七年级数学有理数乘除法练习题
初一数学有理数乘除法练习题(已整理)
1.4.1有理数乘法(1)令狐采学随堂检测1、 填空:(1)5×(-4)= ___;(2)(-6)×4=___;(3)(-7)×(-1)=___;(4)(-5)×0 =___; (5)=-⨯)23(94___;(6)=-⨯-)32()61(___; (7)(-3)×=-)31( 2、填空:(1)-7的倒数是___,它的相反数是___,它的绝对值是___;(2)522-的倒数是___,-2.5的倒数是___; (3)倒数等于它本身的有理数是___。
3、计算: (1))32()109(45)2(-⨯-⨯⨯-; (2)(-6)×5×72)67(⨯-;(3)(-4)×7×(-1)×(-0.25);(4)41)23(158)245(⨯-⨯⨯- 4、一个有理数与其相反数的积( )A 、符号必定为正B 、符号必定为负C 、一定不大于零D 、一定不小于零5、下列说法错误的是( )A 、任何有理数都有倒数B 、互为倒数的两个数的积为1C 、互为倒数的两个数同号D 、1和-1互为负倒数 拓展提高1、32-的倒数的相反数是___。
2、已知两个有理数a,b ,如果ab <0,且a+b <0,那么( ) A 、a >0,b >0 B 、a <0,b >0 C 、a,b 异号 D 、a,b 异号,且负数的绝对值较大3、计算: (1))5(252449-⨯; (2)125)5.2()2.7()8(⨯-⨯-⨯-; (3)6.190)1.8(8.7-⨯⨯-⨯-; (4))251(4)5(25.0-⨯⨯-⨯--。
4、计算:(1))8141121()8(+-⨯-; (2))48()6143361121(-⨯-+--。
5、计算:(1))543()411(-⨯- (2)34.075)13(317234.03213⨯--⨯+⨯-⨯-6、已知,032=-++y x 求xy y x 435212+--的值。
七年级数学上册有理数的乘除练习题
七年级数学上册有理数的乘除练习题【例1】下列说法正确的是( )A .5个有理数相乘,当负因数为3个时,积为负B .﹣1乘以任何有理数等于这个数的相反数C .3个有理数的积为负数,则这3个有理数都为负数D .绝对值大于1的两个数相乘,积比这两个数都大 【变式1-1】在下列各题中,结论正确的是( ) A .若a >0,b <0,则ba >0B .若a >b ,则a ﹣b >0C .若 a <0,b <0,则ab <0D .若a >b ,a <0,则ba <0【变式1-2】已知a +b >0且a (b ﹣1)<0,则下列说法一定错误的是( ) A .a >0,b >1B .a <﹣1,b >1C .﹣1≤a <0,b >1D .a <0,b >0【变式1-3】下列说法:①若a 、b 互为相反数,则a b=−1;②若b <0<a ,且|a |<|b |,则|a +b |=﹣|a |+|b |;③几个有理数相乘,如果负因数的个数为奇数个,则积为负;④当x =1时,|x ﹣4|+|x +2|有最小值为5;⑤若ab =c d,则c a=d b;其中错误的有( )【例2】若3a ﹣12没有倒数,则a = ;已知m ﹣11的倒数为−17,则m +1的相反数是 . 【变式2-1】(2022•杨浦区校级期中)如果a +3的相反数是﹣513,那么a 的倒数是 . 【变式2-2】(2022秋•贵港期末)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2. (1)直接写出a +b ,cd ,m 的值; (2)求m +cd +a+b m的值.【变式2-3】已知a 与2互为相反数,x 与3互为倒数,则代数式a +2+|﹣6x |的值为( ) A .0B .﹣2C .2D .无法确定【例3】下列计算正确的是( ) A .﹣30×37−20×(−37)=1507B .(−23+45)÷(−115)=﹣2C .(12−13)÷(13−14)×(14−15)=310D .