紫外-可见分光光度法
紫外可见分光光度法简介
紫外-可见分光光度法简介紫外-可见分光光度法(ultraviolet-visible spectrophotometry, UV-VIS),它是利用物质的分子或离子对某一波长范围的光的吸收作用,对物质进行定性分析、定量分析及结构分析, 所依据的光谱是分子或离子吸收入射光中特定波长的光而产生的吸收光谱。
按所吸收光的波长区域不同,分为紫外分光光度法和可见分光光度法,合称为紫外-可见分光光度法。
紫外--可见分光光度法:是根据物质分子对波长为200-760nm这一范围的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。
操作简单、准确度高、重现性好。
波长长(频率小)的光线能量小,波长短(频率大)的光线能量大。
分光光度测量是关于物质分子对不同波长和特定波长处的辐射吸收程度的测量。
吸收光谱描述物质分子对辐射吸收的程度随波长而变的函数关系曲线,称为吸收光谱或吸收曲线。
紫外-可见吸收光谱通常由一个或几个宽吸收谱带组成。
最大吸收波长(λmax)表示物质对辐射的特征吸收或选择吸收,它与分子中外层电子或价电子的结构(或成键、非键和反键电子)有关。
朗伯-比尔定律是分光光度法和比色法的基础。
这个定律表示:当一束具有I0强度的单色辐射照射到吸收层厚度为b,浓度为c的吸光物质时,辐射能的吸收依赖于该物质的浓度与吸收层的厚度。
其数学表达式为:式中的A 叫做吸光度;I0为入射辐射强度;I为透过吸收层的辐射强度;(I/I0)称紫藤为透射率T;ε是一个常数,叫做摩尔吸光系数,ε值愈大,分光光度法测定的灵敏度愈高。
紫外-可见分光光度计有稳定的、有足够输出功率的、能提供仪器使用波段的连续光谱,如钨灯、卤钨灯(波长范围350~2500纳米),氘灯或氢灯(180~460纳米),或可调谐染料激光光源等。
②单色器[1]。
它由入射、出射狭缝、透镜系统和色散元件(棱镜或光栅)组成,是用以产生高纯度单色光束的装置,其功能包括将光源产生的复合光分解为单色光和分出所需的单色光束。
紫外-可见分光光度法
E=A / C C为100ml溶液中所含被测物质的重量 (按干燥品或无水物计算),g
(C = 0.003001g ×(1-水分)/ 100ml)
二.鉴别: 按各该品种项下的规定,测定供试品
溶液在有关波长处的最大及最小吸收,有 的并须测定其各最大吸收峰值或最大吸收 与最小吸收的比值,均应符合规定。
在高精度的分析测定中(紫外区尤其 重要),吸收池要挑选配对。因为吸收池 材料本身的吸光特征以及吸收池的光程长 度的精度等对分析结果都有影响。
玻璃吸收池因为能吸收紫外光,故只 能用于320nm以上的可见光区。
石英吸收池因不吸收紫外光而常用 于300nm以下的紫外光区,但也可用于 可见光区。
最常用的光路长度为: 1cm的吸收池。
表示方法:
(1)百分吸收系数(E):
以
E 1% 1cm
表示。
E=A/C(%)×L(cm)
中国药典规定的吸收系数即为
E 1% 1cm
。
在用吸收系数法计算含量时,E11c%m 通常要
大于100
(2)摩尔吸收系数(ε):
当溶液的浓度(C)为1mol/L,光路长 度(L)为1cm时,相应的吸光度为摩尔吸 收系数,以ε表示。
通常使用的紫外-可见分光光度计的工作波长 范围为190~900nm。
第二节 光吸收基本定律和吸收系数
1.光吸收基本定律: 比尔—郎伯(Beer—Lambert)定律
为光吸收基本定律,是分光光度分析的 理论基础。 Lambert于1730年提出了光 强度与吸收介质厚度的关系。1852年 Beer提出了光强度与吸收介质中吸光物 质浓度之间的关系。
