塑性加工方法-模锻
模锻成形工序分析

模锻成形工序分析模锻成形是一种将金属坯料加热至一定温度,然后在模具中施加压力使其在一定形状下完成塑性变形的金属加工方法。
模锻成形主要用于制造高负荷、高强度和高精度要求的机械零件,常应用于汽车、航空航天、船舶等重工业领域。
以下是对模锻成形工序的详细分析。
一、模锻成形的工作原理模锻成形的基本原理是在模具中施加压力使金属坯料在一定的形状下发生塑性变形,从而得到所需的零件。
具体步骤如下:1.准备工作:选取适当的金属坯料和模具,将金属坯料放入加热炉中进行加热。
2.加热:加热炉中的温度要根据不同的金属材料和所需零件的要求进行调整,一般情况下,金属坯料的温度应达到其热塑性变形温度。
3.开模:将金属坯料从加热炉中取出,放入模具中,保证金属坯料与模具接触良好。
4.施加压力:通过液压等力学手段,对模具施加压力,使金属坯料在模具的作用下按照所需形状发生塑性变形。
5.保温冷却:待金属坯料完成塑性变形后,保持一定时间使其冷却固化。
6.去除零件:将成品零件从模具中取出,进行表面处理和后续加工。
二、模锻成形的优势和适用范围模锻成形相比其他金属加工方法具有以下优势:1.高精度:模锻成形可以制造出形状复杂、精度高的零件,尤其适用于制造需要高度精确的机械零件。
2.高质量:模锻成形可以在一定程度上改善金属内部组织,提高零件的机械性能和耐磨性。
3.高利用率:模锻成形可以使金属材料得到充分利用,减少废料的产生,提高材料利用率。
4.篡改性强:模锻成形可以通过改变模具的结构和形状,实现多种形状、尺寸和材质的零件生产。
模锻成形主要适用于以下范围:1.制造大件和中小件:模锻成形适用于制造大型或中小型紧固件、曲轴、连杆、齿轮等零件。
2.制造高强度零件:模锻成形适用于制造需要高强度和高韧性的机械零件,如轴承、销轴和齿轮。
3.制造高温环境下使用的零件:由于模锻成形可以改善金属的内部组织,提高其耐热性和高温性能,因此适用于制造在高温环境下使用的零件,如航空发动机零件等。
第三篇(塑性加工)

纤维组织的稳定性很高,不能用热处理或其它方法加以消 除,只有经过锻压使金属变形,才能改变其方向和形状。 合理利用纤维组织
应使零件在工作中所受的最大正应力方向与纤维方向重合;
最大切应力方向与纤维方向垂直; 并使纤维分布与零件的轮廓相符合,尽量不被切断。
§1-3
金属的可锻性
金属材料通过塑性加工获得优质零件的难易程度。 (经塑性加工而不断裂) 塑性
三拐曲轴的锻造过程
§2-1 锻造方法
自由锻特点
●
坯料表面变形自由;
● 设备及工具简单,锻件重量不受限制; ● ● ●
锻件的精度低; 生产率低,适用于单件小批生产; 是大型锻件的唯一锻造方法。
§2-1 锻造方法
模锻
使加热后的金属在模膛内
受压变形以获得所需锻件 的方法。 应用: 大批量生产中小锻件。 <150Kg,如曲轴、连 杆、齿轮。
在冷加工时,形变强化使金属塑性降低,进
一步加工困难,应安排中间退火工艺。 实质:塑性变形时位错运动受阻,使交叉滑移中位错运动范围缩小,因 此,金属性能随之改变。
一、金属材料产生加工硬化
金属材料 强度和硬 度提高, 塑性和韧 性下降。
有利:加工硬化可提高产品性能! 不利:进一步的塑性变形带来困难! 加热可消除硬化现象!
压力使金属成型为各种型材和锻件等。
a)自由锻 b)模锻 c)胎模锻 胎模锻:自由锻设备上,采用不与上、下砧相连接的活动模具 成形锻件的方法。是介于自由锻和模锻之间的锻造工艺方法。 2)冲压 利用冲模将金 属板料切离或变形 为各种冲压件。
3)轧制 使金属坯料通过两个旋转轧辊之间的间隙而产生塑性变形的 加工方法。 用于生产各种型材、管材、板材等。
模锻
模锻是利用锻模使坯 料变形而获得锻件的 锻造方法。
第三章 模锻成形工序分析和模锻-1

