信号与系统奥本海默习题课总结
奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(上册)-第3章 周期信号的傅里叶级
则
(1)弼 x(t)为实函数时,由亍 x(t)=x*(t),傅里叶级数系数一定是共轭对称的,即
(2)若 x(t)为实偶函数,那么它的傅里叶级数系数也为实偶函数。 (3)若 x(t)为实奇函数,那么它的傅里叶级数系数为纯虚奇函数。 7.连续时间周期信号的帕斯瓦尔定理 (1)连续时间周期信号的帕斯瓦尔定理:
8.连续时间傅里叶级数性质列表 表 3-1 连续时间傅里叶级数性质
/ 106
圣才电子书 十万种考研考证电子书、题库规频学习平台
1.成谐波关系的复指数信号的线性组合 一般的周期序列的线性组合就有如下:
序列φk[n]只在 k 的 N 个相继值的匙间上是丌同的,因此上式的求和仅仅需要包括 N 项。 因此将求和限表示成 k=(N),即离散时间傅里叶级数为
三、傅里叶级数的收敛 连续时间信号的傅里叶级数收敛的条件——狄里赫利条件: 1.条件 1 在仸何周期内,x(t)必须绝对可积,即
这一条件保证了每一系数 ak 都是有限值。 2.条件 2 在仸意有限匙间内,x(t)具有有限个起伏发化;也就是说,在仸何单个周期内,x(t)的
最大值和最小值的数目有限。 3.条件 3 在 x(t)的仸何有限匙间内,只有有限个丌连续点,而丏在这些丌连续点上,函数是有限
则
(1)施加亍连续时间信号上的时间反转会导致其对应的傅里叶级数系数序列的时间反 转。
(2)若 x(t)为偶函数,则其傅里叶级数系数也为偶,若 x(t)为奇函数,则其傅里叶级 数系数也为奇。
4.时域尺度发换 时间尺度运算是直接加在 x(t)的每一次谐波分量上的,傅里叶系数仍是相同的。 x(αt)的傅里叶级数表示:
《信号与系统》考研奥本海姆版考研复习笔记和典型题
《信号与系统》考研奥本海姆版考研复习笔记和典型题一、采样复习笔记本章重点介绍了采样和采样定理,采样定理在连续时间信号和离散时间信号之间起着桥梁作用,采样在利用离散时间系统技术来实现连续时间系统并处理连续时间信号方面有着至关重要的作用。
学完本章读者应该掌握以下内容:(1)重点掌握采样的过程和采样定理,牢记奈奎斯特采样频率。
(2)掌握内插的定义及如何利用内插由样本重建信号。
(3)重点掌握连续时间信号的离散时间化处理过程。
(4)了解数字微分器及其频率特性。
(5)掌握离散时间信号采样的原理及恢复原离散时间信号的方法。
一、用信号样本表示连续时间信号:采样定理1冲激串采样(1)冲激串采样的定义冲激串采样是指用一个周期冲激串p(t)去乘待采样的连续时间信号x(t)。
该周期冲激串p(t)称为采样函数,周期T称为采样周期,而p(t)的基波频率ω=2π/T称为采样频率。
(2)冲激串采样过程(见图7-1-1)在时域中有x p(t)=x(t)p(t)在频域中有即X p(jω)是频率ω的周期函数,它由一组移位的X(jω)的叠加组成,但在幅度上标以1/T的变化。
图7-1-1 冲激串采样过程(3)采样定理频带宽度有限信号x(t),在|ω|>ωM时,X(jω)=0。
如果ωs>2ωM,其中ωs =2π/T,那么x(t)唯一地由其样本x(nT),n=0,±1,±2,…,所确定。
其中频率2ωM称为奈奎斯特率。
已知这些样本值,重建x(t)的办法:①产生一个冲激幅度就是这些依次而来的样本值的周期冲激串。
②将该冲激串通过一个增益为T,截止频率大于ωM而小于ωs-ωM的理想低通滤波器,该滤波器的输出就是x(t)。
2零阶保持采样(1)零阶保持的含义在一个给定的瞬时对x(t)采样并保持这一样本值,直到下一个样本被采到为止,利用零阶保持采样的原理图如图7-1-2所示。
图7-1-2 利用零阶保持采样(2)零阶保持采样的过程零阶保持的输出x0(t)在原理上可以用冲激串采样,再紧跟着一个线性时不变系统(该系统具有矩形的单位冲激响应)来得到,如图7-1-3所示。
信号与系统第二版课后习题解答(3-4)奥本海姆
Chap 33.1 A continuous-time periodic signal x(t) is real value and has a fundamental period T=8. The nonzero Fourier series coefficients for x(t) arej a a a a 4,2*3311====--.Express x(t) in the form)cos()(0k k k k t A t x φω+=∑∞=Solution:Fundamental period 8T =.02/8/4ωππ==00000000033113333()224434cos()8sin()44j kt j t j t j t j tk k j t j t j t j tx t a e a e a e a e a e e e je je t t ωωωωωωωωωππ∞----=-∞--==+++=++-=-∑A discrete-time periodic signal x[n] is real valued and has afundamental period N=5.The nonzero Fourier series coefficients for x[n] are10=a ,4/2πj e a --=,4/2πj e a =,3/*442πj e a a ==- Express x[n] in the form)sin(][10k k k k n A A n x φω++=∑∞=Solution:for, 10=a , 4/2πj ea --= , 4/2πj ea = ,3/42πj e a --=,3/42πj e a =n N jk k N k e a n x )/2(][π∑>=<=n j n j n j n j e a e a e a e a a )5/8(4)5/8(4)5/4(2)5/4(20ππππ----++++=n j j n j j n j j n j j e e e e e e e e )5/8(3/)5/8(3/)5/4(4/)5/4(4/221ππππππππ----++++=)358cos(4)454cos(21ππππ++++=n n)6558sin(4)4354sin(21ππππ++++=n nFor the continuous-time periodic signal)35sin(4)32cos(2)(t t t x ππ++= Determine the fundamental frequency 0ω and the Fourier seriescoefficients k a such thattjk k kea t x 0)(ω∑∞-∞==.Solution:for the period of )32cos(t πis 3=T , the period of )35sin(t πis 6=Tso the period of )(t x is 6, i.e. 3/6/20ππ==w )35sin(4)32cos(2)(t t t x ππ++=)5sin(4)2cos(21200t t ωω++=0000225512()2()2j t j t j t j t e e j e e ωωωω--=++-- then, 20=a , 2122==-a a , j a 25=-, j a 25-=3.5 Let 1()x t be a continuous-time periodic signal with fundamental frequency1ω and Fourier coefficients k a . Given that211()(1)(1)x t x t x t =-+-How is the fundamental frequency2ω of 2()x t related to? Also,find a relationship between the Fourier series coefficients k b of2()x t and the coefficients k a You may use the properties listed inTable 3.1. Solution:(1). Because )1()1()(112-+-=t x t x t x , then )(2t x has the same period as )(1t x , that is 21T T T ==, 12w w =(2). 212111()((1)(1))jkw t jkw t k TT b x t e dt x t x t e dt T --==-+-⎰⎰ 111111(1)(1)jkw t jkw t TTx t e dt x t e dt T T --=-+-⎰⎰111)(jkw k k jkw k jkw k e a a e a e a -----+=+=Suppose given the following information about a signal x(t): 1. x(t) is real and odd.2. x(t) is periodic with period T=2 and has Fourier coefficients k a .3. 