基于MATLAB-SIMULINK的交流电动机调速系统仿真毕业设计

合集下载

毕业设计基于MATLABSIMULINK的交流电动机调速系统仿真

毕业设计基于MATLABSIMULINK的交流电动机调速系统仿真

1 绪论1.1课题研究背景及目的研究背景直流调速系统的主要优点在于调速范围广、静差率小、稳定性好以及具有良好的动态性能;在相当长时期内,高性能的调速系统几乎都是直流调速系统;尽管如此,直流调速系统却解决不了直流电动机本身的换向和在恶劣环境下的不适应问题,同时制造大容量、高转速及高电压直流电动机也十分困难,这就限制了直流拖动系统的进一步发展;交流电动机自1985年出现后,由于没有理想的调速方案,因而长期用于恒速拖动领域;20世纪70年代后,国际上解决了交流电动机调速方案中的关键问题,使得交流调速系统得到了迅速的发展,现在交流调速系统已逐步取代大部分直流调速系统;目前,交流调速已具备了宽调速范围、高稳态精度、快动态响应、高工作效率以及可以四象限运行等优异特性,其稳、动态特性均可以与直流调速系统相媲美;与直流调速系统相比,交流调速系统具有以下特点:(1)容量大;(2)转速高且耐高压;(3)交流电动机的体积、重量、价格比同等容量的直流电动机小,且结构简单、经济可靠、惯性小;(4)交流电动机环境使用性强,坚固耐用,可以在十分恶劣的环境下使用;(5)高性能、高精度的新型交流拖动系统已达同直流拖动系统一样的性能指标;(6)交流调速系统能显著的节能;从各方面看,交流调速系统最终将取代直流调速系统;1.1.1研究目的本课题主要运用MATLAB-SIMULINK软件中的交流电机库对交流电动机调速系统进行仿真,由仿真结果图直接认识交流系统的机械特性;本文重点对三相交流调压调速系统进行仿真研究,认识PID调节器参数的改变对系统性能的影响,认识该系统动态及静态性能的优劣及适用环境;在实际应用中,电动机作为把电能转换为机械能的主要设备,一是要具有较高的机电能量转换效率;二是应能根据生产机械的工艺要求控制和调节电动机的旋转速度;电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响;因此,调速技术一直是研究的热点12;而交流调速系统凭着其绝对的优势,最终必将取代直流调速系统3;近几年来,科学技术的迅速发展为交流调速技术的发展创造了极为有利的技术条件和物质基础;交流电动机的调速系统不但性能同直流电动机的性能一样,而且成本和维护费用比直流电动机系统更低,可靠性更高4;目前,国外先进的工业国家生产直流传动的装置基本呈下降趋势,交流变频调速装置的生产大幅度上升;在日本,1975年在调速领域,直流占80%,交流占20%;1985年交流占80%,直流占20%5;到目前为止,日本除了个别的地方还继续采用直流电机外,几乎所有的调速系统都采用变频装置67;计算机仿真技术在交流调速系统的应用,使得对交流调速的性能分析和研究变的更为方便;传统的计算机仿真软件包用微分方程和差分方程建模,其直观性、灵活性差,编程量大,操作不便;随着一些大型的高性能的计算机仿真软件的出现,实现交流调速系统的实时仿真可以较容易地实现8;如:matlab软件已经能够在计算机中全过程地仿真交流调速系统的整个过程;matlab语言非常适合于交流调速领域内的仿真及研究,能够为某些问题的解决带来极大的方便并能显著提高工作效率;随着新型计算机仿真软件的出现,交流调速技术必将在成本控制、工作效率、实时监控等方面得到长足进步910;交流调速技术发展到今天,相对而言已经比较成熟,在工业中得到了广泛的应用,但是随着一些新的电力电子器件和一些新的控制策略的出现,工业应用对交流调速系统又提了新的要求,现代交流电机调速技术的研究和应用前景十分广阔;20世纪80年代中期研制开发出一种新型交流调速系统——开关磁阻电动机调速系统,它将新型的电机、现代电力电子技术与控制技术融为一体,形成一个典型的机电一体化的调速系统;由于它在效率、调速性能和成本方面都具有一定的优势,已成为当代电力拖动的一个热门课题,将会在调速领域占有一席之地;交流调速的控制策略近年来发展非常迅速,诸如转差矢量控制,自适应控制磁通自适应、断续电流自适应、参数自适应等模型参考自适应控制,状态观测器磁通观测器、力矩观测器等,为补偿速度降以提高精度的前馈控制,以节能、平稳、快速等为目标函数的优化控制,线性二次型积分控制,滑模变结构控制,直接转矩控制及模糊控制等已见诸国内外有关文献及杂志中论文主要工作1.分析各种调速系统在实际运用中的优缺点,分析各种调速方式适用的场合;2.重点分析掌握三相交流调压调速原理,机械特性等,然后对其进行MATLAB的仿真实现,通过修改系统各部分的参数,可以输出稳定的波形;根据示波器输出结果,对系统的性能进行分析;论文章节安排第一章绪论:主要介绍本课题的研究背景和研究内容,以及交流调速系统在国内外的发展和前景展望;介绍了文章的主要工作安排以及论文章节安排;第二章交流调速系统:比较交流调速系统的各种调速方案,重点分析了交流调压调速系统的原理及机械特性,及对交流调压调速电路以及闭环调压调速系统进行了重点的研究分析;第三章交流调压调速系统的MATLAB仿真:运用MATLAB的SIMULINK工具箱分别对异步电动机调压调速系统的主电路与控制电路进行建模和参数设置,最终建立了异步电动机调压调速系统电路的仿真模型,并对其进行了仿真分析和研究,给出仿真结果,通过对仿真结果的分析验证了交流调压电路的工作原理和所建模型的正确性;第四章结论:对全文进行总结,指明异步电动机调压调速系统的发展方向;2 交流调速系统原理与特性交流调速系统交流电机包括异步电动机和同步电动机两大类;对交流异步电动机而言,其转速为:()min /)1(60r ps f n -= 2-1 从转速公式可知改变电动机的极对数p ,改变定子供电功率f 以及改变转率s 都可达到调速的目的;对同步电动机而言,同步电动机转速为:()min /601r pf n = 2-2 由于实际使用中同步电动机的极对数p 是固定的,因此只有采用变压变频VVVF 调速,即通常说的变频调速;运用到实际中的交流调速系统主要有:变级调速系统、串级调速系统、调压调速系统、变频调速系统1;1变极调速系统:调旋转磁场同步速度的最简单办法是变极调速;通过电动机绕组的改接使电机从一种极数变到另一种极数,从而实现异步电动机的有级调速;变极调速系统所需设备简单,价格低廉,工作也比较可靠,但它是有级调速,一般为两种速度,三速以上的变极电机绕组结构复杂,应用较少;变极调速电动机的关键在于绕组设计,以最少的线圈改接和引出头以达到最好的电机技术性能指标;2串级调速系统:绕线转子异步电动机串级调速是将转差功率加以利用的一种经济、高效的调速方法;改变转差率的传统方法是在转子回路中串入不同电阻以获得不同斜率的机械特性,从而实现速度的调节;这种方法简单方便,但调速是有级的,不平滑,并且转差功率消耗在电阻发热上,效率低;自大功率电力电子器件问世后,采用在转子回路中串联晶闸管功率变换器来完成馈送转差功率的任务,这就构成了由绕线异步电动机与晶闸管变换器共同组成的晶闸管串级调速系统;转子回路中引入附加电势不但可以改变转子回路的有功功率——转差功率的大小,而且还可以调节转子电流的无功分量,即调节异步电动机的功率因数;3调压调速系统:异步电动机电机转矩与输入电压基波的平方成正比,所以改变电机端电压基波可以改变异步电动机的机械特性以及它和负载特性的交点,来实现调速;异步电动机调压调速是一种比较简单的调速方法;在20世纪50年代以前一般采用串饱和电抗器来进行调速;近年来随着电力电子技术的发展,多采用双向晶闸管来实现交流调压;用双向晶闸管调压的方法有两种:一是相控技术,二是斩波调压;采用斩波控制方法可能调速不够平滑,所以在异步电机的调压控制中多用相控技术;但是采用相控技术在输出电压波形中含有较大的谐波,会引起附加损耗,产生转矩脉动15;4变频调速系统:在各种异步电机调速系统中,效率最高、性能最好的系统是变压变频调速系统;变压变频调速系统在调速时,须同时调节定子电源的电压和频率,在这种情况下,机械特性基本上平行移动,转差功率不变,它是当前交流调速的主要方向16;调压调速系统的优点是线路简单,价格便宜,使用维修方便,本文主要针对交流调压调速系统进行MATLAB仿真;下面对交流调压调速系统的原理及机械特性进行介绍;交流异步电动机调压调速系统三相交流调压电路交流调压调速需要三相交流调压电路,晶闸管三相交流调压电路的接线方式很多,工业上常用的是三相全波星形连接的调压电路;如图所示;这种电路的接法特点是负载输出谐波分量低,适用于低电压大电流的场合11;图三相全波星形连接的调压电路要使得该电路正常工作,必须满足下列条件:1在三相电路中至少有一相的正向晶闸管与另一相得反相晶闸管同时导通;2要求采用脉冲或者窄脉冲触发电路;3为了保证输出电压三相对称并且有一定的调节范围,要求晶闸管的触发信号除了必须与相应的交流电源有一致的相序外,各个触发信号之间还必须严格的保持一定的相位关系;即要求U、V、W三相电路中正向晶闸管即在交流电源为正半周时工作的晶闸管的触发信号相位互差120°,三相电路中的反向晶闸管的触发信号相位互差120°;在同一相中反并联的两个正、反向晶闸管的触发脉冲相位应互差180°;由上面结论,可得三相调压电路中各晶闸管触发的次序为VT 1、VT 2、VT 3、VT 4、VT 5、VT 6、VT 1以此类推;相邻两个晶闸管的触发信号相位差60°;在晶闸管交流调压中,晶闸管可借助于负载电流过零而自行关断,不需要另加换流装置,故线路简单、调试容易、维修方便、成本低廉,从而得到广泛的应用;调压调速原理根据异步电动机的机械特性方程式()()[]2'21212'211'221'22'211//33l l M L L s R R s R pU s R I P P T +++==Ω=ωωω 2-3其中 p ——电动机的极对数1U 、1ω——电动机定子相电压和供电角频率s ——转差率1R 、'2R ——定子每相电阻和折算到定子侧的转子每相电阻11L 、'12L ——定子每漏感和折算到定子侧的转子每相漏感可见,当转差率s 一定时,电磁转矩T 与定子电压1U 的平方成正比;改变定子电压可得到一组不同的人为机械特性,如图所示;在带恒转矩负载L T 时,可以得到不同的稳定转速,如图中的A,B,C 点,其调速范围较小,而带风机泵类负载时,可得到较大的调速范围,如图中的D,E,F 点;S S L m图 异步电动机在不同定子电压时的机械特性所谓调压调速,就是通过改变定子外加电压来改变电磁转矩T ,可得到较大的调速范围,从而在一定的输出转矩下达到改变电动机转速的目的13;为了能在恒转矩负载下扩大调压调速范围,使电机在较低速下稳定运行又不致过热,可采用电动机转子绕组有较高电阻值时的机械特性;在恒转矩负载下的交流力矩电动机的机械特性;图显示此类电动机的调速范围增大了,而且在堵转转矩下工作也不致烧毁电;动机14图交流力矩电机在不同定子电压时的机械特性闭环控制的调压调速系统系统的组成及其静特性异步电动机调压调速时,采用普通电机的调速范围很窄;并且在低速运行时候稳定性很差,在电网电压、负载有扰动时候会引起较大的转速变化;解决这些矛盾的根本方法是采用带转速负反馈的闭环控制,以达到自动调节转速的目的;在调速要求不高的情况下,也可采用定子电压负反馈闭环控制;图a是带转速负反馈的闭环调压调速系统原理图,图b是相应的调速系统静特性;如T在A点稳定运行,当负载增大导致转速下降时,通过转速反馈控制作用提果系统带负载L高定子电压,使得转速恢复,即在新的一条机械特性上找到了工作点A';同理,当负载减小使得转速升高时,也可以得到新的工作点A'';将工作点A''、A、A'连起来就是闭环系统的静特性1;M3a 