向量的加减法运算
平面向量加减法公式
平面向量加减法公式
平面向量的加法和减法是向量运算中的基本操作,下面我会从多个角度来解释这些公式。
首先,让我们回顾一下向量的定义。
在二维平面上,一个向量可以用它的横坐标和纵坐标来表示。
假设有两个向量 a 和 b,它们分别表示为 a = (a1, a2) 和 b = (b1, b2)。
向量的加法公式如下:
a +
b = (a1 + b1, a2 + b2)。
这意味着向量的加法就是将两个向量的对应分量分别相加,得到一个新的向量,它的横坐标是原始向量的横坐标相加,纵坐标是原始向量的纵坐标相加。
向量的减法公式如下:
a b = (a1 b1, a2 b2)。
向量的减法也是类似的操作,将两个向量的对应分量分别相减,得到一个新的向量。
另外,我们还可以用向量的几何方法来理解向量的加法和减法。
假设有两个向量 a 和 b,它们的起点都放在原点 O,那么 a + b
的结果就是以向量 a 的终点为起点,以向量 b 的终点为终点的新
向量。
而 a b 的结果则是从向量 b 的终点指向向量 a 的终点的新向量。
向量的加法和减法还满足一些性质,比如交换律和结合律。
即
a +
b = b + a,(a + b) +
c = a + (b + c)。
这些性质使得向量
的加法和减法更加灵活和便于计算。
总的来说,向量的加法和减法是向量运算中的基本操作,它们
可以用公式表示,也可以用几何方法理解,同时还满足一些重要的
性质。
这些公式和性质对于理解和应用向量运算非常重要。
向量的概念及其加减法运算
问题:位移和那些因素有关?如何确定位移?
A
B
位移的概念
课前预习
一、向量的概念
既有大小又有方向的量叫向量 注意: 向量的两要素:大小和方向 请说出下列一些量那些是数量那些是向量? 距离、位移、身高、力、质量、时间、速度、加速度、面积、电场强度、温度.
自由向量 有些向量不仅有大小方向,还有作用点, 例如力; 有些向量只有大小和方向,而无特定的位置, 例如位移、速度等。 通常后一类向量叫做自由向量。 以后我们学习的向量,无特别指明,指的都是 自由向量。 向量能否比较大小?
向量减法的定义:
01
向量a加上b相反向量,叫做a与b的差.
02
即:a b = a + (b)
03
求两个向量差的运算叫做向量的减法
D
C
如图,已知a、b,求作a-b。
例5
(1)
a
b
(2)
a
b
a
b
(3)
a
b
(4)
2、已知a、b是任意两个向量,下列条件: ①a=b; ②|a|=|b|; ③a与b的方向相反; ④a=0或b=0; ⑤ a与b都是单位向量. 能判定向量a与b共线的是_____.
O
01
单击此处添加大标题内容
B
A ③④ 练习
由于大陆和台湾没有直航,因此2003年春节探亲,乘飞机要先从台北到香港,再从香港到上海,这两次位 移之和是什么?
引例二:
台北
香港
上海
向量的加法定义:
求两个向量和的运算,叫做向量的加法
1、三角形法则
A
B
D
C
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅地阐述观点。
向量的加减法课件
题目2
已知向量$overset{longrightarrow}{a} = (2,3)$,$overset{longrightarrow}{b} = ( - 1,2)$,求$overset{longrightarrow}{a} overset{longrightarrow}{b}$。
进阶练习题
题目3
三角形法则的几何解释
向量减法的三角形法则可以理解为两个向量在起点和终点之间形成的闭合三角形,减数向量是三角形的一条边。
向量减法的向量场意义
向量场
向量场是由一组有序的向量所组成的集合,每个向量都有一个起点和一个终点。
向量场中向量的加减法
在向量场中,向量的加减法可以通过将减数的起点移动到被减数的起点来实现,然后按照向量的加法 法则进行计算。
感谢您的观看
THANKS
02 向量加法的几何意义
向量加法的平行四边形法则
总结词
向量加法的平行四边形法则是向量的基本运算法则之一,它 基于平行四边形的性质,将两个向量相加得到一个新的向量 。
详细描述
向量加法的平行四边形法则是通过构造一个平行四边形,其 中两个相邻的边分别表示要相加的向量,然后连接对角线来 表示这两个向量的和。
详细描述
在向量场中,向量加法运算可以看作 是将一个向量从一个点平移到另一个 点,这种平移过程可以用来描述物体 在空间中的运动和力的作用。
03 向量减法的几何意义
向量减法的三角形法则
三角形法则
向量减法可以通过作平行四边形并取对角线来实现,也可以通过连接两个向量的起点,并作与减数平行的向量来 实现。
答案3
$2overset{longrightarrow}{a} + overset{longrightarrow}{b} = (5,5)$
向量及其加减法,向量与数的乘法
M2
向量:既有大小又有方向的量.
