最新1.3-有理数的加减法-教学设计-教案

合集下载

七年级数学上册1.3《有理数的加减法》教案(新版)新人教版

七年级数学上册1.3《有理数的加减法》教案(新版)新人教版

有理数的加减法(一)
[本节课内容]
1.有理数的加法
2.有理数的加法的运算律
[本节课学习目标]
1、理解有理数的加法法则.
2、能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.
3、掌握异号两数的加法运算的规律.
4、理解有理数的加法的运算律.
5、能够应用有理数的加法的运算律进行计算.
[知识讲解]
一、有理数加法:
正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出
正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做
净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.
于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).
这里用到正数和负数的加法.
下面借助数轴来讨论有理数的加法.
看下面的问题:
一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动 5m记作 5m,向左运动 5m记作-5m;如果物体先向右移动 5m,再向右移动 3m,那么两次运动后总的结
果是什么?
两次运动后物体从起点向右移动了 8m,写成算式就是:5+3 = 8
如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向左运动了 8m,写成算式就是(-5)+(-3) = -8
1。

有理数加减法教案精选全文完整版

有理数加减法教案精选全文完整版

可编辑修改精选全文完整版教学目的1.理解掌握有理数的减法法那么,会将有理数的减法运算转化为加法运算;2.通过把减法运算转化为加法运算,向学生浸透转化思想,通过有理数的减法运算,培养学生的运算才能.3.通过提醒有理数的减法法那么,浸透事物间普遍联络、互相转化的辩证唯物主义思想.教学建议(一) 重点、难点分析本节重点是运用有理数的减法法那么纯熟进展减法运算。

解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后根据有理数加法法那么确定所求结果的符号和绝对值.理解有理数的减法法那么是难点,打破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以施行.〔二〕知识构造〔三〕教法建议1.老师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.2.不管减数是正数、负数或是零,都符合有理数减法法那么.在使用法那么时,注意被减数是永不变的.3. 因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的稳固和记忆.4.注意引入负数后,小的数减去大的数就可以进展了,其差可用负数表示。

教学设计例如有理数的减法一、素质教育目的〔一〕知识教学点1.理解掌握有理数的减法法那么.2.会进展有理数的减法运算.〔二〕才能训练点1.通过把减法运算转化为加法运算,向学生浸透转化思想.2.通过有理数减法法那么的推导,开展学生的逻辑思维才能.3.通过有理数的减法运算,培养学生的运算才能.〔三〕德育浸透点通过提醒有理数的减法法那么,浸透事物间普遍联络、互相转化的辩证唯物主义思想.〔四〕美育浸透点在小学算术里减法不能永远施行,学习了本节课知道减法在有理数范围内可以永远施行,表达了知识体系的完好美.二、学法引导1.教学方法:老师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.2.学生学法:探究新知→归纳结论→练习稳固.三、重点、难点、疑点及解决方法1.重点:有理数减法法那么和运算.2.难点:有理数减法法那么的推导.四、课时安排1课时五、教具学具准备电脑、投影仪、自制胶片.六、师生互动活动设计老师提出实际问题,学生积极参与探究新知,老师出示练习题,学生以多种方式讨论解决.七、教学步骤〔一〕创设情境,引入新课1.计算〔口答〕(1);(2)-3+〔-7〕;(3)-10+〔+3〕;(4)+10+〔-3〕.2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少?老师引导学生观察:生:10℃比-5℃高15℃.师:能不能列出算式计算呢?生:10-〔-5〕.师:如何计算呢?老师总结:这就是我们今天要学的内容.〔引入新课,板书课题〕【教法说明】1题既复习稳固有理数加法法那么,同时为进展有理数减法运算打根底.2题是一个详细实例,老师创设问题情境,激发学生的认知兴趣,把详细实例抽象成数学问题,从而点明本节课课题—有理数的减法.〔二〕探究新知,讲授新课1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?生:〔+10〕-〔+3〕=+7.师:计算:〔+10〕+〔-3〕得多少呢?生:〔+10〕+〔-3〕=+7.师:让学生观察两式结果,由此得到〔+10〕-〔+3〕=+10〕+〔-3〕.(1)师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以.师:是如何转化的呢?生:减去一个正数〔+3〕,等于加上它的相反数〔-3〕.【教法说明】老师发挥主导作用,注重学生的参与意识,充分开展学生的思维才能,让学生通过尝试,自己认识减法可以转化为加法计算.2.再看一题,计算〔-10〕-〔-3〕.老师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与〔-3〕相加会得到-10,那么这个数是谁呢?生:-7即:〔-7〕+〔-3〕=-10,所以〔-10〕-〔-3〕=-7.老师给另外一个问题:计算〔-10〕+〔+3〕.生:〔-10〕+〔+3〕=-7.老师引导、学生观察上述两题结果,由此得到:〔-10〕-〔-3〕=〔-10〕+〔+3〕.(2)老师进一步引导学生观察(2)式;你能得到什么结论呢?生:减去一个负数〔-3〕等于加上它的相反数〔+3〕.老师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比拟的时机,学生自己总结、归纳、考虑,此时学生的思维活泼,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的才能,到达才能培养的目的.师:通过以上两个题目,请同学们想一想两个有理数相减的法那么是什么?学生活动:同学们考虑,并要求同桌同学相到表达,互相纠正补充,然后举手答复,其他同学考虑准备更正或补充.师:出示有理数减法法那么:减去一个数,等于加上这个数的相反数.〔板书〕老师强调法那么:(1)减法转化为加法,减数要变成相反数.(2)法那么适用于任何两有理数相减.(3)用字母表示一般形式为:.【教法说明】结合引入新课中温度计的实例,进一步验证了有理数的减法法那么的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又效劳于实际.4.例题讲解:[出示投影1 (例题1、2)]例1 计算(1)〔-3〕-〔-5〕;(2)0-7;例2 计算(1)7.2-〔-4.8〕;(2)〔〕-.例1是由学生口述解题过程,老师板书,强调解题的标准性,然后师生共同总结解题步骤:(1)转化,(2)进展加法运算.例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评.【教法说明】学生口述解题过程,老师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开场学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法那么不但适用于整数,也适用于分数、小数,即有理数.师:组织学生自己编题,学生答复.【教法说明】老师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生稳固怕学知识.这样做,一方面可以活泼学生的思维,培养学生的表达才能.另一方面通过出题,互相解答,互相纠正,能增强学生学习的主动性和参与意识.同时,老师可以获取学生掌握知识的反应信息,对于存在的问题及时回授.〔三〕尝试反应,稳固练习师:下面大家一起看一组题.[出示投影2 (计算题1、2)]1.计算〔口答〕(1)6-9;(2)〔+4〕-〔-7〕;(3)〔-5〕-〔-8〕;(4)〔-4〕-9 (5)0-〔-5〕;(6)0-5.2.计算(1)〔-2.5〕-5.9;(2)1.9-〔-0.6〕;(3)〔〕-;(4)-〔〕.学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上.【教法说明】学生对有理数减法法那么已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备.用实物投影显示课本第45页的画面.3.世界最顶峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?生答:8848-〔-392〕=8848+392=9240.所以两地高度相差9240米.【教法说明】此题是实际问题,与新课引入中的实际问题前后照应,贯彻?教学大纲?中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识〞的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际.〔四〕课堂小结提问:通过本节课学习你学到了什么?生答:略.师:有理数减法法那么是一个转化法那么,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能施行.八、随堂练习1.填空题(1)3-〔-3〕=____________;(2)〔-11〕-2=______________;(3)0-〔-6〕=____________;(4)〔-7〕-〔+8〕=____________;(5)-12-〔-5〕=____________;(6)3比5大____________;(7)-8比-2小___________;(8)-4-〔〕=10;(9)假如,,那么的符号是___________;(10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________.2.判断题(1)两数相减,差一定小于被减数.〔〕(2)〔-2〕-〔+3〕=2+〔-3〕.〔〕(3)零减去一个数等于这个数的相反数.〔〕(4)方程在有理数范围内无解.〔〕(5)假设,,,.〔〕九、布置作业〔一〕必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题.〔二〕选做题:课本第84页中5、8.。

