道路竖曲线段高程计算公式
竖曲线高程计算公式(一)
竖曲线高程计算公式(一)竖曲线高程计算公式在土木工程和道路设计中,竖曲线是指公路或铁路沿纵向发生变化的曲线。
通过计算竖曲线的高程,我们可以确定道路或铁路的纵向轮廓,确保车辆或列车在垂直方向上的安全行驶。
本文将介绍竖曲线高程计算公式的相关内容,并提供示例说明。
标准竖曲线要素在计算竖曲线高程之前,我们需要了解一些标准竖曲线的要素,包括以下几个参数:1.起点高程(E1):竖曲线的起点高程,通常为已知值。
2.终点高程(E2):竖曲线的终点高程,也为已知值。
3.起点纵坡比(G1):起点的纵向坡度,表示每单位水平距离对应的竖向高度变化。
4.终点纵坡比(G2):终点的纵向坡度,同样表示每单位水平距离对应的竖向高度变化。
5.曲线长度(L):竖曲线的水平长度,即起点到终点之间的距离。
6.曲线中点(P):竖曲线的中点,即起点和终点之间的一半距离。
通常情况下的竖曲线高程计算公式在绝大多数情况下,我们可以使用以下公式来计算竖曲线的高程:E = E1 + G1 * P + (4 * (E2 - E1) - (G1 + G2) * L) *(P / L) * (1 - (P / L))其中,E为竖曲线的任意点的高程。
示例说明我们来通过一个具体的示例来解释竖曲线高程计算公式的应用。
假设一条道路的起点高程为100米,终点高程为150米,起点纵坡比为,终点纵坡比为,曲线长度为200米。
现在我们需要计算该曲线上距离起点100米处的高程。
根据上述公式,我们可以依次计算:•起点到终点的水平距离为200米,因此曲线中点P为100米。
•根据公式,可得到:E = 100 + * 100 + (4 * (150 - 100) - ( + ) * 200)* (100 / 200) * (1 - (100 / 200))化简后计算得到:E = 100 + 3 + (4 * 50 - * 200) * *= 100 + 3 + (200 - 10) *= 100 + 3 +=因此,在距离起点100米处的位置,竖曲线的高程为米。
道路曲线高程计算公式
高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道) 一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:。
竖曲线高程计算公式推导过程及计算流程
竖曲线⾼程计算公式推导过程及计算流程竖曲线⾼程计算公式推导及计算流程1. 竖曲线介绍竖曲线是指在纵断⾯内,两个坡线之间为了延长⾏车视距或者减⼩⾏车的冲击⼒,⽽设计的⼀段曲线。
⼀般可以⽤圆曲线和抛物线来充当竖曲线。
由于圆曲线的计算量较⼤,所以,通常采⽤抛物线作为竖曲线,以减少计算量。
2. 竖曲线⾼程计算流程竖曲线计算的⽬的是确定设计纵坡上指定桩号的路基设计标⾼,其计算步骤如下:a. 计算竖曲线的基本要素:竖曲线长L ;切线长T ;外失距Eb. 计算竖曲线起终点的桩号:竖曲线起点的桩号=变坡点的桩号-Tc. 计算竖曲线上任意点切线标⾼及改正值:切线标⾼=变坡点的标⾼±(x T -)?i 改正值:221x Ry =d. 计算竖曲线上任意点设计标⾼某桩号在凹形竖曲线的设计标⾼ = 该桩号在切线上的设计标⾼+ y 某桩号在凸形竖曲线的设计标⾼ = 该桩号在切线上的设计标⾼-y3. 竖曲线⾼程计算公式推导已知条件:第⼀条直线的坡度为1i ,下坡为负值,第⼀条直线的坡度为2i ,上坡为正值,变坡点的⾥程为K ,⾼程为H ,竖曲线的切线长为B A T T T ==, 待求点的⾥程为X K 曲线半径R竖曲线特点:抛物线的对称轴始终保持竖直,即:X 轴沿⽔平⽅向,Y 轴沿竖直⽅向,从⽽保证了X 代表平距,Y 代表⾼程。
抛物线与相邻两条坡度线相切,抛物线变坡点两侧⼀般不对称,但两切线长相等。