向量表示:a 或 M1M2
M1
以M1为起点,M2 为终点的有向线段.
向量的模: 向量的大小.| a| 或 | M1M2 |
单位向量:模长为1的向量. a0
或
M1 M 20
零向量:模长为0的向量. 0
自由向量:不考虑起点位置的向量.
相等向量:大小相等且方向相同的向量.
证 AM MC BM MD
D b
A
a
C
M
B
AD AM MD MC BM BC
AD 与 BC 平行且相等, 结论得证.
四、小结
向量的概念(注意与标量的区别) 向量的加减法(平行四边形法则) 向量与数的乘法(注意数乘后的方向)
思考题
已知平行四边形ABCD的对角线
AC a,
BD b
10、把平行于某一直线的一切单位向量归结到共同的
11、始 要使点,a则b终点a构 b成成__立__,__向__量_a__,_b_应__满__足_____;_____
12、_要__使__a___b___a____b_成_;立,向量a,
b 应满足_______
___________ .
二、用向量方法证明:对角线互相平分的四边形是平 行四边形 .
a
b
负向量:大小相等但方向相反的向量. a
a
a
向径: 空间直角坐标系中任一点 M与原点 构成的向量.OM
二、向量的加减法
[1]
加法:a
b
c
(平行四边形法则)
b
c
a
(平行四边形法则有时也称为三角形法则)
特殊地:若 a‖
a b
向量的加减法及数乘运算
例1、计算下列各式
(1)( 3) 4a 12a
(2)3(a b ) 2(a b ) a
a 5b 2c
(3)( 2a 3b c ) (3a 2b c )
5b
练一练:
书本P90,练习5
B
b d
D
d
A
c
a
b
a
c
C
o
例2.如图,平行四边形 ABCD中, AB a , AD b , 用 a , b 表示向量 AC , DB 。
解:由作向量和的平行四边形法则, 得
例题
AC a b
D
C
b
由作向量差的方法,
A 知 DB AB AD a b
于是求 a b 就是求这样一个向量,
它与
b
O
这是因为: a b b a b b a 0 a
b的和等于 a。
此即向量减法的三角形法则
法(二) 三角形法则
如图,已知向量 a 和向量 b ,作向量 a b
一、①λ
a 的定义及运算律 (a≠0)
②向量共线定理
b=λa
向量a与b共线
二、定理的应用: 1. 证明 向量共线 2. 证明 三点共线: AB=λBC 且有公共点B 3. 证明 两直线平行: AB=λCD AB∥CD
A,B,C三点共线
AB与CD不在同一直线上
直线AB∥直线CD
设 e1 , e2是两个不共线的向量, AB 2e1 ke2 , CB e1 3e2 , CD 2e1 e2 ,若A、B、D三点共线,求k的值.
向量的加减法及数乘运算
o·
A 的三角形法则
B
AB BC AC
ab ba (a b) c a (b c)
1. 相反向量:
与 做 记作
a长aa度的相相等反,向方量向相反的向量,叫
规定:零向量的相反向量仍是零向量。
注:(1) a a
((32))如任即 那果意: 么,向:量aaa与, b它互a相为b,反相b向反a量向a的量a, a和,0是b零向0量. 。
a
b
D
b
由作向量差的方法,
知
DB
AB
AD
a
A b
a
C B
练习u.A如uBur图,ar ,平uAuDu行r 四br边,形你A能B用CD的、ar 两br来条表对示角线Mu相uuAr交、uM于uuBr点、uMMuuCur,和且uMuuD。ur
D
C
M
b
A
r a
B
另:(1) a b a b a b
(2)若b // a(a 0),则b a是否成立?
成立
向量共线定理:
rr r r
向量a(a 0)与b共线,当且仅当有唯一一个实数,
rr
使b a.
rr
r rr r
即a与b共线
b a (a 0)
思考:1)
r a
为什么要是非零向量?
r 2) b 可以是零向量吗?