−45÷(+45)×(−827)=0【变式3-1】(1)(−35)×(﹣312)÷(﹣114)÷3 (2)[(+17)﹣(−13)﹣(+15)]÷(−1105)【变式3-2】计算: (1)619÷(﹣112)×1924. (2)﹣125×0.42÷(﹣7)【变式3-3】计算:(1)(−35)×(﹣312)÷(﹣114)÷3; (2)(﹣8)÷23×(﹣112)÷(﹣9).【例4】写出下列运算中每一步所依据的运算律或法则: (﹣0.4)×(﹣0.8)×(﹣1.25)×2.5 =﹣(0.4×0.8×1.25×2.5)(第一步) =﹣(0.4×2.5×0.8×1.25)(第二步) =﹣[(0.4×2.5)×(0.8×1.25)](第三步) =﹣(1×1)=﹣1.第一步: ;第二步: ;第三步: . 【变式4-1】计算:(12−34+18)×(﹣24). 【变式4-2】用简便方法计算 (1)991718×(﹣9)(2)(﹣5)×(﹣367)+(﹣7)×(﹣367)+12×(﹣367)【变式4-3】用简便方法计算:(1)﹣13×23−0.34×27+13×(﹣13)−57×0.34(2)(−13−14+15−715)×(﹣60)【例5】(2022•利辛县月考)下面是小明同学的运算过程. 计算:﹣5÷2×12.解:﹣5÷2×12=−5÷(2×12)...第1步 =﹣5÷1...第2步 =﹣5 (3)请问:(1)小明从第 步开始出现错误; (2)请写出正确的解答过程.【变式5-1】计算:(−109)×(−35).解:(−109)×(−35)=−109×35①=−23.②(1)找错:第 步出现错误; (2)纠错:【变式5-2】阅读下面解题过程: 计算:5÷(13−212−2)÷6 解:5÷(13−212−2)×6=5÷(−256)×6…① =5÷(﹣25)…② =−15⋯③回答:(1)上面解题过程中有两处错误,第一处是第 步,错因是 ,第二处是 ,错因是 . (2)正确结果应是 . 【变式5-3】阅读下列材料: 计算:124÷(13−14+112).解法一:原式=124÷13−124÷14+124112=124×3−124×4+124×12=1124. 解法二:原式=124÷(412−312+112)=124÷212=124×6=14.解法三:原式的倒数=(13−14+112)÷124=(13−14+112)×24=13×24−14×24+112×24=4.所以,原式=14.(1)上述得到的结果不同,你认为解法 是错误的; (2)请你选择合适的解法计算:(−142)÷(16−314+23−27).【例6】(1)三个有理数a ,b ,c 满足abc >0,求|a|a +|b|b +|c|c的值.(2)三个有理数a ,b ,c 满足abc <0,求|a|a+|b|b+|c|c的值;(3)若a ,b ,c 为三个不为0的有理数,且|a|a +|b|b+|c|c=−1,求abc|abc|的值.【变式6-1】已知非零有理数a ,b ,c 满足ab >0,bc >0. (1)求|ab|ab +ac|ac|+|bc|bc的值;(2)若a+b+c<0,求|a|a +b|b|+|c|c+|abc|abc的值.【变式6-2】已知|x|=3,|y|=7(1)若x<y,求x﹣y的值;(2)若xy>0,求x+y的值;(3)求x2y﹣xy2+21的值.【变式6-3】若a+b+c<0,abc>0,则ab|ab|+2•|−bc|bc−3•ac|ac|+4•|abc|abc的最大值为()A.6B.8C.10D.7【例7】考察下列每一道算式,回答问题:算式:63×67=4221 72×78=5616561×569=3192009 1814×1816=3294224(1)两个因数个位上的数字之和是多少?其余各位上的数字有何特征?(2)根据四个式子的计算,请你猜想符合上述特征的两个数相乘的运算规律.(3)再举两道符合上述特征的计算题,并用你猜想的规律进行计算.【变式7-1】已知C32=3×21×2=3,C53=5×4×31×2×3=10,C64=6×5×4×31×2×3×4=15,…观察以上规律计算C85=,C10a=45,则a=.【变式7-2】有一列数a1,a2,a3,…a n,若a1=12,从第二个数开始,每一个数都等于1与它前面那个数的差的倒数.(1)试计算a2,a3,a4;(2)根据以上计算结果,试猜测a2016、a2017的值.