2)精密成形时还应该考虑模具的弹性变形。
11
控制金属的流动方向
流动规律:塑性变形时金属主要向着最大主应力增大的方向 流动。在三向压应力下,金属主要是向着最小阻力增大的方 向流动。 通过不同的工具,采取不同的加载方式,在变形体内建立不 同的应力场来得到不同的变形和流动情况。
流动分 界面
流动分界 面外移
第三章 模锻成形工序分析和模锻工艺
开式模锻 模锻 成形 工序 分析 闭式模锻 挤 压 顶 镦 模锻工艺及模锻件分类 锻件图设计
模锻 工艺
模锻工艺过程制定内容 及工艺方案选择 模锻变形工步的确定
1
一、概述
发展过程:自由锻→胎模锻→模锻 自由锻:将加热好的金属坯料放在锻造设备的上,下砥铁之间, 施加冲击力或压力,直接使坯料产生塑性变形,从而获得所需锻 件的一种加工方法。 胎模锻:胎模锻是在自由锻设备上采用不与上、下砧相接的活 动模具成型的方法称为胎模锻。它是介于自由锻与模锻之间的 锻造工艺方法。 模锻:将加热后的坯料放置在固定于模锻设备上的锻模内锻造 成形的。
●
●
● ●
节省切边设备;
有利于金属充满模膛,有利于进行精密模锻;
闭式模锻时金属处于明显的三向压应力状态,有利于 低塑性材料的成形。
42
第三节
闭式模锻
闭式模锻进行的必要条件:
● ● ●
坯料体积准确; 坯料形状合理并能在模膛内准确定位; 能够较准确地控制打击能量或模压力;
●
有简便的取件措施或顶料机构。
19
一、开式模锻各阶段的应力应变分析
●
第Ⅱ阶段
20
一、开式模锻各阶段的应力应变分析
第Ⅲ阶段:主要是将多余金属排入飞边,此时流动分界面 已不存在。变形区的应力应变状态与薄件镦粗一样。
液态模锻的基本原理和优点

液态模锻的基本原理和优点液态模锻是一种利用金属在液态状态下的特殊性能进行塑性变形的加工方法。
与传统的固态锻造或热锻相比,液态模锻具有独特的优点和特点。
液态模锻的基本原理是将金属在其液态区域内进行加热,保持其处于液态状态,然后将其导入模具中进行锻造。
与传统的固态锻造相比,液态模锻的温度较高,材料处于液态状态,因此液态模锻具有以下特点和优点:1. 温度高:在液态模锻过程中,金属被加热到接近或达到其熔点温度。
相对于传统的固态锻造,液态模锻的温度更高,这有助于改善金属的塑性,降低变形阻力,提高变形能力。
2. 无需预制坯料:传统的锻造过程通常需要预制坯料,然后再进行锻造。
而液态模锻可以直接将金属液体导入模具中进行锻造,无需预制坯料,简化了生产工序,提高了生产效率。
3. 成型能力强:液态模锻可以通过调整模具的结构和形状,实现复杂零件的精确成型。
由于液态模锻在金属液体状态下进行,金属流动性好,可以更好地适应模具的形状,实现更复杂的成型。
4. 大幅度节省材料:液态模锻能够有效地减少锻件的加工余量和修整量,降低材料的浪费。
与传统的固态锻造相比,液态模锻可以在更细小的尺寸范围内获得更高的净成形率,提高材料利用率。
5. 减小晶粒尺寸:液态模锻过程中,金属在高温状态下进行塑性变形,可以减小晶粒尺寸,提高材料的强度和塑性。
液态模锻可以获得更小的晶粒尺寸,从而使锻件具有更好的力学性能和高温稳定性。
6. 改善材料性能:液态模锻可以改变材料的组织结构和性能,优化材料的力学性能。
通过精确控制锻造过程中的温度、应变速率和变形程度等参数,可以实现材料微观结构的调控,提高材料的强度、韧性和耐磨性等性能。
液态模锻作为一种高效、精密的金属成形技术,在航空航天、汽车制造、能源领域等许多高端制造领域具有广泛的应用前景和市场需求。
它可以有效地提高锻件的质量和生产效率,降低成本和材料浪费,同时还可以实现对材料性能的优化和提升,满足各种工程和技术要求。
第八章塑性加工

第八章塑性加工※8·1 锻造成形8·2 板料冲压成形8·3 挤压、轧制、拉拔成形8·4 特种塑性加工方法8·5 塑性加工零件的结构工艺性8·6 塑性加工技术新进展本章小结塑性加工的基本知识塑性变形的主要形式:滑移、孪晶。
滑移的实质是位错的运动。
金属经过塑性变形后将使其强度、硬度升高,塑性、韧性降低。
即产生形变强化。
此外,还将形成纤维组织。
塑性加工特点:1·塑性加工产品的力学性能好。
2·精密塑性加工的产品可以直接达到使用要求,不须进行机械加工就可以使用。
实现少、无切削加工。
3·塑性加工生产率高,易于实现机械化、自动化。
4·加工面广(几克~几百吨)。
常用的塑性加工方法:锻造、板料冲压、轧制、挤压、拉拔等。
8·1 锻造成形8·1·1 自由锻定义、手工自由锻、机器自由锻设备(锻锤和液压机)1·自由锻工序(基本工序、辅助工序、精整工序)基本工序:镦粗、拔长、弯曲、冲孔、切割、扭转、错移辅助工序:压钳口、压钢锭棱边、切肩各种典型锻件的锻造2·自由锻工艺规程的制订(举例)8·1·2 模锻定义、特点(生产率高、尺寸精度高、加工余量小、节约材料,减少切削、形状比自由锻的复杂、生产批量大但质量不能大)1·锤上模锻2·压力机上模锻8章塑性加工拔长29使坯料横截面减小而长度增加的锻造工序称为拔长。
拔长主要用于轴杆类锻件成形,其作用是改善锻件内部质量。
(1)拔长的种类。
有平砥铁拔长、芯轴拔长、芯轴扩孔等。
8章塑性加工30芯轴拔长8章塑性加工芯轴扩孔型砧拔长圆形断面坯料冲孔采用冲子将坯料冲出透孔或不透孔的锻造工序叫冲孔。
其方法有实心冲子双面冲孔、空心冲子冲孔、垫环冲孔等。
8章塑性加工各种典型锻件的锻造1、圆轴类锻件的自由锻2、盘套类锻件的自由锻3、叉杆类锻件的自由锻4、全纤维锻件的自由锻8章塑性加工典型锻件的自由锻工艺示例43锻件名称工艺类别锻造温度范围设备材料加热火次齿轮坯自由锻1200~800℃65kg空气锤45钢1锻件图坯料图序号工序名称工序简图使用工具操作要点1局部镦粗火钳镦粗漏盘控制镦粗后的高度为45mm序号工序名称工序简图使用工具操作要点2冲孔火钳镦粗漏盘冲子冲孔漏盘(1)注意冲子对中(2)采用双面冲孔3修整外圆火钳冲子边轻打边修整,消除外圆鼓形,并达到φ92±1 mm续表序号工序名称工序简图使用工具操作要点4修整平面火钳镦粗漏盘轻打使锻件厚度达到45±1 mm续表自由锻工艺规程的制订(1)绘制锻件图(敷料或余块、锻件余量、锻件公差)※锻件图上用双点画线画出零件主要轮廓形状,并在锻件尺寸线下面用括号标出零件尺寸。
模锻工艺技术