总结:
证明三点共线的方法:
AB=λBC
uuur r r uuur r r
OB a 2b,OC a 3b. 你能判断A、B、C三点之
间的位置关系吗?为什么?
C
r
r
a
b
r 3b
B
r
2b
A
向量加法、减法运算及其几何意义
(2)作 OA = a , AB = b
(3)作OB = a + b
B
位移的合成可以看 这种作法叫做向量 作向量加法三角形 加法的三角形法则 法则的物理模型
还有没有其他的做法?
尝试练习一:
(1)根据图示填空:
E
D
AC AB BC _____
BC CD _____ BD
C
A
AD AB BC CD _____ AE AB BC CD DE _____
(2)化简OA OC BO CO
解 : 原式 (OA BO) (OC CO) (OA OB) 0 BA
若a , b不共线,则 | a b || a | | b |
任意向量a, b,有|| a | | b ||| a b || a | | b |
任意向量a, b,有|| a | | b ||| a b || a | | b |
任意向量a, b,有|| a | | b ||| a b || a | | b |
a b。
b
a
A
b a
O
B
ab
三角形法则
例题讲解:
例1.如图,已知向量 a, b ,求作向量
作法2:在平面内任取一点O, OB b , 作 OA a , 以 OA、OB为邻边作 OACB
a b。
b
a,
连结OC,则 OC OA OB a b.
A
a
O
ab
C
平行四边形法则
起点相同连对角
向量加法的平行四边形法则:
B C
b
O
ab
A
起 点 相 同
向量的运算的加减
向量的加减如下:
简单地讲:向量的加减就是向量对应分量的加减,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差若向量的表示为(x,y)形式。
具体如下:向量的加法:A+B=(X1+X2,Y1+Y2)。
向量的减法:A-B=(X1-X2,Y1-Y2)。
向量的加法满足平行四边形法则和三角形法则;向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。
向量加减法定则:
三角形定则
三角形定则解决向量加法的办法:将各个向量依次首尾顺次相接,结果为第一个向量的起点指向比较后一个向量的终点。
平行四边形定则
平行四边形定则解决向量加法的办法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果为公共起点的对角线。
向量的坐标运算法则
向量的坐标运算法则向量是数学中的一个重要概念,可以用来描述物体的位置和运动。
在二维平面上,一个向量可以用两个数值(即x和y坐标)表示。
本文将介绍向量的坐标运算法则,包括坐标加法、坐标减法、数乘坐标、坐标点乘和坐标叉乘等方面。
1. 坐标加法定义:已知两个向量a和b,求向量c,使得c=a+b。
公式:c(x,y)=a(x,y)+b(x,y)坐标加法就是将两个向量的对应坐标相加,得到一个新的向量。
例如,如果向量a的坐标为(1,2),向量b的坐标为(3,4),则向量c 的坐标为(1+3,2+4)=(4,6)。
2. 坐标减法定义:已知两个向量a和b,求向量c,使得c=a-b。
公式:c(x,y)=a(x,y)-b(x,y)坐标减法是将两个向量的对应坐标相减,得到一个新的向量。
例如,如果向量a的坐标为(5,7),向量b的坐标为(3,5),则向量c的坐标为(5-3,7-5)=(2,2)。
3. 数乘坐标定义:已知向量a和实数k,求向量b,使得b=k*a。
公式:b(x,y)=k*a(x,y)数乘坐标是将一个向量的每个坐标乘以一个实数,得到一个新的向量。
例如,如果向量a的坐标为(4,5),实数k为3,则向量b的坐标为(4*3,5*3)=(12,15)。
4. 坐标点乘定义:已知两个向量a和b,求实数c,使得c=a*b。
公式:c=a*b坐标点乘也称为内积或标量积,它是将两个向量的对应坐标相乘,并求和得到一个实数。
例如,如果向量a的坐标为(3,4),向量b的坐标为(5,6),则它们的内积为(3*5+4*6)=57。
内积是一个重要的概念,它可以用来表示两个向量的夹角以及向量的长度。
5. 坐标叉乘定义:已知两个向量a和b,求向量c,使得c=a×b。
公式:c(x,y)=a(x,y)×b(x,y)坐标叉乘也称为外积或向量积,它是通过两个向量的对应坐标之间乘积得到一个新的向量。
例如,如果向量a的坐标为(1,2),向量b的坐标为(3,4),则它们的外积为(1*4-2*3)=-2。
平面向量加乘法除法口诀