【变式7-3】已知一些两位数相乘的算式:62×11,78×69,34×11,63×67,18×22,15×55,12×34,54×11利用这些算式探究两位数乘法中可以简化运算的特殊情形:(1)观察已知算式,选出具有共同特征的3个算式,并用文字描述它们的共同特征;(2)分别计算你选出的算式.观察计算的结果,你能发现不经过乘法运算就可以快速、直接地写出积的规律吗?请用文字描述这个规律;(3)证明你发现的规律;(4)在已知算式中,找出所有可以应用(或经过转化可以应用)上述规律的算式,并将它们写在横线上:.【例8】(2022•江宁区校级月考)天龙顶国家山地公园,位于岑溪市南渡镇吉太附近,距岑溪市35公里,天龙顶是桂东最高峰,史上早已成名,被誉为“土主龙楼”天龙顶形成于远古冰川,由整块红色砂岩劈凿而成,拔地而起,是极限攀岩、野外露营及登山爱好者的天堂.某年寒假,小昌与小勇一起去游天龙顶,他们想知道山的高度.小昌说可以利用温度计测量山峰的高度,小昌在山顶测得温度约是﹣1℃,小勇此时在山脚测得温度约是8.6℃,已知该地区每年增加100米,气温大约下降0.8℃,小昌很快算出了答案,你知道天龙顶的高度约是多少米吗?【变式8-1】妈妈身高多少厘米?【变式8-2】某原料仓库一天的原料进出记录如下表(运进用正数表示,运出用负数表示):﹣34﹣12﹣5进出数量(单位:吨)进出次数21332(1)这天仓库的原料比原来增加或减少了多少吨?(2)根据实际情况,现有两种方案:方案一:运进每吨原料费用5元,运出每吨原料费用8元;方案二:不管运进还是运出费用都是每吨原料6元;从节约运费的角度考虑,选用哪一种方案较合适?请说明理由.【例9】若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【变式9-1】定义:对于一个两位自然数,如果它的个位和十位上的数字均不为零,且它正好等于其个位和十位上的数字的和的n倍(n为正整数),我们就说这个自然数是一个“n 喜数”.例如:24就是一个“4喜数”,因为24=4×(2+4);25就不是一个“n喜数”,因为25≠n(2+5).(1)判断44和72是否是“n喜数”?请说明理由;(2)请求出所有的“7喜数”之和.【变式9-2】“格子乘法”作为两个数相乘的一种计算方法,最早在15世纪由意大利数学家帕乔利提出,在明代数学家程大位著的《算法统宗》一书中被称为“铺地锦”.例如:如图1,计算46×71,将乘数46写在方格上边,乘数71写在方格右边,然后用乘数46的每位数字乘以乘数71的每位数字,将结果计入相应的方格中,最后沿斜线方向相加得3266.(1)如图2,用“格子乘法”计算两个两位数相乘,则x=,y=;(2)如图3,用“格子乘法”计算两个两位数相乘,得2176,则m=,n=;(3)如图4,用“格子乘法”计算两个两位数相乘,则k=.【变式9-3】小聪是一个聪明而又富有想象力的孩子.学习了“有理数的乘方”后,他就琢磨着使用“乘方”这一数学知识,脑洞大开地定义出“有理数的除方”概念.于是规定:若干个相同有理数(均不能为0)的除法运算叫做除方,如5÷5÷5,(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)等,类比有理数的乘方.小聪把5÷5÷5记作f(3,5),(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)记作f(4,﹣2).(1)直接写出计算结果,f(4,1)=,f(5,3)=;2(2)关于“有理数的除方”下列说法正确的是.(填序号)①f(6,3)=f(3,6);②f(2,a)=1(a≠0);③对于任何正整数n,都有f(n,﹣1)=1;④对于任何正整数n,都有f(2n,a)<0(a<0).(3)小明深入思考后发现:“除方”运算能够转化成乘方运算,且结果可以写成幂的形式,请推导出“除方”的运算公式f(n,a)(n为正整数,a≠0,n≥2),要求写出推导过程将结果写成幂的形式;(结果用含a,n的式子表示)(4)请利用(3)问的推导公式计算:f(5,3)×f(4,13)×f(5,﹣2)×f(6,12).。
七年级有理数乘除混合运算练习题(附答案)
