自相关地检验与修正
多重共线性、异方差及自相关的检验和修正
计量经济学实验报告多重共线性、异方差及自相关的检验和修正——以财政收入模型为例经济学 1班一、引言财政收入是一国政府实现政府职能的基本保障,对国民经济的运行及社会的发展起着非凡的作用。
首先,它是一个国家各项收入得以实现的物质保证。
一个国家财政收入规模的大小通常是衡量其经济实力的重要标志。
其次,财政收入是国家对经济实行宏观调控的重要经济杠杆。
财政收入的增长情况关系着一个国家的经济的发展和社会的进步。
因此,研究财政收入的增长显得尤为重要。
二、数据及模型说明研究财政收入的影响因素离不开一些基本的经济变量。
回归变量的选择是建立回归模型的一个极为重要的问题。
如果遗漏了某些重要变量,回归方程的效果肯定不会好;而考虑过多的变量,不仅计算量增大许多,而且得到的回归方程稳定性也很差,直接影响到回归方程的应用。
通过经济理论对财政收入的解释以及对实践的观察,对财政收入影响的因素主要有农业增加值、工业增加值、建筑业增加值、总人口数、最终消费、受灾面积等等。
全部数据均来源于中华人民共和国国家统计局网站/具体数据见附录一。
为分析被解释变量财政收入(Y)和解释变量农业增加值(X1)、工业增加值(X2)、建筑业增加值(X3)、总人口(X4)、最终消费(X5)、受灾面积(X6)的关系。
作如下线性图(图1)。
图1可以看出Y、X1、X2、X3、X5基本都呈逐年增长的趋势,仅增长速率有所变动,而X4和X6在多数年份呈现水平波动,可能这两个自变量和因变量间不一定是线性关系。
可以初步建立回归模型如下:Y=α+β1*X1+β2*X2+β3*X3+β4*X4 +β5*X5+β6*X6 +U i 其中,U i为随机干扰项。
三、模型的检验及验证(一)多重共线性检验及修正利用Eviews5.0,做Y对X1、X2、X3、X4、X5和X6的回归,Eviews的最小二乘估计的回归结果如下表(表1)所示:表1Dependent Variable: YMethod: Least SquaresDate: 11/16/13 Time: 20:54Sample: 1990 2011Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 145188.0 26652.27 5.447488 0.0001X1 -0.972478 0.222703 -4.366701 0.0006X2 0.210089 0.068192 3.080851 0.0076X3 -0.100412 0.569465 -0.176327 0.8624X4 -1.268320 0.247725 -5.119870 0.0001X5 0.600205 0.130089 4.613794 0.0003X6 -0.007430 0.044233 -0.167964 0.8689R-squared 0.999306 Mean dependent var 27186.86Adjusted R-squared 0.999029 S.D. dependent var 28848.33S.E. of regression 899.0866 Akaike info criterion 16.69401Sum squared resid 12125351 Schwarz criterion 17.04116Log likelihood -176.6341 F-statistic 3600.848Durbin-Watson stat 1.825260 Prob(F-statistic) 0.000000 由上表的回归结果可见,,该模型可决系数R2=0.9993很高,F检验值3601,明显显著。
自相关的检验与修正
实验2自相关的检验与修正一、实验目的:
掌握自相关模型的检验方法与处理方法.。
二、实验内容及要求:
表1列出了1985-2007年中国农村居民人均纯收入与人均消费性支出的统计数据。
(1)利用OLS法建立中国农村居民人均消费性支出与人均纯收入的线性模型。
(2)检验模型是否存在自相关。
(3)如果存在自相关,试采用适当的方法加以消除。
实验如下:
首先对数据进行调整,将全年人均纯收入和全年人均消费性支出相应调整为全年实际人均纯收入和全年实际人均消费性支出。
图1
1、用OLS估计法估计参数
图2
图3
图形分析:
图4
从图4中可以看出,中国农村居民人均消费性支出与人均纯收入存在着显着的正相关关系。
估计回归方程:。
从图8中可以得出此时的D.W.=1.324681,在取显着水平为5%,n=23,k=2,d L=1.26, d U=1.44,模型中d L<DW<d U,此时不能确定是否存在自相关。
在广义差分法无法完成修正的情况下,现建立对对数模型:
图9
对双对数模型进行调整:
图10
图11
从图11中可以得出此时的D.W.=1.985950,在取显着水平为5%,n=23,k=2,d L=1.26,
d U=1.44,模型中d U<DW<4-d U,此时不存在自相关。
由此完成对自相关的修正。
异方差、自相关检验及修正
异方差、自相关的检验与修正实验目的:通过对模型的检验掌握异方差性问题和自相关问题的检验方法及修正的原理,以及相关的Eviews 操作方法。
模型设定:εβββ+++=23121i i i X X YYi----人均消费支出X1--从事农业经营的纯收入X2--其他来源的纯收入 中国内地2006年各地区农村居民家庭人均纯收入与消费支出 单位:元 城市 y x1 x2 城市 y x1 x2 北京 5724.5 958.3 7317.2 湖北 2732.5 1934.6 1484.8 天津 3341.1 1738.9 4489 湖南 3013.3 1342.6 2047 河北 2495.3 1607.1 2194.7 广东 3886 1313.9 3765.9 山西 2253.3 1188.2 1992.7 广西 2413.9 1596.9 1173.6 内蒙古 2772 2560.8 781.1 海南 2232.2 2213.2 1042.3 辽宁 3066.9 2026.1 2064.3 重庆 2205.2 1234.1 1639.7 吉林 2700.7 2623.2 1017.9 四川 2395 1405 