光源为空心阴极灯。每种元素都 有各自的空心阴极灯,因此原子 吸收光谱是锐线光谱。
第二章 紫外-可见分光光度法
外,还有部分因散射而损失,使透光度减小,
A实。所以往往发生正偏离。 • 化学因素引起的偏离 吸光物质常因离解、缔合而形成新化合物或 互变异构等化学变化而改变其浓度,导致了偏 离。例如 K2Cr2O7在水溶液中存在下列平衡:
2 2CrO4 Cr2O H 2O + 2 H 2 2 7 稀释或增大pH值 浓缩或减小pH值
如图所示,假设有一束强度为I0的单色平行
光,垂直通过一横面积为s的均匀介质。 当光强度为Ix的单色光通过
吸收层(db)后,光强度减弱
了dIx,则厚度为db的吸收
层对光的吸收率为-dIx/Ix,
另一方面,由于db为无限小,所以截面积上所有 吸光质点所占的面积之和(ds)与横截面积(s)之 比(ds/s)可视为该截面积上光子被吸收的几率, 即:-dIx/Ix=ds/s
降低由于单色光不纯造成负偏的方法: • 选择吸收曲线的max作入射光波长。因为吸收 曲线峰值顶部曲线较平坦,入射光谱带内各波长 的值相近。选择max,偏离光吸收定律较小。 只有当干扰物质存在并对待测物质的max产生
吸收时,才选择没干扰的其它波长作入射光波
长。
• 选择高分辨率仪器,使入射光波长范围尽可
5.传播速度c
c=· 单位:cm/s 二.微粒性 光的微粒性特征为:光由光子组成,而光子 具有能量,其能量与波长之间的关系为: E=h· =hc/ h—普朗克常数 6.626×10-34J· s 由上式可知,不同波长的光具有不同的能量, 波长愈长,光的能量愈低;反之,则愈高。
§2-2 分子光谱概述
若干个振动能级;在同一 电子能级和同一振动能级 中,因转动能量不同而分 为若干个转动能级。 若用E电、E振、E转分别表示三个能级, 则三者的关系为:E电>E振>E转。
紫外可见分光光度法简介
A=lg1/T=lgI0/It
二、朗伯-比尔定律 朗伯-比尔定律:当一束平行单色光通过含有 吸光物质的稀溶液时,溶液的吸光度与吸光 物质浓度、液层厚度乘积成正比,即
A= κ cl 式中比例常数κ与吸光物质的本性,入射光 波长及温度等因素有关。c为吸光物质浓度,l 为透光液层厚度。
子时,可引起吸收峰的位移和吸收强度的改变,这些基团称为助 色团。如苯环的一个氢原子被一些基团取代后,苯环在254nm处 的吸收带的最大吸收位置和强度就会改变。
化合物 苯 氯苯 溴苯 苯酚 苯甲醚
取代基
max / nm 254
Cl 264
Br 262
OH 273
OCH3 272
m ax
300 320 325 1780 2240
1.定性分析 每一种化合物都有自己的特征光谱。测出未
知物的吸收光谱,原则上可以对该未知物作出定 性鉴定,但对复杂化合物的定性分析有一定的困 难。
2.纯度的鉴定 用紫外吸收光谱确定试样的纯度是比较方便
的。
如蛋白质与核酸的纯度分析中,可用 A280/A260的比值,鉴定其纯度。
3.结构分析 紫外-可见吸收光谱一般不用于化合物的
光源不是点光源,比色皿光径长度不一 致,光学元件的缺陷引起的多次反射等,均 造成光径不一致,从而与定律偏离。
紫外-可见分光光度计
一、主要部件的性能与作用 基本结构:
光源→单色器→吸收池→检测器→信号显示系统 ↑ 样品
1 光源
在紫外可见分光光度计中,常用的光源 有两类:热辐射光源和气体放电光源
热辐射光源用于可见光区,如钨灯和 卤钨灯;气体放电光源用于紫外光区,如 氢灯和氘灯。
结构分析,但利用紫外吸收光谱鉴定化合物 中的共轭结构和芳环结构还是有一定价值。
第一章 紫外-可见分光光度法