七年级有理数乘除混合运算练习题一、计算题1.计算(1)()1124⎛⎫-÷- ⎪⎝⎭. (2)()0.750.25-÷.(3)()00.12÷-.(4)()11.254-÷. 2.计算.(1)()()50.750.34-÷÷-. (2)()349731221⎛⎫⎛⎫⨯⨯- ⎪ ⎪⎝⎭⎝-÷⎭- . (3)()11150.6 1.75232⎛⎫-⨯-⨯÷- ⎪⎝⎭. (4)3777148128⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+--+-÷- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 3.计算 (1)4512117621⎛⎫⎛⎫⎛⎫÷÷ ⎪ ⎪ ⎪⎝⎭⎝-⎭⎝-⎭-. (2)()14812649⎛⎫-÷⨯-÷ ⎪⎝⎭. (3)11111345660⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭. 4.计算(1)()()755-÷-. (2)80.1253-÷. (3)512557-÷. (4)()()1.250.52÷-÷-5.用简便方法计算(1)()()()11.2548220⎛⎫+⨯-⨯- ⎪⎭⨯-⎝. (2)()532.465⎛⎫⎛⎫-⨯-⨯+ ⎪ ⎪⎝⎭⎝⎭.(3)()312461014313⎛⎫⎛⎫⎛⎫⨯+⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-. (4)()()()()181201250.0012-⎛⎫⨯⨯⨯⨯ ⎪--⎭-⎝ . (5)513160522++-+⎡⎤⎛⎫⎛⎫⎛⎫-⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. (6)341000.70.03105⎛⎫-⨯--+ ⎪⎝⎭. (7)1314414⎛⎫-⨯ ⎪⎝⎭. 6.计算 (1)8394⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝-⎭-. (2)211135⎛⎫+⨯⎛⎫ ⎪⎝⎭- ⎪⎝⎭. (3)()54123116547⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯-⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 7.若规定两数,a b 通过“※”运算得到4ab ,即4a b ab =※,如2642648=⨯⨯=※,请你求出35※的值.8.计算(1)()1481341()1139⎛⎫⎛⎫⨯÷- -÷+⎝-⎪ ⎪⎭⎝⎭. (2)()453251⎡⎤⎛⎫⎛⎫÷÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣-⎦-. (3)157136918⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭. 9.计算4312773⎛⎫+⨯- ⎪⎝⎭. 10.计算:()497-÷-= ,1121635⎛⎫-÷= ⎪⎝⎭ ,()()()110441÷-+÷---⨯= ,()()270.5-÷-= .11.计算下列各题(1)()()4812-÷-. (2)112136⎛⎫÷- ⎪⎝⎭.(3)()21354⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎝⎭⎝⎭. (4)733.584⎛⎫-÷⨯- ⎪⎝⎭. 12.用简便方法计算201520142014201420152015⨯-⨯.13.计算 (1)5129165⎛⎫⎛⎫-⨯⨯- ⎪ ⎪⎝⎭⎝⎭. (2)()11112362⎛⎫-+-⨯- ⎪⎝⎭(3)()127813⨯-. (4) ()2215130.34130.343737-⨯-⨯+-⨯-⨯. 14.计算18361129⎛⎫-⨯-- ⎪⎝⎭. 15.计算1111111...12015201420131000⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 16.