1597.4 黑龙江 2618.2 2622.9 929.5 贵州 1627.1 961.4 1023.2 上海 8006 532 8606.7 云南 2195.6 1570.3 680.2 江苏 4135.2 1497.9 4315.3 西藏 2002.2 1399.1 1035.9 浙江 6057.2 1403.1 5931.7 陕西 2181 1070.4 1189.8 安徽 2420.9 1472.8 1496.3 甘肃 1855.5 1167.9 966.2 福建 3591.4 1691.4 3143.4 青海 2179 1274.3 1084.1 江西 2676.6 1609.2 1850.3 宁夏 2247 1535.7 1224.4 山东 3143.8 1948.2 2420.1 新疆 2032.4 2267.4 469.9 河南 2229.3 1844.6 1416.4 数据来源:《中国农村住户调查年鉴(2007)》、《中国统计年鉴(2007)》参数估计:估计结果如下:2709030.01402097.01402.728X X Y ++=Λ(2.218) (2.438) (16.999) 922173.02=R D.W.=1.4289 F=165.8853 SE=395.2538实验步骤:一、检查模型是否存在异方差1.图形分析检验(1)散点相关图分析分别做出X1和Y 、X2和Y 的散点相关图,观察相关图可以看出,随着X1、X2的增加,Y 也增加,但离散程度逐步扩大,尤其表现在X1和Y .这说明变量之间可能存在递增的异方差性。
实验四--自相关性的检验及修正
实验四--自相关性的检验及修正
自相关性的检验是研究经济数据中自身序列的行为特征,它可用于识别趋势、判断虚
假反应、探究影响力以及衡量规律的发展变化,以及有助于指导未来政策的制定。
因此,自相关性检验是一项重要的经济学技术,它可以为序列分析获取相关信息,让研究者对特
定事件影响有更深刻的认识。
自相关性检验大概分为两个步骤:也就是统计学检验和模型修正。
统计学检验流程大
致包括参数估计、假设检验和结论。
其中,假设检验可以让研究者判断序列是否有自相关性,而参数估计则可以得到自相关性的大小和方向。
从模型修正的角度来说,研究的目的
是建立一个能够自相关数据的特性并形式化处理的模型,这个模型必须注意记录自相关数
据的自身行为特征。
研究者也可以尝试采用其他方法进行模型修正,比如添加外生变量、增加时间序列滞后期、建立自回归模型和分析突变点等。
自相关性检验和模型修正在实践中都带有一定的挑战,例如原始数据的质量,可能存
在噪声;外生变量的准确性和凝聚力;记录的常数和参数的可靠性;动态变化趋势的准确
性等。
因此,研究者在进行自相关性检验和模型修正时要注意仔细进行检测和修正,以确
保研究结果的可靠性和有效性。
自相关的检验与修正
实验2自相关的检验与修正、实验目的:掌握自相关模型的检验方法与处理方法.。
、实验内容及要求:表1列出了1985—2007年中国农村居民人均纯收入与人均消费性支出的统计数据。
(1)利用OLS法建立中国农村居民人均消费性支出与人均纯收入的线性模型。
(2)检验模型是否存在自相关。
(3)如果存在自相关,试采用适当的方法加以消除。
表1 1985 —2007年中国农村居民人均纯收入与人均消费性支出(单位:元)年份全年人均纯收入(现价)全年人均消费性支出(现价)消费价格指数(1985=100)1985397.6317.42100 1986423.8357106.1 1987462.6398.3112.7 1988544.9476.7132.4 1989601.5535.4157.9 1990686.3584.63165.1 1991708.6619.8168.9 1992784659.8176.8 1993921.6769.7201 199412211016.81248 19951577.71310.36291.4 19961923.11572.1314.4 19972090.11617.15322.3 199821621590.33319.1 19992214.31577.42314.3 20002253.41670314 20012366.41741316.5 20022475.61834315.2 20032622.241943.3320.2 20042936.42185335.6 20053254.932555343 200635872829348.1实验如下:首先对数据进行调整,将全年人均纯收入和全年人均消费性支出相应调整为全年实际人均纯收入和全年实际人均消费性支出。
LIL I. .一.... U h ―................ H全年人沟地收入全年人均泊箜低立出J泊费桥特描旷全年人均实际地收/全年人枸实加寸抵性女出tMM1昭W7…6J17.4Z m35^.60 31X42恤(山妙1441斯石Mid JMJ m.T41M7ma«44J J-L7JJ2.44IL5636*05MU UU期M45W.A8州IMJ nus ltf.1Uf矽»ill14^1TlV.b他E I4B.9m到W:71417*4⑷話珊肿1W3Kl.«THL73D1 4SU1M1M喻i*ii toirn3JS49*14』I・M157TJ IJ1IU4^1.4:出紺阳阳J157!4314J«1.«750•巧2000J3t:J 5OL75[潮2U3159U331S,1491^8L9M2114J isn«314J■04J1S0LJB32WI22S3J L6TO314 71T..U531.852«1UWJ P4I JMJ卿AS1W2倔ud)m31SJ■SS.I1繩US:621.21ifl-jjj irsij UU4乂MU wn困口6.4sits»71.97izM.yj皿會埠HLN T I4.W 加?n«HU 1W負建tUMSW741 4055T43M 8iraj^171711用OLS 估计法估计参数<-□ Group; UN1TTUD Wcrldilft UNTTTLED;;UMtided\[UMr][fi&£|[Oto[jKt |ftjrtt£narrtfeJprMafe]匚][Sart|Eart£pflgj&]旦fc#^[Sapli4j 』T 程]色3y?.