➢ *跃迁:可以发生在任何具有不饱和键的 有机化合物分子中,其最大摩尔吸光系数max 很大。
➢ n*跃迁:发生在含有杂原子(O、N、S、P 、卤素等)的不饱和化合物中,其最大摩尔吸 光系数max 比较小。
二、常用术语
➢ *生色团:分子中可以吸收光子产生电子跃迁的基团 。含有键的不饱和基团
➢ *助色团:有些基团本身没有生色作用,但却能增强 生色团的生色能力,即它们与生色团相连时,会使其 吸收带最大吸收波长发生红移,并且增加其强度。通 常是带有非键电子对的杂原子的饱和基团,如-OH、 -NH2、-OR、-SH、-SR、-Cl、-Br、-I等。
不需参比液(消除了由于参比池的不同和制备空白溶液等产生 的误差)、克服了电源不稳而产生的误差,灵敏度高。
(4)光多道二极管阵列检测分光光度计
具有快速扫描的特点
可在0.1秒内获得190~ 820nm范围的全光光谱。 用于追踪化学反应的反应 动力学研究。 操作简单,只需将样品放 入无盖开放式样品室,并 点击“开始”即可。
音:
1 暗噪音:检测器与放大电路等各部件不确定性引起。
2 讯号噪音:亦称讯号散粒噪音 电子跃迁的不相等性
测量光强的不确定性
c 0.434K 1 1 c lgT T
➢ 当相对误差 c/c 最小时,求得T=0.368 或 A=0.4343。即当 A=0.4343 时,误差最小!
➢ 通常可通过调节溶液浓度或改变光程l 来控制 A 的读数在 0.2~0.7 范围内。
2. 杂散光 从单色器得到的单色光中与所需波长相 隔较远的光。
3. 散射光与反射光 使透光强度减弱 ,吸光度值偏高。
4. 非平行光 使l 增大影响测量值
(三)透光率测量误差T
由于光源不稳定性、读数不准等带来的误差。
紫外可见分光光度法
由图可见ΔT =1%, T 在20%~ 65%之间时, 浓度相对误差较小, 此为 最佳读数范围。
所以要求选择适宜的吸光度范围 (0.2-0.7), 以使测量结果的误差最 小。
2024/10/5
措施: (a)控制溶液的浓度;(b) 选择不同厚度的比色
2024/10/5
2
溶液颜色与光吸收的关系
当一束太阳光照射某一溶液时, 太阳光中某一颜色的光 被吸收, 其互补色光透过溶液, 刺激人的眼睛, 使人感觉到它 的颜色。
实例:
1)高锰酸钾吸收绿光显紫 红色;
2)重铬酸钾吸收蓝光显黄 色;
3)邻菲罗啉铁溶液吸收蓝 绿光显红色。
2024/10/5
可见光波长及其互补光
(如国产710型,730型); 3.双波长双光束分光光度计
(如国产WFZ800-5型)
2024/10/5
20
紫外可见分光光度的使用
2024/10/5
21
2024/10/5
22
721分光光度计操作步骤
➢ 1.预热仪器。为使测定稳定, 将电源开关打开, 使仪器预热20min, 为了防止光电管疲劳, 不要连续光照。预热仪器和不测定时应将比 色皿暗箱盖打开, 使光路切断。
ε: 摩尔吸收系数,单位L·mol -1·cm-1。(讲解78页 例题)
摩尔吸收系数越大表明该物质的吸光能力越强,用光度法测
定该物质的灵敏度越高。
ε > 105: 超高灵敏;
ε = (6~10)×104 : 高灵敏;
ε < 2×104
: 不灵敏。
2024/10/5
10
吸光度的加和性
第十一章 紫外-可见分光光度法
返回
example
分子中价电子能级及跃迁示意图
*
反键
*
反键
→* →* n→* n→*
En
上一内容 下一内容 回主目录
非键 成键
成键
返回
轨道和轨道示意图
+ –+ +++
+
– *
+
+
–
C
C
–
+
+
+
C
C
–
–
上一内容 下一内容 回主目录
+
–
CC
*
–
