第1章 流体力学基础
第1章 流体力学基础知识
气 业 基 学 1.1.2 流体的密度、压强和温度
西 动 大 础教 院 1. 流体内部一点处的密度 北 力 学 学 在连续介质假设的前提下,可以对流体微团乃至流体内部某一几何点处的密 工 学 航 团 度下定义。
空气 业 基 天学 队 围绕流体内部某一点 P 处划取一块微小空间,设这块空间的容积为 ∆τ ,其
介质平均密度有一个相当稳
西 北
定的值,即 ρ p 。这是因为在
空 工 微元容积缩小过程中。包含
气 业 在微元单位容积内的分子数
西 动 大 目越来越稳定,单个分子的
北 力 学 个性没有显示出来。如果继续缩小微元容积,向零趋近时,单位微元容积内所
空 工 学 航天 包含的介质分子数目就不可能保持常数。在某一瞬间来看问题:如果恰好有几
大 编 dV /V 动 学 教 院 写 式中:E 为体积弹性模数;V 为一定量气体的体积。对于一定质量的气体,其体
力 航 学 积与密度成反比例关系,因此可得
学基 天 团队 dρ = − dV 学ρ V
础 院 编 因此,气体的体积弹性模数可写为
教学 写 E = ρ dp 团 dρ
(1-7)
队 在相同的压强增量作用下,这种相对密度(或体积)的变化的大小和体积弹性
队 作用,微粒的实际占有体积和气体所占空间相比较可以忽略不计。远离液态的
编 气体基本符合这些假设,通常状况下的空气也符合这些假设,可以看作为一种
完全气体。
写
任何状态下,气体的压强、密度和温度之间都存在一定的函数关系,即
p = p(ρ,T )
这个函数关系称之为气体的状态方程。完全气体的状态方程为
p = R ρT m
(1-5)
西 式中: R 为普适气体常数,其数值为 8315 m2 / (s2 ⋅ K ) ;m 为某种气体的分子量;
第1章流体力学与计算流体力学基础
第1章 流体力学与计算流体力学基础机进行数值计算,模拟流体流动时的各种相关物理现象,包括流动、热传导、声场等。
计算流体动力学分析广泛应用于航空航天设计、汽车设计、生物医学工业、化工处理工业、1.1 流体力学基础本节将介绍流体力学一些重要的基础知识,包括流体力学的基本概念和基本方程。
流体力学是进行流体力学工程计算的基础,如果想对计算的结果进行分析与整理,在设置边界条件时有所依据,那么学习流体力学的相关知识是必要的。
1.1.1 一些基本概念(1)流体的密度流体密度的定义是单位体积内所含物质的多少。
若密度是均匀的,则有:VM=ρ (1-1) 式中:ρ为流体的密度;M 是体积为V 的流体内所含物质的质量。
由上式可知,密度的单位是kg/m 3。
对于密度不均匀的流体,其某一点处密度的定义为:VMV ΔΔ=→Δ0limρ (1-2)2 Fluent 17.0流体仿真从入门到精通例如,4℃时水的密度为10003kg /m ,常温20℃时空气的密度为1.243kg /m 。
各种流体的具体密度值可查阅相关文献。
流体的密度是流体本身固有的物理量,随着温度和压强的变化而变化。
(2)流体的重度流体的重度与流体密度有一个简单的关系式,即:g ργ= (1-3)式中:g 为重力加速度,值为9.812m /s 。
流体的重度单位为3N /m 。
(3)流体的比重流体的比重定义为该流体的密度与4℃时水的密度之比。
(4)流体的粘性在研究流体流动时,若考虑流体的粘性,则称为粘性流动,相应地称流体为粘性流体;若不考虑流体的粘性,则称为理想流体的流动,相应地称流体为理想流体。
流体的粘性可由牛顿内摩擦定律表示:dyduμτ= (1-4)牛顿内摩擦定律适用于空气、水、石油等大多数机械工业中的常用流体。
凡是符合切应力与速度梯度成正比的流体叫做牛顿流体,即严格满足牛顿内摩擦定律且µ保持为常数的流体,否则就称其为非牛顿流体。
例如,溶化的沥青、糖浆等流体均属于非牛顿流体。
于治明主编液压传动课件第一章 流体力学基础
静止液体在单位面积上所受的法向力称为静压力。 静止液体在微小面积上所受的内法线方向的法向力, 该点的压力为。 (3-1) 静压力性质: 静压力垂直于承压面,其方向和该面的内法线方向一致。 静止液体内任意一点所受到的压力在各个方向上都相等。
• 压力及其性质: 质量力:力的作用反映在液体内部每一个质点上。如重力、惯性力、离心力等。质量力的大小 和液体的质量成正比。 表面力:力的作用反映在外部表面或内部截面上。表面力的大小和作用面积成正比。如液体边 界上的大气压力,液体内部各部分之间相互作用的压力、内摩擦力等。 单位质量力数值上等于加速度。 单位面积上作用的表面力称为应力。 法向应力和切向应力 液体在单位面积上所受的内法线方向的法向应力称为压力。
压力为p时液体的运动粘度
p
大气压力下液体的运动粘度
a
(1 9)
(5)气泡对粘度的影响
b 0 (1 0.015b)
b为混入空气的体积分数 混入b空气时液体的运动粘度
不含空气时液体的运动粘度
0
b
(三)、选用与维护
1、工作介质的选择 品种、粘度 2、工作介质的使用和维护 1)污染物种类及其危害 固体颗粒、水、空气、化学物质、微生物 污染能量。 2)污染原因 3)污染物等级 指单位体积工作介质中固体颗粒污染物的含 量,即工作介质中固体颗粒的浓度。 ISO4406:1987,1999
一、基本概念
(一)、理想液体、恒定流动和一维流动
既无粘性不可压缩的假想液体,称为理想液体。 液体流动时,液体中任意点处的压力、速度和密度都不随 时间而变化,液体作恒定流动。