弓13S$ [1936 VT1937 1920 193919^?19931934 1935 1936 1037 1939 2»J0 2001 20 J 2 205J 20342035G3E?017397 5000 317.42M1399 43DO 330,«Q0 410 47DO 353.420C 411 56D0 36D.050C SSOEWDO333.0 30C416.690041^ 54J0443 44DU 375 190C 45S5100 382.340C 492.34 DO 410.0000 541 4200 443.680C 611.6700 501030C 648 50 DO 50L75M 677 53DO 4DL3SO0 704 52 DO 501 aaoo J17MOO 531 B500 747 68DO 550.080C 75541D0 M1.350C G10 94DO GO5.930C C74 97D0 esijD7oo 阳⑹0 71J.030C 1033.4S0 81Z7DOO 112R170 Q7B 71 nr也 E\ie\;&zi e Edit Object View Proc Qui:k Options Window Heipdaw Uy ciO Eq uatio n: U NTTTLED Worlcflvc UMTTTLEI>:U 般―、3. frx| JDEU |f i rure I UEUE ihstma 世 心已工竄 '曲ts KKdtCoefficientSU Error t SkteticProa.G 50.21B7S 14 548SB 3.E642100.(]0Q9KC 6969260.02134231 99373 C 0000R-gquan&10S7QQ34dep^nd&ntvarjqu Q013-etiusted R-squar?d C.978947&D, ciependeTitvar15E.3tZ3 3.El ofreer&ssion 22.97705 4<aike info cnteilori 9.1B9B13 Sun squared resic 1105B.87 Sshwa-irz. cnUnon9.2ft Log hka || hood -1026826 Hannar^Oiilrin cfit&r. 9214646 h-S^tlStlC1023.933 □urciin Batson sealU4 码rroa(r-statistic) 0.000030-i e Edit Otwect Viav Proc Quick Options 州nticm 卜口 dacg iy图2DeDerKfentA ;an3ti«: T LlEtnnd: LEastSqijarss Dats: 04/24^5 Tria: 12:32 fianph 1Q95200?ricuaec ooser/atcns 、u图4从图4中可以看出,中国农村居民人均消费性支出与人均纯收入存在着显著的正相关关系。
多重共线性、异方差、自相关的检测与模型修正
多重共线性、异方差、自相关的检测与模型修正从《国家统计数据库》找到了自1978—2008年我国人均居民消费、人均国内生产总值、居民消费价格指数、前期人均居民消费、城镇居民人均可支配收入以及农村居民人均纯收入的官方数据。
以此来分析我国人均消费的影响因素以及它们具体是如何对消费产生影响的。
1978—2008年我国人均消费及其影响因素相关数据城镇居民农村居民人均居民人均国内居民消费前期人均年份人均可支人均纯收消费生产总值价格指数居民消费配收入入343 134 1978 184 381 100.7 165405 160 1979 208 419 101.9 184477 191 1980 238 463 107.5 208501 223 1981 264 492 102.5 238535 270 1982 288 528 102 264564 310 1983 316 583 102 288652 355 1984 361 695 102.7 316739 398 1985 446 858 109.3 361901 424 1986 497 963 106.5 4461002 463 1987 565 1112 107.3 4971180 545 1988 714 1366 111.8 5651373 602 1989 788 1519 118 7141510 686 1990 833 1644 103.1 7881701 709 1991 932 1893 103.4 8332027 784 1992 1116 2311 106.4 9322577 922 1993 1393 2998 114.7 11163496 1221 1994 1833 4044 124.1 13934283 1578 1995 2355 5046 117.1 18334839 1926 1996 2789 5846 108.3 23555160 2090 1997 3002 6420 102.8 27895425 2162 1998 3159 6796 99.2 30025854 2210 1999 3346 7159 98.6 31596280 2253 2000 3631 7858 100.4 33466859 2366 2001 3886 8622 100.7 36317703 2476 2002 4143 9398 99.2 38868472 2622 2003 4474 10542 101.2 41439422 2936 2004 5031 12336 103.9 447410493 3255 2005 5572 14053 101.8 503111759 3587 2006 6263 16165 101.5 557213786 4140 2007 7255 19524 104.8 626315781 4761 2008 8348 23648 105.9 7255来自《国家统计数据库》设定如下形式的计量经济模型1:=++++ Y,X,,,X,Xi33i24124其中,Y为人均居民消费 , X2为人均国内生产总值 , X3为居民消费价格指数 , X4为前期人均消费。
实验六自相关模型地检验和处理-学生实验报告材料