0=k a for 1||>k .4 1|)(|21202=⎰dt t x .Specify two different signals that satisfy these conditions. Solution:0()j kt k k x t a e ω∞=-∞=∑while: )(t x is real and odd, then k a is purely imaginary and odd , 00=a , k k a a --=,.2=T , then 02/2ωππ==and0=k a for 1>kso0()j kt k k x t a e ω∞=-∞=∑00011j t j t a a e a e ωω--=++)sin(2)(11t a e ea t j tj πππ=-=-for12)(2121212120220==++=-⎰a a a a dt t x∴ j a 2/21±=∴)sin(2)(t t x π±=3 Consider a continuous-time LTI system whose frequency response is⎰∞∞--==ωωωω)4sin()()(dt e t h j H t jIf the input to this system is a periodic signal⎩⎨⎧<≤-<≤=84,140,1)(t t t x With period T=8,determine the corresponding system output y(t). Solution:Fundamental period 8T =.02/8/4ωππ==0()j kt k k x t a e ω∞=-∞=∑∴ 00()()jk t k k y t a H jk e ωω∞=-∞=∑0004, 0sin(4)()0, 0k k H jk k k ωωω=⎧==⎨≠⎩ ∴ 000()()4jkw t k k y t a H jk e a ω∞=-∞==∑Because 48004111()1(1)088T a x t dt dt dt T ==+-=⎰⎰⎰另:x(t)为实奇信号,则a k 为纯虚奇函数,也可以得到a 0为0。
奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(下册)-z变换(圣才出品)
第10章z变换10.1 复习笔记一、z变换1.z变换的定义一个离散时间信号x[n]的z变换定义为其中z是一个复变量。
简单记为2.z变换与傅里叶变换的关系X(re jω)是序列x[n]乘以实指数r-n后的傅里叶变换,即指数加权r-n可以随n增加而衰减,也可以随n增加而增长,这取决于r大于1还是小于1。
若r=1,或等效为|z|=1,z变换就变为傅里叶变换,即(1)在连续时间情况下,当变换变量的实部为零时,拉普拉斯变换演变为傅里叶变换,即在虚轴jω上的拉普拉斯变换是傅里叶变换。
(2)在z变换中是当变换变量z的模为1,即z=e jω时,z变换演变为傅里叶变换。
即傅里叶变换是在复数z平面中半径为1的圆上的z变换。
在z平面上,单位圆在z变换中所起的作用类似于s平面上的虚轴在拉普拉斯变换中所起的作用。
二、z变换的收敛域1.性质1X(z)的收敛域是在z平面内以原点为中心的圆环。
2.性质2收敛域内不包含任何极点。
3.性质3如果x[n]是有限长序列,那么收敛域是整个z平面,可能除去z=0和/或z=∞。
4.性质4如果x[n]是一个右边序列,并且|z|=r0的圆位于收敛域内,那么|z|>r0的全部有限z 值都一定在这个收敛域内。
5.性质5如果x[n]是一个左边序列,而且|z|=r0的圆位于收敛域内,那么满足0<|z|<r0的全部z值都一定在这个收敛域内。
6.性质6如果z[n]是双边序列,而且|z|=r0的圆位于收敛域内,那么该收敛域在z域中一定是包含|z|=r0这一圆环的环状区域。
7.性质7如果x[n]的z变换X(z)是有理的,那么它的收敛域就被极点所界定,或者延伸至无限远。
8.性质8如果x[n]的z变换X(z)是有理的,并且x[n]是右边序列,那么收敛域就位于z平面内最外层极点的外边,亦即半径等于X(z)极点中最大模值的圆的外边。
而且,若x[n]是因果序列,即x[n]为n<0时等于零的右边序列,那么收敛域也包括z=∞。
奥本海姆《信号与系统》笔记和课后习题(含考研真题)详解(上册)(线性时不变系统)【圣才出品】
第2章线性时不变系统2.1 复习笔记一、离散时间线性时不变系统:卷积和1.用脉冲表示离散时间信号把任意一个序列表示成一串移位的单位脉冲序列δ[n-k]的线性组合,而这个线性组合式中的权因子就是x[k]。
2.线性系统的卷积和(1)输入x[n]表示为一组移位单位脉冲的线性组合。
(2)h k[n]为该线性系统对移位单位脉冲δ[n-k]的响应。
(3)线性系统对输入x[n]的响应y[n]就是系统对这些单个移位脉冲响应的加权线性组合,即3.线性时不变系统的卷积和或叠加和用符号记为意义:既然一个线性时不变系统对任意输入的响应可以用系统对单位脉冲的响应来表示,那么线性时不变系统的单位脉冲响应就完全刻画了系统的特征。
4.用图解的方法来计算卷积和(1)对某一n值,比如n=n0,已求得y[n]画出了信号h[n0-k],将它与x[k]相乘,并对所有的k值将乘积相加。
(2)求下一个n值,即n=n0+1时的y[n]画出信号h[(n0+1)-k],即将信号h[n0-k]右移一点即可;(3)对于接下来的每一个n值,继续上面的过程把h[n-k]一点一点地向右移,再与x[k]相乘,并对所有的k将全部乘积相加。
二、连续时间线性时不变系统:卷积积分1.用冲激表示持续时间信号任意信号x(t)可表示成了一个加权的移位冲激函数的和上式为连续时间冲激函数的筛选性质。
2.连续时间线性时不变系统的单位冲激响应及卷积积分表示(1)单位冲激响应h(t)也就是h(t)是系统对δ(t)的响应。
(2)卷积积分或叠加积分意义:一个连续时间线性时不变系统的特性可以用它的单位冲激响应来刻画。
两个信号x(t)和h(t)的卷积标记为3.求解连续时间信号的卷积的步骤(1)在任意时刻t的输出y(t)是输入的加权积分,对x(τ)其权是h(t-τ)。
(2)为了求出对某一给定t时的这个积分值,首先需要得到h(t-τ)。
(3)h(t-τ)是τ的函数,t为某一固定值,利用h(τ)的反转再加上平移(t>0时就向右移t;t<0时就向左移|t|),就可以求得h(t-τ)。
信号与系统奥本海姆习题答案
Chapter 1 Answers1.6 (a).NoBecause when t<0, )(1t x =0.(b).NoBecause only if n=0, ][2n x has valuable.(c).Yes Because ∑∞-∞=--+--+=+k k m n k m n m n x ]}414[]44[{]4[δδ ∑∞-∞=------=k m k n m k n )]}(41[)](4[{δδ ∑∞-∞=----=k k n k n ]}41[]4[{δδ N=4.1.9 (a). T=π/5Because 0w =10, T=2π/10=π/5.(b). Not periodic.Because jt t e e t x --=)(2, while t e -is not periodic, )(2t x is not periodic.(c). N=2Because 0w =7π, N=(2π/0w )*m, and m=7.(d). N=10Because n j j e e n x )5/3(10/343)(ππ=, that is 0w =3π/5, N=(2π/0w )*m, and m=3.(e). Not periodic. Because 0w =3/5, N=(2π/0w )*m=10πm/3 , it ’s not a rational number.1.14 A1=3, t1=0, A2=-3, t2=1 or -1dtt dx )( isSolution: x(t) isBecause ∑∞-∞=-=k k t t g )2()(δ, dt t dx )(=3g(t)-3g(t-1) or dtt dx )(=3g(t)-3g(t+1) 1.15. (a). y[n]=2x[n-2]+5x[n-3]+2x[n-4]Solution:]3[21]2[][222-+-=n x n x n y ]3[21]2[11-+-=n y n y ]}4[4]3[2{21]}3[4]2[2{1111-+-+-+-=n x n x n x n x ]4[2]3[5]2[2111-+-+-=n x n x n xThen, ]4[2]3[5]2[2][-+-+-=n x n x n x n y(b).No. For it ’s linearity.the relationship between ][1n y and ][2n x is the same in-out relationship with (a). you can have a try.1.16. (a). No.For example, when n=0, y[0]=x[0]x[-2]. So the system is memory. (b). y[n]=0.When the input is ][n A δ,then, ]2[][][2-=n n A n y δδ, so y[n]=0. (c). No.For example, when x[n]=0, y[n]=0; when x[n]=][n A δ, y[n]=0. So the system is not invertible.1.17. (a). No.For example, )0()(x y =-π. So it ’s not causal.