竖曲线⾼程改正数计算公式推导设抛物线⽅程为:()021≠++=a c bx ax y设直线⽅程为:()02≠+=k b kx y由图可知,抛物线与直线都经过坐标系222Y O X 的原点2O ,所以可得:00==b c ;分别对21y y 、求导可得:b ax y +=2'1k y ='2当0=x 时,由图可得:b i y ==1'1k i y ==1'2当L x =时,由图可得:12'12i aL i y +==由上式可得:RL L i i a 212212==-=ω所以抛物线⽅程为:x i x Ry 12121+=直线⽅程为:x i y 12=对于竖曲线上任意⼀点P ,到其切线上Q 点处的竖直距离,即⾼程改正数y 为:21122121X RX i X i X R y y y P Q =-+=-= 竖曲线曲线元素推导竖曲线元素有切线长T 、外失距E 和竖曲线长L 三个元素,推导过程如下:由图可知:2tan ω=R T 由于转⾓ω很⼩,所以可近似认为22tan ωω=,因此可得:2ωR T = 由图易得:ωR L =将切线长T 带⼊到221x Ry =中可得外失距RT E 22=4. 曲线⾼程计算⽰例已知:某条道路变坡点桩号为K25+460.00,⾼程为780.72.m ,i1=0.8%,i2=5%,竖曲线半径为5000m 。
竖曲线高程计算
其中: y——竖曲线上任一点竖距; 直坡段上,y=0。
x2 y
2R
x——竖曲线上任一点离开起(终)点距离;
以变坡点为分界计算: 上半支曲线 x = Lcz - QD 下半支曲线 x = ZD - Lcz 以竖曲线终点为分界计算: 全部曲线 x = Lcz - QD
[例4-3]:某山岭区一般二级公路,变坡点桩 号为k5+030.00,高程H1=427.68m, i1=+5%,i2=-4%,竖曲线半径R=2000m。
B
A
4.3.4 逐桩设计高程计算
(1)纵断面设计成果
变坡点桩号 BPD 变坡点设计高程 H 竖曲线半径 R
(2)竖曲线要素的计算公式
变坡角ω= i2- i1
曲线长:L=Rω
切线长:T=L/2= Rω/2
外距:
T2
E
2R
竖曲线上任意点:
y x2 2R
竖曲线起点桩号: QD=BPD - T 竖曲线终点桩号: ZD=BPD + T
竖曲线上任意点设计标高计算
计算切线高程:H1=H0-(T-X)i1 式中:H0----变坡点标高,m。 H1----- 计算点切线高程,m。 I1----纵坡度 利用该式子可以计算直坡段上任意点的设计标高。
计算设计标高: H = H1 ± y
H---设计标高。
当为 凹曲线时取“+”,当为凸曲线时取“-”。
ω >0:凹型竖曲线
竖曲线的作用
(1)缓冲作用:以平缓曲线取代折线可消除汽车在变坡点的冲击。 (2)保证公路纵向的行车视距:
凸形:纵坡变化大时,盲区较大。 凹形:下穿式立体交叉的下线。 (3)将竖曲线与平曲线恰当的组合,有利于路面排水和改善行车的视 线诱导和舒适感。 凸形竖曲线主要控制因素:行车视距。 凹形竖曲线的主要控制因素:缓和冲击力。 竖曲线的线形:可采用圆曲线或二次抛物线。 《规范》规定采用二次抛物线作为竖曲线的线形。 特点:抛物线的纵轴保持直立,且与两相邻纵坡线相切。
高速公路的一些线路坐标、高程计算公式
高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。
道路曲线计算公式
高速公路线路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式时间:2009-12-27 21:40:34 来源:本站作者:未知我要投稿我要收藏投稿指南高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。
公路桥梁竖曲线上高程值计算新方法
·14· 地矿测绘2013,29( 2) : 14 ~ 17CN 53 - 1124 / T D I S S N 1007 - 9394S u r v e y i n g and M a pp i n g of G eo l og y and M i n e r a l Reso u r ce s*公路桥梁竖曲线上高程值计算新方法刘庆金( 江苏镇江市丹徒区工程测量队,江苏 镇江 212127)摘要: 针对公路桥梁工程建设中的竖曲线上高程值计算问题,提出一种通用的计算新方法,并结合实际,给出利用 M i c r oso ft Ex - ce l 编表实施计算的实例加以验证。
该方法对于推算和测放竖曲线上高程值有一定的实用价值,较传统的近似方法精度更高。