模锻工艺技术工艺技术是指通过特定的工艺方法和工具,对材料或产品进行加工,使其具有特定的形状、性能和质量的技术。
模锻工艺技术是一种常见的金属加工方法,通过将金属材料置于压模中,施加压力使其产生塑性变形,从而得到所需的形状和尺寸。
模锻工艺技术主要分为冷锻和热锻两种。
冷锻是在室温下进行的,适用于一些低碳钢、合金钢和铝合金等材料的加工。
热锻则是在高温下进行的,通常用于处理高碳钢、合金钢和不锈钢等材料,以及那些需要形状复杂、尺寸精度高的零件。
模锻工艺技术的基本过程包括模具设计、材料预热、锻造成形和后续处理等步骤。
模具设计是确保锻造件形状和尺寸精确度的关键,需要考虑到材料的热膨胀、变形和收缩等因素。
材料预热是为了提高材料的塑性,减少应力和变形。
锻造成形时,通过施加压力,使材料适应模具的形状,同时使其塑性变形。
锻造后,通常需要进行一些后续处理,如热处理、机加工和表面处理,以提高锻件的强度、硬度和耐腐蚀性。
模锻工艺技术具有一些独特的优点。
首先,由于锻造过程中金属材料受到压力的作用,其内部结构得到了优化,使锻件的强度和韧性得到了提高。
其次,锻件的尺寸精度高,形状复杂度可以满足要求。
第三,模锻工艺可以利用工具设计灵活,适应不同的需要。
然而,模锻工艺技术也面临一些挑战。
首先,模锻工艺需要较大的设备和能源投入,对于小批量生产来说,成本较高。
其次,模锻工艺需要专业的知识和经验,操作要求较高。
第三,模锻工艺对于一些脆性材料来说可能不适用,容易产生裂纹和缺陷。
因此,在实际应用中,应根据具体情况选择是否采用模锻工艺技术。
如果需要大批量生产,对产品质量和性能有较高要求,且具备相应的设备和技术条件,那么模锻工艺技术将是一种很好的选择。
模锻工艺技术是一种重要的金属加工方法,具有广泛的应用领域。
下面将从优点、应用、发展趋势等方面对模锻工艺技术进行详细探讨。
首先,模锻工艺技术具有几个显著的优点。
首先,通过模锻可以得到高强度和高韧性的金属件,其内部金属流动有利于优化结构,使得锻件的力学性能得到提高。
模锻的特点及应用

模锻的特点及应用模锻是一种通过将金属材料塑造成预期形状的机械加工工艺。
模锻的特点主要体现在以下几个方面:1. 高精度和高质量:模锻可以使金属材料在加工中得到较高的变形精度和表面质量,因为它是基于模具进行的,所以可以得到相对规整和光滑的成品。
2. 良好的机械性能:由于模锻时金属材料经受了较大的变形和应变,所以可以提高材料的硬度、强度和韧性,从而增加了材料的机械性能。
3. 精确的工艺控制:模锻过程较为简单,可以根据产品的需求对模具、冲击力和温度等参数进行精确控制,从而实现对产品形状和尺寸的精确控制。
4. 高效的生产方式:模锻具有较高的生产效率,可以通过自动化和机械化的生产设备进行大规模生产,提高了生产效率和产品品质。
5. 可加工多种材料:模锻不仅适用于加工金属材料,如铝合金、铜合金、钢等,还可以用于加工非金属材料,如陶瓷等。
模锻的应用广泛,主要体现在以下几个行业:1. 汽车制造业:模锻是汽车制造的重要工艺之一,可以用于制造汽车发动机零部件、传动系统零部件和车身结构的零部件等。
其中,汽车发动机的曲轴、凸轮轴等核心部件通常采用模锻工艺加工,可以提高零部件的强度和耐磨性,从而提高汽车的整体性能。
2. 铁路交通行业:模锻在铁路交通行业中应用广泛,可以用于制造铁路车辆的各种零部件,如车轮、车轴、车体连接件等。
模锻的高强度和高韧性可以增加铁路车辆的运行安全性和寿命。
3. 航空航天工业:航空航天工业对零部件的高精度和高质量要求较高,因此模锻技术在这个领域得到了广泛应用。
模锻可以制造航空发动机零部件、飞机机身结构零部件等,可以提高飞机的整体性能和安全性。
4. 军事装备行业:军事装备对零部件的强度和耐久性要求较高,模锻可以满足这些要求。
可以用于制造坦克、火炮、火箭弹和导弹等军事装备的零部件,提高其战斗性能和耐久度。
5. 通用机械制造业:模锻可以用于制造通用机械的各种零部件,如工程机械、农业机械、矿山机械等。
模锻的高精度和高质量可以提高机械设备的使用寿命和可靠性。
第七章 模锻工艺