原理图L e min 1Ub 静特性图 转速负反馈闭环控制的交流调压调速系统在额定电压N U 1下的机械特性和最小电压min 1U 下的机械特性是闭环系统静特性左右两边的极限,当负载变化达到两侧的极限时,闭环系统便失去控制能力,回到开环机械特性上工作14;对图a所示的系统,可画出系统静态结构图,见图所示:ASRL T -图 异步电动机调压调速系统的静态结构图图中:ctS U U K 1=----晶闸管交流调压器VVC 和触发装置GT 的放大系数; ct U ----触发装置的控制电压;n U n /=α----为转速反馈系数;n U ----测速发电机TG 输出的反馈电压;转速调节器ASR 采用PI 调节器;()T U f n ,1=是由式2-3描述的异步电动机械特性方程,它是一个非线性函数;近似的动态结构图异步电动机调压调速的近似动态结构图如下所示:U 图 异步电动机调压调速系统的近似动态结构图图中各环节的传递函数为:1 转速调节器ASR常用PI 调节器消除静差并改善动特性,其传递函数为:()ST S T K S W n n n ASR 1+= 2-4 2 晶闸管交流调压器和触发装置GT-V假定该环节输入输出关系是线性的,在动态中可近似为一阶惯性环节,其近似条件与晶闸管触发与整流装置一样;本环节传递函数可表示为:()1+=-TsS K S W S V GT 2-5 3 测速反馈环节FBS考虑到反馈滤波的作用, 传递函数为:()1+=S T S W on FBS α2-64 异步电动机MA由于描述异步电动机动态过程是一组非线性微分方程,只用一个传递函数来准确的表示异步电动机在整个调速范围内的输入输出关系式不可能的;只有做出一定的假设,并用稳态工作点附近微偏线性化的方法才能得到近似的传递函数;3 交流调压调速系统的MATLAB仿真系统的建模和模型参数设置主电路的建模和参数设置主电路主要由三相对称交流电压源、晶闸管、晶闸管三相交流调压器、交流异步电动机、电机信号分配器等部分组成;下面分别讨论三相交流电源、三相交流调压器、同步脉冲触发器、交流异步电动机、电机测试信号分配器的建模和参数设置问题16;三相交流电源的建模和参数设置首先从图中的电源模块组中选取一个交流电压源模块,再用复制的方法得到三相电源的另两个电压源模块,并把模块名称分别修改成A相、B相、C相;然后从图中的链接器模块组中选取“ground”元件也复制成三份,按图所示连接即可图Simulink中的电源模块图Simulink中的连接模块图三相交流电源的模型为了得到三相对称交流电压源,对其参数设置:双击A相交流电压源图标打开参数设置对话框,A相得参数设置分别是:幅值peak amplitude取220V、初相位Phase设置成 0、频率Frequency设置为50HZ,其他为默认值;B、C的参数设置方法与A相相同,除了将初相位设置成互差120以外,其它参数都与A相相同;由此可得到三相对称交流电源4;3.1.1.2晶闸管三相交流调压器的建模与参数设置晶闸管三相交流调压器通常是采用三对反并联的晶闸管元件组成,单个晶闸管元件采用“相位控制”方式,利用电网自然换流;图中所示为晶闸管三相交流调压器的仿真模型;图晶闸管三相交流调压器仿真模型子系统触发脉冲的顺序为V1-V2-V3-V4-V5-V6,其中V1-V3-V5之间和V4-V6-V2之间互差120度,V1-V4之间、V3-V6之间、V5-V2之间互差180度;双击晶闸管对话框得到晶闸管参数设置图,根据图中要求及系统要求对其进行参数设置如下:电阻Resistance Ron:40 Ω;电感Inductance Lon:0H;正向电压Forward voltage Vf:;初始电流Initial current Ic:0A;缓冲器电阻Subber resistance Rs:1200Ω;μ;缓冲器电容Subber capacitance Cs:250 F上图是用单个晶闸管元件按三相交流调压器的接线要求搭建成仿真模型的,单个晶闸管的参数设置仍然遵循晶闸管整流桥的参数设置原则,具体如下:如果针对某个具体的变流装置进行参数设置,对话框中的参数应取默认值进行仿真,若仿真结果理想,就可认可这些设置的参数,若仿真结果不理想,则通过仿真实验,不断进行参数优化,最后确定其参数;这一参数设置原则对其它环节的参数设置也是适用的18;在使用Simulink进行系统仿真分析时,首先需要进行模块参数设置,因此需要对系统中所有模块进行正确的参数设置;如果逐一的对各个系统进行参数设置时很繁琐的,因为子系统一般均为具有一定功能的模块组的集合,在系统中相当于一个单独的模块,具有特定的输入和输出关系;对于已经设计好的子系统而言,能够像Simulink模块库中的模块一样进行参数设置,则会给用户带来很大的方便,这时用户只需要对子系统参数选项中的参数进行设置,无需关心子系统的内部模块的实现;具体封装步骤如下:选择需要封装的子系统Subsystem,然后单击鼠标右键,在弹出的菜单中选择Mask Subsystem项,或者单击Edit-Mask Subsystem项19;这时将出现图中所示的封装编辑器;使用封装编辑器子系统中的图标、参数初始化设置对话框以及帮助文档,从而可使使用户设计出非常友好的模块界面,以充分发挥Simulink的强大功能;打开Mask editor:Subsystem对话框,如图所示;使用此编辑器可以对封装后的子系统进行各种编辑;在默认情况下,封装子系统不使用图标;但友好的子系统图标可使子系统的功能一目了然;为了增强封装子系统的界面友好性,用户可以自定义子系统模块的图标;只需在途中编辑对话框中的“图标和端口”选项卡中“绘制命令”栏中使用MATLAB 中相应便可以绘制模块图标,并可设置不同的参数控制图标界面的显示20;图 子系统封装编辑器下图为晶闸管三相交流调压器子系统封装图如下所示:aU bU cU a bcP图 三相交流调压器子系统封装图图中,Ua,Ub,Uc 分别连接三相交流电源的三相,P 连接从脉冲触发器出来的触发脉冲,输出a,b,c 分别连接交流电动机的A,B,C 输入4;同步脉冲触发器的建模和参数设置通常,工程上将触发器和晶闸管整流桥作为一个整体来研究,所以,在此处讨论同步脉冲触发器;同步脉冲触发器包括同步电源和6脉冲触发器两部分;6脉冲触发器可以从图所示的附加模块Extras Control Blocks 子模块组获得;图附加模块Extras Control Blocks子模块6脉冲触发器需要三相线电压同步,所以同步电源的任务是将三相交流电源的相电压转换成线电压;同步电源与6脉冲触发器符号图如下所示4:图同步脉冲触发器子系统同步脉冲触发器封装后子系统符合如下:UaUbUcOutIn2Uct图同步脉冲触发器封装后子系统符号然后根据主电路的连接关系,建立起主电路的仿真模型;图中ln2为脉冲器开关信号,当脉冲器开关信号为“0”时,开放触发器;为“1”时,封锁触发器4;交流异步电动机的建模和参数设置在Power System 工具箱中有一个电机模块库,它包含了直流电机、异步电机、同步电机以及其他各种电机模块;其中,模块库中有两个异步电动机模型,一个是标幺值单位制PI unit 下的异步电动机模型,另一个是国际单位制SI unit 下的异步电动机模型,本设计中采用后者;国际单位制下的异步电动机模型符号如图所示2:图 异步电动机模块其电气连接和功能分别为:A,B,C :交流电机的定子电压输入端子;m T :电机负载输入端子,一般是加到电机轴上的机械负载;a,b,c:绕线式转子输出电压端子,一般短接,而在鼠笼式电机为此输出端子;m:电机信号输出端子,一般接电机测试信号分配器观测电机内部信号,或引出反馈信号2;异步电动机模型参数设置如下;双击异步电动机的模型,即了得到参数设置对话框;分别对其进行参数设置如下所示6:1绕组类型Rotor type: 转子类型列表框,分别可以将电机设置为绕线式Wound 和鼠笼式Squirrel -cage 两种类型;在本文中用鼠笼式Squirrel -cage 异步电动机;2参考坐标系Reference Frame :参考坐标列表框,可以选择转子坐标系Rotor 、静止坐标系Stationary 、同步旋转坐标系Synchronous;在本文中选择同步旋转坐标系Synchronous ; 3额定参数: 额定功率n P KW 取30KW,线电压n V V 为380V ,频率f 赫兹为50HZ ; 4定子电阻s R Statorohm 取Ω和漏感ls L H 取为;5转子电阻r R Rotorohm 为Ω和漏感lr L H 取为;其它设置为默认值电动机测试信号分配器的建模和参数设置电动机测试信号分配器模块的模型图如下所示:图Machines Measurement Demux电动机测试信号分配器模块双击电动机测试信号分配模块得图电机测试信号分配器参数设置图;图电动机测试信号分配器参数设置对话框及参数选择图中:ir_abc:转子电流ira,irb,irc;ir_qd:同步d-q坐标下的q轴下的转子电流ir_q和d轴下的转子电流ir_d;phir_qd:同步d-q坐标下的q轴下的转子磁通phir_q和d轴下的转子磁通phir_d;vr_qd:同步d-q坐标下的q轴下的转子电压vr_q和d轴下的转子电压vr_d;is_abc:定子电流isa,isb,isc;is_qd:同步d-q坐标下的q轴下的定子电流is_q和d轴下的定子电流is_d;phir_qd:同步d-q坐标下的q轴下的定子磁通phis_q和d轴下的定子磁通phis_d;vs_qd:同步d-q坐标下的q轴下的定子电压vs_q和d轴下的定子电压vs_d;wm :电机的转速wm ;Te :电机的机械转矩Te ;Thetam :电机转子角位移Thetam 1;控制电路的建模和参数设置交流调压系统的控制电路包括:给定环节、速度调节器、限幅器、速度反馈环节等;控制电路的有关参数设置如下:速度反馈系数设为20;调节器的参数设置分别是:ASR :30=pn K ;300=n τ;上下限幅为400-0;其它没做说明的为系统默认参数;给定环节的建模与参数设置在调压调速的仿真模型中有几个给定环节,它可以从图中的输入源模块组中选取“constant ”模块,模块路径为Simulink/Commonly Used Blocks 14;图 输入源模块组然后双击该模块的图标,打开参数设置对话框,在该系统中用到两个给定模块,分别将给定值Constent value 设置为-20以及0两个;其它设置为默认值;实际调速时,给定信号是在一定的范围内变化的,我们可以通过仿真实践,确定给定信号允许的变化范围4;速度调节器的建模和参数设置速度调节器通常采用PI 控制,比例和积分参数的设置要根据系统的仿真结果不断地变化改动,以得到最稳定的输出特性以及动态特性;限幅器、速度反馈环节也一样;具体方法是分别设置这些参数的一个较大和较小的值进行仿真,弄清它们对系统性能影响的趋。