(b). Yes.Because : ))(sin()(11t x t y = , ))(sin()(22t x t y =))(sin())(sin()()(2121t bx t ax t by t ay +=+1.21. Solution:We have known:(a).(b).(c).(d).1.22. Solution:We have known:(a).(b).(e).(g)1.23. Solution:For )]()([21)}({t x t x t x E v -+= )]()([21)}({t x t x t x O d --= then,(a).(b).(c).1.24.For: ])[][(21]}[{n x n x n x E v -+= ])[][(21]}[{n x n x n x O d --=then,(a).(b).1.25. (a). Periodic. T=π/2.Solution: T=2π/4=π/2.(b). Periodic. T=2.Solution: T=2π/π=2.(d). Periodic. T=0.5. Solution: )}()4{cos()(t u t E t x v π=)}())(4cos()()4{cos(21t u t t u t --+=ππ )}()(){4cos(21t u t u t -+=π )4cos(21t π= So, T=2π/4π=0.51.26. (a). Periodic. N=7Solution: N=m *7/62ππ=7, m=3.(b). Aperriodic.Solution: N=ππm m 16*8/12=, it ’s not rational number.(e). Periodic. N=16 Solution as follow:)62cos(2)8sin()4cos(2][ππππ+-+=n n n n x in this equation,)4cos(2n π, it ’s period is N=2π*m/(π/4)=8, m=1.)8sin(n π, it ’s period is N=2π*m/(π/8)=16, m=1.)62cos(2ππ+-n , it ’s period is N=2π*m/(π/2)=4, m=1. So, the fundamental period of ][n x is N=(8,16,4)=16.1.31. SolutionBecause )()1()(),2()()(113112t x t x t x t x t x t x ++=--=. According to LTI property ,)()1()(),2()()(113112t y t y t y t y t y t y ++=--=Extra problems:Sketch ⎰∞-=t dt t x t y )()(. 1. SupposeSolution:2. SupposeSketch:(1). )]1(2)1()3()[(--+++t t t t g δδδ(2). ∑∞-∞=-k k t t g )2()(δ(2).Chapter 22.1 Solution:Because x[n]=(1 2 0 –1)0, h[n]=(2 0 2)1-, then(a).So, ]4[2]2[2]1[2][4]1[2][1---+-+++=n n n n n n y δδδδδ (b). according to the property of convolutioin:]2[][12+=n y n y(c). ]2[][13+=n y n y][*][][n h n x n y =][][k n h k x k -=∑∞-∞= ∑∞-∞=-+--=k k k n u k u ]2[]2[)21(2 ][211)21()21(][)21(12)2(0222n u n u n n k k --==+-++=-∑ ][])21(1[21n u n +-= the figure of the y[n] is:2.5 Solution:We have known: ⎩⎨⎧≤≤=elsewhere n n x ....090....1][,,, ⎩⎨⎧≤≤=elsewhere N n n h ....00....1][,,,(9≤N ) Then, ]10[][][--=n u n u n x , ]1[][][---=N n u n u n h∑∞-∞=-==k k n u k h n h n x n y ][][][*][][ ∑∞-∞=-------=k k n u k n u N k u k u ])10[][])(1[][(So, y[4] ∑∞-∞=-------=k k u k u N k u k u ])6[]4[])(1[][( ⎪⎪⎩⎪⎪⎨⎧≥≤=∑∑==4,...14, (140)0N N k Nk =5, then 4≥N And y[14] ∑∞-∞=------=k k u k u N k u k u ])4[]14[])(1[][(⎪⎪⎩⎪⎪⎨⎧≥≤=∑∑==14,...114, (1145)5N N k Nk =0, then 5<N ∴4=N2.7 Solution:[][][2]k y n x k g n k ∞=-∞=-∑(a )[][1]x n n δ=-,[][][2][1][2][2]k k y n x k g n k k g n k g n δ∞∞=-∞=-∞=-=--=-∑∑(b) [][2]x n n δ=-,[][][2][2][2][4]k k y n x k g n k k g n k g n δ∞∞=-∞=-∞=-=--=-∑∑ (c) S is not LTI system..(d) [][]x n u n =,0[][][2][][2][2]k k k y n x k g n k u k g n k g n k ∞∞∞=-∞=-∞==-=-=-∑∑∑2.8 Solution: )]1(2)2([*)()(*)()(+++==t t t x t h t x t y δδ )1(2)2(+++=t x t xThen,That is, ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-≤<-+-=-<<-+=others t t t t t t t t y ,........010,....2201,.....41..,.........412,.....3)(2.10 Solution:(a). We know:Then,)()()(αδδ--='t t t h)]()([*)()(*)()(αδδ--='='t t t x t h t x t y )()(α--=t x t xthat is,So, ⎪⎪⎩⎪⎪⎨⎧+≤≤-+≤≤≤≤=others t t t t t t y ,.....011,.....11,....0,.....)(ααααα(b). From the figure of )(t y ', only if 1=α, )(t y ' would contain merely therediscontinuities.2.11 Solution:(a). )(*)]5()3([)(*)()(3t u et u t u t h t x t y t----==⎰⎰∞∞---∞∞--------=ττττττττd t u e u d t u eu t t )()5()()3()(3)(3⎰⎰-------=tt t t d e t u d et u 5)(33)(3)5()3(ττττ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥+-=-<≤-=<=---------⎰⎰⎰5,.......353,.....313.........,.........0315395)(33)(3393)(3t e e d e d e t e d e t tt t t t t t t t ττττττ(b). )(*)]5()3([)(*)/)(()(3t u e t t t h dt t dx t g t ----==δδ)5()3()5(3)3(3---=----t u e t u e t t(c). It ’s obvious that dt t dy t g /)()(=.2.12 Solution∑∑∞-∞=-∞-∞=--=-=k tk tk t t u ek t t u e t y )]3(*)([)3(*)()(δδ∑∞-∞=---=k k t k t u e)3()3(Considering for 30<≤t ,we can obtain33311])3([)(---∞=-∞-∞=--==-=∑∑ee e ek t u e e t y tk k tk kt. (Because k must be negetive ,1)3(=-k t u for 30<≤t ).2.19 Solution:(a). We have known:][]1[21][n x n w n w +-=(1) ][]1[][n w n y n y βα+-=(2)from (1), 21)(1-=E EE Hfrom (2), αβ-=E EE H )(2then, 212212)21(1)21)(()()()(--++-=--==E E E E E E H E H E H ααβαβ∴][]2[2]1[)21(][n x n y n y n y βαα=-+-+-but, ][]1[43]2[81][n x n y n y n y +-+--=∴⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛=+=143)21(:....812βααor ∴⎪⎩⎪⎨⎧==141βα(b). from (a), we know )21)(41()()()(221--==E E E E H E H E H21241-+--=E EE E ∴][)41()21(2][n u n h n n ⎥⎦⎤⎢⎣⎡-=2.20 (a). 