廣柬財建大孕辜商李幌HUASHANG COLLEGEGUANGDONG UNIVERSITY OF FINANCE & ECONOMICS实验报告课程名称:____________ 计量经济学______________实验项目:实验六自相关模型的检验和处理实验类型:综合件口设计性口验证性专业班别:_____________________________________姓名:________________________________________ 学号:________________________________________实验课室:指导教师:石立实验日期:2014年6月13日广东商学院华商学院教务处制、实验项目训练方案实验训练内容(包括实验原理和操作步骤):【实验原理】自相关的检验:图形法检验、D-W 检验 自相关的处理:广义差分变换、迭代法【实验步骤】本实验中考虑以下模型:【模型1】财政收入CS 对收入法GDPS 的回归模型 【模型2】财政支出CZ 对财政收入CS 的回归模型 【模型3】消费品零售额SLC 对收入法GDPS 的回归模型 【模型4】财政收入的对数log (cs )对时间T 的回归模型【模型5】收入法GDPS 的对数log ( GDPS )对时间T 的回归模型 数据见“附表:广东省宏观经济数据(部分)-第六章”(一)自相关的检验1•图形法检验使用图形检验法分别检验上述 【模型1-4】是否存在自相关问题。
分别作这四个 模型的残差散点图(即残差后一项对前一项的散点图:e t 对e-)和残差趋势图(即 残差e t 对时间t 的线图),并判断模型是否存在自相关以及是正的自相关还是负的自 相关。
结论:从图上看,CS 对GDPS 回归的残差有一定的自相关。
【模型1】残差散点图残差趋势图RESID(-I)------ Residual ------------- Actual ----------- Fitted【模型2】 残差散点图 残差趋势图1500050-100 •-150-150-100 -50 0 50 100 150RESID(-I)Residual Actual Fitted结论:从图上看,CZ 对CS 回归的残差应【模型3】 残差散点图DL bE K+400-2000 200400RESID(-I)400 . 200 -0_ -200 _ -400 - -600 r------ Residual Actual --------- Fitted结论:从图上看,SLC 对GDPS 回归的残差有很强的自相关结论:从图上看,log(CS)对T 回归的残差也有很强的自相关【模型4】残差散点图DISERG-54-3. ^1-0. 10^3—.OU .2.6RESID(-1)(请对得到的图表进行处理,以上在一页内)2. D-W检验分别计算上述【模型1-3】和【模型5】的D-W统计量的值,判断模型是否存在自相关冋题。
自相关性的检验和处理实验报告
ˆ 1
3.7831 13.9366 1 0.72855
由此,我们得到最终的收入-消费模型为
Yt 13.9366 0.9484 X t
二、根据北京市连续 19 年城镇居民家庭人均收入与人均支出的数据进行相关分析 1、建立居民收入-消费函数 以人均实际收入为 X,人均实际支出为 Y,创建工作文件,输入数据,命令如下: Create a 1 19 Data x y 建立居民收入-消费模型,输入命令 ls y c x,回归结果如下:
ˆ 0.72855 ,对原模型进行广义差分,得到差 ˆ 0.72855et 1 ,由回归方程可知 回归方程为 e
分方程: Yt 0.72855Yt 1 1 (1 0.72855) 2 ( X t 0.72855 X t 1 ) t 对 上 式 广 义 差 分 方 程 进 行 回 归 , 在 Eviews 命 令 栏 中 输 入 命 令 : ls Y -0.72855*Y(-1) c X-0.72855*X(-1),回归结果如下: 由回归结果可得回归方程为:
关进行相关检验。 (二)检验收入—消费模型的自相关情况 1、德宾-沃森检验(DW 检验)法 因为 n=36, k=1, 在 5%的显著水平下查表得 DL 1.411 , DU 1.525 , 而 0<0.5234=DW< D L , 因此此模型存在一阶正自相关。 2、偏相关系数检验法 由于 DW 法只能检验一阶自相关性,我们用偏相关系数检验法来检验是否存在高阶自相关性。 在模型回归结果中选择操作:View/Residual Test/Correlogram-Q-statistics ,默认滞后期为 16,得到偏 相关系数结果如下:
由偏相关系数分布图可知,该模型存在明显一阶自相关性,不存在显著高阶自相关性。 3、BG 检验法 在偏相关系数检验之后,我们运用 BG 检验对前面的检验结果进行进一步验证,选择操作 View/Residual Test/Serial Correlation LM Test ,选择滞后期为 5,得到结果如下:
自相关 实验报告
**大学经济学院实验报告估计线性回归模型并计算残差。
用普通最小二乘法估计输出结果如下:20,73.0,086.0.,9988.0)02.122()79.6(18.045.1ˆ2====-+-=T DW e s R X Y tt所以,回归方程拟合得效果比较好,但是DW 值比较低。
(2)残差图见图2。
(3)自相关的检验(检验误差项t u 是否存在自相关)①DW 检验:已知DW=0.73,若给定05.0=α,查表得,得DW 检验临界值41.1,20.1==U L d d ,因为DW=0.73<1.20,认为误差项t u 存在严重的一阶正自相关。
②回归检验法:建立残差t u 与21,--t t e e 的回归模型,如表2和表3。
从表2可以看出,1-t e 的回归参数通过了显著性检验,而表3中,21,--t t e e 中只有1-t e 的回归参数通过显著性检验,故判断误差项具有一阶回归形式的自相关。
表2 残差回归相关结果(1)表3 残差回归结果(2)③LM(BG)检验:辅助回归估计输出结果如下表(1)。
表(1)由LM 检验结果可知,LM (1)=7.998,伴随概率p=0.0047<0.05.LM(2)=8.459,伴随概率p=0.0146,所以在α=0.05显著性水平显著,存在一阶,二阶自相关。