基于MATLABSIMULINK的交流电机调速系统建模仿真综述

基于MATLABSIMULINK的交流电机调速系统建模仿真综述

控制系统仿真姓名:班级:学号:成绩:2012年11月02日越优势被应用于各个行业。

随着电力电第一章引言1.1研究背景直流调速系统的主要优点在于调速范围广、静差率小、稳定性好以及具有良好的动态性能。

在相当长时期内展。

交流电动机自1985年出现后领域。

20世纪70年代后步取代大部分直流调速系统。

目前、动态特性均可以与直流调速系统相媲美。

与直流调速系统相比1容量大2转速高且耐高压3交流电动机的体积、重量、价格比同等容量的直流电动机小且简单、经济可靠、4交流电动机环境使用性强5高性能、高精度的新型交流拖动系统已达同直流拖动系统一样的性能指标6交流调速系统能显著的节能从各方面看系统。

1.2MATLAB/SIMULINK软件的优势:计算机仿真技术在交流调速系统的应用系统的实时仿真可以较容易地实现[1]。

如matlab软件已经能够在计算机中全过程地仿真交流调速系统的整个过程。

matlab语言非常适合于交流调速领域内的仿真及研究能够为某些问题的解决带来极大的方便并能显著提高工作效率。

随着新型计算机仿真软件的出现交流调速技术必将在成本控制、工作效率、实时监控等方面得到长足进步[2][3]。

第二章交流调速系统:2.1交流调速系统原理与特性交流电机包括异步电动机和同步电动机两大类。

对交流异步电动机而言n=60f(1-s)/p (r/min) 2-1从转速公式可知改变电动机的极对数p f以及改变转率s都可达到调速的目的。

对同步电动机而言,同步电动机转速为: n=60f/p (r/min) 2-2由于实际使用中同步电动机的极对数p是固定的,VVVF (即通常说的变频调速)。

运用到实际中的交流调速系统主要有变级调速系统、串级调速系统、调压调速系统、变频调速系统[4]。

(1)变极调速系统调旋转磁场同步速度的最简单办法是变极调速。

通过电动机绕组的改接使电机从一种极数变到另一种极数从而实现异步电动机的有级调速。

变极调速系统所需设备简单价格低廉工作也比较可靠但它是有级调速一般为两种速度,三速以上的变极电机绕组结构复杂应用较少。

基于MATLAB_Simulink_语言的交流调速系统仿真

基于MATLAB_Simulink_语言的交流调速系统仿真

基于M A TLAB(Si m u link)语言的交流调速系统仿真ΞΞ华风雷 李志民包头钢铁学院 自动化与计算机工程系,包头014010关键词 系统;仿真;调速中图法分类号 TM921151:T P39119摘 要 介绍了用M A TLAB进行同步电动机调速系统仿真的全过程,并通过引入S函数,有机地将系统连接为一个整体,从而提供了一种解决问题的有效方法1Si m ulation of alternate adjustable speedsystem based on M AT LAB(Si m uli nk)H ua Fenglei L i Zh i m inD epartm ent of A utom ati on and Computer Engineering,U IST Bao tou,Bao tou014010,Ch inaKey words system;si m ulati on;adjustable speedAbstract T he p rocedure of si m ulati on w ith M A TLAB in synch ronous m ach ine adjustable speed system is introduced.S func2 ti on is utilized and integrated w ith the system o rganically,w h ich p rovides an effective m ethod of so lving p roblem. 计算机仿真是一门综合性技术,它应用范围很广,可用于工程系统、社会经济系统、生物系统等多方面1以前国内外,在介绍电力拖动控制系统数字仿真的文献中,大多采用BA S I C语言、FOR TRAN 语言或C语言,并有少部分文献中采用VB语言作为主要的程序设计语言1虽然这种面向对象的W indow s编程方式功能强大,为广大工程技术人员提供了很大便利,但这种从最底层进行编程的方式在效率上来讲是相当低的,大部分时间将花费在没有太大价值的重复性机械劳动上1因此,跟踪国际上最先进的控制系统仿真软件及发展,以当前最流行的M A TLAB语言为基本出发点来进行仿真研究,是很有必要的11 M A TLAB(Si m u link)与S函数〔1〕俗话说:“工欲善其事,必先利其器”1目前在国际、国内非常流行的是M A TLAB(Si m u link),它是M ath W o rk s软件公司为M A TLAB提供新的控制系统模型图形输入与仿真工具而推出的,它有两个显著的功能:Si m u(仿真)与L ink(链接)1M A TLAB 是一个高度的集成系统,集科学计算和图象处理于一身,具有编程效率高,开发周期短,程序运行可靠,实时性强等优点1用户建立起Si m u link系统模型时就会建立一个相应的S函数,它是Si m u link如何运作的核心所在1对于一个较简单的控制系统,可以利用Si m u link工具箱中的模块以结构图的形式进行建模仿真,并可以借助模拟示波器将仿真动态结果加以显示1然而对于一个较复杂的控制系统(如不能直接用传递函数加以描述或利用现有模块时)往往使人感到束手无策,此时应引入S函数1S函数定义了系统模型的动态特性,它有3种表现形式:(1)框图形式;(2)M文件形式;(3)M EX文件1在使用中,这3种方式各有优缺点1框图表示比较直观,容易构造,运行速度比较快;M文件编写灵活,适用面宽,但运行较慢;M EX文件运行速度最快1因此,使1998年第17卷包头钢铁学院学报Journal of Bao tou U niversity of Iron and Steel T echno logy 7 21第4期第280~283页Ξ1998-09-21收到第一作者:男,24岁,研究生用何种方式应视具体情况而定1在解决较复杂问题时,常常需要不同方法交叉使用1通常S函数的调用格式是:sys=m odel(t,x,u,flag),其中,m odel是用户定义的系统;t,x,u分别为当前时刻,状态变量和系统输入;flag返回当前系统信息1flag=0,返回变量和初始条件的维数;flag= 1,返回系统的状态导数;flag=2,返回离散状态x(n+1);flag=3,返回系统的输出向量y;flag= 4,更新下一个离散状态的时间间隔1在运用S函数进行仿真运算时,必须清楚地知道系统不同时刻所需要的信息,而这些信息的获取,可由在S函数中设置flag=0获取1另外,任何一种方式创建的S函数文件,在经过通用S函数模块(S2 functi on)处理后,将转变为用户自创建的Si m u link 模块,利用这种新模块仿真不会降低效率12 M A TLAB仿真指令的操作方式任何在Si m u link视窗中建立的方框图模型都可能在M A TLAB指令窗中被调用、仿真1在M A TLAB内部函数中有6种数值积分算法:lin2 si m,rk23,rk45,adam s,gear,eu ler等1这6种指令调用格式相同,下面以lin si m为例加以说明,其调用格式为:lin si m(‘m odel’,t f,x i,op ti on s,u t,p1,…,p10),这里需要说明的是:(1)除第一、第二输入参数外,其余输入参数均可省略;(2)输入参数m odel是模型的M文件名,在调用格式中必不可少;(3)输入参数t f 为仿真时区;(4)第三个输入参数x i是系统的初始状态;(5)第四个输入参数op ti on s是仿真算法参数设置向量;(6)输入参数u t是仿真系统的外部输入变量;(7)从第六个输入参数起的各参数是传递模型参数用的1用M A