1⎰⎰∞∞-∞∞-===1)0cos()cos()()cos()(0dt t t dt t t u δ(b). 0dt t t )3()2sin(5+⎰δπ has value only on 3-=t , but ]5,0[3∉-∴dt t t )3()2sin(5+⎰δπ=0(c). 0⎰⎰---=-641551)2cos()()2cos()1(dt t t u d u πτπττ⎰-'-=64)2cos()(dt t t πδ0|)2(s co ='=t t π 0|)2sin(20=-==t t ππ∑∞-∞=-==k t h kT t t h t x t y )(*)()(*)()(δ∑∞-∞=-=k kT t h )(∴2.27Solution()y A y t dt ∞-∞=⎰,()xA x t dt ∞-∞=⎰,()hA h t dt ∞-∞=⎰.()()*()()()y t x t h t x x t d τττ∞-∞==-⎰()()()()()()()()()(){()}y x hA y t dt x x t d dtx x t dtd x x t dtd x x d d x d x d A A ττττττττττξξτττξξ∞∞∞-∞-∞-∞∞∞∞∞-∞-∞-∞-∞∞∞∞∞-∞-∞-∞-∞==-=-=-===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(a) ()()(2)tt y t e x d τττ---∞=-⎰,Let ()()x t t δ=,then ()()y t h t =. So , 2()(2)(2)()(2)()(2)t t t t t h t ed e d e u t τξδττδξξ---------∞-∞=-==-⎰⎰(b) (2)()()*()[(1)(2)]*(2)t y t x t h t u t u t e u t --==+---(2)(2)(1)(2)(2)(2)t t u eu t d u e u t d ττττττττ∞∞-------∞-∞=+------⎰⎰22(2)(2)12(1)(4)t t t t u t e d u t e d ττττ---------=---⎰⎰(2)2(2)212(1)[]|(4)[]|t t t t u t e e u t ee ττ-------=--- (1)(4)[1](1)[1](4)t t e u t e u t ----=-----2.46 SolutionBecause)]1([2)1(]2[)(33-+-=--t u dtde t u e dt d t x dt d t t )1(2)(3)1(2)(333-+-=-+-=--t e t x t e t x t δδ.From LTI property ,we know)1(2)(3)(3-+-→-t h e t y t x dtdwhere )(t h is the impulse response of the system. So ,following equation can be derived.)()1(223t u e t h e t --=-Finally, )1(21)()1(23+=+-t u e e t h t 2.47 SoliutionAccording to the property of the linear time-invariant system: (a). )(2)(*)(2)(*)()(000t y t h t x t h t x t y ===(b). )(*)]2()([)(*)()(00t h t x t x t h t x t y --==)(*)2()(*)(0000t h t x t h t x --=012y(t)t4)2()(00--=t y t y(c). )1()1(*)(*)2()1(*)2()(*)()(00000-=+-=+-==t y t t h t x t h t x t h t x t y δ(d). The condition is not enough.(e). )(*)()(*)()(00t h t x t h t x t y --==τττd t h x )()(00+--=⎰∞∞-)()()(000t y dm m t h m x -=--=⎰∞∞-(f). )()]([)](*)([)(*)()(*)()(000000t y t y t h t x t h t x t h t x t y "=''='--'=-'-'==Extra problems:1. Solute h(t), h[n](1). )()(6)(5)(22t x t y t y dt dt y dtd =++ (2). ]1[][2]1[2]2[+=++++n x n y n y n y Solution:(1). Because 3121)3)(2(1651)(2+-++=++=++=P P P P P P P Hso )()()()3121()(32t u e e t P P t h t t ---=+-++=δ (2). Because )1)(1(1)1(22)(22i E i E EE E E E E E H -+++=++=++=iE Eii E E i -+-+++=1212 so []][)1()1(2][1212][n u i i i k i E E i i E E i n h n n +----=⎪⎪⎪⎪⎭⎫⎝⎛-+-+++=δChapter 33.1 Solution:Fundamental period 8T =.02/8/4ωππ==00000000033113333()224434cos()8sin()44j kt j t j t j t j tk k j t j t j t j tx t a e a e a e a e a e e e je je t t ωωωωωωωωωππ∞----=-∞--==+++=++-=-∑3.2 Solution:for, 10=a , 4/2πj ea --= , 4/2πj ea = , 3/42πj ea --=, 3/42πj ea =n N jk k N k e a n x )/2(][π∑>=<=n j n j n j n j e a e a e a e a a )5/8(4)5/8(4)5/4(2)5/4(20ππππ----++++=n j j n j j n j j n j j e e e e e e e e )5/8(3/)5/8(3/)5/4(4/)5/4(4/221ππππππππ----++++= )358cos(4)454cos(21ππππ++++=n n)6558sin(4)4354sin(21ππππ++++=n n3.3 Solution: for the period of )32cos(t πis 3=T , the period of )35sin(t πis 6=Tso the period of )(t x is 6 , i.e. 3/6/20ππ==w)35sin(4)32cos(2)(t t t x ππ++= )5sin(4)2cos(21200t w t w ++=)(2)(21200005522t w j t w j t w j t w j e e j e e ----++=then, 20=a , 2122==-a a , j a 25=-, j a 25-=3.5 Solution:(1). Because )1()1()(112-+-=t x t x t x , then )(2t x has the same period as )(1t x ,that is 21T T T ==, 12w w =(2). 