二、模锻工艺方案的选择 基本原则:保证锻件生产的技术可行性和经济合理性。 在工艺上应满足对锻件质量和数量的要求; 在经济上应使锻件生产成本低,经济效益好。
1.模锻工艺的选择 ①较大批量生产,采用模锻锤或热模锻压力机; ②中小批量生产,采用螺旋压力机或在自由锻锤上胎 模锻及固定模模锻。 工艺方案的选择: ①必须保证锻件的质量要求。 ②必须考虑工厂的具体条件,根据工厂的设备状况选 择合理的工艺方案。
二、热模锻压力机上模锻件图设计要点 热模锻压力机上模锻件图设计的原则、内容、方法 与锤上模锻基本相同。 根据热模锻压力设备特点,锻件图设计有以下要求: ①热模锻压力机有顶出装置,锻件可以顺利地从较深的 模膛内取出,分模面选择较灵活。
头部沿轴向的内孔无 法锻出,飞边体积较 多,金属浪费大。
②热模锻压力机上模锻不用顶杆时,模锻件斜度与锤 上模锻相同。若采用顶杆顶出锻件,则模锻斜度一 般比锤上模锻件小一级。外斜度为3°~7°,一般 常用5°;内斜度为7°~l0°。
锻件技术条件:锻件图无法表示的锻件质量和检验要求 的内容,均应列入技术条件中加以说明。
包括内容:
①未注明的模锻斜度和圆角半径。 ②允许错移量和残余飞边的宽度。 ③允许的表面缺陷深度。 ④锻后热处理方法及硬度要求。 ⑤表面清理方法。 ⑥需要取样进行金相组织和力学性能试验时, 应注明在锻件上的取样位置。 ⑦其他特殊要求,如直线度、平面度等。
非圆形锻件的外廓包容体重量Gb和体积Vb(图7-9)为: Vb lbh Gb lbh
表7-1锻件形状复杂程度等级 级别 Ⅰ Ⅱ Ⅲ Ⅳ 代号 S1 S2 S3 S4 形状复杂系数值 0.63~1 0.32~0.63 0.16~0.32 ≤0.16 形状复杂程度 简单 一般 比较复杂 复杂
1模锻方法与工艺

2 锻造种类
(三)按行业应用
■柴油机锻件 柴油机是动力机械的一种,它常用来作发动机。以大
型柴油机为例,所用的锻件有汽缸盖、主轴颈、曲轴端 法兰输出端轴、连杆、活塞杆、活塞头、十字头销轴、 曲轴传动齿轮、齿圈、中间齿轮和染油泵体等十余种。
■船用锻件 船用锻件分为三大类,主机锻件、轴系锻件和舵系锻
件。主机锻件与柴油机锻件一样。轴系锻件有推力轴、 中间轴艉轴等。舵系锻件有舵杆、舵柱、舵销等。
模闭式精密模锻还可锻出垂直于锻击方向的孔或凹坑,材料 利用率平均提高20%左右; ▼毛坯在封闭的模膛内成形,变形金属处于更加强大的三向压 力状态,有利于提高金属材料的塑性和产品的力学性能; ▼可分凹模闭式精密模锻可减少甚至取消制坯工步,省去切边 和辅助工序,生产率平均可提高25%~50%。 闭式精密模锻主要问题:对于一些大中型锻件模具寿命低,需 采取多种措施逐步解决。
5 模锻件类型
(1)饼盘类
❖ 外形为圆形面,高度较小
5 模锻件类型
(2)法兰凸缘类
其外形为回转体,带有圆形或长宽尺寸相差不大的 法兰和凸缘。
5模锻件类型
(3)轴杆类
其杆部为圆形,带有圆形或非圆形头部,或中间局 部粗大的直长杆类。
(4)杯筒类
5 模锻件类型
5 模锻件类型
(5)枝芽类
包括单枝芽、多枝芽的实心和空心类锻件。
■石油化工锻件 锻件在石油化工设备中有着广泛的应用。如球形储罐的人孔、
法兰,换热器所需的各种管板、对焊法兰催化裂化反应器的整锻 筒体(压力容器),加氢反应器所用的筒节,化肥设备所需的顶 盖、底盖、封头等均是锻件。
2 锻造种类
(三)按行业应用
■矿山锻件 按设备重量计算,矿山设备中锻件的比重为12-24%。矿山设
常用的塑性成形方法

