第三讲 同余理论

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 同余理论

2.1 同余的概念和基本性质

【定义2.1.1】给定一个正整数m ,两个整数a 、b 叫做模m 同余,如果a -b 被m 整除,或b a m -|,记作b a ≡ ()m mod

否则叫做模m 不同余,记作a≠b ((mod m ))

【注】由于b a m -|等价于b a m --|,所以同余式

b a ≡ ()m mod 等价于 b a ≡()()m -mod ,

故以后总假定模1≥m 。

【例1】 7│28=29-1,故29≡1(mod 7);

7│21=27-6,故27≡6(mod 7); 7│28=23-(-5),故23≡-5(mod 7);

同余运算的相关性质:

【性质1】设m 是一个正整数,a 、b 是两个整数,则a≡b(mod m )⇔存在整数k ,使得a =b +km 。

(证)a≡b(mod m ) ⇔ b a m -|

⇔ 存在k ,使得 a -b =km ,即a =b +km

【性质2】同余是一种等价关系。即 自反性:a≡a(mod m )

对称性:a≡b(mod m )⇒ b≡a (mod m )

传递性:a≡b(mod m )且b≡c (mod m )⇒ a≡c (mod m ) (证)(i )m│0=a -a ⇒ a≡a(mod m )

(ii )a≡b (mod m )⇒ m│a-b ⇒ m│b-a =-(a -b) ⇒ b≡a (mod m ) (iii )a≡b(mod m ),b≡c(mod m )⇒ m│a-b ,m│b-c

⇒ m│(a-b)+ (b -c)=a -c ⇒ a≡c (mod m )

【性质3】(等价定义)整数a 、b 模m 同余⇔a 、b 被m 除的余数相同。 (证)由欧几里得除法,存在q ,r ,q ',r ',使得

a =qm +r ,

b =q 'm +r '

即 a -b =(q -q ')m +(r -r ') 或 (r -r ')=(a -b)- (q -q ')m

故 m│(a-b) ⇔ m│(r -r ')

但 0≢│r -r '│<m 且m│(r -r ')⇔ r -r '=0 故 m│(a-b) ⇔ r -r '=0,即r =r '

【性质4】设m 为正整数,a 、b 、c 、d 为整数,若 a≡b (mod m ), c≡d (mod m )则 (i ) a +c≡b+d (mod m ); (ii )

ac≡bd (mod m )。

(证)已知a≡b(mod m )且 c≡d(mod m )

⇒ a =b +hm 且c =d +km

⇒ a +c =(b +hm)+( d +km)=b +d +(h +k)m ,

ac =(b +hm)( d +km)=bd +(hd +kb +hkm)m

⇒ 由性质1即得结论。

一般情形:i i b a ≡ (mod m )(i =1,2,…,k),则

(i ) ∑∑==≡

k

i i k

i i b a 11 (mod m )

(ii )

∏∏==≡k i i k

i i b a 1

1

(mod m )

【推论1】a≡b (mod m ) ⇒ na≡nb (mod m ),其中n 为正整数。 【推论2】a≡b (mod m )⇒ n n b a ≡ (mod m ),其中n 为正整数。 【推论3】x≡y (mod m ),i i b a ≡ (mod m )(i =1,2,…,k),则

k

k x a x a x a a ++++ 2

210≡k

k y b y b y b b ++++ 2

210 (mod m )

【例6】2003年5月9日是星期五,问此后的第22003天是星期几?

(解) 22003+5≡()

2

667

322

+5 (mod 7)

≡2

667

21+5 (mod 7)) ≡9 (mod 7) ≡2 (mod 7)

【例7】设十进制整数n =011a a a a k k -,则

3│n ⇔3│011a a a a k k ++++- 9│n ⇔9│011a a a a k k ++++-

(证)因 n =011010a a a k

k +++ ≡011a a a a k k ++++- (mod 3) n =011010

a a a k

k +++ ≡011a a a a k k ++++- (mod 9)

【例8】设整数n 的1000进制表示式为 n =0110001000

a a a k

k +++

则7(或11,或13)│n ⇔ 7(或11,或13)│() ++20a a -() ++31a a (证)因 n =0110001000

a a a k

k +++

≡()()()0111111a a a a k k k

k +-++-+--- mod 7 n≡()()()011

1111a a a a k k k

k +-++-+--- mod 11 n≡()()

()011

1111a a a a k k k k +-++-+--- mod 13

例如,判断n =12345678能否被7(或11,或13)整除: 12345678=12×10002+345×1000+678

而 (12+678)-345=345不能被7、11、13整除 故1234567不能被这3个数整除。

【例9】设十进制整数n =011a a a a k k -,则 11│n ⇔ 11│() ++20a a -() ++31a a 2│n ⇔ 2│0a

4│n ⇔ 4│01a a ⇔ 4│012a a + 8│n ⇔ 8│012a a a ⇔ 8│01224a a a ++

i 2│n ⇔ i

2│011a a a i -

相关文档
最新文档