只要压力、速度或密度有一个随时间变化,液体作非恒 定流动。当液体整体作线性流动时,称为一维流动。
(二)、流线、流束和通流截面
第一章 流体力学基础(10)
Pa s
在物理单位制中: P,泊 SI单位制和物理单位制粘度单位的换算关系为:
1Pa s 10P 第一章 流体力学基础
牛顿型流体和非流动流体
1)凡遵循牛顿粘性定义的流体称为牛顿型流体;否则 为非流动型流体。 牛顿型流体,如水、空气等; 2) 非流动型流体,如某些高分子溶液、悬浮液、泥浆 和血液等。 3) 本书所涉及的流体多为牛顿型流体。
第一章 流体力学基础
(2)通过喷嘴的流动
1 2
q+w=△h+ g△Z+
1 2 △ u 2
u2 2h1 h2
流体流过收缩喷嘴时获得的动能等于流体韩志的增加
第一章 流体力学基础
(3)通过节流阀的流动
q+w=△h+ g△Z+
1 2 △ u 2
h1 h2
流体截流前后的焓值不变
第一章 流体力学基础
在过程生产中,有些仪表是以静力学基本方程式为理论依
一、压强与压强差测量
1 U型管液柱压差计 指示液密度ρ0,被测流体密度为ρ,图中a、 b两点的压力是相等的,因为这两点都在同一 种静止液体(指示液)的同一水平面上。通 过这个关系,便可求出p1-p2的值。
指示剂的选择
@ 指示液必须与被测流体不 互容; @ 不起化学反应; @ 大于被测流体的密度。 指示液随被测流体的 不同而不同。
实际上流体都是可压缩的,一般把液体当作不可压缩流体; 气体应当属于可压缩流体。但是,如果压力或温度变化率很小 时,通常也可以当作不可压缩流体处理。
第一章 流体力学基础
稳定流动(定态流动)
稳定流动:流体在流动时,在任一点上的流速、压力等有关 物理参数仅随位置变化而不随时间改变。
流体力学基础知识
第一章,绪论1、质量力:质量力是作用在流体的每一个质点上的力。
其单位是牛顿,N。
单位质量力:没在流体中M点附近取质量为d m的微团,其体积为d v,作用于该微团的质量力为dF,则称极限lim(dv→M)dF/dm=f,为作用于M点的单位质量的质量力,简称单位质量力。
其单位是N/kg。
2、表面力:表面力是作用在所考虑的或大或小得流体系统(或称分离体)表面上的力。
3、容重:密度ρ和重力加速度g的乘积ρg称容重,用符号γ表示。
4、动力黏度μ:它表示单位速度梯度作用下的切应力,反映了黏滞性的动力性质。
其单位为N/(㎡·s),以符号Pa·s表示。
运动黏度ν:是单位速度梯度作用下的切应力对单位体积质量作用产生的阻力加速度。
国际单位制单位㎡/s。
动力黏度μ与运动黏度ν的关系:μ=ν·ρ。
5、表面张力:由于分子间的吸引力,在液体的自由表面上能够承受的极其微小的张力称为表面张力。
毛细管现象:由于表面张力的作用,如果把两端开口的玻璃细管竖立在液体中,液体就会在细管中上升或下降h高度的现象称为毛细管现象。
6、流体的三个力学模型:①“连续介质”模型;②无黏性流体模型;③不可压缩流体模型。
(P12,还需看看书,了解什么是以上三种模型!)。
第二章、流体静力学1、流体静压强的两个特性:①其方向必然是沿着作用面的内法线方向;②其大小只与位置有关,与方向无关。
2、a流体静压强的基本方程式:①P=Po+rh,式中P指液体内某点的压强,Pa(N/㎡);Po指液面气体压强,Pa(N/㎡);r指液体的容重,N/m³;h指某点在液面下的深度,m;②Z+P/r=C(常数),式中Z指某点位置相对于基准面的高度,称位置水头;P/r指某点在压强作用下沿测压管所能上升的高度,称压强水头。
两水头中的压强P必须采用相对压强表示。
b流体静压强的分布规律的适用条件:只适用于静止、同种、连续液体。
3、静止均质流体的水平面是等压面;静止非均质流体(各种密度不完全相同的流体——非均质流体)的水平面是等压面,等密度和等温面。
流体力学基础知识
第一章流体力学基本知识学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关容。
§1-1 流体的主要物理性质1.本节教学容和要求:1.1本节教学容:流体的4个主要物理性质。
1.2教学要求:(1)掌握并理解流体的几个主要物理性质(2)应用流体的几个物理性质解决工程实践中的一些问题。
1.3教学难点和重点:难点:流体的粘滞性和粘滞力重点:牛顿运动定律的理解。
2.教学容和知识要点:2.1 易流动性(1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。
流体也被认为是只能抵抗压力而不能抵抗拉力。
易流动性为流体区别与固体的特性2.2密度和重度(1)基本概念:密度——单位体积的质量,称为流体的密度即:Mρ =VM——流体的质量,kg ;V——流体的体积,m3。
常温,一个标准大气压下Ρ水=1×103kg/ m3103kg/ m3Ρ水银=13.6×基本概念:重度:单位体积的重量,称为流体的重度。
重度也称为容重。
Gγ =VG——流体的重量,N ;V——流体的体积,m3。
∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3103kg/ m3γ水银=133.28×密度和重度随外界压强和温度的变化而变化液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。