方向增加尺寸) 。于是便可绘制锻件图,如图 3.2.3所示。
表3.2.2 带孔圆盘类锻件机械加工余量与锻造公差 (见下页)
图 3.2.3 齿轮锻件图
2)计算坯料的质量和尺寸 坯料质量: m坯料= m锻+ m型芯+ m烧损
应用:适合于大批量生产条 件下锻制中、小型锻件。
曲柄压力机传动原理示意
2)摩擦压力机上模锻
摩擦压力机的工作原理见 右图。 特点:①适应性强。 ②适合于再结晶速度慢的
低塑性金属的模锻。 ③模具设计和制造简化、
节约材料、降低成本。 ④摩擦压力机一般只能进
行单膛锻模进行模锻。 应用:适合于中小型锻件的
小批或中批生产,如铆 钉、螺钉、螺母、配汽 阀、齿轮、三通阀等。
(1)锤上模锻
锤上模锻 所用设备为模 锻锤,由它产 生的冲击力使 金属变形。如 图3.2.10所示。 模锻锤的吨位 (落下部分的 重量)为l~ 16t 。
图3.2.10 模锻锤
锻模如图3.2.11所
10
1
示。上模和下模分别用楔
铁固定在锤头和模垫上,
9
2
模垫用楔铁固定在砧座上。
8
3
上模随锤头作上下往复运
4
动。8为分模面,3为飞边 槽,9为模膛,根据模膛
67
5
的功用的不同,模膛分模
锻模膛和制坯模膛两种。
1)模锻模膛
模锻模膛分终锻模膛和
图3.2.11 锤上模锻用锻模
预锻模膛两种。
1-锤头1;-2锤-上 头 模2;-3-上飞模 边槽3;-4飞-连下槽模;5-模 6,7-楔4铁-下;8模-分模5-面模垫;9-模6膛、7;-10锲-铁楔铁
第8.3章模锻

金属工艺学
1.错模 . 锤头导轨的间隙过大、模具缺少 锤头导轨的间隙过大、 平衡导锁以及模具安装不合理等原因 都可能产生错模,如图所示。 都可能产生错模,如图所示。 2.欠压 . 即上、下模分模面未打靠, 即上、下模分模面未打靠,也称 锻不足” “锻不足”。 3.局部充不满 . 由于坯料体积过小或坯料放偏等原因致使 锻件上的凸筋、 锻件上的凸筋、外圆角等部位因模槽未充满 而欠缺,这种缺陷一般无法修正。 而欠缺,这种缺陷一般无法修正。 金属工艺学
图8-25 胎模示意图
金属工艺学
8.3.2胎模锻 胎模锻
胎模锻造成型是在自由锻设备上, 胎模锻造成型是在自由锻设备上,使用可移动 是在自由锻设备上 的胎模具生产锻件的锻造方法。 的胎模具生产锻件的锻造方法。 胎模成型与自由成型相比,具有较高的生产率, 胎模成型与自由成型相比,具有较高的生产率, 锻件质量好,节省金属材料,降低锻件成本。 锻件质量好,节省金属材料,降低锻件成本。 与固定模膛成型相比,不需要专用锻造设备, 与固定模膛成型相比,不需要专用锻造设备,模具 简单,容易制造。 简单,容易制造。 锻件质量不如固定模膛成型的锻件高, 锻件质量不如固定模膛成型的锻件高,工人劳 动强度大,胎模寿命短,生产率低。 动强度大,胎模寿命短,生产率低。 胎模成型只适用于小批量生产, 胎模成型只适用于小批量生产,多用在没有模 锻设备的中小型工厂中。 锻设备的中小型工厂中。 金属工艺学
标注模锻圆角半径
锻件上所有转角处都应做成圆角(图8-10)。一般内圆角半径(R) 锻件上所有转角处都应做成圆角 图 。一般内圆角半径( ) 应大于其外圆半径( )。 应大于其外圆半径(r)。
留出冲孔连皮
锻件上直径小于25mm的孔,一般不锻出,或只压出球形凹穴。大 的孔,一般不锻出,或只压出球形凹穴。 锻件上直径小于 的孔 的通孔, 于25mm的通孔,也不能直接模锻出通孔,而必须在孔内保留一层连皮。 的通孔 也不能直接模锻出通孔,而必须在孔内保留一层连皮。 冲孔连皮的厚度s与孔径 有关, 与孔径d有关 冲孔连皮的厚度 与孔径 有关,当d =30~80mm时,s =4~8mm。 ~ 时 ~ 。
模锻的基本工序