TLAB指令操作方式进行仿真,可以重新设置模块的初始值,指定比较复杂的外部输入函数u t,并可以动态地改变模块参数,这为系统仿真带来了极大的灵活性13 自控式同步电动机变频调速系统的仿真〔2,3〕以M A TLAB为工具,研究自控式同步电动机变频调速系统,其原理图如图1所示1图1 自控式同步电动机调速系统原理图F ig.1 Pr i nc iple chart of self-con trolledsynchronous m otor adjust able speed syste m 假设顺时针方向为正方向,则d,q轴和Α,Β轴之间的坐标变换关系如图2所示1图2 旋转变换矢量图F ig.2 Vector chart of rolli ng co mm ut ation 为了在转子转动的同时,改变同步电动机定子三相电流的频率,使得定子磁动势跟随转子同步旋转,进而保证电磁转矩恒定1因此,起动过程中定子电流随转子转动应变为i A=I m co s(Ξt+<)i B=I m co s(Ξt+<+2Π 3)i C=I m co s(Ξt+<-2Π 3),(1)式中,<为定子相电流初相角;Ξ为转子的转速(频率);空间矢量由三相定子坐标系A,B,C到Α,Β坐标系的变换矩阵为T1;矢量从Α,Β坐标系变换到d, q轴坐标系的变换矩阵为T21 T1=231 -12 -120 32 -32, T2=co sΗ -sinΗsinΗ co sΗ,由此可知,空间矢量由三相定子坐标系A,B,C到d,q轴坐标系的变换矩阵为T=T2 T1,即182华风雷等:基于M A TLAB(Si m ulink)语言的交流调速系统仿真T =T 2 T 1=23co s Η co s (Η+2Π 3) co s (Η-2Π 3)sin Η sin (Η+2Π 3) sin (Η-2Π 3),(2)式中,Η=Ξt 1按转子磁链定向控制的凸极同步电动机数学模型为:U sd U s q U e00=r 2+pLd-ΞL dpL m d pL m d-ΞL m qΞL dr s +pLqΞL m dΞL m dpL m qpL m d 0r e +pL epL m d 0pL m dpL m dr D +pL D d0pL m q00r D +pL D q i sd i sqi e i D d i Dq1 根据电机学原理,直轴定子磁链为7s d =L d i s d +L m d (i e +i Dd ),式中,L d 为定子绕组d 轴等效电感;L m d 为定转子绕组之间在d 轴的互感1交轴定子磁链为7s q =L q i s q +L m q i Dq ,式中,L q 为定子绕组q 轴等效电感;L m q 为定转子绕组之间在q 轴的互感1在两绕组模型中,转子坐标系的定子电压矢量的两个分量为U sd =r s i sd -Ξ7s q U sq =r s i sq +Ξ7s d,由U s d ,U s q 经矢量变换T-1后,即可求得定子三相电压U A ,U B ,U C 1由电机学原理,转子磁链7e 为7e =L m d i s d +L e i e +L m d i Dd ,因阻尼电流i D d 不可测,故为了简化控制系统,可把定子电流矢量始终控制在T 轴(q 轴)上,即定子电流无M 轴(d 轴)励磁分量,那么上式转子励磁7e 可简化为7e =L e i e -L 2m d sr D +LD d s1转矩T d 为T d =p mL m dL e7e i s q 1同步电动机与外部机械负载的关系用机械方程表达如下T d -T L =Jd Ξd tΞ=d Ηd t ,式中,T L 为机械负载转矩;J 为折合到电机轴上的转动惯量1根据上述理论关系式即可容易地写出相应的S 函数,然后在Si m u link 下进行仿真1图3给出了在Si m u link 下的控制系统仿真框图1图3 自控式同步电动机仿真结构框图F ig .3 Si m ulation con struction of sel -con trolled synchronous m otor 图3中各模块含义说明如下:inp u t ——角速度Ξ给定值;slider ——滑块式比例放大器,可动态改变输入转速的大小;P I ——比例积分环节(K p +K is );——逆变器模块;282包头钢铁学院学报1998年12月 第17卷第4期V d 1,V d 2——矢量回转器;c m o to r ——同步电动机模块;1,2,3,…,9——分别为转矩、转速、电流、电压、磁链输出模块1其各变量波形如图4所示1图4 各变量仿真波形图F ig .4 O sc illogram of every var i able si m ulation (a )转矩波形;(b )转速波形;(c )q 轴定子电流波形;(d )转子磁链波形;(e )A 相电压波形;(f )定子三相电压波形4 结论在Si m u link 中应用S 函数进行电力拖动控制系统的仿真,可充分发挥M A TLAB 编程效率高、可靠性好、实时性强等优点1仿真结果表明:(1)在凸极自控式同步电动机转子磁链定向控制中,由于d 轴定子电流分量为零,d 轴阻尼绕组与励磁绕组是一对简单耦合的线圈,与定子电流无相互作用,实现了定子绕组与d 轴的完全解耦1(2)转矩方程中磁链7e 与电流i s q 解耦,7e 只由i e 产生1在电机运行的整个过程中,保证励磁电流i e =常数,那么电磁转矩将只与定子电流的幅值i sq成正比1(3)M A TLAB (Si m u link )可成功地应用于电力拖动控制系统,从而为电气传动系统提供了一种简便、直观、有效的仿真研究方法1参考文献1 魏克新1M A TLAB 语言与自动控制系统1北京:机械工业出版社,199712 李志民,张遇杰1同步电动机调速系统1北京:机械工业出版社,199613 曹立宇,李发海1自控式同步电动机的数学模型及稳态运行的分析1电工技术学报,1991,(8):1~5382华风雷等:基于M A TLAB (Si m ulink )语言的交流调速系统仿真。

利用MATLAB对交流电机调速系统进行建模和仿真

利用MATLAB对交流电机调速系统进行建模和仿真
第 l 期( 总第 1 8 2期 )
2 0 1 4年 O 2月
机 械 工 程 与 自 动 化
ME CH ANI CAL ENGI NEE RI NG & AUT( ) M ATI ON
No.1 Fe b.
文章编号 : 1 6 7 2 — 6 4 1 3 ( 2 0 1 4 ) 0 1 — 0 0 1 0 — 0 2
异步 电机 的机 械特 性方程 式 为 :
T 一 3 p 【 , 2 ^, P /
叫 [ ( R 十R : / s ) +( c J ; ( L +I 4 ) 。 ]‘
其中: T 为 电磁 转 矩 ; P 为 电机 极对 数 ; U 为 电机 定
利 用 MAT L AB对 交流 电机 调 速 系统 进 行建 模 和 仿 真 米
王 涛 ,刘 洋 ,左 月 明。
( 1 . 乌 兰察 布 职 业 学 院 机 电技 术 系. 内蒙 古 集 宁 0 1 2 0 0 0 ;2 . 山西 农 业 大 学 )
2 定子 调压调 速 系统仿 真模 型构建
子 相 电压 ; R 为定 子 每 相 电 阻 ; R: 为转 子 折 算 电阻 ; S
为转 差率 ; 为 电机 供 电 电源 角频 率 ; L 为定 子 每 相
漏感; L : 为转子 每相 漏感 。
由此 , 当转差 率 为 定值 时 , 电磁 转矩 与 电 机
实系统 的 运 行 过 程 和 状 态 进 行 数 字 化 模 拟 的技 术 。
抗值 。当铁 芯饱 和 时 , 交 流电抗 值较 小 , 所 以电机 定 子 所得 的电压值 就高 ; 当铁 芯不饱 和 时 , 交 流 电抗值 随 直 流励 磁 电流 的变化 而 改 变 , 从 而 定 子 电压 也 随其 发 生 变化 , 从 而达 到调 压调 速 的 目的 。 ( 3 )晶闸管调 压 。这种 方法 是采 用 3对 反并 联 的 晶闸管 或 3 个 双 向晶 闸管调 节 电机 定子 电压 。