2..3 粘滞性(1)粘滞性的表象基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。
当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表现。
为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。
用流速仪测出管道中某一断面的流速分布如图一所示设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。
化工原理第一章流体力学基础
第一章 流体力学基础
m GA uA
17/37
1.3.1 基本概念
三、粘性——牛顿粘性定律
y x
v
内部存在内摩擦力或粘滞力
v=0
内摩擦力产生的原 因还可以从动量传 递角度加以理解:
v
单位面积上的内摩擦力,N m2
dv x
dy
动力粘度 简称粘度
速度梯度
----------------牛顿粘性定律
(2)双液柱压差计
p1
1略小于2
z1
p1 p2 2 1 gR
p1
R
p2
R
p2
1
z1
R 2
0
倾斜式压差计
浙江大学本科生课程 化工原理
第一章 流体力学基础
读数放大
14/14
幻灯片2目录
1.3 流体流动的基本方程 1.3.1 基本概念 1.3.2 质量衡算方程 1.3.3 运动方程 一、作用在流体上的力 二、运动方程 三、N-S方程 四、欧拉方程 五、不可压缩流体稳定层流时的N-S 方程若干解
v x v y vz 0
t x
y
z
t
vx
x
vy
y
vz
z
v x x
v y y
v z z
0
D
Dt
v x x
v y y
v z z
0
-------连续性方程微分式
若流体不可压缩,则D/Dt=0
v x v y v z 0 x y z
浙江大学本科生课程 化工原理
第一章 流体力学基础
dy
N m2 ms
Ns m2
Pa s
m
1Pa s 10P 1000cP
1流体力学基础
第二节 流体静力学
一、流体静力学概念 研究流体静止或平衡时的力学规律及其工程应 用的科学。
由于静止流体无相对速度,不呈现粘滞性, 不存在切力,也不能承受拉力,故其所受的力 只能是压力。
二、压强 在静水中,取一微小面积Δw,其上作用静 水压力ΔP,则面积上的平均压强
三、静止流体压强的两个特性: (1)静止压强的方向 必然沿着作用面的内法线方向,即垂直指向 作用面。这是因为静止流体内的应力只能是压 应力; (2)流体中任一点静水压强的大小
雷 诺 实 验 与 雷 诺 数
在一端装有阀门的长玻璃 管中充满水,稍开启阀门 放水,并由小管注入有颜 色水流,则可见管内颜色 水成一稳定细流,这种流 型称为层流。当阀门开大, 水流速增加时,管中有色 线产生振荡波动.再开大 阀门到一定程度,流速增 大,水流中色线掺混紊乱, 此时称为紊流。
2、雷诺数 英国物理学家雷诺曾作过试验并得到判断 流型的计算式,称为雷诺公式:
与作用的方向无关。换言之,一点上各个方向 的压强均相等。这是因为静止流体中某一点 受四面八方的压应力而达到平衡。
四、流体静力学基本方程
其中,p0——液面压强;p——液体内 部某点的压强; ——容重;h——深度。
它表示静止液体中,压强随深度按直线变化的规 律。任一点的压强由p0和h两部分组成。压强 的大小与容器的形状无关。 .深度相同,压强相同。由于液面是水平面,所以 这些压强相同的点组成的面是水平面,即:水 平面是压强处处相同的面。所以,水平面是等 压面。两种不相混杂的液体的分界面也是水平 面,自由表面是水深为0的各点组成的等压面。 注意:该规律是同种液体处于静止、连续的条件 下推出,所以,只适用于静止、同种、连续的 液体。
3、沿程损失和局部损失
流体力学基础连续性方程、流体运动方程与能量方程.PPT
14
根据动量定理
ρd d ud x d y d z (F b P x x P y y P z z)d x d y d z
约去 dxdydz ,得
du x d
Fbx
Pxx x
Pyx y
Pzx z
du y d
Fby
Pyx x
Pyy y
Pyz z
du z d
Fbz
Pzx x
同理
y(ρuyu)dzdxdyΔ
z(ρuzu)dxdydzΔ
10
EXIT
经全部控制面的恒定流动量通量的净变化率为
xuxuy uyu zuzudxdydz
ux
x(u)uy
yuuz
uuux uuy
z
x y
uuzzdxdydz
u•uu•udxdydz + (ρu )dxdydz
微元流体系统的动量变化率为:
第一章 流体力学基础 ——流体运动的微分方程
西安建筑科技大学粉体工程研究所 李辉
1
质量传递——连质续量性守方恒程定律 动量传递——纳动维量-定斯理托克斯方程 能量传递——能能量量方守程恒定律 状态方程
流体运 动微分 方程组
所有流体运动传递过程的通解
2
EXIT
1.3 流体运动的微分方程
• 质量守恒定律——连续性方程 • 动量定理——纳维-斯托克斯方程 • 能量守恒定律——能量方程 • 定解条件
3
EXIT
1.3.1 质量守恒定律——连续性方程
• 质量既不能产生,也不会消失,无论经历什么形式的运动, 物质的总质量总是不变的。
• 质量守恒在易变形的流体中的体现——流动连续性。
单组分流体运动过程中质量守恒定律的数学描述: 在控制体内不存在源的情况下,对于任意选定的控制体