计算 (1)1123⎛⎫-⨯- ⎪⎝⎭(2)113135⎛⎫⨯- ⎪⎝⎭(3)()()345-⨯-(4)()()()355302005-⨯-⨯-17.计算:(1)20(14)(18)13-+----;(2)41(0.125)()()778-⨯-÷-⨯;(3)7211()(4)9353-÷--⨯-; (4)5752()3(2)81283--÷--. 18.计算: (1)6133()(1)()15245-÷---⨯;(2)11 5322()22-÷⨯--÷-;(3)11 2(3)12()64⨯-+⨯+.19.计算:(1)11711()()8283-÷-⨯-;(2)121 (13)51513335 -÷-÷+⨯;(3)1121 ()() 36530+-÷-;(4)1111[(2)]223-÷+⨯-.20.计算下列各题:(1)11 (3)(10)(2)32-÷-⨯-;(2)115 0.25()6817÷⨯-;(3)14(27)2(24)49-÷⨯÷-.21.计算:(1)3()54-÷;(2)4 18(1)5 -÷-;(3)22(8)7÷-;(4)21 (3)(5)32 -÷.22.化简:(1)3612--;(2)255---;(3)60.3--;(4)123-.23.用简便方法计算:(1)523()(12) 1234+-⨯-;(2)113(19)19(19)424-⨯--⨯-⨯-. 24.若定义一种新的运算*“”,规定有理数4a b ab *=,如2342324*=⨯⨯=. (1)求()34*-的值;(2)求()()263-**的值.25.用简便方法计算:(1)1117()(60)34515--+-⨯-; (2)1882173()()772222⨯-⨯⨯-; (3)2215130.34(13)0.343737-⨯-⨯+⨯--⨯. 26.计算下列各题: (1)7(0.25)()4(18)9-⨯-⨯⨯-;(2)29155⨯;(3)7537()3696418-+-⨯; (4)666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-.27.计算:(1)1(2)()(3)2-⨯-⨯-;(2)(0.1)1000(0.01)-⨯⨯-;(3)1239()()()2348-⨯-⨯⨯-;(4)8211(2)(1)(2)(4)317152+⨯-⨯+⨯-. 28.计算:(1)( 1.2)(3)-⨯-;(2)7(1)08-⨯;(3)11(1)(4)32-⨯-;(4)1 ( 2.5)23 -⨯.29.计算:(1)71131262142⎛⎫⎛⎫⎛⎫-⨯-⨯÷-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)11131 21 532114⎛⎫⨯-⨯÷-⎪⎝⎭参考答案1.答案:(1)48.(2)3-.(3)0.(4)5-.解析:2.答案:(1)2.(2)3-.(3)1135,(4)123-. 解析:3.答案:(1)162121-;(2)83;(3)7-. 解析:4.答案:(1)15;(2)364-;(3)1257-; (4)54. 解析:5.答案:(1)81-.(2)1.2.(3)6-.(4)0.004-.(5)19-.(6)37.(7)5597-. 解析:6.答案:(1)23;(2) 2-;(3)8156-. 解析:7.答案:60.解析:8.答案:(1)()14131418931⎛⎫⎛⎫⎛⎫÷+⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 44138113914=-⨯⨯⨯ 7221077=-=-. (2)()124535⎡⎤⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 124525=-÷⨯ 2453545=-⨯⨯=-. (3)157136918⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭ ()15718369⎛⎫=-+⨯- ⎪⎝⎭ ()()()157181818368=⨯--⨯-+⨯-615145=-+-=-.