM ,则|OM |2=4
1+k 2
, d 2
=4⎝
⎛⎭⎪⎫4-41+k 2≥⎝ ⎛⎭⎪⎫4552,解得k 2≥14. ∴e 2=c 2
a 2=⎝ ⎛⎭⎪⎫-2k 24+⎝ ⎛⎭
⎪⎫-2k 2
=11+k 2≤4
5.
∴0<e ≤25
5.
11.设F 1,F 2分别是椭圆E :x 2a 2+y 2
b 2=1(a >b >0)的左,右焦点,过F 1且斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.
(1)求E 的离心率;
(2)设点P (0,-1)满足|P A |=|PB |,求E 的方程. 解析 (1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a , 因为2|AB |=|AF 2|+|BF 2|, 所以|AB |=4
3a .
l 的方程为y =x +c ,其中c =a 2-b 2.
设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪
⎧
y =x +c ,x 2a 2+y 2
b 2=1,
化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0, 则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)
a 2+
b 2
.
因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1| =
2[(x 1+x 2)2-4x 1x 2].
故43a =4ab 2a 2+b
2,得a 2=2b 2
, 所以E 的离心率e =c a =a 2-b 2a =22.
(2)设AB 的中点为N (x 0,y 0), 由(1)知x 0=x 1+x 22=-a 2c a 2+b 2=-
2
3c , y 0=x 0+c =c
3.
由|P A |=|PB |,得k PN =-1,即y 0+1
x 0
=-1,
得c =3,从而a =32,b =3. 故椭圆E 的方程为x 218+y 2
9=1.
12.已知直线l :y =x +m ,m ∈R .
(1)若以点M (2,0)为圆心的圆与直线l 相切于点P ,且点P 在y 轴上,求该圆的方程;
(2)若直线l 关于x 轴对称的直线为l ′,问直线l ′与抛物线C :x 2=4y 是否相切?说明理由.
解析 (1)依题意,点P 的坐标为(0,m ).
因为MP ⊥l , 所以0-m 2-0×1=-1,
解得m =2,
即点P 的坐标为(0,2). 从而圆的半径
r =|MP |=(2-0)2+(0-2)2=22, 故所求圆的方程为(x -2)2+y 2=8. (2)因为直线l 的方程为y =x +m , 所以直线l ′的方程为y =-x -m .
由⎩⎨⎧
y =-x -m ,x 2=4y ,消去y ,整理得x 2+4x +4m =0. Δ=42-4×4m =16(1-m ).
当m =1,即Δ=0时,直线l ′与抛物线C 相切; 当m ≠1,即Δ≠0时,直线l ′与抛物线C 不相切. 综上,当m =1时,直线l ′与抛物线C 相切; 当m ≠1时,直线l ′与抛物线C 不相切.。