212111()((1)(1))jkw t jkw tk T T b x t e dt x t x t e dt T--==-+-⎰⎰111111(1)(1)jkw tjkw t T Tx t e dt x t e dt T T --=-+-⎰⎰ 111)(jkw k k jkw k jkw k e a a e a e a -----+=+=3.8 Solution:kt jw k k e a t x 0)(∑∞-∞==while:)(t x is real and odd, then 00=a , k k a a --=2=T , then ππ==2/20wand0=k a for 1>kso kt jw k k e a t x 0)(∑∞-∞==t jw t jw e a e a a 00110++=--)sin(2)(11t a e e a t j t j πππ=-=-for12)(2121212120220==++=-⎰a a a a dt t x∴2/21±=a ∴)sin(2)(t t x π±=3.13 Solution:Fundamental period 8T =.02/8/4ωππ==kt jw k k e a t x 0)(∑∞-∞==∴t jkw k k e jkw H a t y 0)()(0∑∞-∞==0004, 0sin(4)()0, 0k k H jk k k ωωω=⎧==⎨≠⎩ ∴000()()4jkw t k k y t a H jkw e a ∞=-∞==∑Because 48004111()1(1)088T a x t dt dt dt T ==+-=⎰⎰⎰So ()0y t =.kt jw k k e a t x 0)(∑∞-∞==∴t jkw k k e jkw H a t y 0)()(0∑∞-∞== ∴dt e jkw H t y Ta t jkw Tk 0)()(10-⎰=for⎪⎩⎪⎨⎧>≤=100, (0100),.......1)(w w jw H ∴if 0=k a , it needs 1000>kwthat is 12100,........1006/2>>k kππand k is integer, so 8>K3.22 Solution:021)(1110===⎰⎰-tdt dt t x Ta Tdt te dt te dt e t x T a t jk t jk t jkw T k ππ-----⎰⎰⎰===1122112121)(10t jk tde jk ππ--⎰-=1121⎥⎥⎦⎤⎢⎢⎣⎡---=----111121ππππjk e te jk t jk tjk ⎥⎦⎤⎢⎣⎡---+-=--ππππππjk e e e e jk jk jk jk jk )()(21⎥⎦⎤⎢⎣⎡-+-=ππππjk k k jk )sin(2)cos(221[]πππππk jk k j k jk k)1()cos()cos(221-==-=0............≠k404402()()1184416tj tj t t j tt j t H j h t edt ee dte edt e e dtj j ωωωωωωωω∞∞----∞-∞∞----∞===+=+=-++⎰⎰⎰⎰A periodic continous-signal has Fourier Series:. 0()j kt k k x t a e ω∞=-∞=∑T is the fundamental period of ()x t .02/T ωπ=The output of LTI system with inputed ()x t is 00()()jk t k k y t a H jk e ωω∞=-∞=∑Its coefficients of Fourier Series: 0()k k b a H jk ω= (a)()()n x t t n δ∞=-∞=-∑.T=1, 02ωπ=11k a T==. 01/221/21()()1jkw t jk tk T a x t e dt t e dt Tπδ---===⎰⎰ (Note :If ()()n x t t nT δ∞=-∞=-∑,1k a T=) So 2282(2)16(2)4()k k b a H jk k k πππ===++ (b)()(1)()n n x t t n δ∞=-∞=--∑ .T=2, 0ωπ=,11k a T== 01/23/21/21/2111()()(1)(1)221[1(1)]2jkw t jk tjk t k T k a x t e dt t e dt t e dtT ππδδ----==+--=--⎰⎰⎰So 24[1(1)]()16()k k k b a H jk k ππ--==+, (c) T=1,02ωπ=01/421/4sin()12()jk t jk tk T k a x t e dt e dt Tk ωπππ---===⎰⎰28sin()2()[16(2)]k k k b a H jk k k ππππ==+ 3.35 Solution: T= /7π,02/14T ωπ==.kt jw k k e a t x 0)(∑∞-∞==∴t jkw k k e jkw H a t y 0)()(0∑∞-∞==∴0()k k b a H jkw =for⎩⎨⎧≥=otherwise w jw H ,.......0250,.......1)(,01,. (17)()0,.......k H jkw otherwise ⎧≥⎪=⎨⎪⎩that is 0250250, (14)k k ω<<, and k is integer, so 18....17k or k <≤. Let ()()y t x t =,k k b a =, it needs 0=k a ,for 18....17k or k <≤.3.37 Solution:11()[]()212()21312411511cos 224nj j nj n n n n j nn j nn n j j j H e h n ee ee e e e ωωωωωωωωω∞∞--=-∞=-∞-∞--=-∞=-===+=+=---∑∑∑∑A periodic sequence has Fourier Series:2()[]jk n Nk k N x n a eπ=<>=∑.N is the fundamental period of []x n .The output of LTI system with inputed []x n is 22()[]()jk jk n NNk k N y n a H eeππ=<>=∑.Its coefficients of Fourier Series: 2()jk Nk k b a H eπ=(a)[][4]k x n n k δ∞=-∞=-∑.N=4, 14k a =.So 2314()524cos()44j k Nk k b a H e k ππ==-3165cos()42k b k π=-3.40 Solution: According to the property of fourier series: (a). )2cos(2)cos(20000000t Tka t kw a e a ea a k k t jkw k t jkw k k π==+='- (b). Because 2)()()}({t x t x t x E v -+=}{2k v k k k a E a a a =+='-(c). Because 2)(*)()}({t x t x t x R e +=2*kk k a a a -+='(d). k k k a Tjka jkw a 220)2()(π=='(e). first, the period of )13(-t x is 3T T ='then 3)(1)13(131213120dme m x T dt e t x T a m T jk T t T jk T k +'--'-'-'⎰⎰'=-'='ππTjkk m T jk T T jk T jk m T jk T ea dm e m x T e dm e e m x T πππππ221122211)(1)(1---------=⎥⎦⎤⎢⎣⎡==⎰⎰3.43 (a) Proof:(i )Because ()x t is odd harmonic ,(2/)()jk T t k k x t a e π∞=-∞=∑,where 0k a = for everynon-zero even k.(2/)()2(2/)(2/)()2T jk T t k k jk jk T tk k jk T tk k T x t a ea e e a e ππππ∞+=-∞∞=-∞∞=-∞+===-∑∑∑It is noticed that k is odd integers or k=0.That means()()2Tx t x t =-+(ii )Because of ()()2Tx t x t =-+,we get the coefficients of Fourier Series222/200/222(/2)/2/20022/2/200111()()()11()(/2)11()()(1)jk t jk t jk t T T T T T T k T jk t jk t T T T T Tjk t jk t T T k TT a x t e dt x t e dt x t e dtT T T x t e dt x t T e dt T T x t e dt x t e dt T T πππππππ-----+--==+=++=--⎰⎰⎰⎰⎰⎰⎰ 2/21[1(1)]()jk t T kT x t e dt T π-=--⎰It is obvious that 0k a = for every non-zero even k. So ()x t is odd harmonic ,(b)Extra problems:∑∞-∞=-=k kT t t x )()(δ, π=T(1). Consider )(t y , when )(jw H ist(2). Consider )(t y , when )(jw H isSolution:∑∞-∞=-=k kT t t x )()(δ↔π11=T , 220==Tw π(1).kt j k k tjkw k k e k j H a ejkw H a t y 20)2(1)()(0∑∑∞-∞=∞-∞===ππ2=(for k can only has value 0)(2).kt j k k tjkw k k e k j H a e jkw H a t y 20)2(1)()(0∑∑∞-∞=∞-∞===πππte e t j t j 2cos 2)(122=+=- (for k can only has value –1 and 1)。