解析:9.答案:原式43743177377⎛⎫=+⨯-=-=- ⎪⎝⎭. 解析:10.答案:7-,2-,5-,54.解析:11.答案:(1)()()(4812)48124-÷-=+÷=. (2)117776212363637⎛⎫⎛⎫⎛⎫÷-=-÷=-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (3)()()()21533430542⎛⎫⎛⎫⎛⎫-÷-÷-=-⨯-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (4)733.584⎛⎫-÷⨯- ⎪⎝⎭833.574⎛⎫=-⨯⨯- ⎪⎝⎭7833274=⨯⨯=. 解析:12.答案:原式()()201520140000201420142015000020150=⨯+-⨯+=.解析:13.答案:(1)515529129296566⎛⎫⎛⎫⎛⎫⎛⎫-⨯⨯-=-⨯-⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. (2)()11112362⎛⎫+-⨯- ⎪⎝⎭()()()111121212362⎛⎫=-⨯-+⨯--⨯- ⎪⎝⎭4268=-+=. (3)()121278781313⨯-=-⨯⨯18813⎡⎤⎛⎫=--⨯ ⎪⎢⎥⎝⎭⎣⎦188813⎛⎫=-⨯-⨯ ⎪⎝⎭8564631313⎛⎫=--=- ⎪⎝⎭. (4)()15.342722130.341337-⨯-⨯+⨯-⨯-2125130.343377⎛⎫⎛⎫=-⨯+-⨯+ ⎪ ⎪⎝⎭⎝⎭. 解析:14.答案:原式183636361129=-⨯+-⨯-⨯3323671=---=. 解析:15.答案:原式201420132012999999...20152014201310002015⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 解析:16.答案:(1)1111123226⎛⎫-⨯-=⨯= ⎪⎝⎭. (2)111063143535⎛⎫⎛⎫⨯-=-⨯=- ⎪ ⎪⎝⎭⎝⎭.(3)()()34534560⨯⨯--=⨯⨯=.(4)()()()3553020050-⨯-⨯⨯-=.解析:17.答案:(1)解:原式2014181329=--+-=-.(2)解:原式14()(8)7487=-⨯-⨯-⨯=-. (3)解:原式774543915333=÷+=+=. (4)解:原式292981872483333=-÷+=-+=. 解析:18.答案:(1)解:原式623846()2534555=-⨯-+⨯=+= (2)解:原式313152(2)5482244=-⨯-⨯-=-+=. (3)解:原式1161212623164=-+⨯+⨯=-++=-. 解析:19.答案:(1)解:原式1311811()()1()()883833=-÷-⨯-=-⨯-⨯- 11181()()13399=--⨯-=-= (2)解:原式4051(13)335=--+⨯1(1513)5=-+⨯12(2)55=-⨯=- (3)解:原式112()(30)365=+-⨯- 112(30)(30)(30)365=⨯-+⨯--⨯- (10)(5)(12)105123=-+---=--+=-(4)解:原式312313()()69223262=-÷-=-÷-=⨯= 解析:20.答案:(1)解:原式10155()31026=-⨯⨯=-(2)解:原式1515150.2568()0.25417()(0.254)[17()]1(15)15171717=⨯⨯-=⨯⨯⨯-=⨯⨯⨯-=⨯-=-(3)解:原式4412 (27)()99249 =-⨯⨯⨯-=.解析:21.答案:(1)解:原式313 ()4520 =-⨯=-(2)解:原式5 18109=⨯=(3)解:原式1612()787 =⨯-=-(4)解:原式11223113 =-⨯=-解析:22.答案:(1)解:36(36)(12)36123 12-=-÷-=÷= -(2)解:25(25)(5)(255)55--=--÷-=-÷=--(3)解:66(0.3)(60.3)200.3-=-÷-=+÷=-(4)解:11111 2332236 -=-÷=-⨯=-解析:23.