流体力学基础 第一节 空气在管道中流动的基本规律
流体力学基础第一节空气在管道中流动的基本规律一、流体力学基础第一节空气在管道中流动的基本规律第一章流体力学基础第一节空气在管道中流动的基本规律工程流体力学以流体为对象,主要研究流体机械运动的规律,并把这些规律应用到有关实际工程中去。
涉及流体的工程技术很多,如水力电力,船舶航运,流体输送,粮食通风除尘与气力输送等,这些部门不仅流体种类各异,而且外界条件也有差异。
通风除尘与气力输送属于流体输送,它是以空气作为工作介质,通过空气的流动将粉尘或粒状物料输送到指定地点。
由于通风除尘与气力输送是借助空气的运动来实现的,因此,掌握必要的工程流体力学基本知识,是我们研究通风除尘与气力输送原理和设计、计算通风除尘与气力输送系统的基础。
本章中心内容是叙述工程流体力学基本知识,主要是空气的物理性质及运动规律。
一、流体及其空气的物理性质(一) 流体通风除尘与气力输送涉及的流体主要是空气。
流体是液体和气体的统称,由液体分子和气体分子组成,分子之间有一定距离。
但在流体力学中,一般不考虑流体的微观结构而把它看成是连续的。
这是因为流体力学主要研究流体的宏观运动规律它把流体分成许多许多的分子集团,称每个分子集团为质点,而质点在流体的内部一个紧靠一个,它们之间没有间隙,成为连续体。
实际上质点包含着大量分子,例如在体积为10-15厘米的水滴中包含着3×107个水分子,在体积为1毫米3的空气中有2.7×1016个各种气体的分子。
质点的宏观运动被看作是全部分子运动的平均效果,忽略单个分子的个别性,按连续质点的概念所得出的结论与试验结果是很符合的。
然而,也不是在所有情况下都可以把流体看成是连续的。
高空中空气分子间的平均距离达几十厘米,这时空气就不能再看成是连续体了。
而我们在通风除尘与气力输送中所接触到的流体均可视为连续体。
所谓连续性的假设,首先意味着流体在宏观上质点是连续的,其次还意味着质点的运动过程也是连续的。
有了这个假设就可以用连续函数来进行流体及运动的研究,并使问题大为简化。
化工原理-第一章
29
返回
(3) 倒U形压差计
指示剂密度小于被测流体密度,如空 气作为指示剂
p1 p2 Rg( 0 ) Rg
(4) 倾斜式压差计 适用于压差较小的情况。
30
返回
例1-1 如附图所示,水在水平管道内流动。为测量流
体在某截面处的压力,直接在该处连接一U形压差计,
指示液为水银,读数
18
返回
表 压 = 绝对压力 - 大气压力 真空度 = 大气压力 - 绝对压力
p1
表压
大气压
真空度 绝对压力
p2
绝对压力 绝对真空
19
返回
1.1.3 流体静力学平衡方程
一、静力学基本方程 设流体不可压缩, (1)上端面所受总压力
P1 p1 A
Const.
p1 G p2
p0
重力场中对液柱进行受力分析:
5
返回
1.0.0 流体的特征
液体和气体统称为流体。
• 具有流动性;
• 无固定形状,随容器形状而变化; • 受外力作用时内部产生相对运动。 不可压缩流体:流体的体积不随压力变化而变化,
如液体;
可压缩性流体:流体的体积随压力发生变化,
如气体。
6
返回
1.0.1 研究流体流动的目的
1、流体输送:选择适宜流速、确定管路直径、 选用输送设备; 2、压强、流速和流量的测量:便于了解和控制 生产; 3、为强化设备提供适宜流动条件:如传热、传 质设备的强化。
9
返回
1.0.3 流体流动中的作用力
1、体积力: 体积力作用于流体的每一个质点上,并与流体的 质量成正比,也称为质量力,如重力、离心力。 2、表面力:包括压力与剪力 压力:垂直于表面的力 剪力:平行于表面的力,又称粘性力,与流体运动 有关。 返回
第一章 流体力学基础知识
第一章流体力学基础知识本章先介绍流体力学的基本任务,研究方向和流体力学及空气动力学的发展概述。
然后介绍流体介质,气动力系数,矢量积分知识。
最后引入控制体,流体微团及物质导数的概念。
为流体力学及飞行器空气动力学具体知识的学习做准备。
1.1流体力学的基本任务和研究方法1.1.1流体力学的基本任务流体力学是研究流体和物体之间相对运动(物体在流体中运动或者物体不动而流体流过物体)时流体运动的基本规律以及流体与物体之间的作用力。
而空气动力学则是一门研究运动空气的科学。
众所周知,空气动力学是和飞机的发生,发展联系在一起的。
在这个意义上,这门科学还要涉及到飞机的飞行性能,稳定性和操纵性能问题。
事实上,空气动力学研究的对象还不限于飞机。
空气相对物体的运动,可以在物体的外部进行,像空气流过飞机表面,导弹表面和螺旋浆等;也可以在物体的内部进行,像空气在风洞内部和进气道内部的流动。
在这些外部或内部流动中,尽管空气的具体运动和研究运动的目的有所不同,但它们都发生一些共同的流动现象和遵循一些共同的流动规律,例如质量守恒,牛顿第二定律,能量守恒和热力学第一定律,第二定律等。
研究空气动力学的基本任务,不仅是认识这些流动所发生现象的基本实质,要找出这些共同性的基本规律在空气动力学中的表达,并且研究如何应用这些规律能动地解决飞行器的空气动力学问题和与之相关的工程技术问题,并对流动的新情况、新进展加以预测。
1.1.2空气动力学的研究方法空气动力学研究是航空科学技术研究的重要组成部分,是飞行器研究的“先行官”。
其研究方法,如同物理学各个分支的研究方法一样,有实验研究、理论分析和数值计算三种方法。