关键词: 公路; 桥梁; 竖曲线; 圆曲线; 高程计算方法; 里程 中图分类号: P 258; U 412. 24文献标识码: A文章编号: 1007 - 9394( 2013) 02 - 0014 - 04New Method of Alt it ud e V a lu e Calculation on Highway and B r id ge V e r t ica l C u r v eLIU Q i ng -ji n( Z h e nj i ang Dantu D i s t r i c t E ng i n ee r i ng S u r ve y i ng T e am ,Z h e nj i ang J i ang s u 212127,Ch i na )A b s t ract : This paper i nt r oduces the alt i t ude value calcul at i on problem on the vert i cal curves according to the high - way and br i dge engi neer i ng cons t r uct i on . A new general calcul at i on method i s put forward ,and i s ver i f i ed us i ng the im- pl ementat i on examples of calcul at i on by M i cr osof t Excel tabl e . The method for calcul at i ng and m eas ur i ng the vertical curve alt i t ude value has certain pr act i cal value ,high preci s i on compared w i th t r adit i o nal approximate m ethod .Key word s : hi ghway ; br i dge ; vert i cal curve ; circle curve ; alt i t ude calcul at i on m ethod ; m il eage竖曲线弦长 D 和如图 1 所示的 φi 和 δ 角及 C i 。
坐标、高程计算公式
高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。
高速公路线路缓和曲线竖曲线圆曲线匝道坐标计算公式
高速公路线路缓和曲线、竖曲线、圆曲线、匝道坐标计算公式_★★高速公路的一些线路坐标、高程计算公式缓和曲线、竖曲线、圆曲线、匝道一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K1或-1⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K1或-1⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度或缓曲上任意点到缓曲起点的长度l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1上坡为“+”,下坡为“-”②第二坡度:i2上坡为“+”,下坡为“-”③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点过渡段终点的距离:x求:待求处的横坡:i解:d=x/Li=i2-i11-3d2+2d3+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0左转为“-”,右转为“+”⑦曲线终点处曲率:P1左转为“-”,右转为“+”求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgnx函数是取符号函数,当x<0时sgnx=-1,当x>0时sgnx=1,当x=0时sgnx=0;在计算器中若无此函数可编一个小子程序代替;转载自:。
竖曲线高程计算公式推导过程及计算流程
竖曲线高程计算公式推导及计算流程1. 竖曲线介绍竖曲线是指在纵断面内,两个坡线之间为了延长行车视距或者减小行车的冲击力,而设计的一段曲线。
一般可以用圆曲线和抛物线来充当竖曲线。
由于圆曲线的计算量较大,所以,通常采用抛物线作为竖曲线,以减少计算量。