同时,由表一,可得LM(BG)自相关检验辅助回归式估计结果是:00.840.020,74.1,40.0)4.0()4.0()4.3(0004.00609.06388.0221=⨯====-+-+=-TR LM DW R v X e e tt t t因为84.3)1(205.0=χ,LM=8.00>3.84,所以LM 检验结果也说明随机误差项存在一阶正自相关。
(4)用差分法和广义差分法建立模型,消除自相关。
用广义最小二乘法估计回归参数。
估计自相关系数ρˆ,635.0273.0121ˆ=-=-=DW ρ 对原变量做广义差分变换。
第七节 自相关检验与修正
杜宾证明:当一阶自相关系数 0 时,h统计量 近似服从标准正态分布,所以利用正态分布可 以对一阶自相关性进行检验。
ˆ 显然,当 n var( b 2 ) 1 时,h统计量无法算出, 于是,杜宾建议采用渐进等价检验,即采用OLS估 计的残差et,建立如下线性回归模型 et=a0+a1xt+a2yt-1+a3et-1+vt 用t统计量检验 H:a3=0, 接受则无一阶自相关,否则存在一阶自相关。
u t 1u t 1 2 u t 2 p u t p v t
3、高阶自回归形式检验 Breusch-Godfrey(布罗斯-戈弗雷)检验 或拉格朗日乘数检验 对模型y=b1+b2x2i+…+bkxki+ut 设自相关形式为:
假设 H 0 : 1 2 p 0即不存在自相关 检验步骤: 1、用 OLS 估计模型,得残差 2、作辅助回归模型 计算样本决定系数 et
第七节 自相关检验与修正
一、自相关的检验方法 (一)图示法 1. 以t为横轴,et为纵轴作图,残差et随时间 的变化呈现有规律的变动,则et存在自相关, 即ut存在自相关。 2. 绘制et与et-1散点图 (二)解析法
1、Durbin-Watson检验(DW检验)。 适用于检验一阶自回归形式。 D-W检验内容: n 2 计算D-W统计量 (e e )
e (1 )e (1 ) e (1 )
t t 1 2 t-1
ˆ 3 .利 用 1 ) 进 行 广 义 差 分 变 换 : ( ˆ y * y t (1 ) y t 1 t * ˆ x t x t (1 ) x t 1 4 .用 O L S 法 估 计 广 义 差 分 模 型 :y t A b 2 x t v t,
自相关的检验与修正
自相关的检验与修正一、自相关的检验1、看残差图这里的残差图绘制不同于异方差检验里残差图的绘制,自相关检验时绘制的是e t 与e t −1的图形。
针对书上P152例6.1,命令如下:其中,L.e 表示的是e 的一阶滞后值。
显然,存在正相关。
还有一个命令,可以得到多阶的残差图。
在估计了残差项e之后,直接运行命R e s i d u a l s令ac e 就可得到下图(ac 为autocorrelation 的缩写):横轴表示的是滞后阶数,阴影部分表示的是相应的置信区间,在上图中,显然一阶滞后是自相关的。
补充:滞后算子L 。
L.x 表示x 的一阶滞后值,L2.x 表示二阶滞后值。
差分算子D 。
D.x 表示x 的一阶差分,D2.x 表示二阶差分。
LD.x 表示一阶差分的一阶滞后值。
需要注意的是,在使用之后算子和差分算子时,一定要事先设定时间变量。
2、DW 检验该方法出现较早,现在已经过时,主要是因为该方法只能检验一阶自相关。
命令:estat dwatson 。
经验上DW 值在1.8---2.2之间接受原假设,不存在一阶自相关。
DW 值接近于0或者接近于4,拒绝原假设,存在一阶自相关。
3、LM检验(BG检验)命令:estat bgodfrey 一阶滞后自相关检验estat bgodfrey,lags(p) P阶滞后自相关检验滞后阶数P的选取最简单的方法就是看自相关图,阴影部分以外的自相关阶数为显著。
二、自相关的处理—广义最小二乘法FGLS命令:prais y x1 x2 x3 该命令对应的是书上P147的(6.33)方法prais y x1 x2 x3,corc 该命令对应的是书上P147的(6.32)方法在自相关检验及处理上,还有比较常用的稳健标准差命令newey以及Q-Test命令,感兴趣的同学可以去查阅相关书籍。
实验四 自相关性的检验及修正
实验四自相关性的检验及修正一、实验目的掌握自相关性的检验与处理方法。
二、实验学时:2三、实验内容及操作步骤建立我国城乡居民储蓄存款模型,并检验模型的自相关性。
1.回归模型的筛选2.自相关的检验3.自相关的调整四、实验要求利用表5-1资料,试建立我国城乡居民储蓄存款模型,并检验模型的自相关性。
【实验步骤】(一)回归模型的筛选⒈相关图分析SCAT X Y相关图表明,GDP 指数与居民储蓄存款二者的曲线相关关系较为明显。
现将函数初步设定为线性、双对数、对数、指数、二次多项式等不同形式,进而加以比较分析。
⒉估计模型,利用LS 命令分别建立以下模型 ⑴线性模型: LS Y C Xx y4516.17579.62251ˆ+-= =t (-9.5629) (33.3308)2R =0.9823 F =1110.940 S.E =15601.32 ⑵双对数模型:GENR LNY=LOG(Y) GENR LNX=LOG(X) LS LNY C LNXx yln 7452.159996.0ˆln +-= =t (-1.6069) (31.8572)2R =0.9807 F =1014.878 S.E =0.1567 ⑶对数模型:LS Y C LNXx yln 4.1709151035947ˆ+-= =t (-10.2355) (11.5094)2R =0.8688 F =132.4672 S.E =42490.60 ⑷指数模型:LS LNY C Xx y001581.05657.9ˆln += =t (55.0657) (11.2557)2R =0.8637 F =126.6908 S.E =0.4163 ⑸二次多项式模型:GENR X2=X^2 LS Y C X X220378.08476.7754.16271ˆx x y++-= =t (-2.4325) (6.1317) (7.8569)2R =0.9958 F =2274.040 S.E =7765.275 ⒊选择模型比较以上模型,可见各模型回归系数的符号及数值较为合理。
