高中数学课件 导数
高中数学选修2-2几个常见函数的导数课件
Δx
Δx
x(x +Δx)Δx
=
-
x2
+
1 xΔx
∴y' = lim Δy = lim(- 1 )= - 1
δx→0Δx δx→0 x2 + xΔx
x2
新知探究
探究
画出函数y = 1 的图像, x
根据图像,描述它的变化情 况,并求出曲线在点(1,1) 处的切线方程.
新知探究
结合函数图像及其导数
y'
新知探究
x 3. 函数y=f(x)= 2 的导数
证明:
∵ Δy = f(x + Δx) - f(x) = (x + Δx)2 - x2
Δx
Δx
Δx
= x2 + 2x× Δx +(Δx)2 - x2 Δx
= 2x + Δx
∴y' lim Δy lim(2x + Δx) = 2x. x0 Δx x0
x
(3)求极限 y lim y . x0 x
课前导入
我们知道,导数的几何意义是曲线在某点处的切线的斜率,物理意义是运动物体在某一时刻的瞬 时速度.那么,对于函数y=f(x),如何求它的导数呢? 上节内容,我们讲述了导数的定义,可以根据定义求导数. 这节课我们求几个常见函数的导数.
课前导入
本节知识结构
Δx
Δx
Δx
=
1
x + Δx + x
∴y' = lim Δy = lim
1
=1
δx→0 Δx δx→0 x + Δx + x 2 x
新知探究
知识拓展
公式2:( x n ) nx n1 (n. Q)
高中数学课件导数的概念课件导数的概念第一课时
2021/4/27
vs(t0 t0DDtt) ts0(t0)D Dst
3.1 导数的概念
要精确地描述非匀速直线运动,就要知道物体在每一时 刻运动的快慢程度.如果物体的运动规律是 s =s(t ),那么物 体在时刻t 的瞬时速度v,就是物体在t 到 t+Dt 这段时间内, 当 Dt0 时平均速度.
率为
k limf(x0 Dx) f(x0)
Dx0
Dx
lim(1Dx)2 1(11)
Dx0
Dx
lim2Dx(Dx)2
Dx0
Dx
Dy
P
M
Dx
1
x
-1 O 1
2021/4/27
2
3.1 导数的概念
切线方程为: y22 (x1 ),
即
y2x
练习: P113 课后练习:1,2
2021/4/27
2. 瞬时速度 平均速度的概念
v 的极限.即
vD Ds tD lt i0m s(tD D tt)s(t)
2021/4/27
3.1 导数的概念
例1 物体作自由落体运动, 运动方程为: s 1 gt 2 ,其中位移
2 单位是m ,时间单位是s , g=9.8m/s2.
求:(1) 物体在时间区间 [2,2.1]上的平均速度;
(2) 物体在时间区间[2,2.01] 上的平均速度;
( 3) 当Dt0,2Dt 2
平均速度 v 的极限为:
D D 即v 物 体D lt 在i0 v 时m 刻D lt t0i0 =2m s t(s )的2 g 瞬 时1 速.6 度( 9 m 等/s 于)19.6(m/s).
高中数学选修2-2函数的极值与导数课件
B. y=cos2x
C. y=tanx-x
课堂练习
2.曲线y=x4-2x3+3x在点P(-1,0)处的切线的斜率为( B )
A. –5
B. –6
C. –7
D. –8
课堂练习 3. 下列说法正确的是 ( C )
A. 函数在闭区间上的极大值一定比极小值大 B. 函数在闭区间上的最大值一定是极大值 C. 对于f(x)=x3+px2+2x+1,若|p|<√6,则f(x)无极值 D. 函数f(x)在区间(a,b)上一定存在最值
一般地,求函数y=f(x)的极值的方法是:解方程 f ' x 0 .当 f ' x0 0 时:
x (1)如果在 0 附近的左侧f′(x)>0,右侧f′(x)<0,那么
2如果在x0附近的左侧f ' x 0,右侧 f ' x 0, 那么f x0 是极小值.
f x0
是极大值;
口诀:左负右正为极小,左正右负为极大.
例题讲解
求函数y=(x2-1)3+1的极值. 解:定义域为R,y ’=6x(x2-1)2.由y ’=0可得x1=-1,x2=0,x3=1 当x变化时,y ’ ,y的变化情况如下表:
当x=0时,y有极小值,并且y极小值=0.