+
+
CC
–
返回
共轭双键的离域作用
4
*
3
*
最高空轨道
E>E →跃迁几率↑→↑ ; E↓→↑
上一内容 下一内容 回主目录
上一内容 下一内容 回主目录
返回
11.1.2 紫外-可见吸收光谱中的常用术语
• 吸收光谱的特征 • 生色团和助色团 • 红移与蓝(紫)移 • 增色效应和减色效应 • 强带和弱带 强带(strong band) max>104
弱带(weak band) max<102
上一内容 下一内容 回主目回录主目录
返回
吸收光谱(absorption spectrum)的特征
吸收峰 末端吸收A(end abso↓rption)
谷
肩峰(shoulder peak)
↓
吸收峰
↓ 谷
↓
min max sh
上一内容 下一内容 回主目回录主目录
min max λ
第四章紫外-可见分光光度法
(三)有机化合物的紫外、可见光谱
1. 饱和烃及其取代衍生物 σ→σ*、n→σ* 2. 不饱和烃及共轭烯烃 σ→σ*、π→π* 3. 羰基化合物 n→σ*、π→π*和n→π* 4. 苯及其衍生物 E1带、 E2带、 B带 5. 稠环和杂环
当l以cm,c以mol/L为单位时,k称为摩尔吸 光系数,用ε表示,它比a更为常用,ε的单位 为L mol-1 cm-1,即: A = ε c l
当l以cm,c以百分浓度g/100mL为单位时,k 称为比吸光系数,用A1cm1%表示 ε = 0.1 M A1cm1%
用比吸光系数的表示方法特别适用于摩尔质 量未知的化合物。
(二)配位场跃迁
1. f-f跃迁
镧系和铜系元素的离子对紫外和可见光的吸收是 基于内层f电子跃迁而产生的,其吸收光谱是由一些狭 窄的特征吸收峰组成,且这些吸收峰不易受金属离子 所处的配位环境的影响。
2. d-d跃迁
过渡金属离子的d轨道在受到配位体场的作用时 产生分裂。d电子在能级不同的d轨道间跃迁,吸收紫 外或可见光产生吸收光谱。这种光谱的吸收带比较 宽,吸收峰强烈地受配位环境的影响。
光。
3. 吸收池
功能:盛放分析试样(一般是液体)
4. 检测器 功能:检测光信号,测量单色光透过溶
液后光强度变化的一种装置。 5. 信号显示系统
6. 紫外一可见分光光度计的类型
(1) 单波长单光束分光光度计
缺点:测量结果受电源波动的影响较大, 误差较大。
(2) 单波长双光束分光光度计
一个环外双键
5nm
同环二烯 39nm 一个β烷基 12nm 三个γ+烷基 54nm
紫外可见分光光度法
T与A的关系
T 100% 50% 25% 10% 1.0% 0.1% 0.01% 0.001% 0%
A 0 0.301 0.602 1.00 2.0 3.0 4.0
5.0
上述说明: T值为0%至100%内的任何值。 A值可以取任意的正数值。
入射光强度 I0
等 条件一定时, E 仅与吸收物质本身的性质有关, 与待测物浓度无关; (3)同一吸收物质在不同波长下的E 值是不同的。在最大 吸收波长λmax处的摩尔吸收系数E max表明了该 吸收物质最大限度的吸光能力,也反映了光度法 测定该物质可能达到的最大灵敏度。
(4)可作为定性鉴定的参数;
(5)物质的吸光能力的度量
? EK2带
B带 R带
苯乙酮的紫外吸收光谱
四、影响吸收带的因素
• 位阻影响 • 跨环效应
共轭系统共平面性↓→共轭效应↓ → max ↓(短移), ↓
• 溶剂效应 溶剂极性↑→ K带长移,R带短移
• pH影响
max 210.5nm,270nm
235nm,287nm
位阻影响
顺式
反式
二苯乙烯顺反异构体 的紫外吸收光谱
最大处对应的波长称为最大吸收波长λmax。 吸收曲线的形状、λmax及吸收强度等与分子 的结构密切相关。