有理数的加减法教案

有理数的加减法教案

《有理数的加减法》教案一教学目标1.知识与技能 :在有理数加、减法混合运算的教学过程中,掌握计算方法,培养学生的运算能力.2.数学思考:通过观察,比较,归纳等得出有理数加减混合运算的方法。

3.解决问题 :能运用有理数加、减法法则解决混合运算和实际问题。

4.情感与态度 :认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

二教学重点:省略加号、括号,得到简单的书写方式,再进行加法运算三教学难点:培养学生良好的思维习惯(先准确判断加减法的类型后计算) 三教学模式:启发式四教学过程设计(一 ) 知识要点回顾1 有理数加法法则2 运算律(1) 加法交换律(2) 加法结合律3 有理数减法法则例1计算下列各式1 )-23+(-12) 2) -16+293)(-2008)+2008 4 ) 0+(-7)例2、某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.•某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,•+5.(1)问收工时距A地多远?(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升? 课堂练习1抢答(1) 5+(-6)(2) -(-7)+(-2)(3) (-4)+(-5)(4)-4+(-6);(5)15+(-17)(6)-3+3(7) (+9)+(-7)+(+10)+(-3)+(-9)2 计算(1)(+17)+(-32)+(-16)+(+24)+(-1);(2)(+653)+(-532)+(452)+(-131) 例3 计算(1) 3-(-3)=_______; (2) (-11)-2=_______;(3) 0-(-6)=_______; (4) (-7)-(+8)=_______;(5) -12-(-5)=________;例4把下列两个式子写成省略括号的和的形式.把它读出来,并计算出结果.(1)(-5)-(+9.6)+(+7.3)+(-0.7)-(-3.07);(2)4 35-(+213)-(-4.8)+(-323)-(+4.6)课堂练习1.计算:(1)(3.1+4.2)-(4.2-1.9);(2)(-2.4)-0.6-1.8;(3)(-41)-83+169; (4)(-71)-(-72)-173; (5)(-1)-(+331)-(-132); (6)(-9)-(+9)-(-18)-9.三 综合应用1 .如果|a|=7,|b|=5,试求a-b 的值.思路解析:本题中对a 、b 分成四种取值情况进行讨论.解:∵|a|=7,|b|=5,∴a=±7,b=±5.因此,有四种可能:(1)当a=7,b=5时,a-b=2;(2)当a=7,b=-5时,a-b=12;(3)当a=-7,b=5时,a-b=-12;(4)当a=-7,b=-5时,a-b=-2.四作业1 .有一批小麦,标准质量为每袋90千克,现抽取10袋样品进行称重检测,结果如下(单位:千克):97,95,86,96,94,93,87,98,91.这10袋小麦的总质量是多少?总计超过标准质量多少千克或不足标准质量多少千克?3.计算:(1)(-1.5)-(-9.4)-(+3.6)+(-4.3)-(+5.2);(2)0-(+12)-(-13)-(-14)-(+16);(3)0-(-2.75)-(+0.71)-(-4);(4)(-323)-(-234)-(-123)-(+1.75).思路解析:本题是有理数的减法运算,根据有理数减法法则,把减法全部转化为加法再进行计算,同时也可运用加法运算律使计算简便.解:(1)原式=-1.5-3.6-4.3-5.2+9.4=-5.2;(2)原式=-12-16+13+14=-46+712=-112;(3)原式=2.75+4-0.71=6.04;(4)原式=-323+123+234-134=-2+1=-1.4.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下:(单位:千米)+15,-4,+13,―10,―12,+3,―13,―17.(1)将最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?思路解析:要求出小王距出车地点的距离,就是求所给的数据的代数和;要求出汽车耗油多少升,就要先求出汽车的行程,而汽车的行程是所给数据的绝对值的和解:(1)(+15)+(-4)+(+13)+(―10)+(―12)+(+3)+(―13)+(―17)=-25.所以最后一名老师送到目的地时,小王在出车地点的西方,距离是25千米.(2)|+15|+|-4|+|+13|+|―10|+|―12|+|+3|+|―13|+|―17|=87.0.4× 87 = 34.8.所以这天下午汽车共耗油34.8升.5 .已知a=-12,b=-14,c=13,求下列各式的值.(1)a-b+c;(2)a-b-c.思路解析:用数字去代替代数式中相应的字母时,必须用括号将数字和它前面的性质符号在一起,然后再进行运算.解:(1)a-b+c=(-12)-(-14)+13=-12+14+13=112;(2)a-b-c=(-12)-(-14)-13=-12+14-6 .如下图:(1)A,B两点间的距离是多少?(2)B,C两点间的距离是多少?思路解析:求两点间的距离就是用表示这两点的数相减,由于求的是“距离”,所以结果应是正数,因此,将相减的式子求绝对值即可.解:(1)|AB|=|2-(-113)|=|2+113|=313;(2)|BC|=|-113-(-3)|=|-113+3|=132.季节中的花开花落,都有自己的命运与节奏,岁月如歌的谱曲与纳词,一定是你。

《有理数的加减法》教学设计五篇

《有理数的加减法》教学设计五篇

《有理数的加减法》教学设计五篇第一篇:《有理数的加减法》教学设计有理数的加法与小学的加法大有不同,小学的加法不涉及到符号的问题,下面给大家分享《有理数的加减法》教学设计,一起来看看吧!《有理数的加减法》教学设计1教学目标:1、会将有理数的减法运算转化为有理数的加法运算。

2、会将有理数的加减混合运算转化为有理数的加法运算。

教学重点、难点:会进行有理数的减法运算,会进行有理数的加减混合运算。

课前复习:1、有理数加法法则是什么?2、有理数加法运算律是什么?教学过程:一、有理数的减法法则实际生活中有很多时候要涉及到有理数的减法。

例如:某地某天的气温是―2至5C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:C)。

显然,这天的温差是5―(―2)。

这里就用到了有理数的减法。

我们知道,减法是与加法相反的运算,计算5―(―2),就是要求一个数,使之与(―2)的和得4,因为与―3相加得4,所以这个数应该是7,即:5―(―2)=7。

(1)另一方面,我们知道5+(+2)=7(2)由(1),(2)有5―(―2)=5+(+2)(3)从(3)式能看出减―2相当于加哪个数吗?用上面的方法考虑:0―(―2)=___,0+(+2)=___;1―(―2)=___,1+(+2)=____;―5―(―2)=___,―5+(+2)=___。