模锻的基本工序以模锻的基本工序为标题,写一篇文章:一、模锻的基本工序模锻是一种金属成形工艺,通过将金属材料置于模具中,施加压力使其产生塑性变形,从而获得所需形状的零件。
模锻的基本工序包括以下几个步骤:1. 模具设计与制造模具是模锻过程中不可或缺的工具,它的设计和制造直接影响到零件的质量和生产效率。
在模具设计中,需要考虑零件的形状、尺寸、材料和生产要求等因素,以确定合适的模具结构和加工工艺。
2. 材料准备在模锻过程中,需要选择适合的金属材料作为原料。
常用的模锻材料有碳钢、合金钢、铝合金等。
在材料准备阶段,需要对原料进行加热处理,以提高其塑性和可锻性。
3. 加热加热是模锻过程中的关键步骤之一。
通过加热,可以使金属材料达到适宜的温度,从而增加其塑性和可锻性。
常用的加热方法有火焰加热、电阻加热和感应加热等。
4. 锻造锻造是模锻的核心工序,也是将金属材料塑性变形成零件的过程。
在锻造过程中,需要施加足够的压力,使金属材料充分填充模具腔体,同时保持适宜的锻造温度。
5. 冷却与退火在锻造完成后,需要对零件进行冷却处理。
通过冷却,可以使零件的形状固定,减少变形和裂纹的产生。
此外,还需要对锻件进行退火处理,以消除内部应力和提高其力学性能。
6. 后续加工锻造完成后,还需要进行一些后续加工工序,以获得最终的零件。
常见的后续加工工序包括修整、除锈、热处理、机加工和表面处理等。
二、模锻的应用领域模锻作为一种重要的金属成形工艺,在工业生产中有着广泛的应用。
它可以生产各种形状复杂、尺寸精确的零件,具有高强度、高精度和良好的表面质量。
模锻广泛应用于航空航天、汽车、军工、能源和机械制造等领域,为各行业的发展提供了重要的支持。
在航空航天领域,模锻技术被广泛应用于制造发动机叶片、涡轮盘、连接杆等关键零部件。
这些零件对材料性能和精度要求非常高,通过模锻工艺可以获得高强度、高耐热性和低变形的零件。
在汽车制造领域,模锻被用于生产汽车传动轴、曲轴、悬挂件和车架等关键零部件。
模锻

模型锻造3.3.2 模型锻造模型锻造包括模锻和镦锻,它是将加热或不加热的坯料置于锻模模膛内,然后施加冲击力或压力使坯料发生塑性变形而获得锻件的锻造成形过程。
一、模型锻造成形过程特征模型锻造时坯料是整体塑性成形,坯料三向受压。
坯料放于固定锻模模膛中,当动模作合模运动时(一次或多次),坯料发生塑性变形并充满模膛,随后,模锻件由顶出机构顶出模膛。
热成形要求被成形材料在高温下具有较好的塑性,而冷成形则要求材料具有足够的室温塑性。
热成形过程主要是模锻,可生产各种形状的锻件,锻件形状仅受成形过程、模具条件和锻造力的限制。
热成形模锻件的精度和表面品质除锻模的精度和表面品质外,还取决于氧化皮的厚度和润滑剂等,一般都符合要求,但要得到零件配合面最终精度和表面品质还须再进行精加工(如车削、铣削、刨削等);冷成形件则可获得较好的精度(0.2mm)与表面品质,几乎可以不再进行或少进行机械加工。
模锻可使用多种锻压设备(蒸汽锤、机械压力机、液压机、卧式机械镦锻机等),所需设备要根据生产量和实际采用的成形过程来选择。
模锻广泛用于飞机、机车、汽车、拖拉机、军工、轴承等制造业中,最常见的零件是齿轮、轴、连杆、杠杆、手柄等。
但模锻常限于150kg以下的零件。
由于锻模造价高,制造周期长,故模型锻造仅适宜于大批量生产。
二、模锻过程模锻生产过程的流程如下:1、绘制模锻件图模锻件图(又叫模锻过程图)是生产过程中各个环节的指导性技术文件。
在制订模锻件图时应考虑的因素有:(1)分模面分模面指上、下锻模在锻件上的分界面。
锻件分模面选择的好坏直接影响到锻件的成形、锻件出模、锻模结构及制造费用、材料利用率、切边等一系列问题。
在制订模锻件图时,须遵照下列原则确定分模面位置。
①要保证模锻件易于从模膛中取出。
故通常分模面选在模锻件最大截面上。
②所选定的分模面应能使模膛的深度最浅。
这样有利于金属充满模膛,便于锻件的取出和锻模的制造。
③选定的分模面应能使上下两模沿分模面的模膛轮廓一致,这样在安装锻模和生产中发现错模现象时,便于及时调整锻模位置。
第三章 模锻

3.修整工序 修整工序 (1)切边.冲孔 (2)校正 (3)热处理 (4)清理 二、模锻件的结构工艺性 模锻件有一合理分模面,使工件容易取出, * 模锻件有一合理分模面,使工件容易取出,应使 敷料少,锻模容易制造。 敷料少,锻模容易制造。 零件上与其它零件配合时要机加工, * 零件上与其它零件配合时要机加工,其他面均应设 计成非加工面。因此,要注意设计出模锻斜度, 计成非加工面。因此,要注意设计出模锻斜度,模 锻圆角。 锻圆角。 * 锻件外形应力求简单、平直、对称,避免直径 锻件外形应力求简单、平直、对称, 相差过大或具有薄壁、高筋、高台、深孔、 相差过大或具有薄壁、高筋、高台、深孔、多孔
⑵ 制坯模膛 对形状复杂的模锻件,为使坯料形状基本接近模锻件形状, * 对形状复杂的模锻件,为使坯料形状基本接近模锻件形状,使金属能合理分 布和很好地充满模锻模膛,就必须预先在制坯模镗内制坯,因而设制坯模膛。 布和很好地充满模锻模膛,就必须预先在制坯模镗内制坯,因而设制坯模膛。 增加某一部分长度。 i) 拔长模膛 增加某一部分长度。 ii)滚压模膛 减小某部分横截面积,以增大另一部分横截面积, ii)滚压模膛 减小某部分横截面积,以增大另一部分横截面积,坯料长度基本 不变。 不变。 iii)弯曲模膛 弯曲工件。 iii)弯曲模膛 弯曲工件。 iv)切断模膛 切断金属。 iv)切断模膛 切断金属。 此外还有成型模镗,镦粗台, 此外还有成型模镗,镦粗台, 击扁面等制坯模镗。 击扁面等制坯模镗。
胎模分类及应用
胎模可分为制坯整形模.成形模和切边冲孔模 1.制坯整形模 常用的有: (1)漏盘---常用于旋转体锻件的局部锻粗和镦粗成形等。 (2)摔子---用于旋转体工件杆部的拔长.摔圆.摔台阶 和摔球等。 (3)扣模---用于非旋转体工件的成形,或为合模制坯.
金属工艺学--模锻