这些不同的方法不是相互排斥,而是相互补充的。
通过这些方法以寻求最好的飞行器气动布局形式,确定整个飞行范围作用在飞行器的力和力矩,以得到其最终性能,并保证飞行器操纵的稳定性。
实验研究方法在空气动力学中有广泛的应用,其主要手段是依靠风洞、水洞、激波管以及测试设备进行模拟实验或飞行实验。
南京理工大学 液压与气压传动 第一章 流体力学基础
m2
/s
9
南京理工大学 机械工程学院
温度对粘度的影响:温度升高,粘度下降。称为液体 的粘-温特性。粘-温特性常用粘度指数Ⅴ.Ⅰ来度量。 粘度指数Ⅴ.Ⅰ表示液体的粘度随温度变化的程度与标 准液体的粘度变化程度之比。粘度指数高,粘度随温 度变化小,其粘-温特性好。
10 南京理工大学 机械工程学院
压力对液体粘性的影响
表压力=绝对压力-大气压力
真空度=大气压力-绝对压力
23 南京理工大学 机械工程学院
例:图示充满油液的容器,作用在活塞上的力为F=1000N,活塞 面积A=1×10-3m2,忽略活塞质量。试问活塞下方0.5m处的压力是 多少?油液的密度 ρ =900kg/m3。
解:与活塞接触的液面处的压力为: p0 = F/A=1000/(1×10-3)=106N/m2 h=0.5m深处的压力: p =p0+ ρ gh=106+900×0.5×9.8 =1.0044 ×106(Pa)≈ 1MPa
(二)物理性质
(2)可压缩性:液体因受压力增高而体积缩小的性质。 液体压缩率k:液体在单位压力变化下的体积相对变化量。
1 V k
p V0
其中:压力p0时体积为V0,压力增加Δp,体积减小ΔV,因压力 变化与体积变化方向相反,要加“-”。
体积(弹性)模量K:液体压缩率k的倒数。
K
1 k
p V
V0
3 南京理工大学 机械工程学院
基本功能: 传动 润滑 冷却 防锈 为使液压系统长期保持正常工作性能,
对介质的要求:
可压缩性小,粘度适当,润滑性好,安定性好,防锈抗腐, 抗泡沫,抗乳化,洁净性,相容性好,阻燃性好,无毒无味等 使用最广泛的液压液为石油基液压油(润滑油+添加剂)
第1章流体力学基础部分
∵ 液体在静止状态下不呈现粘性
∴ 内部不存在切向剪应力而只有法向应力 (2)各向压力相等
∵ 有一向压力不等,液体就会流动
∴ 各向压力必须相等
1.2.2 静止液体中的压力分布
1、液体静力学基本方程式
质量力(重力、惯性力)作用于液体的所有质点 作用于液体上的力
表面力(法向力、切向力、或其它物体或其它容器对液体、一部
赛氏秒SUS:
雷氏秒R:
美国用
英国用
巴氏度0B:
法国用
恩氏粘度与运动粘度之间的换算关系: ν=(7.310E – 6.31/0E)×10-6
m2/s
三、液体的可压缩性
可压缩性: 液体受压力作用而发生体积缩小性质 1、液体的体积压缩系数(液体的压缩率) 定义:体积为V的液体,当压力增大△p时,体积减小△V, 则液体在单位压力变化下体积的相对变化量 公式:
工作介质: 传递运动和动力 液压油的任务 润滑剂: 润滑运动部件 冷却、去污、防锈
1、 对液压油的要求
(1)合适的粘度和良好的粘温特性;
(2)良好的润滑性;
(3)纯净度好,杂质少; (4)对系统所用金属及密封件材料有良好的相容性。 (5)对热、氧化水解都有良好稳定性,使用寿命长; (6)抗泡沫性、抗乳化性和防锈性好,腐蚀性小; (7)比热和传热系数大,体积膨胀系数小,闪点和燃点高,流 动点和凝固点低。(凝点:油液完全失去其流动性的最高温度) (8)对人体无害,对环境污染小,成本低,价格便宜
υ=q/A
1.3.2 连续性方程--质量守恒定律在流体力学中的应用
1、连续性原理--理想液体在管道中恒定流动时,根据质 量守恒定律,液体在管道内既不能增多,也不能减少,因此 在单位时间内流入液体的质量应恒等于流出液体的质量。 2、连续性方程 ρ 1υ1A1=ρ 2υ2A2 若忽略液体可压缩性 ρ 1=ρ 则 υ1A1=υ2A2 或q=υA=常数
1.1流体力学基础知识
hf = kω
m
对于层流m=1,对于湍流m=1.75~2.0.很 对于层流m=1,对于湍流m=1.75~2.0.很 显然,湍流状态的损失要大的多,因此在 成本允许的情况下,输送管道要尽量粗一 些,保证以层流的形态进行输送.
(三),影响流动阻力损失大小的 ),影响流动阻力损失大小的 因素
流体的沿程阻力损失跟管道长度成正比; 流体的沿程阻力损失跟管道长度成正比; 管道长度成正比 跟平均流动速度的平方成正比, 跟平均流动速度的平方成正比,跟管径大 小成反比. 小成反比. 流体的局部阻力损失跟平均流动速度的平 流体的局部阻力损失跟平均流动速度的平 方成正比. 方成正比. 显然,流体的流动阻力损失还跟流体本身 显然, 的粘滞性和管道跟局部构件的粗糙程度有 关系. 关系.
2.局部阻力和局部损失 2.局部阻力和局部损失 管道中的弯头,三通,阀件和过流截 面有变化(例如管径突然增大或者缩小) 时的连接件等统称为管道局部构件.流体 流经管道局部构件时,由于构件边壁的阻 碍或扰动作用及流体自身的惯性,将发生 撞击,旋涡等现象,流速的大小和方向会 有急剧的改变,形成较大的流动阻力,称 为局部阻力.局部阻力造成的能量损失比 较集中.为克服局部阻力而消耗的单位重 量流体的机械能,称为局部损失 量流体的机械能,称为局部损失,用hj表示. 局部损失,用h 整个管道的能量损失应该分段计算沿 程损失和局部损失,再进行叠加.