课堂练习
1 . 下列函数中,x=0是极值点的函数是( B )
A. y=-x3 D. y=1/x
人教版高中数学选修2-2
第1章 导数及其应用
函数的极值与导数
课前导入
一般地,函数的单调性与导数的关系: 在某个区间a, b内, 如果f ' x > 0, 那么 函数y = f x在这个区间内单调递增; 如果 f ' x < 0,那么函数 y = f x在这个区间内
高中数学《导数的概念》公开课优秀课件
高中数学《导数的概念》公开课优秀课件标题:高中数学《导数的概念》公开课优秀课件尊敬的各位老师,大家好!今天我们将一起学习高中数学中一个非常重要的概念——导数的概念。
这个概念在微积分学中占据了重要的地位,对于我们理解函数的变化率,以及在科学、工程、经济和计算机科学等领域都有广泛的应用。
一、导数的定义首先,让我们来看看导数的定义。
假设有一个函数f(x),在某一点x0的附近取一系列的点,这些点的横坐标是x0+Δx。
那么,函数f(x)在点x0的导数就是这一系列点的纵坐标f(x0+Δx)与横坐标之商的极限,记作f'(x0)。
二、导数的几何意义从几何意义上来看,导数表示函数在某一点处的切线的斜率。
当我们把函数在x0附近的点沿着横坐标逐渐移动时,该点的纵坐标会相应地变化,这个变化率就是导数。
三、导数的应用导数的应用非常广泛,它可以用来解决很多实际问题。
例如,在物理学中,导数被用来描述物体的运动学和动力学问题,如速度和加速度;在经济学中,导数被用来分析成本、收益和价格的变化;在计算机科学中,导数被用来研究图像处理和人工智能的问题。
四、导数的计算导数的计算有很多方法,其中最常见的方法是使用导数的定义。
我们可以根据定义来推导出一些基本的导数公式,如常数函数的导数为0,幂函数的导数与其指数有关,三角函数的导数与其角度有关等。
五、总结与复习今天我们学习了导数的概念和计算方法。
导数是微积分学的基础,它描述了函数在某一点处的变化率。
通过学习导数的定义和基本公式,我们可以解决很多实际问题。
六、作业与扩展阅读为了加深对导数概念的理解,请大家完成以下作业:1、复习并熟练掌握导数的基本定义和公式;2、自行寻找并解决一到两个与导数相关的问题(可以从物理、经济或计算机科学等领域寻找)。
同时,我推荐大家阅读《微积分的概念》这本书,作者是著名的数学家Richard Courant。
这本书对微积分的概念有深入且生动的解释,对于我们深入理解导数的概念非常有帮助。
高中数学导数的概念 PPT课件 图文
导数的定义:
从函数lyim=f(xf )(在x0x=x0x处) 的f瞬( x时0 )变化lim率是f: ,
x0
x
x0 x
我们称它为函数 y f ( x)在x x0
处的导数 , 记作 f ( x0 )或y xx0 ,即 :
f (x0 )
lim
x0
f
( x0
数值的改变量与自变的量改变量之比,即:
y f (x2) f (x1) .
x
x2 x1
我们用它来刻画函数在值区间[x1, x2]上变化的快慢.
对于一般函y数 f (x),在自变量 x从x0变到x1的
过程中,若设x x1 x0,则函数的平均变化:率是
y f (x1) f (x0) f (x0 x) f (x0).
x) x
f
(x0 )
例题讲解
例 1一条水管中流 y(单 过位 :m 的 3)时 水间 x(量 单位 :s) 的函y数 f(x)3x.求函y数 f(x)在x2处的导数 f(2)并 , 解释它的. 实际意义
解:当x从2变到2x时,函数值3从2变
到3(2x),函数值 y关于x的平均变化率 : 为
例2一名食品加工厂的上工班人后开始连续, 工作 生产的食品数 y(单 量位:kg)是其工作时x(间 单位:h) 的函数 y f (x).假设函y数 f (x)在x1和x3处 的导数分别: f为(1) 4和f (3) 3.5,试解释它们 的实际意. 义
如 其 解 4kg:果 生 的 f (保 产 1食) 持 速 品.4(表 这 度 即示 一 工该 生 作工 产 效,人 速 )那 率 为上 4度 么kg班 他/h后 .每 也1工 h时 就的作 可 是时以 说 ,候, 生一 其 产 f(3生 生 )3产 产 .5表 速 速 ,那 示 3.度 度 5么 k该 g为 /他 h工 .也每 人 就时 上 是可 ,如 班 说 33h.以 5的 果 k后g的 生 时 保 工食 产 ,候 持 作 .品 这
高中数学选修2《导数在研究函数中的应用》课件
或
x>1
时,
f (x)>0,
-
1 3
x
1
时,
∴ 函数在 (-∞,
f (x)<0.