在吸收曲线上,最大吸收峰所对应的是最大吸收波长 (λmax),为不同化合物的特征波长。吸收曲线的形状是物 质定性的主要依据,在定量分析中可提供测定波长,一般以灵 敏度较大的λmax为测定波长。
峰与峰之间的部位叫谷,该处对应波长为最小吸收波长。 在图谱短波端只呈现强吸收但不成峰的部分称为末端吸收 (end absorption)。
紫外可见光分光光度法
紫外-可见分光光度法是在190~800nm波长范围内测定物质的吸光度,用于鉴别、杂质检查和定量测定的方法。
当光穿过被测物质溶液时,物质对光的吸收程度随光的波长不同而变化。
因此,通过测定物质在不同波长处的吸光度,并绘制其吸光度与波长的关系图即得被测物质的吸收光谱。
从吸收光谱中,可以确定最大吸收波长λmax和最小吸收波长λmin。
物质的吸收光谱具有与其结构相关的特征性。
因此,可以通过特定波长范围内样品的光谱与对照光谱或对照品光谱的比较,或通过确定最大吸收波长,或通过测量两个特定波长处的吸收比值而鉴别物质。
用于定量时,在最大吸收波长处测量一定浓度样品溶液的吸光度,并与一定浓度的对照溶液的吸光度进行比较或采用吸收系数法求算出样品溶液的浓度。
紫外-可见分光光度法
单色器质量的优劣,主要决定于 色散元件的质量。色散元件常用棱镜 和光栅。
3 吸收池
吸收池又称比色皿或比色杯,按材 料可分为玻璃吸收池和石英吸收池,前 者不能用于紫外区。 吸收池的种类很多,其光径可在 0.1~10cm之间,其中以1cm光径吸收池 最为常用。
4 检测器 检测器的作用是检测光信号,并将光 信号转变为电信号。现今使用的分光光度 计大多采用光电管或光电倍增管作为检测 器。 5 信号显示系统 常用的信号显示装置有直读检流计, 电位调节指零装置,以及自动记录和数用 基本结构:
光源→单色器→吸收池→检测器→信号显示系统 ↑ 样品
1 光源
在紫外可见分光光度计中,常用的光 源有两类:热辐射光源和气体放电光源
热辐射光源用于可见光区,如钨灯和 卤钨灯;气体放电光源用于紫外光区,如 氢灯和氘灯。
2 单色器
单色器的主要组成:入射狭缝、出射 狭缝、色散元件和准直镜等部分。
4 要点与注意事项 4.1 开机前将样品室内的干燥剂取出, 仪器自检过程中禁止打开样品室盖。 4.2 比色皿内溶液以皿高的2/3~4/5为 宜,不可过满以防液体溢出腐蚀仪器。 测定时应保持比色皿清洁,池壁上液 滴应用滤纸擦干,切勿用手捏透光面。 测定紫外波长时,需选用石英比色皿。
4.3 测定时,禁止将试剂或液体物质放在 仪器的表面上,如有溶液溢出或其它原因 将样品槽弄脏,要尽可能及时清理干净。 4.4 如果仪器不能初始化,关机重启。 4.5 如果吸收值异常,依次检查:波长设 置是否正确(重新调整波长,并重新调 零)、测量时是否调零(如被误操作,重 新调零)、比色皿是否用错(测定紫外波 段时,要用石英比色皿)、样品准备是否 有误(如有误,重新准备样品)。
2.1.2 按数字[1]键进入%T/ABS(透过率/吸 光度测定)子菜单,选中对应的数字键来 设定测定条件:①NUM WL(设定测试波长 的数目,最多可设定6个不同波长);②WL Setting (设定测试波长具体数值)③ Data Mode( 选择测定吸光度或透光率 ) ,设定完 毕后点击 [Enter] 键确定,所有项目设定完 毕后按数字[0] 键确定,等待仪器调整至准 备状态。
第二章 紫外-可见分光光度法
1、光源
作用:供给符合要求的入射光。 (1)可见光光源 常见的可见光光源有:钨丝灯和卤钨灯。 (2)紫外光光源 常见的紫外光光源有:氢灯和氘灯。 •另外,为了使光源发出的光在测量时稳定,光 源的供电一般都要用稳压电源,即加有一个稳 压器。