这些数减3的结果与它们加+2的结果相同吗?从(3)式能看出减―2相当于加哪个数吗?把5换成0,1,—5,用上面的方法考虑,并看它们的结果相同吗?计算:10-8=___,10+(-8)=____;13-7=___,13+(-7)=____。

上述式子表明:减去一个数,等于加上这个数的相反数。

于是,得到有理数减法法则:减去一个数,等于加这个数的相反数。

用式子可以表示成ab=a+(b)例题解析:计算:(1)(-4)―(―5);(2)0-6;(3)7.1―(―4.9);解:(1)(-4)―(―5)=(-4)+5=1;(2))0-6=0+(-6)=-6;(3)7.1―(―4.9)=7.1+4.9=12;二、有理数加减混合运算有理数的加减混合运算,可以按照运算顺序,从左到右逐一加以计算,通常也会利用有理数的减法法则,把它写成只有加法运算的和的形式。

人教版数学七年级上册1.3有理数的加减法教案

人教版数学七年级上册1.3有理数的加减法教案

1.3有理数的加减法1.3.1有理数的加法(2课时)第1课时有理数的加法教学目标1.了解有理数加法的意义,会根据有理数的加法法则进行有理数的加法运算.2.能积极地参与探究有理数加法法则的活动,并学会与他人交流合作.3.能较为熟练地进行有理数的加法运算,并能解决简单的实际间问题.教学重难点重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.难点:有理数加法中的异号两数如何进行加法运算.教学过程活动1:创设情境,导入新课师:我们已学过正数的加法,但是在实际问题中还会遇到超出正数范围的加法情况,此时应该怎样进行计算呢?活动2:自主学习探究加法法则师:布置自学任务.自学教材16~18页的内容,归纳并识记有理数的加法法则.这一段大约用时15分钟,教师巡视指导,要关注学生能否正确理解加法法则的内容.有理数加法的法则是:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不同的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数与0相加,仍得这个数.活动3:运用法则试一试身手:口答下列算式的结果:(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.学生逐题口答后,师生共同得出.进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.教师:出示教材例1,师生共同完成,教师规范写出解答,注意解答过程中讲解对法则的应用.解:(1)(-3)+(-9)(两个加数同号,用加法法则的第1条计算)=-(3+9)(和取负号,把绝对值相加)=-12.(2)(-4.7)+3.9(两个加数异号,用加法法则的第2条计算)=-(4.7-3.9)(和取负号,用大的绝对值减去小的绝对值)=-0.8.教师点评法则运用过程中的注意点:先定符号,再算绝对值.下面请同学们计算下列各题以及教材第18页练习.(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9).学生练习,四位学生板演,教师巡视指导,学生交流,师生评价.本节课教师可根据时间的情况,多安排一些练习,以求通过练习达到巩固掌握知识的目的.活动4:小结与作业小结:谈一谈你对加法法则的认识,在加法计算中都应该注意哪些问题?作业:必做题,习题1.3第1,11题;选做题,习题1.3第12题.ji数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等).如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号、一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法.第2课时相关运算律教学目标1.正确理解加法交换律,结合律,能用字母表示运算律的内容.2.能运用运算律较熟悉地进行加法运算.教学重难点重点:加法交换律和结合律,及其合理、灵活的运用.难点:合理运用运算律教学过程一、创设情境,导入新课师投影出示练习,计算:①30+(-20);(-20)+30;②[8+(-5)]+(-4);8+[(-5)+(-4)].生独立完成后同学交流.二、推进新课(1)探索加法交换律,结合律师提出问题:观察比较第一组两题,比较它们有什么异同点.观察比较第二组两题,比较它们有什么异同点.学生讨论归纳,师生共同归纳得出加法交换律,结合律的内容,并用字母表示.(2)运用加法交换律,结合律解决问题师出示教材例2.先让学生按照从左到右的运算顺序进行计算.学生独立完成.师生共同分析运用加法交换律和结合律进行计算,教师要给出规范完整的过程,让学生看清楚听明白,从中体会认识运算律的作用.练习:教材20页练习.学生独立完成,然后进行交流.教师可安排学生板演,从中发现学生对运算律的理解和掌握程度.(3)运用有理数的加法解决问题师投影展示教材例3.学生独立解决.(一般来说学生会直接进行计算,不会想到第二种解法,在学生完成以后教师再提出以下问题)如果每袋小麦以90千克为标准,超过部分记为正,不足部分记为负数,那么10袋小麦对应的数分别为多少?它们的和是不是最终结果呢?学生讨论后解决.教师在这一过程中应当关注学生能否理解这种解法,学生在计算中能否自觉运用运算律解决问题.根据情况可对这一题和这种解法进行板书或讲解.三、课堂小结小结:1.谈谈你本节课的收获.2.在生活中你有没有遇到过类似例3中解法2解决问题的数学现象,你能举出一两个例子吗?四、布置作业习题1.3第2,8,9题.教学反思本节课在开始时先复习小学时学的加法运算律,然后提出问题:“我们如何知道加法的交换律在有理数范围内是否适用?”然后让学生通过一些实际例子来验证.尤其是鼓励学生多举一些数来验证,其意义首先是为了避免学生产生片面认识,以为从几个例子就可以得出普遍结论;其次也让学生了解结论的重要性.1.3.2有理数的减法(2课时)第1课时有理数的减法法则教学目标1.掌握有理的减法法则.2.能运用有理数的减法法则进行运算.教学重点难点重点:有理数的减法法则.难点:对有理数的减法法则的探究.教学过程一、创设情境,导入新课师:出示温度计,提出问题:1.你能从温度计上看出3℃比较-3℃高多少度吗?2.你能列式求这个结果吗?学生观察后先回答问题1得出结果,然后再列出算式3-(-3)=6.二、探究新知1.探究有理数的减法法则师:这里的计算用到了有理数的减法,通过观察我们知道了3-(-3)=6,而我们还知道3+(+3)=6.即3-(-3)=3+(+3).观察这个式子,你有什么发现?学生进行讨论,教师不必急于归纳.然后教师进一步提出问题.计算:9-8,9+(-8).15-7,15+(-7).观察比较计算的结果,你有什么发现?师生共同归纳有理数的减法法则.教师板书法则.2.尝试运用法则师出示教材例4.师生共同完成.在完成过程中教师示范前两题,给学生一个规范的过程,同时结合法则讲解法则的运用,剩下两题学生尝试完成,体验法则的运用.练习:教材23页练习.三.课堂小结小结:谈谈本节课的收获.思考:以前我们只能做被减数大于减数的减法运算,现在你能做被减数小于减数的减法运算吗?这时的差是一个什么数?四、布置作业作业:习题1.3第3,4,6题.教学反思本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索。

1.3有理数的加减法教学设计教案

1.3有理数的加减法教学设计教案

1.3有理数的加减法教学设计教案第一篇:1.3 有理数的加减法教学设计教案教学准备1.教学目标一、知识与技能1.理解有理数减法法则能熟练进行减法运算.2.会将减法转化为加法,进行加减混合运算,体会化归思想.二、过程与方法通过观察实例并亲自计算,探索有理数加减法之间的关系,培养学生动手计算的能力。