- 13) 或 (1,
+∞) 上是增函数,
在
(
-
1 3
,
1)上是减函数.
4. 证明函数 f(x)=2x3-6x2+7 在 (0, 2) 内是减函数.
证明: f (x)=6x2-12x,
解不等式 6x2-12x<0 得 0<x<2,
函数是增函数.
例2. 判断下列函数的单调性, 并求出单调区间: (1) f(x)=x3+3x;
(2) f(x)=x2-2x-3;
(3) f(x)=sinx-x, x(0, p);
(4) f(x)=2x3+3x2-24x+1.
y
解: (3) f (x) = cosx-1,
解不等式 cosx-1>0 得
果 f(x)<0, 那么函数 y=f(x)在
这个区域内单调递减.
例1. 已知导函数 f (x) 的下列信息:
当 1<x<4 时, f (x)>0;
当 x>4, 或 x<1 时, f (x)<0;
当 x=4, 或 x=1 时, f (x)=0.
试画出函数 f(x) 图象的大致形状.
解: 在区间 (1, 4) 内, f (x)>0,
解不等式 6x2+6x-24>0 得
x
-
1 2
-
17 2
,
或
x
-
1 2
+
高中数学导数与极限ppt课件
n
n 趋向于无穷
大时,an 的极限等于 a”. “n→∞”表示“n 趋向于无穷大时” ,即 n 的无限增 大的意思. lim an a 有时也记作:当 n→∞时,an→a. n
4.函数的极限 当 x→∞时函数 f (x)的极限: 当自变量 x 取正值并且无 限增大时,如果函数 f (x)无限趋近于一个常数 a,就 说当 x 趋向于正无穷大时,函数 f (x)的极限是 a,记 作xlim f (x)=a, (或 x→+∞时,f (x)→a) 当自变量 x 取负值并且无限增大时,如果函数 f (x)无 限趋近于一个常数 a,就说当 x 趋向于负无穷大时, 函数 f (x)的极限是 a, 记作xli m f (x)=a, (或 x→-∞时,f (x) →a)注:自变量 x→+∞和 x→-∞都是单方向的,而 x→∞是双向的,故有以下等价命题 xli m f (x)= xli m f (x) =a
9.数学归纳法 数学归纳法的定义 在证明与自然数有关的数学命题时,以下列两步完 成: (1)当 n=n0(n0 为确定的自然数)时,验证命题成立; (2)假设当 n=k(k≥n0)时,命题成立, 则 n=k+1 时,命题也成立. 由(1)(2)知,命题成立. 这种证明数学命题的方法叫数学归纳法.
精品回扣练习
0
注:xl i mx f (x)= xl i mx f (x)=a
0 0
x x0
lim f (x)=a.并且可作为一个判
断函数在一点处有无极限的重要工具. 注:极限不存在的三种形态:①左极限不等于右极限
x x 0
lim
f (x)≠ xl i mx f (x);②x→x0 时,f (x)→±∞,③x→x0 时,f (x)
高中数学第五章导数的概念及其几何意义第2课时导数的几何意义pptx课件新人教A版选择性必修第二册
【答案】(1)A (2)D 【解析】(1)由导数的几何意义知,导函数递增,则说明函数切线斜 率随x增大而变大. (2) 从 导 函 数 的 图 象 可 知 两 个 函 数 在 x0 处 斜 率 相 同 , 可 以 排 除 B , C.再者导函数的函数值反映的是原函数的斜率大小,可明显看出y=f(x) 的导函数的值在减小,所以原函数的斜率慢慢变小,排除A.
【预习自测】
判断正误(正确的画“√”,错误的画“×”)
(1)曲线y=f(x)上的每一点都有切线.
()
(2)直线与曲线相切,则直线与已知曲线只有一个公共点. ( )
【答案】(1)× (2)×
导数的几何意义
(1)函数y=f(x)在x=x0处的导数f′(x0)就是切线P0T的斜率k0,即k0= __Δ_lxi_m→_0_f(_x_0+__Δ_Δ_xx)_-__f_(x_0_)__=f′(x0).
易错警示 混淆曲线“在”或“过”某点的切线致误
求函数y=x3-3x2+x的图象上过原点的切线方程.