奥本海姆《信号与系统》(第2版)知识点归纳考研复习(下册)
第7章采样第8章通信系统第9章拉普拉斯变换第10章Z变换第11章线性反馈系统第7章采样7.2连续时间信号x(t)从一个截止频率为的理想低通滤波器的输出得到,如果对x(t)完成冲激串采样,那么下列采样周期中的哪一些可能保证x(t)在利用一个合适的低通滤波器后能从它的样本中得到恢复?7.3在采样定理中,采样频率必须要超过的那个频率称为奈奎斯特率。
试确定下列各信号的奈奎斯特率:7.4设x(t)是一个奈奎斯特率为ω0的信号,试确定下列各信号的奈奎斯特率:7.5设x(t)是一个奈奎斯特率为ω0的信号,同时设其中。
7.6在如图7-1所示系统中,有两个时间函数x1(t)和x2(t)相乘,其乘积W (t)由一冲激串采样,x1(t)带限于ω17.7信号x(t)用采样周期T经过一个零阶保持的处理产生一个信号x0(t),设x1(t)是在x(t)的样本上经过一阶保持处理的结果,即7.8有一实值且为奇函数的周期信号x(t),它的傅里叶级数表示为7.9考虑信号x(t)为7.10判断下面每一种说法是否正确。
7.11设是一连续时间信号,它的傅里叶变换具有如下特点:7.12有一离散时间信号其傅里叶变换具有如下性质:7.13参照如图7-7所示的滤波方法,假定所用的采样周期为T,输入xc(t)为带限,而有7.14假定在上题中有重做习题7.13。
7.15对进行脉冲串采样,得到若7.16关于及其傅里叶变换7.17考虑理想离散时间带阻滤波器,其单位脉冲响应为频率响应在条件下为7.18假设截止频率为π/2的一个理想离散时间低通滤波器的单位脉冲响应是用于内插的,以得到一个2倍的增采样序列,求对应于这个增采样单位脉冲响应的频率响应。
7.19考虑如图7-11所示的系统,输入为x[n],输出为y[n]。
零值插入系统在每一序列x[n]值之间插入两个零值点,抽取系统定义为其中W[n]是抽取系统的输入序列。
若输入x[n]为试确定下列ω1值时的输出y[n]:7.20有两个离散时间系统S1和S2用于实现一个截止频率为π/4的理想低通滤波器。
奥本海姆《信号与系统(第二版)》习题参考答案
第一章作业解答解:(b )jt t t j e e e t x --+-==)1(2)(由于)()(2)1()1())(1(2t x e e e T t x T j t j T t j ≠==++-+-++-,故不是周期信号;(或者:由于该函数的包络随t 增长衰减的指数信号,故其不是周期信号;) (c )n j e n x π73][= 则πω70= 7220=ωπ是有理数,故其周期为N=2;解:]4[1][1)1(]1[1][43--=--==+---=∑∑∞=∞=n u m n mk k n n x m k δδ-3 –2 –1 0 1 2 3 4 5 6 n1…减去:-3 –2 –1 0 1 2 3 4 5 6 nu[n-4]等于:-3 –2 –1 0 1 2 34 5 6 n…故:]3[+-n u 即:M=-1,n 0=-3。
解:x(t)的一个周期如图(a)所示,x(t)如图(b)所示:而:g(t)如图(c)所示……dtt dx )(如图(d )所示:……故:)1(3)(3)(--=t g t g dtt dx 则:1t ,0t 3,32121==-==;A A 1.15解:该系统如下图所示: 2[n](1)]4[2]3[5]2[2]}4[4]3[2{21]}3[4]2[2{]3[21]2[][][1111111222-+-+-=-+-+-+-=-+-==n x n x n x n x n x n x n x n x n x n y n y即:]4[2]3[5]2[2][-+-+-=n x n x n x n y(2)若系统级联顺序改变,该系统不会改变,因为该系统是线性时不变系统。
(也可以通过改变顺序求取输入、输出关系,与前面做对比)。
解:(a )因果性:)(sin )(t x t y =举一反例:当)0()y(,0int s x t =-=-=ππ则时输出与以后的输入有关,不是因果的;(b )线性:按照线性的证明过程(这里略),该系统是线性的。
信号与系统 奥本海姆 第二版 习题详解
对方程两边同时做反变换得:
y[n] −
1 处有一个二阶极点,因为系统是因果的,所以 H ( z ) 的收敛域是 z > , (b)H ( z) 在 z = 1 3 3 包括单位圆,所以系统是稳定的。
解: (a) x[n] = δ [n + 5] ← → X ( z ) = z , ROC : 全部z 因为收敛域包括单位圆,所以傅立叶变换存在。
( )
χ (s ) = uL{e −2t u (t )} =
H (s ) =
H (s )如图所示。
Y (s ) 1 = 2 . X (s ) s − s − 2
1 1 1 3 3 ( ) , ⇒ H s = − s2 − s − 2 s − 2 s +1 (i )如果系统是稳定的,H (s )的ROC为 − 1〈ℜe {s}〈2.
∞ ∞
n =−∞
∑
∞
x[n]z − n =
− n−2
1 −n ∞ 1 n z = ∑− z ∑ −3 3 n =−∞ n =2
−2 n −n
z n + 2 = 9 z 2 /(1 + 3z ) = 3z /(1 + (1/ 3) z −1 ), z < 1 3 1 = ∑ n =2 3
1 1 (b) H (s) = 1 − 3 s − 2 s +1
(1)系统是稳定的,说明 H (s) 的收敛域应该包括虚轴在内,即: − 1 < Re{s} < 2 , 所以 h(t ) = 1 (− e u (−t ) − e u (t )) 3 (2)系统是因果的,则 H (s) 的收敛域应为 Re{s} > 2 ,所以 h(t ) = 1 (e u (t ) − e u (t )) 3 ( 3 ) 系 统 既 不 因 果 又 不 稳 定 , 则 H (s) 的 收 敛 域 应 为 Re{s} < −1 , 所 以
奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(下册)-通信系统(圣才出品)
第8章通信系统8.1 复习笔记几个基本概念:(1)调制:将某一个载有信息的信号嵌入另一个信号中的过程。
(2)解调:将载有信息的信号提取出来的过程。
(3)复用:将若干个彼此独立的信号,合并为一个可在同一信道上同时传输的复合信号的方法。
(4)幅度调制:正弦幅度调制和正弦频率调制。
(5)正弦幅度调制:一个复指数信号或正弦信号c(t)的振幅被载有信息的信号x(t)相乘。
信号x(t)称为调制信号,而信号c(t)称为载波信号,已调信号y(t)是这两个信号的乘积,即。
一、复指数与正弦幅度调制1.正弦幅度调制的两种常用的形式(1)载波信号c(t)为如下复指数:(2)载波信号是正弦的频率ωc都称为载波频率。
2.复指数载波的幅度调制选θc=0,已调信号y(t)是。
(1)信号的傅里叶变换x(t)、y(t)和c(t)的傅里叶变换分别为X(jω)、Y(jω)和C(jω)。
已调输出y(t)的频谱是输入的谱,只是在频率轴上位移了一个等于载波频率ωc的量。
(2)解调将x(t)从已调信号y(t)中恢复出来,只要将y(t)乘以复指数,即在频域,这等于把已调信号的频谱在频率轴上往回挪到调制信号原先所在的频谱位置。
3.正弦载波的幅度调制取θc=0,载波是正弦波。
(1)信号的傅里叶变换①载波信号的频谱②已调信号的频谱(2)解调只要就能从y(t)中恢复出x(t);否则,这两个重复的频谱将会有重叠。
二、正弦幅度调制的解调1.同步解调同步解调是指解调器载波在相位上与调制器载波是同相的解调过程。
(1)解调器载波在相位上与调制器载波是同相假设,已调信号为原始信号可通过用y(t)来调制同样一个正弦载波并用一个低通滤波器把它恢复出来,即于是ω(t)由两项之和组成:一项是原始信号的一半,另一项则是用原始信号的一半去调制一个2ωc的正弦载波。
因此应该应用低通滤波器就相应于保留第一项,消除掉第二项。
(2)调制器和解调器在相位上不同步在复指数载波的情况下,用θc代表调制用载波的相位,用代表解调用载波的相位,即如果,那么ω(t)将有一个复振幅因子。
奥本海姆 信号与系统 第一章知识点总结
第一章 信号与系统一.连续时间和离散时间信号 1.两种基本类型的信号:连续时间信号和离散时间信号。
在前一种情况下,自变量是连续可变的,因此信号在自变量的连续值上都有定义;而后者是仅仅定义在离散时刻点上,也就是自变量仅取在一组离散值上。
为了区分,我们用t 表示连续时间变量。
而用n 表示离散时间变量,连续时间变量用圆括号()•把自变量括在里面,而离散时间信号则用方括号[]•来表示。