答案:(1)解:原式523(12)(12)()(12)5894 1234=⨯-+⨯-+-⨯-=--+=-(2)解:原式113119 (19)()19()42422 =-⨯-+-=-⨯-=.解析:24.答案:(1)解:3*(4)43(4)48-=⨯⨯-=-(2)(2)*(6*3)(2)*(463)(2)*724(2)72576 -=-⨯⨯=-=⨯-⨯=-解析:25.答案:(1)解:原式1117()(60)(60)(60)(60) 34515=-⨯--⨯-+⨯--⨯-2015122851 =+-+=(2)解:原式2278821[()][()]722722=⨯-⨯-⨯1(12)12=-⨯-=(3)解:原式2152 13130.340.343377 =-⨯-⨯-⨯-⨯215213()()0.343377=-⨯++--⨯13110.34130.3413.34 =-⨯-⨯=--=-解析:26.答案:(1)解:原式1717418(4)(18)11414 4949=-⨯⨯⨯=-⨯⨯⨯=-⨯=-(2)解:方法1:原式4715141 5=⨯=方法2:原式22(9)159151514155=+⨯=⨯+⨯=(3)解:原式7537363636362830271411 96418=⨯-⨯+⨯-⨯=-+-=(4)解:原式66 (5712)(3)0(3)077=--+⨯-=⨯-=.解析:27.答案:(1)解:原式1(23)32=-⨯⨯=-(2)解:原式0.110000.011=⨯⨯=(3)解:原式12399()234832 =-⨯⨯⨯=-(4)解:原式70931927 317152=⨯⨯⨯=.解析:28.答案:(1)解:原式(1.23) 3.6=+⨯=(2)解:原式0=(3)解:原式4949 ()()6 3232=-⨯-=⨯=(4)解:原式5735236 =-⨯=-.解析:29.答案:(1)12-(2)225-解析:(1)原式()7131223142⎛⎫⎛⎫=-⨯-⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭ (2)原式1113425611525⎛⎫=⨯-⨯⨯-=- ⎪⎝⎭。
七年级数学上册《第一章 有理数的乘除法》同步练习题及答案(人教版)
七年级数学上册《第一章 有理数的乘除法》同步练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.2的倒数是( )A .12 B .﹣ 12 C .2 D .﹣22.绝对值大于2且小于5的所有整数的积是( )A .﹣144B .144C .0D .73.下列计算正确的是( )A .()1103033⎛⎫÷-=⨯-=- ⎪⎝⎭ B .()()22224-÷-=-⨯=-C .()111999⎛⎫÷-=⨯-=- ⎪⎝⎭ D .()()3693694-÷-=-÷=-4.已知|x|=3,|y|=2,且xy <0,则x ﹣y 的值等于( )A .5B .5或﹣5C .﹣5D .﹣5或15.在简便运算时,把47249948⎛⎫⨯- ⎪⎝⎭变形成最合适的形式是( )A .12410048⎛⎫⨯-+ ⎪⎝⎭B .12410048⎛⎫⨯-- ⎪⎝⎭C .47249948⎛⎫⨯-- ⎪⎝⎭D .47249948⎛⎫⨯-+ ⎪⎝⎭6.有两根铁丝,第一根用去 25 米,第二根用去 25 ,剩下的一样长,两根铁丝原来相比() A .第一根长 B .第二根长 C .一样长 D .无法确定7.从-8,-6,-4,0,3,5,7中任取三个不同数做乘积,则最小的乘积是( )A .-336B .-280C .-210D .-1928.如图,数轴上的点A 、B 分别对应数a 、b ,下列结论正确的是( )A .<0a b +B .>0a b -C .>0abD .>0ab -9.吴与伦比设计了一个计算程序,如图,如果输入的数是1,那么输出的结果是( )A .1B .-1C .3D .-3 二、填空题10.a 的相反数是 710,则a 的倒数是 。