2、单色器
作用:把光源发出的连续光谱分解成单色光,并 能准确方便地“取出”所需要的某一波长的光, 它是分光光度计的心脏部分。 组成:单色器一般由狭缝、色散元件(棱镜和光 栅)、透镜系统组成。 (1)棱镜单色器 •玻璃棱镜:可吸收紫外光,只能用于可见光区域。 •石英棱镜:用于紫外、可见和近红外三个光区域。 (2)光栅单色器 •可用于紫外、可见及红外光区域,目前生产的紫外可见分光光度计大多采用光栅作为色散元件。
•可见分光光度计:使用波长范围是400~780nm, 只能用于测量有色溶液的吸光度 •紫外-可见分光光度计:使用波长范围是200~ 1000nm,可测量在紫外、可见、近红外有吸收 的物质的吸光度。
四、分光光度计的维护 1、仪器对工作环境的要求
•稳固、温度15~28℃、干燥、无腐蚀性气体、 光线不宜过强
•可见分光光度计:使用波长范围是400~780nm, 只能用于测量有色溶液的吸光度 •紫外-可见分光光度计:使用波长范围是200~ 1000nm,可测量在紫外、可见、近红外有吸收 的物质的吸光度。
2、紫外-可见分光光度计——双光束
•/vlabcq/flash/分光光度计/分光光度 计.html
二、紫外-可见分光光度计的类型及特点 1、按使用的波长范围分
•可见分光光度计:使用波长范围是400~780nm, 只能用于测量有色溶液的吸光度 •紫外-可见分光光度计:使用波长范围是200~ 1000nm,可测量在紫外、可见、近红外有吸收 的物质的吸光度。
紫外可见分光光度法
紫外-可见分光光度法
第一节 紫外-可见吸收光谱 第二节 朗伯-比尔定律 第三节 紫外-可见分光光度计 第四节 分析条件的选择
第五节 测定方法
概
述
紫外可见分光光度法(Ultraviolet-Visible Spectrophotometry),又称:紫外-可见分子 吸收光谱法(Ultraviolet-Visible Molecular Absorption Spectrometry)是利用被测物质 对光的吸收特征和吸收强度对物质进行定 量和定性的分析方法。
形成的溶液具有良好的化学和光化学稳定性;
在样品的吸收光谱区无明显吸收;
如果要与标准品的吸收光谱相比较,须用相同的溶剂。
5.pH值的影响
很多化合物都具有酸性或碱性可解离基团,在不同 pH的溶液中,分子的解离形式可能发生改变,其 吸收光谱的形状、λmax和吸收强度可能不一样。
OH O-
OHH+
λmax 210.5nm ,270nm
完全透过
无色
吸收黄色光
2014-12-23
蓝色
13
课堂互动
1.紫外-可见光的波长范围是 A.200~400nm B.400~780nm C.200~780nm D.360~800nm 2.下列叙述错误的是 A.光的能量与其波长成反比 B.有色溶液越浓,对光的吸收也越强烈 C.物质对光的吸收有选择性 D.光的能量与其频率成反比
2mg/ml的溶液,在1cm吸收池中,于310nm处测
定吸光度A。规定A≤0.05。
(三)、结构分析
有机化合物的紫外吸收光谱 可以推定分子骨架,判断发色团之间的共轭关系
和估计共轭体系中取代基的种类、位置和数目 。
1.饱和碳氢化合物 只产生ơ→ơ*跃迁,所需能量很大, 200-400nm没有吸收,常作为溶剂。
4紫外-可见分光光度法
• 2.参比溶液的选择原则:
• (1)溶剂参比:试样组成简单、共存组份少(基体干扰少)、显色剂 不吸收时,直接采用溶剂(多为蒸馏水)为参比;
• (2) 试样参比:如试样基体在测定波长处有吸收,但不与显色剂反 应时,可以试样作参比(不能加显色剂)。