自相关的检验与修正
附件二:实验报告格式(首页)山东轻工业学院实验报告成绩课程名称计量经济学指导教师实验日期 2013-5-25 院(系)商学院专业班级实验地点二机房学生姓名学号同组人无实验项目名称自相关的检验与修正一、实验目的和要求掌握Eviews软件的操作和自相关的检验与修正二、实验原理Eviews软件的操作和自相关的检验与修正,图表法,DW检验,运用迭代法三、主要仪器设备、试剂或材料Eviews软件,计算机四、实验方法与步骤(1)准备工作:建立工作文件,并输入数据:CREATE EX-6-1 A 1978 2000;TATA CINSUM INCOME PRICE;(2)相关图分析:GENR Y=CONSUM/PRICE;GENR X=INCOME/PRICE;SCAT X Y;LS Y C X;(3)自相关检验1)图示法LINR RESID;SCAT RESID(-1) RESID;2)观察结果窗口,由DW统计量,查表,与DL,DU比较得出结论;3)LM检验在方程窗口中点击View—residual test –series correlation LM test;(4)自相关的修正GENR GDY=Y-0.7*Y(-1);GENR GDX=X-0.7*X(-1);LS GDY C GDX;(5)再次检验自相关是否存在,用1),2),3)之一检验;五、实验数据记录、处理及结果分析(1)建立工作组,输入数据如下:1978 344.88 388.32 11979 385.2 425.4 1.011980 474.72 526.92 1.0621982 496.56 576.72 1.0811983 520.84 604.31 1.0861984 599.64 728.17 1.0161985 770.64 875.52 1.251986 949.08 1069.61 1.3361987 1071.04 1187.49 1.4261988 1278.87 1329.7 1.6671989 1291.09 1477.77 1.9121990 1440.47 1638.92 1.971991 1585.71 1844.98 2.1711992 1907.17 2238.38 2.4181993 2322.19 2769.26 2.8441994 3301.37 3982.13 3.5261995 4064.1 4929.53 4.0661996 4679.61 5967.71 4.4321997 5204.29 6608.56 4.5691998 5471.01 7110.54 4.5461999 5851.53 7649.83 4.4962000 6121.07 8140.55 4.478(2)相关图分析Scat x y,得到关于X和Y的散点图如下:从上图可知,X和Y存在线性关系。
计量经济学EViews自相关检验及修正实验报告
自相关问题的检验与修正【实验目的与要求】熟练使用EViews软件进行计量分析,理解自相关的检验和估计的基本方法【实验准备】1.自相关的基本概念:若Cov(u i,u j)=E(u i uj)=0(i≠j)不成立,即线性回归模型扰动项的方差—协方差矩阵的非主对角线元素不全为零,则称为扰动项自相关,或序列相关(serial correlation)2.自相关的后果:(1)在扰动项自相关的情况下,尽管OLS估计量仍为无偏估计量,但不再具有最小方差的性质,即不是BLUE。
(2)OLS估计量的标准误差不再是真实标准误差的无偏估计量,使得在自相关的情况下,无法再信赖回归参数的置信区间或假设检验的结果。
3.检验自相关的基本方法:残差检验、D.W检验、Q检验4.自相关的修正方法:广义差分法。
【实验内容】1.利用实验数据建立实际有效汇率REER对名义有效汇率NEER的一元回归模型,根据残差检验、D.W 检验、Q检验判别是否存在自相关。
2.利用实验数据,建立中国出口EX对中国进口IM的一元回归模型,根据残差检验、D.W检验、Q 检验判别是否存在自相关。
3.如果检验结果为存在自相关,根据残差检验和D.W检验估计一阶自相关系数。
4.根据估计出的一阶自相关系数,利用广义差分法估计模型。
5.对利用广义差分法估计得到的模型,根据残差检验、D.W检验、Q检验判别是否存在自相关。
6.对实际有效汇率REER对名义有效汇率NEER和中国出口EX对中国进口IM的一元回归模型,根据残差检验和Q检验判别是否存在高阶自相关。
7.如果检验结果为存在高阶自相关,根据残差检验估计高阶自相关系数。
8.根据估计出的高阶自相关系数,利用广义差分法估计模型。
9.对利用广义差分法估计得到的模型,根据残差检验和Q检验判别是否存在高阶自相关。
10.对在同样数据基础上得到的不同模型进行比较分析。
以下实验数据为1980-2003年人民币名义有效汇率(NEER)和实际有效汇率(REER)的数据(来源于国际货币基金组织出版的国际金融统计(IFS))和1982-2002年中国出口(EX)和进口(IM)(单位:亿美元)的数据(来源于中国商务部网站)。
自相关的检验与修正
实验五自相关的检验与修正【实验目的】1、理解自相关的含义后果、2、学会自相关的检验与消除方法【实验内容】利用下表资料,试建立我国城乡居民储蓄存款模型,并检验模型的自相关性。
表3 我国城乡居民储蓄存款与GDP统计资料(1978年=100)要求:1)建立对数模型2)分别用图示法和DW检验法,判断双对数模型是否存在自相关3)用科-奥迭代法对双对数模型进行补救(1)Dependent Variable: LNYMethod: Least SquaresDate: 06/05/13 Time: 10:06Sample: 1978 1998Included observations: 21Variable Coefficient Std. Error t-Statistic Prob.C -8.075343 0.255516 -31.60412 0.0000LNX 2.958841 0.046096 64.18896 0.0000Adjusted R-squared 0.995168 S.D. dependent var 1.756767 S.E. of regression 0.122115 Akaike info criterion -1.277311 Sum squared resid 0.283330 Schwarz criterion -1.177832 Log likelihood 15.41176 F-statistic 4120.223 Durbin-Watson stat0.706200 Prob(F-statistic)0.000000ˆln-8.075343+2.958841lnX t Y (0.255516)(0.046096)t= (-31.60412) (64.18896)2R =0.995410 F=4120.223 DW=0.706200(2)对样本量为21,一个解释变量的模型,1%显著水平,差DW 统计表可知,l d =0.975,u d =1.161。