金属工艺学--模锻模锻是一种常见的金属工艺方法,用于制造各种金属零件。
模锻的过程中,金属材料被加热到一定温度,然后放置在模具中,通过施加压力使其受力变形,最终通过剪切、冷却等工艺步骤得到所需的形状和尺寸。
模锻的优点之一是可以生产各种形状复杂、尺寸精确的零件。
由于金属在加热状态下的塑性良好,可以通过模锻过程将其变形成所需的形状,并保持较高的尺寸精度。
模锻还能提高材料的均匀性和致密度,使得零件具有更好的力学性能。
另一个优点是模锻可以提高金属的强度和硬度。
在模锻的过程中,金属材料受到强大的压力和变形力,使材料的晶粒得到细化和排列,从而提高了材料的物理性能。
此外,模锻还可以消除金属表面的缺陷和内部的氧化物,提高材料的密封性和耐腐蚀性。
模锻的过程中会产生一定的变形应变,这可能会导致一些问题,如材料破裂、减少材料的延展性等。
为了解决这些问题,可以采取一些措施,如增加温度、改善金属的延展性、合理设计模具等。
总的来说,模锻是一种非常重要的金属工艺方法,可以用于制造各种复杂形状、高强度和高硬度的金属零件。
通过模锻,可以提高金属材料的力学性能、耐蚀性和密封性,从而满足不同领域的使用需求。
模锻的发展和应用将继续推动金属工艺学的发展,为工业生产和科技进步做出重要贡献。
模锻是一种广泛应用于金属加工领域的工艺方法,具有许多优点和应用。
本文将继续探讨模锻的原理、工艺、类型以及其在工业生产中的重要性。
首先,让我们深入了解模锻的原理。
模锻是利用金属材料在高温状态下的塑性变形特性进行加工的一种方法。
在模锻过程中,金属材料先经过预热处理,使其达到适宜的锻造温度。
随后,放置于一个模具中,并施加压力进行变形,以获得所需的形状和尺寸。
在进行模锻时,材料常常需在高温条件下进行加热。
这是因为金属材料在高温下具有较高的塑性,可以更容易地形成所需的形状。
另外,高温还有助于改善材料的延展性和可锻性,减轻内应力和避免晶粒的断裂,从而获得更好的机械性能。
金属工艺学--模锻

2、模锻模膛分类
模膛根据其功用不同分为模锻 模膛和制坯模膛两大类。
• 制坯模膛:用以初步改变毛坯
形状、合理分配金属,以适应锻 件横截面积和形状的要求,使金 属能更好地充满模锻模膛的工序 称为制坯工序。
对于形状复杂的锻件,先将 原始坯料在制坯模膛内初步锻近 似于锻件的形状,然后再放到模 锻模膛内锻造。制坯模膛的种类、 特点及应用见表2.11。
13
弯曲连杆锻造过程
14
实际锻造时应根据锻件的复杂程度相应选用 单模膛锻模或多模膛锻模。
一般形状简单的锻件采用仅有终锻模膛的单 模膛锻模,而形状复杂的锻件(如截面不均匀、 轴线弯曲、不对称等)则需采用具有制坯、预锻 、终锻等多个模膛的锻模逐步成形。
15
3.模锻工艺设计
主要内容:6项
绘制模锻件图; 计算坯料的重量和尺寸; 确定模锻工步; 选择锻压设备; 设计锻模模膛; 确定锻造温度范围、加热和冷却规范。
根据制坯工步不同,制坯模膛分 为拔长、滚挤、弯曲、镦粗、压 扁等模膛。
7
8
9
10
11
模锻模膛
按工序行后分为预锻模膛和终锻模膛两种。
• ①预锻模膛 其作用是使坯料变形到接近锻件的形
状和尺寸,以保证终锻时坯料容易充满模膛而成形, 并可减少终锻模膛磨损,提高使用寿命。
• ②终锻模膛:模锻时最后成形用的模膛,和热锻件
外壁斜度5º或7º,
内壁斜度7º或10º
20
• 圆角半径:锻件上两个面的相交处均应以圆角过
渡,其作用是减少坯料流入模槽的摩擦阻力, 使坯料易于充满模膛,避免锻件被撕裂或纤维 组织被拉断,减少模槽凹角处的应力集中,提 高模具使用寿命等。
内圆角r =1 ~ 4mm,外圆角R =(3 ~ 4)r
锻造工艺介绍

