多传感器信息融合技术论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多传感器信息融合技术论文多传感器信息融合技
术论文阐述了多传感器信息融合的定义、原理、分类和结构,分析了多传感器信息融合的特点及其研究方向多传感器信息融合技术论文【1】关键词:多传感器信息融合研究方向
1 、多传感器信息融合的定义多传感器信息融合也称为信息融合或数据融合,指的是对不同知识源和多个传感器所获得的信息进行综合处理,消除多传感器信息之间可能存在的冗余和矛盾,利用信息互补,降低不确定性,以形成对系统环境相对完整一致的理解,从而提高智能系统决策和规划的科学性、反应的快速性和正确性,进而降低决策风险的过程。
由其定义可见,多传感器信息融合避免了单一传感器的局限性,可以获取更多信息,得出更为准确、可靠的结论。
2 、多传感器信息融合的原理多传感器信息融合是人类和其他生物系统中普遍存在的一种基本功能。如果把单传感器信号处理或低层次的数据处理方式看作是对人脑信息处理的一种低水平模仿,那么多传感器信息融合就是对人脑信息处理的一种高水平模仿。
多传感器信息融合的基本原理就像人脑综合处理信息的过程一样,它充分利用多个传感器资源,通过对这些传感器及其观测信息的合理支配和使用,把多个传感器在时间或空间上的冗余或互补信息依据某种准
则来进行组合,以获得被测对象的一致性解释或描述[1] 。
3 、多传感器信息融合的分类
信息的数据融合是对多源数据进行多级处理,每一级处理都代表了
对原始数据的不同程度的抽象化,它包括对数据的检测、关联、估计和组合等处理。信息融合按其在传感器信息处理层次中的抽象程度,可以分为三个层次:像素层融合、特征层融合及决策层融合[2] 。
3.1 像素层融合它是最低层次的融合,是在采集到的传感器的原始信息层次上(未经处理或只做很少的处理)进行融合,在各种传感器的原始测报信息未经预处理之前就进行信息的综合和分析。其优点是保持了尽可能多的战场信息; 其缺点是处理的信息量大,所需时间长,实时性差。
3.2 特征层融合属于融合的中间层次,兼顾了数据层和决策层的优点。它利用从传感器的原始信息中提取的特征信息进行综合分析和处理。也就是说,每种传感器提供从观测数据中提取的有代表性的特征,这些特征融合成单一的特征向量,然后运用模式识别的方法进行处理。这种方法对通信带宽的要求较低,但由于数据的丢失使其准确性有所下降。
3.3 决策层融合指在每个传感器对目标做出识别后,将多个传感器的识别结果进行融合。这一层融合是在高层次上进行的,融合的结果为指挥控制决策提供依据。
决策层融合的优点是:具有很高的灵活性,系统对信息传输带宽要求较低; 能有效地融合反映环境或目标各个侧面的不同类型信息,具有很强的容错性;通信容量小,抗干扰能力强; 对传感器的依赖性小,传感器可以是异质的; 融合中心处理代价低。
4 、多传感器信息融合的融合结构多传感器信息融合通常是在一个
被称为信息融合中心的信息综合处理器中完成,而一个信息融合中心本身可能包含另一个融合中心。由于多传感器信息融合可以是多层次、多方式的,所以研究融合的拓扑结构十分必要。根据信息融合处理方式的不同,可以将多传感器信息融合的拓扑结构分为集中型、分散型、混合型、反馈型等[3] 。
4.1 集中型集中型融合结构的融合中心直接接收被融合传感器的原始信息。由于在此结构中传感器仅起到了信息采集的作用,不预先对数据进行局部处理和压缩,所以对信道容量要求较高。一般这种结构适用于小规模的融合系统。
4.2 分散型分散型信息融合系统中,各传感器完成一定量的计算和处理任务后,将压缩后的传感器数据送到融合中心,融合中心将接收到的多维信息进行组合和推理,最终得到融合结果。这一结构的优点是结构冗余度高、计算负荷分配合理、信道压力轻,但由于各传感器进行局部信息处理,可能会导致部分信息的丢失。这种结构适合于远距离配
置的多传感器系统。
4.3 混合型
混合型信息融合结构吸收了分散型和集中型信息融合结构的优点,既有集中处理,又有分散处理,各传感器信息均可多次利用。这一结构能得到比较理想的融合结果,适用于大型的多传感器信息融合,但其结构复杂,计算量很大。
4.4 反馈型当系统对处理的实时性要求很高的时候,如果总是试图强调以最高的精度去融合多传感器信息融合系统的信息,则无论融合的
速度多快都不可能满足要求,这时,利用信息的相对稳定性和原始积累对融合信息进行反馈再处理将是一种有效的途径。
当多传感器系统对外部环境经过一段时间的感知,传感系统的融合信息已能够表述环境中的大部分特征,该信息对新的传感器原始信息融合具有很好的指导意义。
5 、多传感器信息融合的特点
(1) 提高了信息的可信度。(2) 增加了目标特征矢量的维数。(3) 降低了获得信息的费用。(4) 减少了信息获取的时间。(5) 提高了系统的容错能力。(6) 提高了整个系统的性能。
6 、多传感器信息融合的研究方向
(1) 确立具有普遍意义的信息融合模型标准和系统结构标准。(2) 将信息融合技术应用到更广泛的新领域。(3) 改进融合算法以进一步提高融合系统的性能。(4) 开发相应的软件和硬件,以满足具有大量数据且计算复杂的多传感器融合的要求。
7 、结语
多传感器信息融合技术的研究虽然刚刚开始几十年,但它已渗透到现代化战争和民用的各个领域。随着工业大系统的蓬勃发展和未来信息战的需求,以及相关学科的不断发展,多传感器信息融合将会得到更深入的理论研究,也将拥有更广阔的应用前景。
参考文献
[1] 王耀南,李村涛. 多传感器信息融合及其应用综述[J]. 控制与决策,xx.
[2] 何友, 谭庆海. 多传感器系统分类研究[J]. 火力与指挥控
制,1998.
[3] L.Tao.OptimalMultipleLevelDecisionFusionwithDistributedS ensors.IEEETrans.
多传感器信息融合论文【2】摘要:多传感器信息融合是一门涉及信号处理、信息论、人工智能、模糊数学等理论的多学科交叉技术,被广泛应用于军事和民用领域。介绍多传感器信息融合的概念主要应用,描述多传感器信息融合的功能模型和融合方法,并对其发展趋势进行分析。
关键词:多传感器系统; 信息融合;功能模型; 发展趋势
1 概念