三、情感态度和价值观感受数学与现实生活的密切联系,增强学生的数学应用意识,养成学会分析问题、解决问题的良好习惯。

2.教学重点/难点教学重点有理数加减的运算法则教学难点有理数加减法的内在关系3.教学用具PPT课件4.标签教学过程一、导入新课1.(‐2)-4=______,(‐2)-()= ‐7 ,()-(+2)=+8,(‐10)-(‐6)=_______2.下表是北京与国外几个城市的时差,其中带正号的的数表示同一时刻比北京时间早的小数,试分别求出(1)东京与巴黎的时差.(2)芝加哥与巴黎的时差.(3)纽约与东京的时差。

教学过程:二、新课学习气象预报员报告了某天中的最高气温与最低气温分别是8 ℃与‐2℃你会求这一天的日温差吗?(借助温度计试试)比较一下你与别人列出的算式是否一样,能说明一下你的算式吗? 8-(‐2)=10 8 + 2 =10结论相同,是偶然巧合吗?你还能举出其它例子吗? 即为8(‐5)= 3 + _____ ③ 3 – 5 = 3 + _______④‐3()-(‐3.2)练习:根据天气预报:北京‐14---5 ℃,沈阳‐7---2℃,长春‐10---1℃天津‐2---9℃,计算它们的日温差小结:根据有理数减法法则,有理数的加法与减法就可以统一为加法运算,加减混合运算也即可统一为加法运算.如:3+5-7可看成3+5+(‐7), ‐3-51+2可看成‐3+(‐51)+2例2: 计算: ‐12-(+20)+(‐36)-(+3.6)(注意简便计算)练习: 1.(‐2.8)-(‐3.6)+(‐1.5)-(+3.6)2.课堂小结三、结论总结:1.有理数加减法的混合运算,根据有理数减法法则,先把减法转化成加法,从而把含加减法运算的式子转化成几个有理数和的形式,再按有理数的加法法则进行计算.2.加减混合运算的两个关键点是:(1)在交换加数的位置时,要连同前面的符号一起交换.(2)计算时,先把正数、负数分别相加.课后习题四、课堂练习1.填空1.(‐4)-(‐4)=_____,2.(+6)+()= ‐20,3.(‐18)-(+24)-(‐35)=_______ 2.计算1.(‐5.3)-(‐6.1)-1.8 2.3.(‐1.5)+1.4-(‐3.6)-4.3+(‐5.2)试一试:在小圆圈里填上数,使每个小圈里的数都是它旁边小圆圈里数的和.另求出圈里所有数的和,如果把原来填的数字改成字母a,b按上面的要求填满后,有圈里的数相加和为多少?五、作业布置 P68 1~2板书1.有理数加减法的混合运算,根据有理数减法法则,先把减法转化成加法,从而把含加减法运算的式子转化成几个有理数和的形式,再按有理数的加法法则进行计算.2.加减混合运算的两个关键点是:(1)在交换加数的位置时,要连同前面的符号一起交换.(2)计算时,先把正数、负数分别相加.第二篇:有理数加减法教学设计《有理数的加法与减法》教学设计【教学目标】1.会进行有理数加法运算.2.认识有理数加法交换律与结合律的合理性,会用加法运算律简化运算.3.会将有理数的减法运算转换成加法运算.4.会进行加减混合运算.此外,感受有理数加法法则的合理性以及“分类”的思想方法,感受有理数减法与加法的对立统一,体会“化归”的思想方法.【教学过程设计建议(第一课时)】1.情境创设除课本提供的情境外,还可以用学生熟悉的生活实例,如用水位变化、存钱取钱等问题引进有理数加法.例如:第1天水位上涨了3 cm,第2天上涨了2 cm,两天共上涨了多少?第1天水位上涨了3 cm,第2天下降了2 cm,两天共上涨了多少?第1天水位下降了3 cm,第2天下降了2 cm,两天共下降了多少?第1天水位上涨了3 cm,第2天不升也不降,两天共上涨了多少? 如果将上涨记为正,上涨“3 cm“可记为“ 3”,下降记为负,下降“2 cm”可记为“一2”,你能用含正、负数的算式表示水位的变化过程和结果吗?两天的水位还可能出现哪些变化?请用含正、负数的算式表示变化过程和变化结果.2.探索活动(1)需要特别注意的是,算式“(3)(一2)= 1”只是借助正、负号,记录计算净胜球的计算过程与结果,算式的左边是加法,而右边的“ 1”是根据生活经验得到的.课本提供的情境是“先赢后输”、“累计为赢”的类型,在将其写成含正、负数的算式并根据生活经验得出结果后,可问学生:除“先赢后输”外,两场比赛的结果还会出现哪些情况?在学生列举出“赢了再赢”,“先输后赢”,“输了再输”,“先赢后平”,“先平后赢”及“平局”等情况后,再让学生填写净胜球计算表,感受两个有理数相加的各种情况,提高学生探求运算规律的积极性.与小学不同的是,由于有理数由符号和绝对值两部分组成,所以运算时既要考虑符号也要考虑绝对值.例如,首先要确定两场比赛的输赢,这是符号问题,然后确定输赢球的个数,这是绝对值问题.(2)设置“数学实验室”的目的是让学生从“形”上感受有理数的加法运算法则.采用人人都可以动手操作的笔尖在数轴上两次移动的方法,直观感受两次连续运动中,点的运动方向与移动的距离对实际移动效果产生的影响,通过“形与数”的转换,加深学生对有理数加法运算法则的理解.3.例题教学例1第(1)小题是求一个正数与一个负数的和;第(2)小题是求两个负数的和;第(3)小题是求两个互为相反数的和;第(4)小题是求0与一个有理数的和.为突出运算法则,4个题目都设计为简单的整数运算.学生应能熟练进行有理数的加法运算,但运算难度要以《标准》要求为准.教师在补充例题、习题时不宜在数字运算上设置障碍,当学生熟练掌握运算法则后,随着知识的积累、技能的提高、数感的增强、计算器的引入,学生处理繁难运算的能力也会逐渐增强。

有理数的加减法教学设计教案

有理数的加减法教学设计教案

有理数的加减法教学设计教案教学设计:有理数的加减法一、教学目标:1.知识目标:了解有理数的加减法的定义和性质,能够准确地进行有理数的加减运算。

2.能力目标:能够运用有理数的加减法解决实际问题,培养学生的逻辑思维和分析能力。

3.情感目标:培养学生良好的学习态度和团队合作意识,增强学生对数学的兴趣和自信心。

二、教学重点:1.有理数的加法和减法的运算方法。

2.运用有理数的加减法解决实际问题。

三、教学难点:运用有理数的加减法解决实际问题。

四、教学步骤:1.导入新知识(10分钟)通过简单的问题引入有理数的加减法概念,如:小华手中有十几个苹果,小明偷走了他的7个苹果,那么小华手中还剩下多少苹果?引导学生思考和探讨。