2. 竖曲线高程计算流程竖曲线计算的目的是确定设计纵坡上指定桩号的路基设计标高,其计算步骤如下:a. 计算竖曲线的基本要素:竖曲线长L ;切线长T ;外失距Eb. 计算竖曲线起终点的桩号:竖曲线起点的桩号=变坡点的桩号-Tc. 计算竖曲线上任意点切线标高及改正值: 切线标高=变坡点的标高±(x T -)⨯i 改正值:221x Ry =d. 计算竖曲线上任意点设计标高某桩号在凹形竖曲线的设计标高 = 该桩号在切线上的设计标高+ y 某桩号在凸形竖曲线的设计标高 = 该桩号在切线上的设计标高-y3. 竖曲线高程计算公式推导已知条件:第一条直线的坡度为1i ,下坡为负值, 第一条直线的坡度为2i ,上坡为正值, 变坡点的里程为K ,高程为H , 竖曲线的切线长为B A T T T ==, 待求点的里程为X K 曲线半径R竖曲线特点:抛物线的对称轴始终保持竖直,即:X 轴沿水平方向,Y 轴沿竖直方向,从而保证了X 代表平距,Y 代表高程。
抛物线与相邻两条坡度线相切,抛物线变坡点两侧一般不对称,但两切线长相等。
竖曲线高程改正数计算公式推导 设抛物线方程为:()021≠++=a c bx ax y 设直线方程为:()02≠+=k b kx y由图可知,抛物线与直线都经过坐标系222Y O X 的原点2O ,所以可得:00==b c ;分别对21y y 、求导可得:b ax y +=2'1k y ='2当0=x 时,由图可得:b i y ==1'1k i y ==1'2当L x =时,由图可得:12'12i aL i y +==由上式可得:RL L i i a 212212==-=ω 所以抛物线方程为:x i x Ry 12121+=直线方程为:x i y 12=对于竖曲线上任意一点P ,到其切线上Q 点处的竖直距离,即高程改正数y 为:21122121X RX i X i X R y y y P Q =-+=-= 竖曲线曲线元素推导竖曲线元素有切线长T 、外失距E 和竖曲线长L 三个元素,推导过程如下: 由图可知:2tan ω=R T 由于转角ω很小,所以可近似认为22tanωω=,因此可得:2ωR T =由图易得:ωR L = 将切线长T 带入到221x Ry =中可得 外失距RT E 22=4. 曲线高程计算示例已知:某条道路变坡点桩号为K25+460.00,高程为780.72.m ,i1=0.8%,i2=5%,竖曲线半径为5000m 。
道路曲线计算公式
高速公路线路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式时间:2009-12-27 21:40:34 来源:本站作者:未知我要投稿我要收藏投稿指南高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。
竖曲线高程计算公式
竖曲线高程计算公式竖曲线高程计算公式是道路工程设计中非常重要的一项内容,它用于确定道路纵向曲线的高程变化。
竖曲线的设计合理与否直接影响到道路的通行安全和舒适性。
竖曲线是指道路在纵向上的曲线形状,主要分为凸曲线和凹曲线。
在道路设计中,通常会根据实际需要选择合适的曲线形状,以满足车辆的行驶速度和舒适度要求。
竖曲线高程计算的目标是确定道路各个点的高程值,使其在竖曲线的路径上平稳过渡。
其计算公式主要包括三个要素:曲线的长度、曲线的半径和曲线的超幅。
曲线的长度是指道路在竖曲线路径上的长度,通常采用米为单位。
曲线长度的选择应综合考虑道路的几何形态、车辆的行驶速度和纵向坡度的要求等因素。
为了保证道路的通行安全和舒适性,曲线长度应尽量接近于所设计的数值。
曲线的半径是指曲线所画圆弧的半径,通常采用米为单位。
曲线半径的选择与车辆的行驶速度有关,车速越高,曲线半径应越大。
一般情况下,公路设计中常采用的最小曲线半径为150米。
曲线的超幅是指曲线路径两侧的高程变化。
超幅的选择应考虑到道路的实际需要以及地形条件等因素。
一般情况下,超幅的设计取决于道路的级别、纵向坡度和平均曲率等因素。
竖曲线高程计算公式可以用简洁的数学表达式表示,具体公式如下:高程(E)= 起点高程(E1)+ A1 + A2 + ... + An其中,A1、A2、...、An分别表示曲线路径上每个曲线段的高差值。
高差的计算可以通过使用切线方位角和曲线半径以及曲线长度来进行。
竖曲线高程计算公式的应用可以通过道路设计软件来实现。
根据实际的设计要求和数据输入,软件会自动生成曲线路径上的高程数值,以便进行进一步的设计工作。
总之,竖曲线高程计算公式在道路工程设计中具有重要的应用价值。
通过合理选择曲线的长度、半径和超幅,并利用计算公式进行高程的确定,可以保证道路的通行安全和驾驶舒适度。
因此,设计师在进行道路竖曲线设计时,应深入理解和掌握相关计算公式,并结合实际情况进行应用,以提升道路设计的质量和效果。