实验五-自相关性的检验与处理
实验五自相关性的检验及处理(2学时)一、实验目的(1)、掌握自相关检验的基本方法;(2)、掌握自相关的处理方法。
二、实验学时:2学时三、实验要求(1)掌握用MATLAB软件实现自相关的检验和处理;(2)掌握自相关的检验和处理的基本步骤。
四、实验原理1、自相关检验的常用方法(1)、图示法(2). 杜宾-瓦森(Durbin-Watson )检验法 1)假定条件是: ①解释变量X 非随机;②随机误差项ui 为一阶自回归形式: ③回归模型中不应含有滞后应变量作为解释变量; ④回归含有截距项;⑤没有缺落数据,样本比较大。
2)检验步骤 ① 提出假设H0:ρ=0,即不存在一阶自相关; H1:ρ≠0,即存在一阶自相关。
② 构造统计量21221().ntt t ntt e eDW d e-==-=∑∑统计量: 1221ˆˆ2(1)ˆnt t t ntt uu d u-==≈-∑∑1222ˆˆˆˆnt t t ntt uu uρ-===∑∑定义: 为样本的一阶自相关系数,作为ρ的估计量。
则有ˆ)ρ≈d 2(1- ,因为-1 ≤ ρ ≤ 1,所以,0 ≤ d ≤ 4③ 检验判断对给定样本大小和给定解释变量个数找出临界值dL 和dU ,按照下图的决策得出结论。
2、自相关的处理 (以一元线性回归模型为例)(1) 广义最小二乘法:01y t t t x u ββ=++设模型: …………(1) 1u t t t u v ρ-=+存在一阶线性自相关:10111y t t t x u ββ---⇒=++从而,(1) (2)100111y -y ()()t t t t t t x x u u ρβρββρρ---∴⇒=-+-+-(1)-(2) (3)*1*10=y -y =,(3)(1)t t t t t t y x x x ρραρβ--⎧⎪-⎨⎪=-⎩令则模型可变为:**1t t y x αβ+t =+v …….(4) 10ˆˆˆ(4)OLS αββ对使用即可求出:,,进而求出注:此方法在实际应用时要事先估计,当n 较大时, 12dρ≈-当n 较小时,221(1)()2ˆ11()d k n k nρ+-+≈++, k 为模型中的自变量(不包括常变量)。
计量经济学自相关的检验与修正实验报告
《计量经济学》实训报告实训项目名称自相关模型的检验与处理实训时间 2012-01-02实训地点实验楼308班级学号姓名实 训 (实 践 ) 报 告实 训 名 称 自相关模型的检验与处理一、 实训目的掌握自相关模型的检验及处理方法。
二 、实训要求掌握自相关模型的图形法检验、DW 检验,与科克伦—奥克特迭代法对自相关修正。
三、实训内容1.检测进口额模型12i i i Y X u ββ=++的自相关性;2.检验模型中存在的问题,并采取适当的补救措施予以处理;四、实训步骤1.建立Workfile 和对象,录入数据;2.参数估计、检验模型的自相关;3.利用科克伦-奥科特迭代法处理模型中的自相关问题。
五、实训分析、总结表1列出了1985-2003年中国实际GDP 和进口额的统计数据。
假设实际GDP (X )与实际进口额(Y )之间满足线性约束,则理论模型设定为:12i i i Y X u ββ=++其中i Y 表示实际进口额,i X 表示实际GDP 。
表1 1985-2003年中国实际GDP和进口额年份实际GDP(X,亿元)实际进口额(Y,亿元)1985 8964.4 2543.21986 9753.27 2983.41987 10884.65 3450.11988 12114.62 3571.61989 12611.32 3045.91990 13090.55 2950.41991 14294.88 33381992 16324.75 4182.21993 18528.59 5244.41994 20863.19 6311.91995 23053.83 7002.21996 25267 7707.21997 27490.49 8305.41998 29634.75 9301.31999 31738.82 9794.82000 34277.92 10842.52001 36848.76 12125.62002 39907.21 14118.82003 43618.58 17612.21.建立Workfile和对象,录入1985-2003年中国实际GDP(X)和进口额(Y)图1 1985-2003年中国实际GDP(X)和进口额(Y)2.参数估计、检验模型的自相关使用普通最小二乘法估计消费模型得:图2 样本的回归估计结果-1690.3090.387979i Y X ∧=+20.965870 481.1009 0.523859R F DW ===通过分析可知:该回归方程可决系数较高,回归系数均显著。
自相关检验以及消除自相关
实验二自相关检验以及消除自相关【实验目的】掌握图示法和DW检验、LM检验自相关的方法,利用合适的方法消除自回归,并估计自回归参数。
【实验原理】1、图示法图示法就是依据残差对时间t的序列图作出判断。
由于残差是对误差项ut 的估计,所以尽管误差项ut 观测不到,但可以通过e的变化判断ut 是否存在自相关。
2、DW(Durbin-Watson)检验法(1) H0: ρ = 0 (ut 不存在自相关)H1: ρ≠ 0 (ut 存在一阶自相关)(2) 若DW取值在(0, dL)之间,拒绝原假设H0 ,认为ut 存在一阶正自相关。