2.基础知识的讲解(20分钟)在较为简单的数值计算上,讲解有理数的加法和减法的定义和性质。

通过简单的数轴上的图示和实例进行解释。

3.例题引导和探究(30分钟)通过一些简单的例题引导学生进行操作,培养学生的计算能力和分析问题能力。

例题1:计算:(-3)+5,(-7)-4例题2:计算:(-4)+(-6),(-8)-(-5)4.拓展知识讲解(10分钟)在基础知识讲解的基础上,进一步引入拓展知识,如有理数的乘法和除法,学习有理数的四则运算规则。

5.解决实际问题(20分钟)通过一些实际的问题来引导学生解决问题,培养学生的应用能力和实际运用能力。

如:问题1:小明从北京骑自行车到天津,用了2小时30分钟,骑车速度为每小时16公里。

问:小明从北京到天津的距离是多少公里?问题2:小华去超市买牛奶,超市原价是每瓶9元,今天正在打折,每瓶打7折。

小华买了5瓶,他用了多少元?6.总结与讲评(10分钟)总结本节课的知识要点和核心内容,帮助学生理清思路。

7.作业布置(5分钟)布置一些相关的课后作业和练习题,要求学生按时完成并及时订正。

五、教学反思:通过本节课的教学设计和实施,学生能够全面了解和掌握有理数的加减法的基本知识和运算方法。

人教版数学七年级上册1.3《有理数的加减法》(有理数的加减混合运算)教学设计

人教版数学七年级上册1.3《有理数的加减法》(有理数的加减混合运算)教学设计

人教版数学七年级上册1.3《有理数的加减法》(有理数的加减混合运算)教学设计一. 教材分析《有理数的加减法》是人教版数学七年级上册的教学内容,本节课主要介绍了有理数的加减混合运算。

学生在学习了有理数的基础知识后,进一步学习有理数的加减法运算,这对于培养学生解决实际问题的能力具有重要意义。

教材通过例题和练习题,使学生掌握有理数加减法运算的规则和方法,并能灵活运用到实际问题中。

二. 学情分析七年级的学生已经掌握了有理数的基本概念,对数的大小比较也有了一定的了解。

但学生在进行有理数的加减法运算时,可能会对符号的判断和运算顺序产生困惑。

因此,在教学过程中,教师需要关注学生的学习需求,引导学生正确判断符号,掌握运算顺序,提高运算能力。

三. 教学目标1.知识与技能:使学生掌握有理数的加减法运算方法,能正确进行有理数的加减混合运算。

2.过程与方法:通过实例演示、小组讨论等方法,培养学生合作学习、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:有理数的加减法运算方法。

2.难点:符号的判断和运算顺序。

五. 教学方法1.实例演示法:通过具体的例子,让学生直观地理解有理数的加减法运算。

2.引导发现法:教师引导学生发现运算规律,培养学生的探究能力。

3.小组讨论法:学生分组讨论,共同解决问题,提高合作能力。

4.练习法:通过大量练习,巩固所学知识。

六. 教学准备1.教学课件:制作课件,展示例题和练习题。

2.教学素材:准备一些实际问题,用于引导学生运用有理数加减法解决实际问题。

3.练习题:设计一些有梯度的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过一个实际问题,引导学生思考如何运用有理数加减法解决问题。

例如:小明买了3本书,每本书5元,又卖掉2本书,每本书3元,请问小明最后赚了多少钱?2.呈现(10分钟)教师展示教材中的例题,引导学生观察和分析,让学生发现有理数加减法运算的规律。

1.3有理数的加减法教案

1.3有理数的加减法教案

1.3有理数的加减法教案3有理数的加减法教案一、教学目的知识与技能:使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.过程与方法:通过有理数的加法运算,培养学生的运算能力.情感与态度:激发学生学习数学的兴趣。

二、教学重点与难点重点:熟练应用有理数的加法法则进行加法运算.难点:有理数的加法法则的理解.三、教学过程复习提问有理数是怎么分类的?有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?-3与-2;|3|与|-3|;|-3|与0;-2与|+1|;-|+4|与|-3|.引入新在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学有理数的加法运算.进行新课有理数的加法例1如图所示,某人从原点0出发,如果次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?两次行走后距原点0为8米,应该用加法.为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:同号两数相加某人向东走5米,再向东走3米,两次一共走了多少米?这是求两次行走的路程的和.+3=8用数轴表示如图从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.某人向西走5米,再向西走3米,两次一共向东走了多少米?显然,两次一共向西走了8米+=-8用数轴表示如图从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.总之,同号两数相加,取相同的符号,并把绝对值相加.例如,+,……同号两数相加+=-,…取相同的符号+5=9……把绝对值相加∴+=-9.口答练习:举例说明算式7+9的实际意义?+=?异号两数相加某人向东走5米,再向西走5米,两次一共向东走了多少米?由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.+=0可知,互为相反数的两个数相加,和为零.某人向东走5米,再向西走3米,两次一共向东走了多少米?由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.就是5+=2.某人向东走3米,再向西走5米,两次一共向东走了多少米?由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.就是3+=-2.请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?最后归纳绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.例如+5……绝对值不相等的异号两数相加>5+5=-……取绝对值较大的加数符号-5=3……用较大的绝对值减去较小的绝对值∴+5=-3.口答练习用算式表示:温度由-4℃上升7℃,达到什么温度.+7=3.一个数和零相加某人向东走5米,再向东走0米,两次一共向东走了多少米?显然,5+0=5.结果向东走了5米.某人向西走5米,再向东走0米,两次一共向东走了多少米?容易得出:+0=-5.结果向东走了-5米,即向西走了5米.请同学们把、画出图由,得出:一个数同0相加,仍得这个数.总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.有理数加法运算的三种情况:特例:两个互为相反数相加;一个数和零相加.每种运算的法则强调:确定和的符号;确定和的绝对值的方法.例题分析例1计算+.分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同,和的绝对值就是把绝对值相加.解:+=-12.例2分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同,和的绝对值等于较大绝对值减去较小绝对值..解:解题时,先确定和的符号,后计算和的绝对值.巩固练习计算+9;4+;-4+9;+;+;9+;+2;-9+0;计算+;++1.5;2.7+四.课堂小结:今天我们学到了什么?五.作业布置。

1.3有理数的加减法(教案)

1.3有理数的加减法(教案)
此外,我也在思考如何在有限的课堂时间内更有效地利用实践活动。可能的话,我会在下一次的课堂中加入更多的互动环节,比如即时问答、角色扮演等,以提高学生的参与感和课堂的动态性。
1.3有理数的加减法(教案)
一、教学内容
本节课选自七年级数学教材《数学》第一章第三节“有理数的加减法”。教学内容主要包括以下三个方面:
1.掌握有理数的加减运算规则,能够正确进行计算。
-同号两数相加,保留原符号,求得绝对值之和。
-异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
五、教学反思
在今天的教学中,我发现学生们对有理数加减法的概念和运算法则的理解普遍较好。通过引入日常生活中的实例,比如温度变化,学生们能够更加直观地感受到数学知识在解决实际问题中的应用。这种教学方法有效地激发了学生的学习兴趣,使他们更愿意参与到课堂讨论和实验操作中来。
然而,我也注意到,在具体的运算过程中,特别是异号相加和混合运算的处理上,部分学生还存在一定的困惑。这说明在这些难点部分,我需要进一步采用多样化的教学策略,比如通过更多的例题演示和实际操作,帮助学生巩固理解,提高运算的准确性。
-与0相加的情况,任何数加0结果不变,如:-5 + 0 = -5。
-在混合运算中,强调先算括号内的运算,如:-3 + (4 - 2) = -1。
2.教学难点
-理解和掌握加减法中符号的处理,特别是异号相加时符号的确定。
-在复杂运算中,正确识别并优先处理括号内的运算。
-将实际问题转化为数学模型时的抽象思维能力。
三、教学难点与重点
1.教学重点
-有理数的加减法法则:同号相加,异号相减,以及与0相加的情况。
-加减混合运算的顺序,特别是括号内运算的优先处理。