用MATLAB_SIMULINK进行交流调速系统的仿真_

用MATLAB_SIMULINK进行交流调速系统的仿真_

第13卷第3期湖 北 工 学 院 学 报1998年9月Vo l.13No.3 Journal of H ube i Polytechn ic U n i versity Sep.1998用MATLAB/SI MUL I NK进行交流调速系统的仿真*周荣政(华中理工大学汉口分校)摘 要 给出了在M A T LA B语言的动动态仿真集成环境S I M U L I N K下进行交流调速系统仿真的方法,并以SPW M变频调速为例,介绍了S I M U L I N K仿真结构图和电机的S函数仿真模型,给出了仿真结果.关键词 M A T LA B/S I M U L I N K,交流电机,调速,仿真中图法分类号 T M921.2 T P391.9M AT LA B是一种科学计算软件,主要适用于矩阵运算及控制和信息处理领域的分析设计,它使用方便、输入简捷、运算效率高,尤其M A T LA B的开放性,是最重要、最受人们欢迎的.除内部函数外,所有M A T LA B主包文件和各工具包文件都可读可改,用户可通过对源文件的修改或加入自己的程序文件去构成新的工具包.近年来M A T LAB已成为欧美高等院校、科研机构教学与科研必备的基本工具.M AT LA B有许多工具箱(T oo l b ox),这些工具箱大致可分为两类:功能性工具箱和学科性工具箱.前者主要用来扩充M A T LAB的符号计算功能、图视建模功能和文字处理功能以及与硬件实时交互功能;后者是专业性较强的,如控制工具箱(Co ntro l T oo lbox)、神经网络工具箱(N eu ra lN etw o rk T oo l b o x)、信号处理工具箱(S igna l P ro cessing T o o lbox)等.在M AT-LA B中,S I M U L I N K是一个比较特别的工具箱,它是实现动态系统建模、仿真的一个集成环境,它进一步扩展了M A T LA B的功能,并可实现多工作环境间文件互用和数据交换,如与C、FO RT RAN等[1].S I M U L I NK运作的核心是S函数,当建立一个S I M U L I NK模型后,在M AT LA B中也同时建立了一个函数,这个函数定义了系统的动力学特征,格式如下SYS=M odel(t,x,u,flag)其中M ode l是模型名称,而flag用来控制函数返回的变量SYS的信息.例如flag=1,将返回系统在t时刻及给定的x,u下全部状态变量的导数.S函数可以是M A T LA B语言编写成的M文件,也可以是用C或FO RT RAN子程序经编译形成的M EX文件.1 异步电动机的数学模型异步电动机在d-q坐标系下的电压、磁链方程为:收稿日期 1998-05-22周荣政 男 1965年生 硕士 武汉 华中理工大学汉口分校自动控制工程系 430012 *晨光计划资助课题(9501048-10)u d s=P J d s-k1J qs+r s i ds,(1)u qs=k1J d s+P J qs+r s i q s,(2)u d r=P J d r-k s J qr+r r i d r,(3)u qr=k s J dr+P J qr+r r i qr,(4)J d s=L s i d s+L m i d r,(5)J qs=L s i qs+L m i qr,(6)J d r=L m i d s+L r i d r,(7)J qr=L m i qs+L r i qr,(8)其中:u d s、u qs、u d r、u qr分别为定子d-q电压和转子d-q电压;J d s、J qs、J dr、J qr分别为定子d-q磁链和转子d-q磁链;i ds、i qs、i dr、i qr分别为定子d-q电流和转子d-q电流;k1、k s分别为同步角速度和转差角速度;L s,L r,L m分别为定子、转子的自感和它们之间的互感.电动机的电磁转矩T e=(3/4)P L'm(i qs i d r-i qr i d s),(9)式中P为电动机极数.电机转矩平衡方程式为d k r d t =(T e-D k r-T L)J,(10)其中:k r为转子角速度;J为电机的转动惯量;D为与转速成正比的摩擦及风阻阻力矩系数;T L 为负载阻力矩.对于笼型交流异步电动机u d r=0,u qr=0.选取定子d-q电流、转子d-q电流和转子角速度为状态变量x=[i d s i qs i d r i qr k r]T,以电机d-q电压作输入,u=[u ds u q s]T,由方程(1)~(10)可以列出电机的状态方程d xd t=f(x)+g(x)u.(11)其中:f(x)=-L r r sK Li d s+(k1L r L s-k s L2m)i qs+L m r rK Li dr+k r L r L mK Li q r-(k1L r L s-k s L2m)i ds-L r r sK Li qs-k r L r LmK Li d r+L m r rK Li q rL m r sK Li d s-k r L s L mK Li qs-L s r rK Li d r-(k1L2m-k s L s L r)i q rk r L s L mK Li d s+L m r sK Li qs+(k1L2m-k s L s L r)i dr-L s r rK Li q r1J(34P L m(i qs i d r-i qr i d s)-D k r-T L);(12)g(x)=L r/K L0-L m/K L000L r/K L0-L m/K L0T.(13)三相A、B、C到二相d-q坐标系的变换为C3/2=23co sθcos(θ-120°)co s(θ+120°)-si nθ-sin(θ-120°)-sin(θ+120°);(14)二相d-q坐标系到三相A、B、C的变换为74湖 北 工 学 院 学 报1998年第3期 C 2/3=23co s θco s(θ-120°)co s(θ+120°)-sin θ-si n (θ-120°)-sin(θ+120°)T.(15)2 交流电机的S I M U L I N K 仿真结构图和S 函数以SPWM 变频调速为例[2],用S I M U L I NK 进行仿真时,其结构图如图1所示.图中电机模型是根据式(12)~(15)用M A T LA B 编写的S 函数.电机的动态电流i a s 、i b s 、i cs 的转速W r 、转矩T e 可由示波器窗口动态观察,也可存储在工作区内,仿真完毕在M A T LAB 命令窗用绘图命令得到更满意的图形;W AV ES 模块产生的频率可调的三相正弦波(基波)和三角波(载波);P W M 模块模拟逆变器将正弦波与三角波比较产生SPWM 信号驱动大功率开关器件,从而得到电机三个相电压,其结构图如图2所示,V bus 是逆变器直流回路的BU S 电压.值得一提的是S I M V L I NK 仿真结构图(图1)中任一点信号都能接上动态示波器进行观察.tr i -e 电机换型eeW W bs bscscsi i i i i asasi e T e T T -L8eW2pi e f 50eW re mf (u )f 50000GN D P WM w av es m ag1t200busV C l ock图1SPWM 变频调速S I M UL I NK 仿真结构图异步电机的S 函数模型(M 文件)为:function [sy s ,x 0]=i m -sfun(t ,x ,u ,flag )%感应电机模型(S 函数)%输入——电压V a ,V b,V c %输出——电流、速度、转矩%状态——dq 电流、速度%模型输入定义:%u (1)=V a ,u (2)=V b,u(3)=V c ,u (4)=the ta1%u (5)=W 1,u (6)=T -L i m -da t1;if flag ==0sy s =[505600];%连续状态数5,离散状态数0,输出数5%输入数6x 0=[2.0712 7.1935 -2.0835 -1.1962 300]';%初始状态e lseif flag ==1W e =u (5);W r =x (5);the ta =u (4);i m -m a t 1;T e =0.75*po le *Lm*(x (2)*x (3)-x (1)*x (4));sy s (5)=(T e -u (6)-x (5)*d f )/J ;U dq =C 3-2*u(1:3);sy s (1:4)=A *x (1:4)+B *U dq ;e lse if flag==3W e =u(5);W r=x (5);theta =u (4);i m -m a t1;sy s (1:3)=C 2-3*x (1:2);sy s(4)=x (5);sy s(5)=0.75*po le *Lm*(x (2)*75 第13卷第3期 周荣政等 用M A T LA B /S I M U L INK 进行交流调速系统的仿真x (3)-x (1)*x (4));e lsesy s =[];end16图2PWM 模型S I M U LINK 仿真结构图123out-3out-2funout-1fun1fun2M axM axs w itchs w itch1s w itch2i n-5i n-4i n-3i n-2in-1i n-6Re l ay2Re l ay1s umRe l ays u m 1s u m 2-++--+5432f (u )f (u )f (u )3 电机参数和变换矩阵3.1 参数M 文件(i m -da t 1.m )%异步电机参数d f =0.001;%阻尼因子J=0.089;%转动惯量(K g .m ^2)po le =4;%定子极数N 1=1800;%速度(rpm )f1=N 1/60*po le /2;%频率W 1=2*pi *f 1;%角速度Rs =0.435;%定子电阻R r =0.816;%转子电阻X ls =0.754;%定子漏抗X lr=0.754;%转子漏抗Xm=26.13;%励磁电抗L ls =X ls /W 1;%定子漏感L lr =X lr /W 1;%转子漏感Lm=Xm /W 1;%励磁电感L s =L ls +Lm;%定子电感L r =L lr +Lm;%转子电感X s =L s *W 1;%定子电抗X r =L r *W 1;%转子电抗X lsr =W 1*(L ls +L lr);%Lm m=Lm*Lm;%K l =(Ls *L r -Lm m );%%end 3.2 矩阵M 文件(i m -m at1.m )%电机状态方程A,B ,C ,D 矩阵%A 矩阵A (1,1)=-L r *R s /K l ;A (1,2)=W e +W r *Lmm /K l;A (1,3)=Lm *R r /K l ;A (1,4)=W r *L r *Lm /K l ;A (2,1)=-(W e +W r *Lmm /K l);A (2,2)=-L r *R s /K l ;A (2,3)=-W r *L r *Lm /K l ;A (2,4)=Lm*R r /K l ;A (3,1)=Lm*R s /K l;A (3,2)=-W r *Ls *Lm /K l ;A (3,3)=-L s *R r /K l ;A (3,4)=W e-W r *L s *L r /K l ;76湖 北 工 学 院 学 报1998年第3期 A (4,1)=W r *L s *Lm /K l ;A (4,2)=Lm *R s /K l ;A (4,3)=-(W e-W r *L s *L r /K l);A (4,4)=-L s *R r /K l ;%B 矩阵B (1,1)=L r /K l ;B(1,2)=0;B(2,1)=0;B (2,2)=L r /K l ;B(3,1)=-Lm /K l ;B(3,2)=0;B (4,1)=0;B (4,2)=-Lm /K l ;%C 矩阵C=eye(4);%D 矩阵D=ze ro s(4,2);%3/2变换阵C 3-2(1,1)=co s (the ta );C 3-2(1,2)=co s(the ta-2*pi/3);C 3-2(1,3)=co s(the ta +2*pi/3);C 3-2(2,1)=-sin(theta);C 3-2(2,2)=-sin (theta -2*p i /3);C 3-2(2,3)=-sin (theta +2*p i /3);C 3-2=0.81649658092773*C 3-2;%2/3变换阵C 2-3=C 3-2';%end4 电流和转矩波形电机的电流、转矩、转速以及SPWM 逆变器的开关信号等波形都可通过动态示波器进行连续观察,图3为动态示波器显示的电流、转矩进入稳态时的波形.图3 动态示波器观察的电机电流、转矩波形5 结束语用S I M U L I N K 进行交流调速系统的仿真关键是建立电机模型,由于电机的状态方程含有非线性,不能套用S I M U L I N K 的线性状态方程模型,故用S 函数来构造成为必然.实验证明,用S I M U L I N K 进行交流调速系统的动态仿真,具有方便、直观、灵活、精确的优点,是比较理想的仿真方法.77 第13卷第3期 周荣政等 用M A T LA B /S I M U L INK 进行交流调速系统的仿真78湖 北 工 学 院 学 报1998年第3期 参 考 文 献1 张志涌,刘瑞,杨祖樱.掌握和精通M A T LA B.北京:北京航空航天大学出版社,19972 冯垛生,曾岳南.无速度传感器矢量控制原理与实践.北京:机械工业出版社,1997ACM otor Speed Variab le Con trol Syste mSi m ulation U singM ATLAB/SI MUL I NKZhou Rong zhe ngAbstract A si m u lation m e tho d u sing M A TLA B/S I M U L I N K is pro v ided to dea l w ith A C m o to r speed va riab le con tro l sy ste m.A n ex a m p le o f sinuso idal PWM inver ter is p resented to describe m ode ling and si m u la tion fo r A C m o to r as w e ll as S I M U L I NK si m u lation d ia-g ra m s.T he re su lts show s tha tA C m o to r sy ste m si m u lation using S I M U L I N K is si m p le,d i-rect and conv en ien t.K eywor ds M A T LA B/S I M U L I NK,A C m o to r,speed va riab le,si m u lation(责任编辑 张培练) (上接第67页)U s i ng Cen tre of Speed to Get the Angle Acce lerationof S m ooth PoleYang Wend iAbstract A ne w w ay to ge t the ang le acce le ra tion o f the s m oo th po le is p resented.T h is ne w w ay is m o re d irect,si m p ler,m o re co ven ient,qu icker and w ith h i g her deg ree o f prec ision co m pa red w ith the conv en tiona lw ay s.K eywor ds M ec h an ism o f s m oo th po le,the cen tre o f speed,ang le acce lera tion(责任编辑 张岩芳) 。