2.信号能量与功率连续时间信号在[]21t t ,区间的能量定义为:E=dt t x t t 221)(⎰连续时间信号在[]21,t t 区间的平均功率定义为:P=dt t x t t t t 21221)(1⎰- 离散时间信号在[]21,n n 区间的能量定义为:E=∑=212][n n n n x离散时间信号在[]21,n n 区间的平均功率定义为:P=∑=+-21212)(11n n n t x n n 在无限区间上也可以定义信号的总能量: 连续时间情况下:⎰⎰+∞∞--∞→∆∞==dt t x E TTT 22x(t)dt )(lim离散时间情况下:∑∑+∞-∞=+-=∞→∆==n NNn N n x n x E 22][][lim在无限区间内的平均功率可定义为:⎰-∞→∆∞=TTT dt t x TP 2)(21lim∑+-=∞→∆∞+=NNn N n x N P 2][121lim 二.自变量的变换1.时移变换x(t)→x(t-0t ) 当0t >0时,信号向右平移0t ;当0t <0时,信号向左平移0tx[n]→x[n-0n ] 当0n >0时,信号向右平移0n ;当0n <0时,信号向左平移0n 2.反转变换x(t)→x(-t) 信号以t=0为轴呈镜像对称 x[n]→x[-n] 与连续时间的情况相同 3.尺度变换x(t)→x(at) a>1时,x(at) 是将x(t)在时间上压缩a 倍 0<a<1时,x(at)是将x(t)在时间上扩展1/a 倍由于离散时间信号的自变量只能取整数值,因而尺度变换只对连续时间信号而言。
奥本海姆信号与系统中文版课后习题答案
1.对一个LTI 系统,我们已知如下信息:输入信号2()4()tx t e u t =-;输出响应22()()()t t y t e u t e u t -=-+(a) 确定系统的系统函数H(s)及收敛域。
(b) 求系统的单位冲激响应h(t)(c) 如果输入信号x(t)为(),tx t e t -=-∞<<+∞ 求输出y(t)。
解:(a)4114(),Re{}2,(),2Re{}2222(2)(2)X s s Y s s s s s s s ---=<=+=<-<--+-+1(),Re{}22H s s s =>-+(b)2()()t h t e u t -= (c)()2()()t ty t e e u d e τ+∞---τ--∞=ττ=⎰; ()(1)t ty t H e e --=-=.2. 已知因果全通系统的系统函数1()1s H s s -=+,输出信号2()()ty t e u t -=(a) 求产生此输出的输入信号x(t). (b) 若已知dt ∞∞<∞⎰+-|x(t)|,求输出信号x(t).(c) 已知一稳定系统当输入为2()te u t -时,输出为上述x(t)中的一个,确定是哪个?求出系统的单位冲激响应h(t).解:(a)1()2Y s s =+。
Re{}2s >-,()1()()(1)(2)Y s s X s H s s s +==-+ 由于()H s 的ROC 为Re{}1s >-,()X s ∴的ROC 为2Re{}1s -<<或Re{}1s >若 1ROC 为-2<Re{s}<1,则2112()()()33t tx t e u t e u t -=--若2ROC 为Re{s}>1,221()(2)()3t t x t e e u t -=+(b) 若 dt ∞∞<∞⎰+-|x(t)|,则只能是1()()x t x t =即:212()()()33t t x t e u t e u t -=--(c)212()()()()33t ty t x t e u t e u t-==--;1(),2Re{}1(1)(2)sY s ss s+=-<<-+()1()()1Y s sH sX s s+∴==-, 这就是(a)中系统的逆系统。
奥本海姆版信号与系统课后答案
第七章7.6 解:见 8.17.8 解: (a) )]()([)21()(50πωδπωδπωk k j j X n k +--=∑= 信号截止频率 πω5=m采样频率 m s T ωπππω2102.022====对于正弦信号,会发生混叠 (b) ππω5==T c所以输出信号 )sin()21()(40t k t y k k π∑== 所以j e e t g tjk t jk k k 2)21()(40ππ-=-=∑ ∑-==44k t jk k e a π其中,⎪⎪⎩⎪⎪⎨⎧≤≤-=≤≤-=+-+14)21(0041)21(11k j k k j a k k k 7.10 解:(a) 错 信号时域为矩形波,频域为sinc 函数,无论怎么样都会混叠 (b) 符合采样定理,对(c) 符合采样定理,对7.15 解:要求 76N 2,76273ππππω>=⨯>即s 237max =<∴N N 取 7.16 解: 易见ππn n 2sin2满足性质1, 3对性质2,考虑时域乘积得频域卷积,易见2))2/sin((4][n n n x ππ=7.19 解:设x[n]经零值插入后得输出为z[n] (a) 531πω≤时, ⎪⎩⎪⎨⎧><=1101)(ωωωωωj e X ⎪⎪⎩⎪⎪⎨⎧>≤<=30531)(11ωωπωωωj e Z所以 ⎪⎪⎩⎪⎪⎨⎧><=3031)(11ωωωωωj e W因此可得,n n n w πω/)3(sin ][1=又由 ]5[][n w n y =可得 )5/()35(sin][1n n n y πω= (b) 531πω>时 ⎪⎪⎩⎪⎪⎨⎧>><=53031)(11πωωωωωj e Z)/()5(sin ][n nn w ππ=∴][51)5/()(sin ][n n n n y δππ== 7.21 解: 采样频率m s Tωππω2200002>== 即πω10000<m 时,可以恢复 (a) 可以(b) 不可以(c) 不能确定(d) 可以 (e) 不可以 (f) 可以 (g) 可以7.22 解:)(*)()(21t x t x t y = 则有πωωωω10000)()()(21>==j X j X j Y πω1000=∴m 因而 πωω20002=>m s故 s T s 3102-=<ωπ 7.23 解:见 8.27.24 解:见 8.37.29 解:见 8.107.31 解:见 8.157.35 解:见 8.247.38 解:见 8.97.41 解:见 8.197.45 解: 见 8.17。
奥本海姆《信号与系统》笔记和课后习题(含考研真题)详解(上册)(信号与系统的时域和频域特性)
第6章信号与系统的时域和频域特性6.1 复习笔记一、傅里叶变换的模和相位表示1.基本表示方法傅里叶变换是复数值的,可以用它的实部和虚部,或者用它的模和相位来表示。
(1)连续时间傅里叶变换X(jω)的模-相表示是(2)离散时间傅里叶变换X(e jω)的模-相表示是2.振幅与相位(1)模|X(jω)|所描述的是一个信号的基本频率含量,也即给出的是组成x(t)的各复指数信号相对振幅的信息。
是x(t)的能谱密度,即可认为是信号x(t)中位于频率由ω到ω+dω之间这样一个无限小的频带内所占有的能量。
(2)相位角不影响各个频率分量的大小,但提供的是有关这些复指数信号的相对相位信息。
二、线性时不变系统频率响应的模和相位表示1.基本表示(1)根据连续时间傅里叶变换的卷积性质,一个线性时不变系统的输入和输出的傅里叶变换X(jω)和Y(jω)的关系:Y(jω)=H(jω)X(jω)其中H(jω)是系统的频率响应,也即系统单位冲激响应的傅里叶变换(2)在离散时间情况下,一个频率响应为H(e jω)的线性时不变系统,其输入和输出的傅里叶变换X(e jω)和Y(e jω)的关系是Y(e jω)=H(e jω)X(e jω)因此,一个线性时不变系统对输入的作用就是改变信号中每一频率分量的复振幅。
(3)在连续时间情况下,|Y(jω)|=|H(jω)||X(jω)|且①线性时不变系统对输入傅里叶变换模特性的作用就是将其乘以系统频率响应的模。
②由线性时不变系统将输入的相位变化成在它基础上附加了一个相位(系统的相移)。
系统的相移可以改变输入信号中各分量之间的相对相位关系。
2.线性与非线性相位(1)线性相位①在连续时间情况下,当相移是ω的线性函数时,具有这种频率响应特性的系统所产生的输出就是输入的时移,即y(t)=x(t-t0)②在离散时间情况下,当线性相位的斜率是一个整数时,线性时不变系统所产生的输出就是输入的简单移位,即y[n]=x[n-n0](2)非线性相位、如果输入信号受到的是一个ω的非线性函数的相移,那么在输入中各不同频率的复指数分量都将以某种方式移位,从而在它们的相对相位上发生变化。
信号与系统 (奥本海默) 总结 复习
第一章:Singnals and System(信号与系统)1-1:continuous-time and discrete-time signals(连续时间与离散时间信号)信号:信息的载体。
在信号与系统分析中,信号的表达式为函数(functions)P3:Signals are represented mathematically as functions of one or more independent variables (独立自变量)。
例如:关于某导线电流强度对应不同时间的函数I(t);等比数列的某一个数对应其序号的函数a[n]=b^n自变量的定义域为连续的时间段(有限或无限)的信号(函数)称为连续时间信号x(t)自变量的定义域为间断的时间点(一般地,归一为整数点…-1,0,1,2…)的信号称为离散时间信号x[n]又叫序列(sequences)。
两者有相似处,离散时间函数(又称为离散时间序列)可以看作连续时间函数对整数点时间进行抽样得到,但两者计算上有很大区别。
信号(函数)对应某一自变量值的信号函数值大小称为信号的幅度(phenomenon)。
例如x(t)=2t,在t=3时x(t)=x(3)=6就是此刻的幅度。
Signal energy and power(信号的能量与功率)把信号看作电流,该电流在某一段时间内流过1欧姆的电阻产生的能量和平均功率(average power)便是信号在该段时间的能量与功率。