锻造工艺介绍
锻造工艺,是指利用金属的塑性,使之成为具有一定形状、尺寸和性能的工件,以达到改变其形状、尺寸或改善其组织性能的方法。
锻造是在常温下,利用金属或非金属的塑性变形,使之产生塑性流动、压力加工或两者并用的加工方法。
锻造工艺有自由锻、模锻、冷锻、挤压等。
在自由锻中,坯料被压缩成坯,其形状和尺寸可得到控制;在模锻中,坯料被加热到锻造温度并在模锻压力作用下成形;在挤压中,挤压模具和金属从变形模腔中挤出而获得各种形状的工件。
锻造是用锻件所具有的塑性变形来代替原金属材料中的部分结晶应力或结晶压力,从而改变原材料内部组织结构以提高其性能和使用寿命的一种加工方法。
锻造按其作用不同可分为机械锻造(或称机械加工)和热锻造(或称热加工)。
锻造是使金属坯料产生塑性变形以获得一定形状和尺寸锻件的方法。
在金属塑性变形过程中,由于变形程度不同,可获得不同形状和尺寸的锻件。
锻造分为自由锻和模锻两种。
— 1 —
自由锻是利用金属塑性变形后产生的弹性回复力使锻件成形的一种方法。
— 2 —。
钢材锻打的作用

钢材锻打的作用一、钢材锻打的概述钢材锻打是一种金属塑性加工方法,通过对钢材进行加热和力的作用,使其在较高温度下发生塑性变形,从而获得具有一定形状和性能的金属制品。
钢材锻打技术历史悠久,广泛应用于制造业,对于提高产品质量、改进性能、延长使用寿命等方面都具有重要作用。
二、钢材锻打的分类钢材锻打可以分为自由锻和模锻两种形式。
1. 自由锻自由锻又称为自由锤锻,是指在开放环境下,由锤头直接作用于钢材的锻打方法。
自由锻一般适用于具有一定强度的钢材,可以通过锻打来改善钢材的内部组织结构和力学性能。
2. 模锻模锻是指将金属钢材放置在模具内进行锻打的方法。
模锻可以进一步分为冷锻和热锻。
•冷锻是在常温下进行的锻打,由于钢材在常温下塑性较差,因此冷锻需要施加较大的力量才能进行变形,同时冷锻还可以提高钢材的强度和硬度。
•热锻是在高温下进行的锻打,由于钢材在高温下具有较好的塑性,因此热锻可以获得更大的变形能力,同时也有利于减少内部应力和改善钢材的塑性。
三、钢材锻打的作用1. 改善钢材的内部组织结构钢材经过锻打后,其内部的晶粒结构会发生改变。
原本不规则的晶粒会变得更加致密,晶界的迁移和重新分布也会发生。
这种内部结构的变化使得钢材的织构更加均匀,减少了孔隙和缺陷的存在,提高了钢材的密度和强度。
2. 改进钢材的机械性能钢材锻打可以改善钢材的力学性能,使其具有更好的韧性、塑性和抗疲劳性能。
锻打可以使钢材的晶界得到细化,晶粒的取向统一,从而提高钢材的强度和硬度。
同时,锻打还可以消除钢材中的气孔和夹杂物,降低钢材的缺陷率,提高钢材的使用寿命。
3. 提高钢材的加工性能钢材锻打还可以提高钢材的加工性能,使其更容易进行后续的加工和加热处理。
锻打可以消除钢材中的残余应力,降低钢材的硬化程度,提高钢材的塑性和可变性。
此外,锻打还可以改变钢材的形状和尺寸,从而为后续的加工操作提供便利。
4. 提高零部件的精度和质量钢材锻打可以使零部件的形状和尺寸更加精确和一致。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属塑性成形方法
模锻
主要内容
1. 模锻概念
2.模锻特点
3. 模锻分类
模锻概念
1.
定义:模具锻造简称模锻,是使金属坯料在冲击力或压力作
用下,在锻模模膛内变形而获得锻件的工艺方法。
2. 模锻特点
生产效率高
劳动强度低
尺寸精确,加工余量小
可锻造出形状较复杂的锻件
适用于批量生产
优点不足:但模具成本高,需有专用的模锻设备,不适合于单件或小批量生产。
热模锻压力机上模锻
水压机上模锻锤上模锻
平锻机上模锻
螺旋压力机上模锻模锻分类
使 用 设 备金属流动特点 根据使用设备的不同可分为锤上模锻、水压机上模锻、热模锻压力机上模锻、平锻机上模锻和螺旋压力机上模锻等。
根据模膛内金属流动的特点又可将模锻分为开式模锻和闭式模锻两类。
开 式 模 锻
闭 式 模 锻
1—锤头;2—上模;3—飞边槽;4—下模;5—模垫;
6,7,10—紧固楔铁;8—分模面;9—模膛
1)锻模结构
2)开式模锻和闭式模锻:
(1)开式模锻:变形金属的流动不完全受模膛限制的一种锻造方法。
上模
锻件
飞边
下模
2)开式模锻和闭式模锻:
(2)闭式模锻:锻造工序在闭式模具中进行,锻模不设飞边槽,所以又称无飞边模锻。
飞边下模
锻件
上模
飞刺
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
3. 模锻分类
减少切边材料损耗1
节省切边设备2
有利于金属充满模膛及进行精密模锻3
有利于低塑性材料的成形
42)开式模锻和闭式模锻
闭式模锻与开式模锥面相比,有如下优点:有缘学习更多+谓ygd3076考证资料或关注桃报:奉
献教育(店铺)。