有理数的加减法,教案

有理数的加减法,教案

有理数的加减法,教案篇一:有理数的加法(第一课时)教学设计有理数的加法(1)教学设计本节课选自人教版教材七年级(上),是本册书第一章第三节第一课时的内容。

下面我从教学内容分析、教学目标设置、学生学情分析、教学策略分析、教学过程五个方面谈一谈我对本节课的理解与设计。

一、教学内容分析有理数的有关概念和运算是整个学段“数与代数”领域内容的基础,直接关系到实数运算、代数式运算、解方程等内容的学习。

有理数的加法是本章的一个重点,是学生接触的第一种有理数运算,又因为减法运算可以统一为加法运算,所以学生能否接受和形成在有理数范围内进行的各种运算的思考方式,关键在于这一节的学习。

在学习有理数的加法之前,本教材从实例中引入负数,然后介绍一些关于有理数的概念,如数轴、对数值和绝对值,以加深对有理数(尤其是负数)的理解,另一方面,准备学习本节中有理数的加法。

在此基础上,通过具体问题情境,认识操作的作用,加深学生对操作本身意义的理解,即为什么要进行操作,操作意味着什么;同时,在学生体验操作应用的过程中,培养学生一定的应用意识和能力。

因此,本课程的教学重点是:有理数加法规则的理解和应用。

它把一般思想与一般思想结合起来,体现了探索过程中的基本思想。

二、教学目标设置《数学课程标准》要求学生通过义务教育阶段的数学学习,通过数与代数的抽象、运算和建模,掌握数与代数的基本知识和技能。

在有理数一章中,学生应该能够计算有理数并解决一些简单的实际问题。

根据课程标准和上述教学内容分析,教学目标如下:1、通过实例,了解有理数加法的意义;2.体验探索规律的过程,培养学生总结能力;3、会根据有理数加法法则进行有理数的加法运算;4.在探索过程中,感受数与形相结合的数学思想,从特殊到一般渗透辩证唯物主义思想。

三、学生学情分析小学学习算术运算是学生学习有理数加法的前提;对负数、数轴、对数和绝对值的研究,不仅加深了对有理数的理解,而且为有理数的加法做了准备。

人教版七年级数学上册1.3《有理数的加减法》教学设计

人教版七年级数学上册1.3《有理数的加减法》教学设计

人教版七年级数学上册1.3《有理数的加减法》教学设计一. 教材分析《有理数的加减法》是人教版七年级数学上册第一章第三节的内容,本节内容是在学生已经掌握了有理数的概念和简单的性质的基础上进行讲授的。

有理数的加减法是数学中基本的运算,也是日常生活中经常使用的运算。

本节内容的学习,有助于学生进一步理解和掌握有理数的运算规则,培养学生解决实际问题的能力。

二. 学情分析学生在进入七年级之前,已经初步接触过有理数的概念和性质,对有理数有了一定的认识。

但学生的数学基础参差不齐,部分学生对有理数的理解还不够深入,对有理数的加减运算规则还不够熟悉。

因此,在教学过程中,需要关注所有学生的学习情况,针对不同学生进行有针对性的教学。

三. 教学目标1.理解有理数的加减法运算规则,能够熟练地进行有理数的加减运算。

2.培养学生解决实际问题的能力,使学生能够运用有理数的加减法规则解决生活中的问题。

3.培养学生的逻辑思维能力,使学生能够理解和分析数学问题。

四. 教学重难点1.教学重点:有理数的加减法运算规则,有理数的加减运算。

2.教学难点:理解并掌握有理数的加减法运算规则,能够灵活运用规则解决实际问题。

五. 教学方法采用问题驱动的教学方法,通过引导学生思考和解决问题,让学生主动探索和理解有理数的加减法运算规则。

同时,运用实例讲解和练习,使学生能够熟练地进行有理数的加减运算。

六. 教学准备1.准备相关的教学材料,如PPT、教案、练习题等。

2.准备一些实际问题,用于引导学生运用有理数的加减法规则解决实际问题。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念和性质,为新课的学习做好铺垫。

2.呈现(10分钟)通过PPT展示有理数的加减法运算规则,让学生初步了解并感知加减法运算的规则。

3.操练(10分钟)让学生进行有理数的加减运算练习,教师引导学生注意运算的顺序和规则,并及时给予反馈和纠正。

4.巩固(10分钟)通过一些实际问题,让学生运用有理数的加减法规则进行解决,巩固所学知识。

人教版七年级上册1.3有理数的加减法课程设计

人教版七年级上册1.3有理数的加减法课程设计

人教版七年级上册1.3有理数的加减法课程设计一、教学目标1.了解有理数的概念及其表示方法;2.掌握有理数相加、相减的基本方法;3.培养学生综合运用知识和技能解决问题的能力;4.借此课程为学生提供学习数学的动力。

二、教学内容1.有理数概念及表示方法简介;2.有理数加法的计算方法;3.有理数减法的计算方法;4.有理数加减法的计算技巧;5.解决实际问题(如温度、海拔、海平面等)的应用。

三、教学重点难点重点1.理解加法、减法在数轴上的意义;2.掌握有理数的加减法的计算方法;3.较全面的练习加减法运算技巧。

难点1.理解数轴上正负坐标的意义;2.掌握有理数加减法的计算技巧;3.能够将实际问题转化为数学运算步骤,并进行解决。

四、教学方法1.教师主讲法;2.课堂讨论法;3.小组合作学习法;4.组织学生自主研究法;5.任务型教学法。

五、教学过程设计1. 导入环节(15分钟)课前安排几位同学准备听音乐,教师在播放过程中准备电子板书,向大家介绍有理数的整体概念及有理数的常用表示方法。

画出数轴,在上方标出“正负”,让学生感受正负的分界线,引导学生思考有理数的性质。

2. 演示环节(30分钟)教师通过电子板书向学生展示有理数的加减法步骤。

首先介绍同号相加,异号相减的方法,再逐步引出同号相减、异号相加的计算方法,帮助学生掌握简单加减法的运算技巧。

对于较难的例题,老师通过体验性游戏帮助学生理解“同意式不变性”、方法的简便性、加减法入门的要素等概念。

3. 分组讨论(25分钟)将全班学生分为数学小组,让各小组自主合作选取有关工作世界的应用题目,分析问题、列出解题步骤、分配任务,尽可能完整完成解题过程,教师现场上台指导整个过程中的疑难问题,鼓励合作学习,有“个体准备,小组活动,个体报告”的节奏及方法,细致解答学生的质疑疑惑点。