紫外-可见分光光度法
紫外-可见分光光度法
一、紫外-可见分光光度法原理 二、紫外-可见分光光度计 三、紫外-可见分光光度法应用
紫外-可见分光光度法
分子的能量变化E为各种形式能量变化的总和:
ΔΕ ΔΕe ΔΕv ΔΕr
电子能级间隔比振动能级和转 动能级间隔大1~2个数量级, 在发生电子能级跃迁时,伴有 振-转能级的跃迁,形成所谓的 带状光谱。
第一节 基本原理
二 Lambert- Beer 定律
Lambert-Beer 定律适用范围: ①入射光为单色光,适用于可见、红外、紫外光。 ②均匀、无散射溶液、固体、气体。
吸光度具有加和性:
不仅适用于紫外光、可见光,也适用红外光;在同一波长下, 各组分吸光度具有加和性
A=A1+A2++An
(1)入射光必须为单色光 (2)被测样品必须是均匀介质 (3)在吸收过程中吸收物质之间不能发生相
偏离Lambert-Beer 定律的因素 1. 样品性质影响
1)待测物高浓度--吸收质点间隔变小—质点间相互作用—对特定辐射的吸收 能力发生变化--- 变化;
2)溶剂的影响:对待测物生色团吸收峰强度及位置产生影响; 3)被测溶液不均匀导致的偏离
第一节 基本原理
二 Lambert- Beer 定律
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
紫外-可见分光光度法
紫外-可见分光光度法是在190~800nm波长范围内测定物质的吸收度,用于鉴别、杂质检查和定量测定的方法。
当光穿过被测物质溶液时,物质对光的吸收程度随光的波长不同而变化。
因此,通过测定物质在不同波长处的吸光度,并绘制其吸光度与波长的关系图即得被测物质的吸收光谱。
从吸收光谱中,可以确定最大吸收波长λmax和最小吸收波长λmim。
物质的吸收光谱具有与其结构相关的特征性。
因此,可以通过特定波长范围内样品的光谱与对照光谱或对照品光谱的比较,或通过确定最大吸收波长,或通过测量两个特定波长处的吸收比值而鉴别物质。
用于定量时,在最大吸收波长处测量一定浓度样品溶液的吸光度,并与一定浓度的对照溶液的吸光度进行比较或采用吸收系数法求算出样品溶液的浓度。
仪器的校正和检定
1.波长由于环境因素对机械部分的影响,仪器的波长经常会略有变动,因此除应定期对所用的仪器进行全面校正检定外,还应于测定前校正测定波长。
常用汞灯中的较强谱线237.83nm、253.65nm、275.28nm、296.73nm、313.16nm、334.15nm、365.02nm、404.66nm、435.83nm、546.07nm与576.96nm,或用仪器中氘灯的486.02nm与656.10nm谱线进行校正,钬玻璃在波长279.4nm、287.5nm、333.7nm、360.9nm、418.5nm、460.0nm、484.5nm、536.2nm与637.5nm处有尖锐吸收峰,也可作波长校正用,但因来源不同或随着时间的推移会有微小的变化,使用时应注意;近年来,尝试由高氯酸狄溶液校正双光束仪器,以10%高氯酸溶液为溶剂,配置含氧化狄(Ho2O3)4%的溶液,该溶液的吸收峰波长为241.13nm,278.10nm,287.18nm,333.44nm,345.47nm,361.31nm,416.28nm,451.30nm, 485.29nm,536.64nm和640.52nm。
仪器波长的允许误差为:紫外光区±1nm,500nm附近±2nm
2.吸光度的准确度可用重铬酸钾的硫酸溶液检定。
取在120℃干燥至恒重的基准重铬酸钾约60mg,精密称定,用0.005mol/L硫酸溶液溶解并稀释至1000ml,在规定的波长处测定并计算其吸收系数,并与规定的吸收系数比较,