平面向量加乘法除法口诀
一、向量的加法
两个向量做加法运算就是向量的加法,是一种向量的运算。
首先我们来看图像。
向量加法图像
向量的加法口诀:首尾相连,首连尾,方向指向末向量。
二、向量的减法
两向量做减法运算,图像如下图所示:
向量的减法图像
向量的减法口诀:首首相连,尾连尾,方向指向被减向量。
向量的学习是高一数学必修四第二章的内容,要求同学们会向量的基本运算,其中就包括加法、减法、数乘。
要求大家能根据运算法则解决基本的向量运算,学会运用图像解决向量加减法,向量的数乘等问题。
向量的相关题目难度也不是很大,只要大家认真学习,认真做好笔记,认真做做题目,总结做题规律,那么当我们遇到类似题目时就会似曾相识,做起来也很顺手,再细心点的话,得满分也没有问题。
学习方法很多,重要的事找到适合自己的方法,当然适合自己方法就是最好的方法。
最后祝同学们学业有成,更上一层楼。
《向量的加减法》课件
03 向量的数乘
数乘的定义
定义
对于向量$overset{longrightarrow}{a}$ 和实数$k$,数乘 $koverset{longrightarrow}{a}$是一个 向量,其长度为 $|k||overset{longrightarrow}{a}|$,方 向与$overset{longrightarrow}{a}$相同 或相反,取决于$k$的正负。
向量加法的性质
向量加法满足结合律
即$(overset{longrightarrow}{a} + overset{longrightarrow}{b}) + overset{longrightarrow}{c} = overset{longrightarrow}{a} + (overset{longrightarrow}{b} + overset{longrightarrow}{c})$。
谢谢聆听
02
当$k < 0$时,$koverset{longrightarrow}{a}$表示向 量$overset{longrightarrow}{a}$按比例缩小$-k$倍。
03
当$k = 0$时,$0overset{longrightarrow}{a} = mathbf{0}$,即零向量。
数乘的性质
箭头表示法
详细描述
向量通常用带箭头的线段表示,箭头指向代表方向,长度代表大小。
向量的模
总结词
向量的长度
详细描述
向量的模表示向量的长度,记作$|overrightarrow{AB}|$,计算公式为$sqrt{x^2+y^2}$。
02 向量的加法
向量加法的定义
定义
向量加法是指将两个向量首尾相接,以第一个向量的起点为 共同起点,以第二个向量的终点为共同终点,连接第一个向 量的终点与第二个向量的起点的向量。
向量加减法的三角形法则
向量加减法的三角形法则
向量加减法的三角形法则是一种常用的方法,用于求解向量之间的加减法运算。
该方法基于三角形的性质,将两个向量相加或相减得到结果向量的过程转化为三角形中三条边的连线关系。
具体来说,该方法分为加法和减法两种情况。
对于加法,我们可以将两个向量的起点相连,然后以它们的终点为另外两个顶点,构成一个三角形。
此时,结果向量即为该三角形的第三边,方向和大小由三角形的形状和大小决定。
对于减法,同样可以将两个向量的起点相连,并将被减向量翻转后作为新的向量,此时也能构成一个三角形。
结果向量即为该三角形的第三边,方向和大小同样由三角形的形状和大小决定。
通过向量加减法的三角形法则,可以更加直观地理解向量之间的加减法运算,并能够快速求解结果向量的方向和大小,有助于在物理、工程等领域中应用。
- 1 -。
向量加减法运算及其几何意义
C
A
AD AB BC CD _____ AE AB BC CD DE _____
B
思考1:如图,当在数轴上两个向量共线时,加法的三角形
法 则是否还适用?如何作出两个向量的和?
a
b
A ( 1) B C
a
b
( 2)
ab
C
ab
A
B
若a, b方向相同,则 | a b || a | | b |
(3) BC BA AC (5) OA OB BA
ba
(4) OD OA AD
思考:若向量a、 b共线,则应怎样作出 a b 呢?
a
b
( 1)
O A B B
a
b
( 2) A
a b
a b
O
若a,方向相反, b | a b || a | | b | 若a,方向相同, b | a b || a | | b (或 | | b | | a |)
那么对任意向量 a, b 的加法是否也满足交换律和结合律? D 请画图进行探索。
B
a
C
abc
bc
c
C
b
O
ab b
A A
a
ab
a
b
ab ba
(a b) c a (b c).