基于MATLAB_SIMULINK交流电机调速系统的建模与仿真

基于MATLAB_SIMULINK交流电机调速系统的建模与仿真

第21卷 第3期 辽宁工程技术大学学报(自然科学版) 2002年 6月 Vol.21, No.3 Journal of Liaoning Technical University (Natural Science) Jun., 2002收稿日期:2001-06-03 作者简介:张庆新(1970-),男,河北省保定人,讲师,博士生。

本文编辑:杨瑞华文章编号:1008-0562(2002)03-0323-03基于MATLAB/SIMULINK交流电机调速系统的建模与仿真 张庆新1 , 刘光德2 , 王 颖1 (1 沈阳航空工业学院, 辽宁 沈阳 110034; 2 沈阳工业大学, 辽宁 沈阳 110023)摘 要:利用MATLAB/SIMULINK 构造交流电机调速系统仿真模型,仿真系统采用易扩展的模块化设计,并增设观察器、观察参数变化对系统的影响,该方法模型简单,可在线改变所有参数,并能方便地验证各种调速方案,据此选出高效的高速设计方案。

关键词:交流电机;调速系统;仿真 中图号:TM 32 文献标识码:A0 引 言 计算机仿真技术是现代科学研究和产品设计的新手段,特别是在采用电力半导体器件对电机进行分析研究中,计算机仿真技术显示出它的巨大优越性,MATLAB/SIMULINK 环境是一种优秀的系统仿真工具软件,使用它可以大大提高系统仿真和CAD的效率和可靠性,本文利用MATLAB/SIMULINK 构造了一个交流电机调速系统,并给出了仿真结果。

1 交流调速系统仿真模型 对如图1所示的交流调速系统,由于有大电容滤波,整流侧一般认为输出理想的直流电压,即在建立数学模型时,可以将图1所示的结构图等效为图2所示的结构形式,如果再对大功率开关器件(如IGBT)进行抽象,把上下两个桥臂的开关器件等效为如图3所示的电路图,即当 G ≤0时C=E2; 当G>0时C=E1。

这样,对整个系统进行数学建模时只需考虑异步电机模型及PWM控制技术在MATLAB/SIMULINK 中的实现即可。

基于MATLABSIMULINK交流变频调速系统的仿真研究

基于MATLABSIMULINK交流变频调速系统的仿真研究

在本研究中,我们提出了一种基于MATLAB SIMULINK平台的交流电机调速系统 建模与仿真方法。该方法主要基于矢量控制原理,通过控制电机的定子电流和 转子磁场夹角来实现电机的速度控制和转矩控制。具体来说,我们首先根据交 流电机的物理模型,建立其数学模型。然后,使用MATLAB SIMULINK软件进行 仿真实验,并通过对仿真结果的分析和优化,最终实现了一个高性能的交流电 机调速系统。
总之,基于MATLABSimulink的变频调速系统建模与仿真是一种非常有效的研 究方法,对于深入理解变频调速技术、优化系统设计和提升系统性能具有重要 意义。随着科学技术的发展,相信未来变频调速技术将在更多领域得到应用和 发展。
随着电力电子技术和控制理论的不断发展,交流调速系统已经成为工业领域中 非常重要的组成部分。其中,双闭环SPWM变频调速系统因其具有优良的调速性 能和节能效果而得到了广泛的应用。本次演示旨在通过MATLABSimulink软件 对双闭环SPWM变频调速系统进行仿真研究,以期为相关领域的研究和应用提供 有益的参考。
总之,通过对变频调速系统的建模与仿真,我们可以更加深入地理解其工作原 理和性能表现。利用MATLABSimulink强大的仿真功能,我们可以方便地研究 各部分模型对系统性能的影响,并优化整体系统设计。这种方法为变频调速系 统的研究、设计和应用提供了有力的支持,有助于推动电力电子技术的发展和 工业控制领域的进步。
在仿真过程中,我们可以通过调整给定信号、系统参数和负载等条件,对双闭 环SPWM变频调速系统的稳态性能和动态性能进行全面的分析。其中,稳态性能 主要包括调速范围、静差率、调节精度等指标,而动态性能则包括响应时间、 超调量、振荡次数等指标。通过仿真结果,我们可以清楚地了解系统的性能表 现,并为实际应用提供有力的依据。

基于MATLABSIMULINK永磁同步电动机调速系统的建模与仿真

基于MATLABSIMULINK永磁同步电动机调速系统的建模与仿真

毕业设计题目名称基于MATLAB/SIMULINK永磁同步电动机调速系统的建模与仿真系别电气信息工程系专业/班级电气工程及其自动化07102班学生学号指导教师(职称)摘要在现代交流伺服系统中,矢量控制原理以及空间电压矢量脉宽调制(SVPWM)技术使得交流电机能够获得和直流电机相媲美的性能。

永磁同步电机(PMSM)是一个复杂耦合的非线性系统。

本文在Matlab/Simulink环境下,通过对PMSM本体、d/q坐标系向a/b/c坐标系转换等模块的建立与组合,构建了永磁同步电机控制系统仿真模型。

仿真结果证明了该系统模型的有效性。

关键词:Matlab/Simulink;永磁同步电机;电压空间矢量脉宽调制;仿真AbstractIn today’s AC s ervo system, the vector control theory and SVPWM technique make the AC motor can achieve the performance as good as DC motor when designing the AC servo system. PMSM is a nonlinear system with significant coupling. This novel method for modeling and simulink of PMSM system in Matlab is proposed. In Matlab /Simulink, the isolated blocks, such as PMSM block, coordinate transformation from d/q to a/b/c block, etc, have been modeled. The reasonability and validity have been testified by the simulate result.Key words:Matlab/Simulink; PMSM; SVPWM; simulation目录摘要 (I)Abstract (II)目录 (III)第1章绪论............................................................. - 1 - 1.1选题背景及意义...................................................... - 1 - 1.2本课题的研究现状及前景.............................................. - 1 -1.2.1相关发展....................................................... - 2 -1.2.2永磁同步电动机的运行控制方法................................... - 3 -1.2.3永磁同步电动机在现代工业中的应用............................... - 4 -1.2.4 永磁同步电动机的应用前景..................................... - 6 - 第2章永磁同步电动机系统原理.......................................... - 8 - 2.1 永磁同步电动机的基本组成............................................ - 8 -2.1.1 电动机........................................................ - 8 -2.1.2 转子位置传感器................................................ - 9 -2.1.3 逆变器........................................................ - 9 - 2.2永磁同步电动机的工作原理........................................... - 10 -2.2.1电枢反应...................................................... - 11 - 2.3 永磁同步电动机的数学模型........................................... - 14 - 第3章正弦波永磁同步电动机的调速系统.................................. - 18 -3.1正弦波永磁同步电动机的调速原理..................................... - 18 - 3.2正弦波永磁同步电动机调速系统....................................... - 20 -3.2.1主回路的组成和控制............................................ - 20 -3.2.2控制回路及系统工作原理........................................ - 23 - 第4章正弦波永磁同步电动机调速系统的建模与仿真........................ - 24 - 参考文献............................................................... - 30 - 结束语................................................................. - 31 - 致谢................................................................. - 32 -第1章绪论1.1选题背景及意义众所周知,直流电动机有优良的控制性能,其机械特性和调速特性均为平行的直线,这是各类交流电动机所没有的特性。