【错解】∵Δy=f(Δx+0)-f(0)=(Δx)3-3(Δx)2+Δx, ∴ΔΔyx=1-3Δx+(Δx)2, ∴f′(0)= lim [1-3Δx+(Δx)2]=1.
Δx→0
故所求切线方程为 y=x.
(2)导数f′(x0)的几何意义是曲线 y=f(x)在点(x0,f(x0))处的切线的 ___斜__率___,物理意义是运动物体在x0时刻的__瞬__时__速__度___.
【预习自测】
如果曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么 ()
A.f′(x0)>0
B.f′(x0)<0
【答案】3227 -31,2237 【解析】设直线 l 与曲线 C 的切点为(x0,y0), 因为 y′=Δlxi→m0(x+Δx)3-(x+ΔxΔ)2x+1-(x3-x2+1) =3x2-2x,则 y′|x=x0=3x20-2x0=1,解得 x0=1 或 x0=-13,
人教版高中数学选择性必修2《导数的概念及其意义》PPT课件
选择性必修第二册 RJ
RJA
第五章
1
5.1导数的概念及其意义
5.1.2 导数的概念
及其几何意义
学习目标
1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程.
2.理解函数平均变化率、瞬时变化率的概念以及它们之间的关系.
3.掌握函数平均变化率、瞬时变化率的求法.
4.掌握导数的概念及其几何意义,会用导数的概念求简单函数在某点处的导数及曲
4x (x) 2 7 x
x 3,
x
了原油温度在时刻x0附近的变化情况.
y
lim (x 3) 3.
x 0 x
x 0
所以f '(2) lim
同理可得 ′(6)=5.
在第2 h与第6 h时,原油温度的瞬时变化率分别为−3 ℃/h与5 ℃/h.说明在第2 h附近,
y
所以v '(2) lim
lim t 2 2. 同理可得 ′(6)= − 6.
t 0 t
t 0
在第2 s与第6 s时,汽车的瞬时加速度分别是2 m/s2与−6 m/s2.说明在第2 s附近,汽车的速度
每秒大约增加2 m/s;在第6 s附近,汽车的速度每秒大约减少6 m/s.
我们知道,导数 ′(0)表示函数=()在=0处的瞬时变化率,反映了函数
=()在=0附近的变化情况.那么导数 ′(0)的几何意义是什么?
思考:观察函数=()的图象(如下图),平均变化率
原油温度大约以3 ℃/h的速率下降;在第6 h附近,原油温度大约以5 ℃/h的速率上升.
例3
一辆汽车在公路上沿直线变速行驶,假设 s时汽车的速度(单位:m/s)为
=()= − 2 + 6 + 60,求汽车在第2 s与第6 s时的瞬时加速度,并说明它们的意义.
数学分析--导数 ppt课件
数,如果要讨论改函数在端点处的变化率时,就要对导数概念加以补充,引出单 侧导数的概念。
定义 2 设函数 y f (x) 在点 x0 的某右邻域 (x0 ,x 0 δ)上有定义,若右
极限 或
l i m Δ y l i m f ( x0 Δ x ) f ( x0 ) (0< x < )
Δ x Δx 0
理 5.1, f(x) x 在 x x 0 0 处不可导。
当 x0 0 时,由于 D(x) 为有界函数, 因此得到
f(0)
lim
f(x)
f(0)
li
mxD(x)
0.
x0 x 0
x 0
ppt课件
下页 18
(二)函数在一点的单侧导数
类似于函数在一点有左、右极限, 对于定义在某个闭区间或半开区间上的函
dx
dx
运算,待到学过“微分”之后,将说明这个记号实际上是一个“商”,相应于上述各种
表示导数的形式,f |x x 0 或
dy dx
|xx0
。
ppt课件
下页 23
例 6 证明:
(i) ( xn ) nxn1, n 为正整数 ;
(ii) (sinx) cosx , (cosx) sinx
(iii)
y 1
-1/π
0
1/π
x
ppt课件
下页 22
(三)导函数 若函数在区间 I 上每一点都可导(对区间端点,仅考虑相应的单侧导数),则称 f
为 I 上的可导函数。此时对每一个χ∈I,都有 f 的一个导数 f '(x) (或单侧导数)与之
对应,这样就定义了一个在 I 上的函数,称为 f 在 I 上的导函数,也简称为导数,记作
高中数学新教材选择性必修第二册《5.2导数的运算》全部课件
思考2 试求y=Q(x),y=H(x)的导数.并观察Q′(x),H′(x)与f′(x),
g′(x)的关系. 答案 ∵Δy=(x+Δx)+x+1Δx-x+1x=Δx+x- x+ΔΔxx, ∴ΔΔyx=1-xx+1 Δx. ∴Q′(x)=Δlixm→0ΔΔyx=Δlixm→01-xx+1 Δx=1-x12. 同理,H′(x)=1+x12. Q(x)的导数等于f(x),g(x)的导数的和.H(x)的导数等于f(x),g(x)的导数的差.