4. 总结讲评(20分钟)针对本节课的教学内容完成一次全面的梳理与总结,在学生中共享并探讨相应的问题,培养思考问题、探究解法、提炼方法的习惯,鼓励学生在得出答案后重新叙述解题意义的做法,学生在表达和听取有效反思中加深对此部分内容的理解与掌握。

人教版七年级数学上册教案:第1章 有理数 有理数的加减法(4课时)

人教版七年级数学上册教案:第1章 有理数  有理数的加减法(4课时)

1.3有理数的加减法1.3.1有理数的加法第1课时有理数的加法法则一、基本目标【知识与技能】理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算.【过程与方法】经历探究有理数加法法则的过程,学会与他人交流合作.【情感态度与价值观】在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力.二、重难点目标【教学重点】有理数加法运算.【教学难点】异号两数的加法运算.环节1自学提纲,生成问题【5 min阅读】阅读教材P16~P18的内容,完成下面练习.【3 min反馈】1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)(-25)+(-35);(2)(-12)+(+3);(3)(+8)+(-7);(4)0+(-7).【互动探索】(引发学生思考)同号两数相加怎样计算?异号两数相加呢?【解答】(1)(-25)+(-35)=-(25+35)=-60.(2)(-12)+(+3)=-(12-3)=-9.(3)(+8)+(-7)=+(8-7)=1.(4)0+(-7)=-7.【互动总结】(学生总结,老师点评)有理数加法法则是进行有理数加法运算的依据.进行加法运算时,首先判断两个加数的符号,是同号、异号还是有一个加数是0,然后确定用哪一条法则.活动2 巩固练习(学生独学)1.下列各数中,与-13的和为0的是( D ) A .3B .-3C .-13D.132.计算(-6)+5的结果是( C )A .-11B .11C .-1D .1 3.李志家冰箱冷冻室的温度为-6 ℃,调高4 ℃后的温度为( C )A .4 ℃B .10 ℃C .-2 ℃D .-10 ℃4.计算:8+(-5)的结果为3.5.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a +b +c =0.6.计算:(1)45+(-20);(2)(-8)+(-1);(3)|-10|+|+8|.解:(1)45+(-20)=45-20=25.(2)(-8)+(-1)=-(8+1)=-9.(3)|-10|+|+8|=10+8=18.活动3 拓展延伸(学生对学)【例2】已知|a |=4,|b |=6,求a +b 的值.【互动探索】先依据绝对值的性质求得a 、b 的值,最后依据加法法则进行计算即可.【解答】因为|a |=4,所以a =4或a =-4.因为|b |=6,所以b =-6或b =6.当a =4,b =6时,a +b =4+6=10;当a =4,b =-6时,a +b =4+(-6)=-2;当a =-4,b =6时,a +b =-4+6=2.当a =-4,b =-6时,a +b =-4++(-6)=-10.综上所述,a +b 的值为10或-2或2或-10.【互动总结】(学生总结,老师点评)本题考查有理数的加法运算以及绝对值的性质,由于未告知a 、b 的正负,所以要分类讨论.环节3 课堂小结,当堂达标(学生总结,老师点评)有理数的加法⎩⎪⎨⎪⎧ 法则⎩⎪⎨⎪⎧ 同号异号0运算步骤请完成本课时对应练习!第2课时 有理数的加法运算律一、基本目标【知识与技能】1.掌握有理数的加法运算律,理解小学中的加法运算律在有理数中仍然成立.2.能用有理数的运算律对有理数加法进行简便运算.【过程与方法】经历探索有理数的加法运算律的过程,培养学生的观察能力和思维能力.【情感态度与价值观】体会有理数加法运算律的应用价值.二、重难点目标【教学重点】有理数加法运算律.【教学难点】灵活运用加法运算律进行简便运算.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P19~P20的内容,完成下面练习.【3 min 反馈】1.有理数加法的交换律:两个数相加,交换加数的位置,和不变,用字母表示为a +b =b +a .2.有理数加法的结合律:三个数相加,先把前两个数相加或先把后两个数相加,和不变,用字母表示为(a +b )+c =a +(b +c ).3.计算:30+(-20);(-20)+30;[8+(-5)]+(-4);8+[(-5)]+(-4)].解:10. 10. -1. -1.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】用简便方法计算下列各题:(1)12+⎝⎛⎭⎫-23+45+⎝⎛⎭⎫-12+⎝⎛⎭⎫-13; (2)(-0.5)+314+2.75+⎝⎛⎭⎫-512; (3)7+(-6.9)+(-3.1)+(-8.7).【互动探索】(引发学生思考)观察式子特点,灵活选择运算律进行计算.【解答】(1)原式=12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-23+⎝⎛⎭⎫-13+45=⎣⎡⎦⎤12+⎝⎛⎭⎫-12+⎣⎡⎦⎤⎝⎛⎭⎫-23+⎝⎛⎭⎫-13+45=0-1+45=-1+45=-15. (2)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-512+314+234=⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫-512+⎝⎛⎭⎫314+234 =-6+6=0.(3)原式=(-6.9)+(-3.1)+(-8.7)+7=[(-6.9)+(-3.1)]+[(-8.7)+7]=-10+(-1.7)=-11.7.【互动总结】(学生总结,老师点评)在运用运算律时,通常有下列规律:①互为相反数的两个数先相加;②符号相同的数先相加;③分母相同的数先相加;④几个数相加得到整数的先相加;⑤整数与整数,小数与小数相加.活动2 巩固练习(学生独学)1.运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是( D )A .[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]B .[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]C .[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]D .[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]2.计算43+(-77)+27+(-43)的结果是-50.3.用适当的方法计算:(1)23+(-17)+6+(-22);(2)1+⎝⎛⎭⎫-12+13+⎝⎛⎭⎫-16; (3)1.125+⎝⎛⎭⎫-325+⎝⎛⎭⎫-18+(-0.6); (4)(-2.48)+(+4.33)+(-7.52)+(-4.33).解:(1)原式=(23+6)+[(-17)+(-22)]=29-39=-10.(2)原式=1+13+⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫-16 =43-23=23. (3)原式=118+⎝⎛⎭⎫-18+⎝⎛⎭⎫-325+⎝⎛⎭⎫-35 =1-4=-3.(4)原式=[(-2.48)+(-7.52)]+[(+4.33)+(-4.33)]=-10+0=-10.活动3 拓展延伸(学生对学)【例2】10月6日上午,出租车司机小李在南北走向的商业大道上运营,如果规定向北为正,向南为负,出租车的行车里程如下(单位:km):-17,-4,+13,-10,-12,+3,-13,+15,+20.(1)将最后一名乘客送到目的地时,小李离出车地点的距离是多少千米?(2)若每千米耗油0.2升,这天上午汽车共耗油多少升?【互动探索】(1)根据加法法则,将正数与正数相加,负数与负数相加,进而得出计算结果.(2)要求耗油量,只需求出出租车上午一共走的路程,即将各数的绝对值相加求出即可.【解答】(1)(-17)+(-4)+(+13)+(-10)+(-12)+(+3)+(-13)+(+15)+(+20)=[-17+(-4)+(-10)+(-12)+(-13)]+(13+3+15+20)=-56+51=-5.即将最后一名乘客送到目的地时,小王离出车地点的距离是南边5千米处.(2)总行程为|-17|+|-4|+|+13|+|-10|+|-12|+|+3|+|-13|+|+15|+|+20|=17+4+13+10+12+3+13+15+20=107(千米).由于每千米耗油0.2升,所以这天上午汽车共耗油107×0.2=21.4(升).【互动总结】(学生总结,老师点评)本题考查有理数的加法运算以及绝对值的性质,关键是熟练利用加法的运算法则进行运算.环节3 课堂小结,当堂达标(学生总结,老师点评)有理数的加法运算律⎩⎪⎨⎪⎧交换律结合律请完成本课时对应练习!1.3.2 有理数的减法第3课时 有理数的减法法则一、基本目标【知识与技能】理解有理数减法法则,并能准确地进行有理数的减法运算.【过程与方法】通过把减法运算转化为加法运算,向学生渗透转化思想.【情感态度与价值观】通过揭示有理数的减法法则,注意培养学生的观察、比较、归纳及运算能力.二、重难点目标【教学重点】掌握有理数减法法则和运算.【教学难点】有理数减法法则的推导.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P21~P22的内容,完成下面练习.【3 min 反馈】通过教材第21页实际例子,一方面,利用加法与减法互为逆运算可知:计算3-(-3),就是要求出一个数x ,使x +(-3)=3,易知x =6,所以3-(-3)=6.①另一方面,3+(+3)=6.②由①②有3-(-3)=3+(+3).再试,把减数-3换成正数,任意列出一些算式进行计算,如:计算9-8与9+(-8);15-7与15+(-7).得出减法法则:减去一个数,等于加这个数的相反数.用字母表示为a -b =a +(-b ).【教师点拨】减法法则渗透了一种重要的数学思想方法——转化,有了相反数,减法就可以转化为加法,加减就可以统一为加法.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算:(1)-7-3;(2)5.8-(-3.6);(3)(+4.09)-⎝⎛⎭⎫+614; (4)(-30)-(-6)-(+6)-(-15).【互动探索】(引发学生思考)利用有理数的减法法则进行计算。