六,泵与风机
有关离心式水泵的结构和工作原理的内容在 高中物理中已经有讲授,这里不在赘述.需 要注意的是离心式泵与风机是中心进入边沿 要注意的是离心式泵与风机是中心进入边沿 流出,离心式水泵开机前要将机壳中注满水. 流出,离心式水泵开机前要将机壳中注满水. 水泵和风机在工程中是一种能量转换装置, 它消耗原动机的能量,提高流体的全压力 它消耗原动机的能量,提高流体的全压力. 全压力. 泵与风机的主要性能参数:流量, 泵与风机的主要性能参数:流量,扬程和压 流量 功率,效率,转速请同学们自行了解. 头,功率,效率,转速请同学们自行了解.
第一节 流体力学基础知识
精品文档
3.密度与容重的关系
GMgg
VV
4.密度和容重与压力、温度的关系
❖ 压力升高
流体的密度和容重增加;
❖ 温度升高
流体的密度和容重减小。
精品文档
(二)流体的粘滞性
精品文档
1. 流体粘滞性的概念
流体内部质点间或流层间因相对运动而产生内摩
擦力(粘滞力)以反抗流体相对运动的性质。
精品文档
注意:自然界中都是非恒定流,工程中取为恒定流。
3、流线与迹线 (1)流线:同一时刻连续流体质点的流动方向线。 (2)迹线:同一质点在连续时间内的流动轨迹线。
精品文档
精品文档
4、均匀流与非均匀流 (1)均匀流:流体运动时,流线是平行直线的流 动。 (2)非均匀流:流体运动时,流线不是平行直线 的流动。
化时,迫使主流脱离边壁而形成漩涡,流体质点间产 生剧烈的碰撞,所形成的阻力。
局部水头损失 ------为了克服局部阻力而消耗的单
-68KN/m2;68KN/m2
2、绝对压力为0.4个大气压,其真空度为(D )。
A.0.4个大气压
B.0.6个大气压
C.—0.4个大气压
D.—0.6个大气压
精品文档
练习
3、油的密度为800kg/m3,油处于静止状态,油面与大气接触,
则油面下0.5m处的表压强为 kPDa。
(A)0.8 ;(B)0.5;(C)0.4;(D)3.9
精品文档
作业
• 水在粗细不均匀的水平管中作稳定流动。已知截面S1处 的压强为110Pa,流速为0.2m/s,截面S2处的压强为5Pa, 求S2处的流速(内摩擦不计)。
精品文档
(二)实际气体总流的能量方程式
流体力学基础知识
返回 上页 下页
流体力学基础知识
(2)相对压强 相对压强是以大气压强(p0)为零点计算的压强。
用符号p表示。 在实际工程中,因为被研究对象的表面均受大气压
强作用,因此不需考虑大气压强的作用,即常用相对 压强。 p gh
如果液体是自由表面,则自由表面压强:
p gh
返回 上页 下页
流体力学基础知识
对变化量 。
1 dV
V0 dT
流体压缩性的大小,一般用压缩系数β(Pa-1)
来表示。压缩系数是指单位压强所引起的体积相对
变化量。
1 dV
V0 dp
返回 上页 下页
流体力学基础知识
一般结论: 水的压缩性和热膨胀性是很小的,在建筑设备
工程中,一般计算均不考虑流体的压缩性和热膨胀 性。
气体的体积随压强和温度的变化是非常明显的 ,故称为可压缩流体。
参数不随时间而变化的流动。 非恒定流动是指流体中任一点压强和流速等参数
随时间而变化的流动。 自然界的流体流动都是非恒定流动,在一定条件
下工程上近似认为是恒定流。
返回 上页 下页
流体力学基础知识
3.压力流和无压流 压力流是流体在压差作用下流动时,流体各个
过流断面的整个周界都与固体壁相接触,没有自由 表面。
、f Z
FZ m
返回 上页 下页
流体力学基础知识
当流体所受质量力只有重力时,由G=mg可得 单位质量力为:
fX 0、fY 0、fZ -g
2、表面力 表面力是指作用在流体表面上的力,其大小与
受力表面的面积成正比。 流体处于静止状态时,不存在黏性力引起的内
摩擦力(切向力为零),表面力只有法向压力。对于 理想流体,无论是静止或处于运动状态,都不存在 内摩擦力,表面力只有法向压力。
第一章 流体力学基础ppt课件(共105张PPT)
原
力〔垂直于作用面,记为 ii〕和两个切向 应力〔又称为剪应力,平行于作用面,记为
理
ij,i j),例如图中与z轴垂直的面上受
到的应力为 zz〔法向)、 zx和 zy〔切
电 向),它们的矢量和为:
子
课
件 τ zzix zjy zkz
返回
前页
后页
主题
西
1.1 概述
安
交 • 3 作用在流体上的力
大 化
子 课 件
返回
前页
后页
主题
西
1.2.3 静力学原理在压力和压力差测量上的应用
安
交
大 思索:若U形压差计安装在倾斜管路中,此时读数 R反
化 映了什么?