若DW取值在(4 - dL , 4)之间,拒绝原假设H0 ,认为ut 存在一阶负自相关。
若DW取值在(dU, 4- dU)之间,接受原假设H0 ,认为ut 非自相关。
若DW取值在(dL, dU)或(4- dU, 4 - dL)之间,这种检验没有结论,即不能判别ut 是否存在一阶自相关。
3、变换原回归模型,使变换后的随机误差项消除自相关,进而利用普通最小二乘法估计回归参数。
【实验软件】Eview6【实验内容】建立并检验我国1982年至2002年进出口之间自相关模型,消除自回归,并估算回归参数。
【实验数据资料】下表列出了我国1982年至2002年进出口的统计资料年份EX IM1982223.2192.91983222.3213.91984261.4274.11985273.5422.51986309.44291987394.4432.21988475.2552.71989525.4591.41990620.9533.51991719.9637.91992849.4825.91993917.41039.619941210.11156.219951487.81320.819961510.51388.319971827.91423.719981837.11402.419991949.31657200024922250.9200126612435.520023255.72952【实验过程】1、启动Eviews6软件,建立新的workfile.在主菜单中选择【File】--【New】--【Workfile】,弹出Workfile Create对话框,在Workfile structure type中选择Dated-regular frequency,然后在Frequency 中选择annual,Start date中输入1982,End date中输入2002,然后在WF中输入Work1,点击OK按钮。
计量模型的建立及自相关的检验和修正心得体会
计量模型的建立及自相关的检验和修正心得体会
通过这个学期学习的计量模型的建立及自相关的检验和修正这门课程,王x老师在我们学习计量模型的建立及自相关的检验和修正给了我们很多细心的讲解和耐心的指导,我们针对学习内容主要学到的主要有两点:一:对EVIES软件的熟练操作与应用,学会了Eviews 软件,我感觉自己真的是很幸运,因为毕竟有些软件是属于那种有价无市的,如果没有老师的传授我不可能从市场上或是从思想上认识到它;二:对于计量模型的建立及自相关的检验和修正各种案例分析的认识我是很深刻的,在这一次对一个案例进行回归分析讲述中,我不但巩固了老师课堂所讲的知识,也提高了胆识,增长了见识,也学会了团队与协作的力量。
以下我将着重从两个方面阐述我对计量模型的建立及自相关的检验和修正知识的一些认识以及个人从中学到的经验与心得。
一:计量模型的建立及自相关的检验和修正教我了我很多。
在学习计量模型的建立及自相关的检验和修正的过程中,我可以旁征博引,同时老师也给了我很多有意思的启发,因为即将面临考研的抉择,这门课也是我考研过程中必备的一门课程,因此,它作为一门核心必修课,我们都会很用心得听讲,并对一些重要的知识做了记录,从而为自己的考研奠定一定的基础。
二:计量模型的建立及自相关的检验和修正的系统知识
计量模型的建立及自相关的检验和修正的定义为:用数学方法探讨经济学可以从好几个方面着手,但任何一个方面都不能和计量经济
学混为一谈。
计量模型的建立及自相关的检验和修正与经济统计学绝非一码事。
经过这次对于案例回归分析,老师的指导,使得自己对于论文的查找和内容的筛选也得了不少学习,通过案例的分析中可以用最小二乘法,很好的分析出各种不同因素对我们国内税收的增长情况,让我们的开阔了自己的视野和学习了更多的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验2 自相关的检验与修正
一、实验目的:
掌握自相关模型的检验方法与处理方法.。
二、实验容及要求:
表1列出了1985-2007年中国农村居民人均纯收入与人均消费性支出的统计数据。
(1)利用OLS法建立中国农村居民人均消费性支出与人均纯收入的线性模型。
(2)检验模型是否存在自相关。
(3)如果存在自相关,试采用适当的方法加以消除。
表1 1985-2007年中国农村居民人均纯收入与人均消费性支出(单位:元)
实验如下:
首先对数据进行调整,将全年人均纯收入和全年人均消费性支出相应调整为全年实际人均纯收入和全年实际人均消费性支出。
图1
1、用OLS估计法估计参数
图2
图3
图4
从图4中可以看出,中国农村居民人均消费性支出与人均纯收入存在着显著的正相关关系。
估计回归方程:
从图3中可以得出,估计回归方程为:
Y=56.21878+0.698928X
t=(3.864210)(31.99973)
R2=0.979904 F=1023.983 D.W.=0.409903
(1)图示法
图5
从图5中,可以看出残差的变化有系统模式,连续为正或连续为负,表示残差项存在一阶正自相关。
(2)DW检验
从图3中可以得到D.W.=0.409903,在显著水平去5%,n=23,k=2,d L=1.26, d U=1.44。
此时0<D.W.< d L,表明存在正自相关。
(3)B-G检验
图6
从图6中可得到,nR2=14.90587,临界概率P=0.0006,因此辅助回归模型是显著的,即存在自相关性。
又因为,e t-1,e t-2的回归系数均显著地不为0
3.自相关的修正
使用广义差分法对自相关进行修正:
图7
对原模型进行广义差分,得到广义差分方程:
Y t-0.815024Y t-1=β1(1-0.815024)+β2(X t -0.815024X t-1)+u t
对广义差分方程进行回归:
图8
从图8中可以得出此时的D.W.=1.324681,在取显著水平为5%,n=23,k=2,d L=1.26, d U=1.44,模型中d L<DW<d U,此时不能确定是否存在自相关。
在广义差分法无法完成修正的情况下,现建立对对数模型:
图9
对双对数模型进行调整:
图10
图11
从图11中可以得出此时的D.W.=1.985950,在取显著水平为5%,n=23,k=2,d L=1.26, d U=1.44,模型中d U<DW<4-d U,此时不存在自相关。
由此完成对自相关的修正。