∵y′=(x2)′=2x,∴2x0=1,∴x0=12,
∴切点坐标为12,41,
∴所求的最短距离
d=12-142-2=7
8
2 .
跟踪训练3 已知直线l: 2x-y+4=0与抛物线y=x2相交于A,B两点,O 是坐标原点,试求与直线l平行的抛物线的切线方程,并在弧 AOB上求一 点P,使△ABP的面积最大. 解 由于直线l: 2x-y+4=0与抛物线y=x2相交于A,B两点, ∴|AB|为定值,要使△ABP的面积最大,只要点P到AB的距离最大, 设P(x0,y0)为切点,过点P与AB平行的直线斜率k=y′=2x0, ∴k=2x0=2,∴x0=1,y0 =1. 故可得P(1,1),∴切线方程为2x-y-1=0. 故P(1,1)点即为所求弧 AOB 上的点,使△ABP的面积最大.
x f(x)= x
导函数 f′(x)=_0__ f′(x)=_1__ f′(x)=__2_x_ f′(x)=_-__x1_2 _
1 f′(x)=_2__x__
知识点二 基本初等函数的导数公式
原函数 f(x)=c(c为常数) f(x)=xα(α∈Q*)
f(x)=sin x f(x)=cos x
f(x)=ax
解析 设切点坐标为(x0,y0),
高中数学(人教版)第5章导数和微积分求导法则课件
导数的四则运算
同理可得
1 2 ( cot x ) csc x. 2 sin x
1 cos x sin x (iii) (sec x ) 2 2 cos x cos x cos x
f ( x0 ) 1 . ( y0 ) (6)
证 设 Δx x x0 , Δy y y0 , 则 Δx ( y0+ Δy ) ( y0 ), Δy f ( x0Δx ) f ( x0 ) .
由假设, f 1 在点 x0 的某邻域内连续,
0
(4)
导数的四则运算
1 证 设 g( x ) ,则 f ( x ) u( x )g( x ). 对 g( x ), 有 v( x ) 1 1 v ( x0 Δ x ) v ( x0 ) g ( x0 Δ x ) g ( x 0 ) Δx Δx v ( x0 Δ x ) v ( x 0 ) 1 . Δx v ( x0 Δ x ) v ( x 0 ) 由于 v ( x ) 在点 x0 可导, v( x0 ) 0, 因此
1
反函数 的导数
π2) 上 (ii) y arctan x 是 x tan y 在 ( π 2,
的反函数,故
1 1 1 (arctan x ) 2 2 sec x 1 tan y (tan y )
1 2, 1 x x ( ,).
同理有
1 (arccot x ) , x ( , ). 2 1 x
sec x tan x.
同理可得
(csc x ) csc x cot x .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例4.A、B两队进行某项运动的比赛, 以胜三次的一方为冠军,设在每次比赛 中A胜的概率为P,B胜的概率为 q( p q 1, p 0.q 0) ,又A得 冠军的概率为P,冠军的概率为Q,决定 冠军队的比赛次数为N. (1)求使P- P 为最大的值; (2)求使N的期望值为最大的P值及期望 值。
3
例3 已知平面向量 (1)证明
a
=( 3 ,-1). b
1 3 =( , ). 2 2
a
⊥
b
;
(2)若存在不同时为零的实数k和t,使
x= a
+(t2-3) b , y =-k
a +t b,来自x⊥ y ,试求函数关系式k=f(t);
(3)据(2)的结论,讨论关于t的方程f(t)-k=0 的解的情况.
例1 已知函数f(x)=x3+3ax2+3(a+2)x+1 既有极大值又有极小值,则实数a的取值 范围是 。
例2 设函数f(x)=ax3-2bx2+cx+4d(a、 b、c、d∈R)的图象关于原点对称, 2 且x=1时,f(x)取极小值 (1)求a、b、c、d的值; (2)当x∈[-1,1]时,图象上是否存在 两点,使得过此两点的切线互相垂直? 试证明你的结论; (3)若x1,x2∈[-1,1]时,求证: 4 |f(x1)-f(x2)|≤ 3