工 原
理 p1p2
p2
p1 z2
电 子
(0)gR(z2z1)g z1
课
R
件
A A’
返回
前页
后页
主题
西 1.2.3 静力学原理在压力和压力差测量上的应用
安
交 大
•
2.压差计
化 • (2〕双液柱压差计
p1
p2
工•
原•
理
电•
子•
课
件
又称微差压差计适用于压差较小的场合。
z1
1
z1
密度接近但不互溶的两种指示
液1和2 , 1略小于 2 ;
R
扩p 大1 室p 内2 径与2 U 管1 内g 径之R 比应大于10 。 2
图 1-8 双 液 柱 压 差 计
返回
安
交 大
•
1.压力计
化 • (2〕U形压力计
pa
工 • 设U形管中指示液液面高度差为RA,1 指• 示液
流体力学基础
1.3 压强
垂直作用于流体单位面积上的力,称为流体的压强, 简称压强。习惯上称为压力。垂直作用于整个面上的 力称为总压力。
在静止流体中,从各方向作用于某一点的压强大小 均相等。
压强的单位: ❖ 帕斯卡, Pa, N/m2 (法定单位); ❖ 标准大气压, atm; ❖ 某流体液柱高度; ❖ bar(巴)或kgF/cm2等。
➢ 当液面的上方压力p0有变化时,必将引起液体内部各点压力
发生同样大小的变化。
➢ p2=p0+ρgh可改写为
p p0 h
g
由上式可知,压力或压力差的大小可用液柱高度表示。
静力学基本方程式中各项的意义:
将 p2=p1+ρg(Z1-Z2) 两边除以ρg并加以整理可得:
Z1p1 g Z2pg 2
或
Z
pa pb
p1p2(0)gR 0
测量气体时,由于气体的密度ρ比指示液的密度ρ0小得多,故
ρ0-ρ≈ρ0,上式可简化为
p1p2 gR0
下图所示是倒U型管压差计。该压差计是利用被测量液体本
身作为指示液的。压强差p1-p2可根据液柱高度差R进行计算。
例1-3 如附图所示,常温水在管道中流过。为测定a、b两点的压 力差,安装一U型压差计,试计算a、b两点的压力差为若干?已 知水与汞的密度分别为1000kg/m3及13600kg/m3,R为0.1米。
较大。 当压力不太高、温度不太低时,气体的密度可近似地按理
想气体状态方程式计算:
m pM
v RT
(1-3)
式中 p —— 气体的压力,kN/m2或kPa;
T —— 气体的绝对温度,K;
M —— 气体的摩尔质量,kg/kmol;
R —— 通用气体常数,8.314kJ/(kmol·K)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一流点为对象,研究其空间位置及物理量随时间变化的规律,进而推广到整个流体中的所有流点。实
例:漂流瓶、示踪剂。
判断特征:流场一般用位置坐标(函数)表示,变量为:x0,y0,z0,t
5. 欧拉(Euler)变量
固定在某一空间点(x,y,z)上考察其各个时刻的流速,表示为:
V = V(x, y, z,t)
则最后可得:
⎧x ⎪⎨y
= =
x(x0 y(x 0
,y0 ,y0
, z0 ,t) , z0 ,t)
⎪⎩z = z(x0 , y0 , z0 ,t)
即转换成了拉氏变量。
(1.12)
思考:拉氏变量==>欧拉变量 ?
例 1:已知流场用欧拉变量表示为 u=-ωy,v=ωx,w=0(ω为常数),此处 x,y,z 为同一流点
照”。例:卫星云图,天气图。
设 ds 为流线上任一线元矢,则有: V ∕∕ ds ,即:
5
编著、主讲:成都信息工程学院大气科学系 李国平教授 制作:地球信息系统软件工作室 徐进明、李国平
பைடு நூலகம்V × ds = 0
(1.21)
( ds = d x i + d y j + dz k ;V = u i + v j + w k )
在不同时刻的空间坐标,试将欧拉变量转换为拉氏变量。
解:
因为 u
=
dx dt
=
-ωy, v =
dy dt
=
ωx,
w
=
dz dt
=
0,
3
编著、主讲:成都信息工程学院大气科学系 李国平教授 制作:地球信息系统软件工作室 徐进明、李国平
解得(消元后解一元二阶常微方程): x = A cos (ωt+ε), y = A sin (ωt+ε),其中 A、ε为常
取一个以ω角速度旋转动圆盘,其速度分布为:u = - ωy,v = ωx(即为§2 的例 1)
7
编著、主讲:成都信息工程学院大气科学系 李国平教授 制作:地球信息系统软件工作室 徐进明、李国平
( ) 则: ∇ ×V = ∂v - ∂u = 2ω z ∂x ∂y JG JG 即涡度值恰好等于流动旋转角速度的两倍。在地球大气推广: ∇ ×V e = 2Ω
(1.7)
⎧u = u(x, y, z,t) 或 ⎪⎨v = v(x, y, z,t)
⎪⎩w = w(x, y, z,t)
(1.8)
即以流体空间某一固定体积元(空间中的固定点)为对象,研究不同时刻流体通过该固定点时的
运动状态及物理量的变化规律。实例:气象站、水文站。 判断特征:流场一般用流速分量(函数)表示,变量为:x,y,z,t
4
编著、主讲:成都信息工程学院大气科学系 李国平教授 制作:地球信息系统软件工作室 徐进明、李国平
物理意义:个别变化=局地变化+迁移变化(而 迁移变化=平流变化+对流变化)。
8. 定常流场(稳定流场):对于 Euler 变量表示的流场,若 ∂V = 0 →V = V (x,y,z),即流动与时 ∂t
(1.23)
表示流点旋转的大小和方向(度量流点旋转的物理量)。
i jk
∇×V
=
∂ ∂x
∂ ∂y
∂ ∂z
= (∂w − ∂v)i + (∂u ∂y ∂z ∂z