基于matlab simulink的异步电动机交流调速系统模型设计及仿真

基于matlab simulink的异步电动机交流调速系统模型设计及仿真

………………………. …………. …………………山东农业大学 毕 业 论 文 基于Matlab/Simulink 的异步电动机交流调速系统模型设计及仿真 院 部 机械与电子工程学院 专业班级 电气工程及其自动化3班 届 次 20**届 学生姓名 学 号 指导教师 二0**年六月一日装订线……………….……. …………. …………. ………目录摘要 (I)Abstract (II)1 绪论 (1)1.1 研究目的及意义 (1)1.1.1 研究目的 (1)1.1.2 研究意义 (1)1.2 研究的背景 (1)1.3 国内外研究现状 (1)1.4 研究方法 (2)2 异步电动机的调速系统 (2)2.1 异步电动机调速系统的分类 (2)2.2 异步电机调速原理简介 (3)2.2.1 变极电动机 (3)2.2.2 变频调速 (3)2.2.3 转子串电阻调速 (3)2.2.4 调压调速 (3)2.3 各种异步电机调速的特点 (3)2.3.1 变极调速方法 (3)2.3.2 变频调速方法 (3)2.3.3 转子串电阻调速方法 (4)2.3.4 调压调速的方法 (4)3 异步电机调压调速模型设计 (4)3.1 异步电机调压调速的原理 (4)3.2 速度负反馈的交流调压调速系统 (5)3.3 调压调速系统的组成部分 (6)3.3.1 三相交流调压器 (6)3.3.2 同步脉冲触发器 (7)3.3.3 反馈环节 (7)4 三相交流调压调速系统的matlab仿真 (9)4.1 matlab简介 (9)4.2 Simulink库介绍 (9)4.3系统建模与仿真 (11)4.3.1 三相电源的建模及参数设置 (11)4.3.2 同步流脉冲触发器的建模与参数的设置 (12)4.3.3 三相交流调压电路的建模与参数设置及仿真 (13)4.3.4 电机模块的建模与参数设置 (14)4.3.5 转速反馈环节及给定环节的建模及参数设置 (15)4.4 带转速负反馈的三相交流调压调速系统的连接图 (15)4.5 仿真结果与分析 (15)5 结论 (19)参考文献 (21)致谢 (22)附录 (23)ContentsAbstract ........................................................................................ 错误!未定义书签。

基于MATLAB逆变器-交流电动机变频调速系统的仿真汇编

基于MATLAB逆变器-交流电动机变频调速系统的仿真汇编

基于MATLAB环境下逆变器-交流电机变频调速系统的仿真摘要本文以交流电动机变频调速系统为研究对象,以MATLAB为仿真工具,介绍了Simulink仿真模块,分析了变频器的工作原理,并在此基础上进行了多种逆变电路的仿真设计。

文章首先对MATLAB/Simulink模块中电力电子仿真所需要的电力系统模块集做了简要的说明,介绍了变频器中实现变频的主要环节——逆变器的工作原理,并且分析了目前几种最常见的逆变器(单向全桥逆变器、三相桥式逆变器和SPWM控制的单相逆变器)的工作原理,在此基础上运用MATLAB软件分别对这几种电路的仿真进行了设计;并进一步设计出了交-直-交变频器的仿真模型,实现了对交流电动机变频调速系统的仿真。

关键词:Simulink,电压型逆变电路,变频调速,仿真设计目录第一节绪论————————————————————————4 一交流调速技术发展概况——————————————————-4 二全数字控制技术—————————————————————-6 三系统仿真————————————————————————-7 四论文的意义及任务————————————————————-8第二节电力电子器件仿真模型及逆变电路仿真设计———————8 一绝缘栅双极性晶体管的仿真模型及参数设定—————————-8 二逆变电路仿真设计————————————————————-11第三节基于MATLAB的变频调速系统的仿真设计————————16 一变频器的基本概念————————————————————16 二交一直一交变频电路的仿真设计——————————————18 第四节小结——————————————————————-20第一节绪论一交流调速技术发展概况直流电气传动和交流电气传动在19世纪先后诞生。

由于直流传动具有较好的调速性能,而交流传动调速性能难以满足生产要求,因此,在20世纪大部分年代里,直流传动在调速领域中一直占据主导地位。

基于matlab的异步电机变频调速系统的设计毕业设计

基于matlab的异步电机变频调速系统的设计毕业设计
本科毕业设计说明书
基于MATLAB的异步电动机变频调速仿真实现
SIMULATIONFORFREQUENCY CONTROL SYSTEM OFASYNCHRONOUS MOTOR BASED ON MATLAB
基于MATLAB的异步电动机变频调速仿真实现
摘要
本文主要对交流异步电动机SPWM变频调速矢量控制系统进行建模与仿真。变频调速系统在异步电动机的各种调速方式中效率最高、性能最好,因此有着极其重要的地位。电气传动控制系统计算机仿真是应用现代软件工具对其工作特性进行研究的一种十分重要的方法。通过仿真试验,可以比较各种策略与方案,优化并确定相关参数。因此进行系统仿真是不可或缺的,为科学决策提供了可靠的依据。
By simulation, for one thing, we understand and grasp the asynchronousmotor operating characteristics.What’s more, simulation data has laid a solid foundation for the introduction of new experimental equipment and further development.
ABSTRACT
This paper mainly studies the modeling and the simulation about vector control system of the SPWM variable frequency control. Variable-frequency speed regulation is anefficientwayofspeed regulation. The computer simulation of the electric drive system is one of the most significant means in the science research.It works by establishing the simulation modelsand simulation experiments on computer repeatedly.By simulation, you can compare a variety of strategies and determine the relevant parameters.It is essential for system simulation, so as to provide a reliable scientific basis for decision-making.

基于MATLAB_SIMULINK三相交流异步电机SPWM控制调速的仿真与研究

基于MATLAB_SIMULINK三相交流异步电机SPWM控制调速的仿真与研究

基于MATLAB_SIMULINK实现三相交流异步电机SPWM调速控制的仿真与研究课程名称:电气工程课程设计基于MATLAB_SIMULINK三相交流异步电机SPWM控制调速的仿真与研究一.PWM控制的基本原理在采样控制理论中有一个重要的结论:冲量相等而形状不同的窄脉冲在具有惯性的环节上,其效果基本相同。

冲量即指窄脉冲的面积。

这里所说的效果基本相同,是指环节的输出响应波形基本相同。

如果把各输出波形用傅里叶变换分析,则其低频段非常相近,仅在高频段略有差异。

当窄脉冲的形状不同,而它们的面积相等,那么,当它们分别加在具有惯性的同一个环节上时,其输出响应基本相同。

当窄脉冲变为单位冲击函数时,环节的响应即为该环节的脉冲过渡函数。

脉冲越窄,各脉冲响应波形的差异也越小。

如果周期性的施加脉冲,则响应也是周期的,用傅里叶级数分解后将可看出各波形在低频段的特性将非常接近,仅在高频段有所不同。

上述原理即称之为面积等效原理,它是PWM控制技术的重要理论基础。

下面分析如何使用一系列等副不等宽的脉冲来代替一个正弦波。

将正弦半波分成N等份,就可以把正弦半波看成是由N个彼此相连的脉冲序列所组成的波形。

这些脉冲宽度相等,都等于π/N,但幅值不等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。

如果把上述脉冲序列利用相同数量的等副而不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦半波部分面积相等,而得到一系列的脉冲序列,即PWM波形。

根据面积等效原理,PWM波形和正弦半波是等效的。

对于正弦半波的负半周,也可以用同样的方法得到PWM波形。

像这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称之为SPWM(Sinusoidal PWM)波形。

二.电压型PWM逆变电路及其控制方法本实验采用调制法,即把希望输出的波形(正弦波)作为调制信号,把接受调制的信号作为载波,通过信号波的调制得到所期望的PWM波形。

基于matlab的交流异步电机变频调速运行设计

基于matlab的交流异步电机变频调速运行设计

基于matlab的交流异步电机变频调速运行设计
要设计基于Matlab的交流异步电机变频调速运行,可以按照
以下步骤进行:
1. 确定电机的参数:包括额定功率、额定电压、额定电流、额定转速等参数。

2. 编写电机模型:根据电机的参数,利用Matlab中的工具箱(如Simulink)或编程语言,编写电机的数学模型,包括电机的转动方程、电机的电磁特性等。

3. 设计调速控制策略:根据电机的模型和调速要求,设计合适的调速控制策略。

常用的控制策略包括PID控制、模糊控制、自适应控制等。

在Matlab中,可以利用控制系统工具箱来设
计和调试控制策略。

4. 实现电机控制系统:根据调速控制策略,利用Matlab编程
语言或Simulink工具箱,实现电机的控制系统。

包括传感器
的采集和信号处理、控制算法的实现、控制信号的输出等。

5. 进行仿真和测试:利用Matlab的仿真工具箱,对设计的电
机控制系统进行仿真和测试。

根据仿真结果,对控制算法进行优化和调整。

6. 硬件实现:将设计好的电机控制系统部署到确切的硬件平台上,如嵌入式系统、DSP芯片等。

可以根据实际情况选择合
适的硬件平台,并进行相应的接口设计和实现。

7. 进行实际运行测试:将设计好的电机控制系统连接到实际的变频调速驱动器和电机上,进行实际运行测试。

根据测试结果,对控制系统进行再次优化和调整。

通过以上步骤,就可以设计基于Matlab的交流异步电机变频
调速运行系统。

基于MATLAB的交流调速控制系统设计研究

基于MATLAB的交流调速控制系统设计研究

毕业设计
目 录
1 绪论 .................................................................. 1 1.1 现代交流调速系统的发展 ............................................. 1 1.2 矢量控制 ........................................................... 3 1.3 设计研究的目的及意义 ............................................... 4 2 异步电动机的多变量数学模型 ............................................ 5 2.1 异步电动机在三相坐标系上的数学模型和性质 ............................ 5 2.1.1 异步电动机在三相坐标系上的数学模型 ................................ 5 2.1.2 异步电动机在三相坐标系上数学模型的性质 ........................... 11 2.2 坐标变换 ........................................................... 12 2.2.1 三相静止/两相静止坐标变换(3S/2S) ............................... 12 2.2.2 两相静止/两相同步旋转的坐标变换(2S/2R) ......................... 15 2.2.3 直角坐标—极坐标变换(K/P) ........................................ 16 2.3 异步电动机在两相坐标系上的数学模型 ................................. 17 2.3.1 两相任意旋转坐标系上的数学模型 ................................... 17 2.3.2 两相静止坐标系上的数学模型 ....................................... 21 2.3.3 两相同步旋转坐标系上的数学模型 ................................... 22 2.3.4 按转子磁场(磁通)定向的数学模型 ................................. 22 3 异步电动机的矢量控制策略 ............................................. 25 3.1 矢量控制的基本思想 ................................................. 25 3.1.1 矢量控制方法的提出 ............................................... 25 3.1.2 矢量控制变换的思路 ............................................... 25 3.2 按转子磁场定向的矢量控制的实现 ..................................... 26 3.3 正弦波脉宽调制技术 ................................................. 28 3.3.1 正弦波脉宽调制的原理 ............................................. 28 3.3.2 SPWM 控制方法 ................................................... 29
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业论文声明本人郑重声明:1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。