因此可得在t1~~t2内信号x(t)的能量为:E=∫(t1~t2)(|x(t)|^2)dt,而相应这段时间的功率则为P=E/(t2-t1)信号在整个定义域的能量E∞=(limT→∞)∫(-T~T)(|x(t)|^2)dt信号在整个定义域的平均功率P∞=(limT→∞)(1/2T)∫(-T~T)(|x(t)|^2)dt相应的,对于离散时间信号则有P6-7(1,7)(1,9)(这个东西要输入太困难了,呵呵)显然,对于一个信号在无穷区间的能量与平均功率有三种可能:平均功率无穷大,总能量无穷大(2)平均功率有限,总能量无穷大(3)总能量有限,平均功率无穷小(也是有限)1-2:Transformations of the independent variable(自变量的变换)自变量的变换就是对信号x(t)或x[n]的自变量t或n进行相应变换,由此会影响信号。
信号与系统(奥本海默)Summary1-3
• 两种手段:时域&频域
x[k ] [n k ]
ห้องสมุดไป่ตู้
x(t ) x( ) (t )d
⒉ LTI系统的时域分析——卷积和与卷积积分 ⒊ LTI系统的描述方法:
①用 h(t )、h[n]描述系统
②用LCCDE连同零初始条件描述LTI系统;
③ 用方框图描述系统(等价于LCCDE描述)。
⒋ LTI系统的特性与 h(t )、h[n]的关系:
• 记忆性、因果性、稳定性、可逆性与 h(t )、
h[n] 的关系;
• 系统级联、并联时, h(t )、h[n] 与各子系统 的关系。
第三章
周期信号的傅立叶级数
复指数函数是一切LTI系统的特征函数。
建立了用傅里叶级数表示周期信号的方法, 实现了对周期信号的频域分解。 以周期性矩形脉冲信号为典型例子,研究 了连续时间周期信号和离散时间周期信号 的频谱特点及信号参量改变对频谱的影响。
信号与系统 前三章 小结
第一章 信号与系统基本概念 第二章 LTI 系统 第三章 周期信号的傅立叶级数
第一章
信号与系统基本概念
信号与系统的数学描述方法。 信号自变量变换对信号的影响。 基本信号:复指数信号、单位冲激与单位 阶跃信号。 讨论了离散时间正弦信号的周期性问题。 定义并讨论了系统的六大基本特性及系统 的互连。讨论了增量线性系统及其等效方 法。
由于在工程实际中,相当广泛的系统其数 学模型都可以描述成一个线性时不变( LTI ) 系统,而且基于线性和时不变性,为系统分 析建立一套完整的、普遍适用的方法提供了 可能,因此,线性时不变系统将成为本课程 所研究的对象。
第二章
LTI系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
关于1-5章总结
第一章 信号的运算(时移、反褶、尺度) 第二章 信号的分解(全响应/零输入/零状态/稳态暂态) 第三章 傅里叶变换的性质(关键是理解其中含义:等效脉宽
和等效带宽) 第四章 s域中的零状态和零输入分解,拉氏变换和逆变换,
系统稳定的条件,双边拉氏变换和逆变换,收敛域 第五章 无失真传输的条件
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
1课堂练习题:
1. 已知信号h(t)的波形,使画出h(-1-2t)[u(t)-u(t-1)]的波形。
h(t)
-2
-1 0
1
5分钟动笔计算
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
t
2
2课堂讨论题:
5分钟动笔计算
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
3.两者不相等,是非线性的
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
r(t) sin [e (t)]u (t)
时不变性?
e 2 ( t ) e 1 ( t t 0 ) r 2 ( t ) s i n [ e 1 ( t t 0 ) ] u ( t ) r 1 ( t t 0 ) s i n [ e 1 ( t t 0 ) ] u ( t t 0 ) 结论:两者不相等,时变。
3课堂练习题:
5分钟动笔计算
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
ቤተ መጻሕፍቲ ባይዱ
4课堂练习题:
5分钟动笔计算
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
5课堂练习题:
P263,4-45 题图4-45所示反馈系统,回答下列各问: (1)写出H(s)=V2(s)/V1(s) (2)K满足什么条件时系统稳定? (3)在临界稳定条件下,求系统冲激响应
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
第五章 傅里叶变换的应用
系统函数H(jω)及傅里叶变换分析法; 无失真传输条件*; 调制/解调的原理与实现;
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
Ch5:无失真网络
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
第一章:信号与系统基本概念
重点:
1. 信号的运算*(时移、反褶和尺度变换)。 2. 基本的信号(阶跃和冲激) 3. 线性时不变(LTI)系统*
(线性性、时不变性、因果性)
*表示关键内容
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
Ch1:奇异信号
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
CH2:连续时间系统的时域分析
在满足信号传输不产生相位失真的情 况下,系统的群时延特性应为常数。
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
CH2:连续时间系统的时域分析
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
节点方程、回路方程 一元高阶微分方程
齐次解、自由响应
特解、强迫响应
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
Ch3:傅里叶变换(周期信号)
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
非周期信号及其性质
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
抽样定理
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
CH4:拉普拉斯变换
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
1.求激励和的响应
H [ C 1 e 1 ( t ) C 2 e 2 ( t ) ] s i n [ C 1 e 1 ( t ) C 2 e 2 ( t ) ] u ( t )
2.求各个响应的和
C 1 r 1 ( t ) C 2 r 2 ( t ) C 1 s i n [ e 1 ( t ) ] u ( t ) C 2 s i n [ e 2 ( t ) ] u ( t )
换路定则
完全解=齐次解(系数待定)+特解
0+状态
0-状态
完全解=齐次解+特解
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
冲激函数 匹配法
响应的分类:
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
第三章 傅里叶变换
傅里叶级数(周期信号) 傅里叶变换(非周期信号) 傅里叶变换的性质* 周期信号的傅里叶变换 卷积定理 抽样定理
因果性? r(t) sin [e (t)]u (t)
结论:响应只和激励的现在值有关,因此是因果的。
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
第二章 连续时间系统的时域分析
经典法求解电系统响应的基本步骤 状态分解法*(rzi和rzs) 冲激响应 卷积积分及其性质
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
Ch1:信号的运算
1. 时移 (Time Shift) f(t) f(tt0)
2. 反褶 (Time Reflection) f(t)f(t) 3. 倍乘(尺度变换 Time Scaling)f(t)f(at)
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
3. 线性时不变(LTI)系统
线性:同时满足叠加性和均匀性
时不变性:响应形式与激励施加的时刻无关
因果性:
系统在t0 时刻的响应只与t = t0 和t < t0 时刻的输入有 关。
《信号与系统》,光电学院/武汉光电国家实验室,董建绩
补充题:判断函数 的三项性质
r(t) sin [e (t)]u (t)
e 1 ( t ) r 1 ( t ) s i n [ e 1 ( t ) ] u ( t ) e 2 ( t ) r 2 ( t ) s i n [ e 2 ( t ) ] u ( t )