应符合表中的规定。
3.杂散光的检查可按下表所列的试剂和浓度,配制成水溶液,置1cm石英吸收池中,在规定的波长处测定透光率,应符合表中的规定。
对溶剂的要求
含有杂原子的有机溶剂,通常均具有很强的末端吸收。
因此,当作溶剂使用时,它们的使用范围均不能小于截止使用波长。
例如甲醇、乙醇的截止使用波长为205nm。
另外,当溶剂不纯时,也可能增加干扰吸收。
因此,在测定供试品前,应先检查所用的溶剂在供试品所用的波长附近是否符合要求,即将溶剂置1cm 石英吸收池中,以空气为空白(即空白光路中不置任何物质)测定其吸光度。
溶剂和吸收池的吸光度,在220~240nm 范围内不得超过0.40,在241~250nm 范围内不得超过0.20,在251~300nm 范围内不得超过0.10,在300nm 以上时不得超过0.05。
测定法
测定时,除另有规定外,应以配制供试品溶液的同批溶剂为空白对照,采用1cm的石英吸收池,在规定的吸收峰波长±2nm 以内测试几个点的吸光度,或由仪器在规定波长附近自动扫描测定,以核对供试品的吸收峰波长位置是否正确。
除另有规定外,吸收峰波长应在该品种项下规定的波长±2nm 以内,并以吸光度最大的波长作为测定波长。
一般供试品溶液的吸光度读数,以在0.3~
0.7 之间为宜。
仪器的狭缝波带宽度应小于供试品吸收带的半高宽度的十分之一,否则测得的吸光度会偏低;狭缝宽度的选择,应以减小狭缝宽度时供试品的吸光度不再增大为准。
由于吸收池和溶剂本身可能有空白吸收,因此测定供试品的吸光度后应减去空白读数,或由仪器自动扣除空白读数后再计算含量。
当溶液的pH 值对测定结果有影响时,应将供试品溶液的pH 值和对照品溶液的pH值调成一致。
1.鉴别和检查分别按各品种项下规定的方法进行。
2.含量测定一般有以下几种。
(1)对照品比较法按各品种项下的方法,分别配制供试品溶液和对照品溶液,对照品溶液中所含被测成分的量应为供试品溶液中被测成分规定量的90%±110%,所用溶剂也应完全一致,在规定的波长处测定供试品溶液和对照品溶液的吸光度后,按下式计算供试品中被测溶液的浓度:
C X=(A X/A R)C R
式中C X为供试品溶液的浓度;
A X为供试品溶液的吸光度;
C R为对照品溶液的浓度;
A R为对照品溶液的吸光度。
(2)吸收系数法按各品种项下的方法配制供试品溶液,在规定的波长处测定其吸光度,再以该品种在规定条件下的吸收系数计算含量。
用本法测定时,吸收系数通常应大于100,并注意仪器的校正和检定。
(3)计算分光光度法计算分光光度法有多种,使用时均应按各品种项下规定的方法进行。
当吸光度处在吸收曲线的陡然上升或下降的部位测定时,波长的微小变化可能对测定结果造成显著影响,故对照品和供试品的测试条件应尽可能一致。
计算分光光度法一般不宜用作含量测定。
(4)比色法供试品本身在紫外-可见区没有强吸收,或在紫外区虽有吸收但为了避免干扰或提高灵敏度,可加入适当的显色剂,使反应产物的最大吸收移至可见光区,这种测定方法称为比色法。
用比色法测定时,由于显色时影响显色深浅的因素较多,应取供试品与对照品或标准品同时操作。
除另有规定外,比色法所用的空白系指用同体积的溶剂代替对照品或供试品溶液,然后依次加入等量的相应试剂,并用同样方法处理。
在规定的波长处测定对照品和供试品溶液的吸光度后,按上述(1)法计算供试品浓度。
当吸光度和浓度关系不呈良好线性时,应取数份梯度量的对照品溶液,用溶剂补充至同一体积,显色后测定各份溶液的吸光度,然后以吸光度与相应的浓度绘制标准曲线,再根据供试品的吸光度在标准曲线上查得其相应的浓度,并求出其含量。