− ∂w) j + (∂v − ∂u)k ∂x ∂x ∂y
= ξi +η
j +ς k
(1.24)
uvw
1.1 涡度与角速度的关系:涡度矢的垂直分量(表示水平面上该点的旋转程度)
(ω:整体旋转的度量,适用于刚体,ζ:流体中任一点旋转程度的度量)
§1.流体的物理性质和宏观模型
质点力学中把实际物体抽象概括称为“质点”(有质量但无体积)。 流体力学也把实际流体抽象概括为“流点”或“连续介质”。 1. 连续介质假设:把离散分子构成的实际流体,看作是由无数流体质点没有空隙、连续分布而构成 的,称为“流点”。即:流体质点(气象上称空气微团或气块)=大量流体分子的集合。
间 t 无关,则称为定常流场。
作业 1:(必做)Cha.1-1,Cha.1-5
y
x02 + y02
O
x
图 1.1 迹线族与流线族(例 1)
§3.迹线和流线
为了更直观、形象地刻画流动,引入迹线和流线的概念。 1. 迹线:流点在各时刻所运行路径的轨迹,反映拉氏观点下流动的几何图象。例:染色剂、漂流瓶。 迹线演示链接
δ τ δτ→ δτ0 3. 连续介质假设对大多数流体适用,但对个别情况不适用,如高层(z>50km,即平流层中层以上) 稀薄大气(此时,流点必须取得很大,则失去点的意义)。
1
编著、主讲:成都信息工程学院大气科学系 李国平教授 制作:地球信息系统软件工作室 徐进明、李国平
§2. 流体速度与加速度,Lagrange 法和 Euler 法
( ) ( ) ∇×V
=
z
∇ ×V
⋅k
=
∂v ∂x
-
∂u ∂y
=
ς
> 逆时针(气旋式)涡度 ς = 0 无旋
< 顺时针(反气旋式)涡度
容易混淆的希腊字母的读音:ξ[ksai], η[´i:tэ], ζ[´zi:tэ], μ[mju:], ν[njiu:], φ[fai],ψ[psai],χ[kai],κ[´kæpэ] ,υ[ju: ],ε[ep’sailэn].
引言
流体:具有流动性,形状易变的物体(如水、空气),不同于固体(刚体),是液体和气体的统称。 流体力学:研究流体运动规律以及流体和固体间相互作用的科学(不同于研究刚体的“理论力学”)。 地球物理流体(动)力学:以与地球相联系的大气、海洋、河流等为主要研究对象的流体力学,简称 地球流体力学。 大气流体力学(Fluid Mechanics of the Atmosphere):以大气为主要研究对象的流体力学。
流体质点是连续分布的,其上的物理量(如:温度、密度、速度等也是连续分布的,从而构成各 种可用连续函数表示的物理量场,可利用高等数学中矢量分析与场论的知识来研究。 2. 对流点的尺度要求:既要充分小(以使它在流动中可当作“点”),又要足够大(能保持大量分子, 具有确定的统计平均效应)。其密度表示为:
ρ = lim δ m =ρ(x,y,z,t )
∇= i ∂ + j ∂ +k ∂ ∂x ∂y ∂z
(1.15)式可改写为:
( ) dV
dt
=
∂V ∂t
+V
⋅∇
V
=
⎛ ⎜⎝
∂ ∂t
+V
⋅
∇
⎞ ⎟⎠
V
此为应用 Euler 变量求流场加速度的计算式。 推广,更一般的物理量(无论矢量、标量)有:
d( )=
dt
∂(
∂t
)
+
(V
⋅∇)(
)
(1.15) (1.16) (1.17) (1.18)
i jk
∵V × ds = u v w = (v dz - w dy ) i + (w dx - udz ) j + (udy - v dx ) k = 0
dx dy dz
⎧v d z - w d y = 0 ∴ ⎨⎪w d x - u d z = 0
⎪⎩u d y - v d x = 0
即:
u
[
dx x, y,
z,t
]
=
v
dy
[x, y,
z,t
]
=
w
dz
[x, y,
z,t
]
——流线方程(1.22)
3. 迹线和流线的区别: 流线:某瞬间反映整个流动状况的空间曲线。 迹线:某流点在不同时刻运行的路径(轨迹)。 一般情况下,两者不相重合;当流动定常时(流点在任一时刻的状态与当时的空间点一样),两者
重合。∵(1.20)、(1.22)两式都不显含 t ,各瞬间的流线均相同,∴流线与迹线重合。 注意:流场定常只是流线与迹线重合的充分条件,即对于非定常流场,流线与迹线也可能重合(例 如第一章作业的题 11)。
数。
设t=0,x=x0,y=y0为初始时该点的位置,
{则有
x0 = y0 =
A cosε A sin ε
,可得: A =
x
2 0
+
y
2 0
,ε= tg−1
y0 x0
。
则拉氏变量为: x =
x
2 0
+
y
2 0
cos
(ωt+
tg −1
y0 x0
),
y=
x 02
+
y
2 0
sin
(ωt+
tg −1
y0 x0
),
z = z0
7. 两种观点下的加速度表示
a=
∂V ∂t
(x0 ,y0 ,z0 ,t ) (=
dV dt
)
(拉氏观点) (1.13)
a = ∂ V (x, y, z,t ) (欧拉观点) (1.14)
∂t
两者应一致,只是表示方法不同。若取(1.14)式中(x,y,z)为 t 时刻流点到达该空间点的位置
缺点:解决问题时,应用数学工具不方便。
欧拉观点的优点:把流体运动当作(流)场随时间的变化,便于应用矢量分析、场论和数理方程
等数学工具,应用更为广泛,如气象研究中涉及的绝大多数问题。
缺点:研究整个流场需要建立若干观测点。
两种变量仅是考察的角度不同,即着眼于流点还是空间(场)点,其描述同一流场的结论本质应
坐标,即把空间点的加速度变为该点随
t
变化的加速度时 ⎛⎜⎝