例2.长江两岸之间没有大桥的地方,常常通过轮船进行运输, 如图所示,一艘船从长江南岸A点出发,以 2 3 km/h的速度向 垂直于对岸的方向行驶,同时江水的速度为向东2km/h. (1)试用向量表示江水速度、船速以及船实际航行的速度; (2)求船实际航行的速度的大小与方向(用与江水速度的夹 角来表示)。 C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任意向量a,b的加法是否也满足交换律与
结合律?
D
D
a
C a+b+c
c
b a+b
b
A
b+ac+b
C
A
a
B
a
b
rr rr
B
a+b=b+a
rr r r rr
(a+b)+c= a+(b+c)
u u u ru u u ru u u ru u u ru u u r 例2: 求向量 A B + D F + C D + B C + F A 之和. u u u r 解 :u ∵u u r u A u B u u r u + u r D u u u F u r u + u r C u u D u u r u u + rB u u C u r + F u u A u r
2.2.1向量加法运算 及其几何意义
一:复习回顾
1.向量、平行向量、相等向量的含义分别是什么?
向量:既有方向又有大小的量。 平行向量:方向相同或相反的向量。 相等向量:方向相同并且长度相等的向量。 零向量:长度为零的向量叫零向量。
单位向量:长度等于1个单位长度的向量叫单位向量。
二: 2006年大陆和台湾没有直航,因此春节 探亲,乘飞机要先从台北到香港,再从香港 到上海,则飞机的位移是多少?
作业
课本84页 课本91页
习题(做书上) 2、3作业本
谢谢大家
向量加 法
变式训练1:已知向量a、b,求作向量a+b和 b+a。(用三角形法则与平行四边形法则)
2、(1)
b
ab
ba
(2)
b
a ab
a
变式训练2:已知向量a、b、c,求 作向量(a+b)+c和a+(b+c)
c
a
b
数的加法满足交换律与结合律,即对任意
a,b∈R,有a+b=b+a,(a+b)+c=a+(b+c)
课堂小结:
向量加法的定义
三角形法则
平行四边形法则
向量加法的运算律 向量加法的运算
小结 1.向量加法的三角形法则
(要点:两向量首尾连接)
2.向量加法的平行四边形法则
(要点:同一起点,对角线为
和向量)
3.向量r加法r满足r 交换r 律及结合律
a+b=b+a
rr r r rr
(a+b)+c= a+(b+c)
上海
上海 台北
r c
r b
香港
r 台北 a
C
香港
1、位移 AB BC AC B
A
向量加法
向 量
任意给出两个向量a与b. 如何求a+ b.
加
法
的 定
a
b
义
C
C
B
B
A
A
ABBCAC
O
OBOAOC
1.两种方法做出的结果一样吗?
向量加法
向量加法
向 量
任意给出两个向量a与b. 如何求a+ b.
加
法
的 定
( 2 ) 作 O A = a ,A B = b u u u r r r
(3 )作 O B =a+b
A
位移的合成可以看
这作种向作量法加 叫法 三做角向形量
B 加法法则的的三物角理形模法型则
还有没有其他的做法?
向量加法的平行四边形法则
b
a
起点o
相同 连对 B 角
作法(1)在平面内任取一点O u u u r u u ru u u r r
巩固练习
1.化简 (1)ABCDBC_A_D_B _ MN _____
(3 )A B B D C A D C _0_____
2.根据图示填空
Ee
gf
A
a
D
d
c
bC
B
(1) a b c
(2)c d f (3)a b d f
(4)c d e g
( 2 ) 作 O A = a ,O B = b u u u r r r
(3 )作 O C =a+b
A
C
这力 量种的 加作合 法法成 的叫可平以行做看四向作边量向形加 法的法平则行的四物理边模形型法则
文字表述为:以同一起点的两个向量为邻边作平行四边形, 则以公共起点为起点的对角线所对应向量就是和向量。
a
b
义
三 角 形 法 则:
平行四边形法则:
C
C
b
B
A
a
尾首相连
起点指向终点为和
B
b
b
A
O
a
同一起点,
对角线为和
1.两种方法做出的结果一样吗?
向量加 法
四:向量加法的u r 三u 角u r 形法则 rr 例1 已 知 向 量 a ,b , 求 作 向 量 a + b
r rb a
首尾 相连
接o
作法(1)在平面内任取一点O u u u r u u ru u u r r