除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。

对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。

本人完全意识到本声明的法律结果由本人承担。

2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。

本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。

3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。

4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。

论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。

论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。

对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。

学位论文作者(签名):年月关于毕业论文使用授权的声明本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。

本人完全了解大学有关保存,使用毕业论文的规定。

同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。

本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。

如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。

本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。

本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。

在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。

论文作者签名:日期:指导教师签名:日期:毕业论文(设计)诚信声明本人声明:所呈交的毕业论文(设计)是在导师指导下进行的研究工作及取得的研究成果,论文中引用他人的文献、数据、图表、资料均已作明确标注,论文中的结论和成果为本人独立完成,真实可靠,不包含他人成果及已获得或其他教育机构的学位或证书使用过的材料。

与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

论文(设计)作者签名:日期:年月日毕业论文(设计)版权使用授权书本毕业论文(设计)作者同意学校保留并向国家有关部门或机构送交论文(设计)的复印件和电子版,允许论文(设计)被查阅和借阅。

本人授权青岛农业大学可以将本毕业论文(设计)全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本毕业论文(设计)。

本人离校后发表或使用该毕业论文(设计)或与该论文(设计)直接相关的学术论文或成果时,单位署名为。

论文(设计)作者签名:日期:年月日指导教师签名:日期:年月日1 绪论1.1课题研究背景及目的1.1.1 研究背景直流调速系统的主要优点在于调速范围广、静差率小、稳定性好以及具有良好的动态性能。

在相当长时期内,高性能的调速系统几乎都是直流调速系统。

尽管如此,直流调速系统却解决不了直流电动机本身的换向和在恶劣环境下的不适应问题,同时制造大容量、高转速及高电压直流电动机也十分困难,这就限制了直流拖动系统的进一步发展。

交流电动机自1985年出现后,由于没有理想的调速方案,因而长期用于恒速拖动领域。

20世纪70年代后,国际上解决了交流电动机调速方案中的关键问题,使得交流调速系统得到了迅速的发展,现在交流调速系统已逐步取代大部分直流调速系统。

目前,交流调速已具备了宽调速范围、高稳态精度、快动态响应、高工作效率以及可以四象限运行等优异特性,其稳、动态特性均可以与直流调速系统相媲美。

与直流调速系统相比,交流调速系统具有以下特点:(1)容量大;(2)转速高且耐高压;(3)交流电动机的体积、重量、价格比同等容量的直流电动机小,且结构简单、经济可靠、惯性小;(4)交流电动机环境使用性强,坚固耐用,可以在十分恶劣的环境下使用;(5)高性能、高精度的新型交流拖动系统已达同直流拖动系统一样的性能指标;(6)交流调速系统能显著的节能;从各方面看,交流调速系统最终将取代直流调速系统。

1.1.1研究目的本课题主要运用MATLAB-SIMULINK软件中的交流电机库对交流电动机调速系统进行仿真,由仿真结果图直接认识交流系统的机械特性。

本文重点对三相交流调压调速系统进行仿真研究,认识PID调节器参数的改变对系统性能的影响,认识该系统动态及静态性能的优劣及适用环境。

在实际应用中,电动机作为把电能转换为机械能的主要设备,一是要具有较高的机电能量转换效率;二是应能根据生产机械的工艺要求控制和调节电动机的旋转速度。

电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。

因此,调速技术一直是研究的热点[1][2]。

而交流调速系统凭着其绝对的优势,最终必将取代直流调速系统[3]。

近几年来,科学技术的迅速发展为交流调速技术的发展创造了极为有利的技术条件和物质基础。

交流电动机的调速系统不但性能同直流电动机的性能一样,而且成本和维护费用比直流电动机系统更低,可靠性更高[4]。

目前,国外先进的工业国家生产直流传动的装置基本呈下降趋势,交流变频调速装置的生产大幅度上升。

在日本,1975年在调速领域,直流占80%,交流占20%;1985年交流占80%,直流占20%[5]。

到目前为止,日本除了个别的地方还继续采用直流电机外,几乎所有的调速系统都采用变频装置[6][7]。

计算机仿真技术在交流调速系统的应用,使得对交流调速的性能分析和研究变的更为方便。

传统的计算机仿真软件包用微分方程和差分方程建模,其直观性、灵活性差,编程量大,操作不便。

随着一些大型的高性能的计算机仿真软件的出现,实现交流调速系统的实时仿真可以较容易地实现[8]。

如:matlab软件已经能够在计算机中全过程地仿真交流调速系统的整个过程。

matlab语言非常适合于交流调速领域内的仿真及研究,能够为某些问题的解决带来极大的方便并能显著提高工作效率。

随着新型计算机仿真软件的出现,交流调速技术必将在成本控制、工作效率、实时监控等方面得到长足进步[9][10]。

交流调速技术发展到今天,相对而言已经比较成熟,在工业中得到了广泛的应用,但是随着一些新的电力电子器件和一些新的控制策略的出现,工业应用对交流调速系统又提了新的要求,现代交流电机调速技术的研究和应用前景十分广阔。

20世纪80年代中期研制开发出一种新型交流调速系统——开关磁阻电动机调速系统,它将新型的电机、现代电力电子技术与控制技术融为一体,形成一个典型的机电一体化的调速系统。

由于它在效率、调速性能和成本方面都具有一定的优势,已成为当代电力拖动的一个热门课题,将会在调速领域占有一席之地。

交流调速的控制策略近年来发展非常迅速,诸如转差矢量控制,自适应控制(磁通自适应、断续电流自适应、参数自适应等模型参考自适应控制),状态观测器(磁通观测器、力矩观测器等),为补偿速度降以提高精度的前馈控制,以节能、平稳、快速等为目标函数的优化控制,线性二次型积分控制,滑模变结构控制,直接转矩控制及模糊控制等已见诸国内外有关文献及杂志中1.3论文主要工作1.分析各种调速系统在实际运用中的优缺点,分析各种调速方式适用的场合。

2.重点分析掌握三相交流调压调速原理,机械特性等,然后对其进行MATLAB的仿真实现,通过修改系统各部分的参数,可以输出稳定的波形。

根据示波器输出结果,对系统的性能进行分析。

1.4 论文章节安排第一章绪论:主要介绍本课题的研究背景和研究内容,以及交流调速系统在国内外的发展和前景展望;介绍了文章的主要工作安排以及论文章节安排。

第二章交流调速系统:比较交流调速系统的各种调速方案,重点分析了交流调压调速系统的原理及机械特性,及对交流调压调速电路以及闭环调压调速系统进行了重点的研究分析。

第三章交流调压调速系统的MATLAB仿真:运用MATLAB的SIMULINK工具箱分别对异步电动机调压调速系统的主电路与控制电路进行建模和参数设置,最终建立了异步电动机调压调速系统电路的仿真模型,并对其进行了仿真分析和研究,给出仿真结果,通过对仿真结果的分析验证了交流调压电路的工作原理和所建模型的正确性。

第四章结论:对全文进行总结,指明异步电动机调压调速系统的发展方向。

2 交流调速系统原理与特性2.1交流调速系统交流电机包括异步电动机和同步电动机两大类。

对交流异步电动机而言,其转速为:()min /)1(60r ps f n -= (2-1) 从转速公式可知改变电动机的极对数p ,改变定子供电功率f 以及改变转率s 都可达到调速的目的。

对同步电动机而言,同步电动机转速为:()min /601r pf n = (2-2) 由于实际使用中同步电动机的极对数p 是固定的,因此只有采用变压变频(VVVF )调速,即通常说的变频调速。

运用到实际中的交流调速系统主要有:变级调速系统、串级调速系统、调压调速系统、变频调速系统[1]。

(1)变极调速系统:调旋转磁场同步速度的最简单办法是变极调速。

通过电动机绕组的改接使电机从一种极数变到另一种极数,从而实现异步电动机的有级调速。

变极调速系统所需设备简单,价格低廉,工作也比较可靠,但它是有级调速,一般为两种速度,三速以上的变极电机绕组结构复杂,应用较少。

变极调速电动机的关键在于绕组设计,以最少的线圈改接和引出头以达到最好的电机技术性能指标。

(2)串级调速系统:绕线转子异步电动机串级调速是将转差功率加以利用的一种经济、高效的调速方法。

改变转差率的传统方法是在转子回路中串入不同电阻以获得不同斜率的机械特性,从而实现速度的调节。

这种方法简单方便,但调速是有级的,不平滑,并且转差功率消耗在电阻发热上,效率低。

自大功率电力电子器件问世后,采用在转子回路中串联晶闸管功率变换器来完成馈送转差功率的任务,这就构成了由绕线异步电动机与晶闸管变换器共同组成的晶闸管串级调速系统。

转子回路中引入附加电势不但可以改变转子回路的有功功率——转差功率的大小,而且还可以调节转子电流的无功分量,即调节异步电动机的功率因数。

相关文档
最新文档