有理数的加减混合运算教案最新4篇

有理数的加减混合运算教案最新4篇

有理数的加减混合运算教案最新4篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!有理数的加减混合运算教案最新4篇作为一位优秀的人·民教师,就不得不需要编写教案,教案是教学活动的依据,有着重要的地位。

有理数的加减法教案(教学设计)

有理数的加减法教案(教学设计)

有理数的加减法【教学目标】1.掌握有理数的加、减的运算法则。

2.熟练运用有理数加减法解决具体问题。

3.亲历有理数加减法的探索过程,体验分析归纳得出有理数加减法的运算法则,进一步发展学生的探究、交流能力。

【教学重难点】重点:掌握有理数的加、减的运算法则。

难点:有理数的加、减运算法则的实际应用。

【教学过程】一、直接引入师:今天这节课我们主要学习有理数的加减法,这节课的主要内容有有理数的加法、有理数的减法,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。

二、讲授新课1.教师引导学生在预习的基础上了解有理数的加法内容,形成初步感知。

2.首先,我们先来学习有理数的加法,它的具体内容是:有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数。

加法的交换律:;加法的结合律:。

用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。

它是如何在题目中应用的呢?我们通过一道例题来具体说明。

例:小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12元,存进25元,取出12.5元,取出2元,这时银行现款增加了( )A .12.25元B .-12.25元C .10元a b b a +=+()()a b c a b c ++=++D .-12元.解析:答案选C根据例题的解题方法,让学生自己动手练习。

练习:计算(-20)+(+3)-(-5)+(-7).解析:(-20)+(+3)-(-5)+(-7)=-19.3.接着,我们再来看下有理数的减法的内容,它的具体内容是:有理数减法法则:减去一个数等于加上这个数的相反数。

有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学准备
1. 教学目标
1、经历探索有理数减法法则的过程.理解并掌握有理数减法法则.
2、会正确进行有理数减法运算.
3、体验把减法转化为加法的转化思想.
2. 教学重点/难点
学习重点:有理数减法法则和运算
学习难点:有理数减法法则的推导
3. 教学用具
电脑
4. 标签
有理数的减法教学设计
教学过程
【课前预习】
1、世界上最高的山峰珠穆郎玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为—154米,两处的高度相差多少呢?
试试看,计算的算式应该是 .能算出来吗,画草图试试
2、长春某天的气温是―2°C~3°C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:°C).显然,这天的温差是3―(―2).
想想看,温差到底是多少呢?那么,3―(―2)= .
【课堂研讨】
2、请你与同桌伙伴一起探究、交流:
要计算3―(―2)=?,先化简成单一符号:-(-2)=______,
也就是3―(―2)=_______________=5
再看看,3+2= .所以3―(―2) 3+2=!
由上你有什么发现?请写出

.
3、换两个式子计算一下,看看上面的结论还成立吗?
—1—(—3)= ,—1+3= ,所以—1—(—3)—1+3.
0—(—3)= ,0+3= ,所以0—(—3)0+3.
4、师生归纳
1)法则___________________________________
2)字母表示________________________________
例题1. 计算:
(1) (-3)―(―5); (2)0-7; (3) 7.2―(―
4.8); (4)-3
【课堂小结】
有理数的减法法则:________________________________________
(其实质是将减法转化为___________)
学习评价:
①15-(-7)②(-8.5)-(-
1.5)③0-(-22)
④(+2)-(+8) ⑤(-4)-
16 ⑥
【当堂测检】
(1) 3—5 (2) 3—(-
5)
(3)-3—5 (4)(-3)—(-5) (5)–6 —(-6) (6)—7-0
(7)0—(-7) (8)(-6)—6 (9)9 —(-11) (10) 6-(-6)
拓展作业
在有理数范围内,差一定比被减数小吗?
例2.求出数轴上两点之间的距离:(列式解答)
(1)表示数10的点与表示数4的点;
(2)表示数2的点与表示数-4的点;
(3)表示数-1的点与表示数-6的点。

拓展延伸:
(1)-13.75比少多少?
(2)从-1中减去-与-的和,差是多少?
【自我评价】你完成本节导学案的情况为().
A. 很好
B. 较
好 C. 一般 D. 较差
课后记
课堂小结
有理数的减法法则:________________________________________
(其实质是将减法转化为___________)
课后习题
【当堂测检】
(1) 3—5 (2) 3—(-
5)
(3)-3—5 (4)(-3)—(-5) (5)–6 —(-6) (6)—7-0
(7)0—(-7) (8)(-6)—6 (9)9 —(-11) (10) 6-(-6)
拓展作业
在有理数范围内,差一定比被减数小吗?
例2.求出数轴上两点之间的距离:(列式解答)
(1)表示数10的点与表示数4的点;
(2)表示数2的点与表示数-4的点;
(3)表示数-1的点与表示数-6的点。

拓展延伸:
(1)-13.75比少多少?
(2)从-1中减去-与-的和,差是多少?
【自我评价】你完成本节导学案的情况为().
A. 很好
B. 较好
C. 一般
D. 较差
课后记
板书
【课前预习】
【课堂研讨】
【课堂小结】
【当堂测检】
拓展作业。

相关文档
最新文档