11.计算: 1()303-⨯+= .12.在6,﹣5,﹣4,3四个数中任取两数相乘,积记为A ,任取两数相除,商记为B ,则A ﹣B 的最大值为 .13.已知 230a b ++-= ,则 ab = .14.有理数a 、b ,规定运算“★”如下:a ★b =a ×b-a-b-2,则(-3)★2= .三、计算题15.()528522514⎛⎫-+÷-⨯- ⎪⎝⎭16.计算(1)()()251236--+⨯-;(2)13212243⎛⎫-+-⨯ ⎪⎝⎭.17.计算:(1)(32)(4)(25)4-÷---⨯;(2)523(5)(7)()(12)1234-⨯-++-⨯-.18.一只蚂蚁从某点A 出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+2,-3,+12,-8,-7,+16,-12(1)通过计算说明蚂蚁是否回到起点A ;(2)如果蚂蚁爬行的速度为0.5厘米/秒,那么蚂蚁共爬行了多长时间.19.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入,下表是某周的生产情况(超产记为正,减产记为负)((2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)赶进度期间该厂实行计件工资加浮动工资制度,即:每生产一个工艺品的工资为30元,超过计划完成任务部分的每个工艺品则在原来30元工资上再奖励5元;比计划每少生产一个则在应得的总工资上扣发3元(工资按日统计,每周汇总一次),求该厂工人这一周的工资总额是多少?参考答案:1.A 2.B 3.C 4.B 5.A 6.D 7.B 8.D 9.A10.107- 11.-112.65313.-614.-715.解: ()528522514⎛⎫-+÷-⨯- ⎪⎝⎭ 5281525214⎛⎫⎛⎫=-+⨯-⨯- ⎪ ⎪⎝⎭⎝⎭, 5281525214=-+⨯⨯, 512=-+, 32=- 16.(1)解:()()251236--+⨯-()25+1218=+-19=;(2)解:13212243⎛⎫-+-⨯ ⎪⎝⎭ 132121212243=-⨯+⨯-⨯ 698=-+-=5-.17.(1)解:原式8(100)=--8100=+108=;(2)解:原式52335(12)(12)(12)1234=+⨯-+⨯--⨯- 35589=--+31=.18.(1)解:根据题意得:+2−3+12−8−7+16−12=0答:蚂蚁能回到起点A(2)解:(2+3+12+8+7+16+12)÷0.5=60÷0.5=120(秒)答:蚂蚁共爬行了120秒.19.(1)解:周一的产量为: ()3002298+-= 个;(2)解:由表格可知:星期六产量最高,为 300(16)316++= (个) 星期五产量最低,为 300(10)290+-=(个)则产量最多的一天比产量最少的一天多生产 31629026-= (个) ;(3)解: (5)(2)(5)(15)(10)(16)(9)10++-+-+++-+++-= 个 根据题意得该厂工人一周的工资总额为:()2100103055235315510316593+⨯+⨯-⨯-⨯+⨯-⨯+⨯-⨯ 633002561575308027=+--+-+-63402= (元)。
有理数的乘除法练习题(含答案)
第一章有理数1.4 有理数的乘除法1.计算12–12×3的结果是A.0 B.1 C.–2 D.–1 2.若等式–2□(–2)=4成立,则“□”内的运算符号是A.+ B.–C.×D.÷3.计算1–(–2)×(–2)÷4的结果为A.2 B.54C.0 D.34-4.|–13|的倒数是A.13B.3 C.–13D.–35.–0.3的倒数是A.10.3B.−10.3C.103D.−1036.2×(–3)=__________.7.计算:523()12 1234+-⨯.8.计算:22 (7)()7-⨯-.9.计算:34(7)(2) 25-÷-⨯+.10.计算:236(3)2(4)-⨯-+⨯-.11.12()2⨯-的结果是A.–4 B.–1 C.14-D.3212.计算:740(16) 2.54÷--÷=A.–1.1 B.–1.8 C.–3.2 D.–3.9 13.下列各数中,与–2的积为1的是A.12B.–12C.2 D.–214.计算11(6)()666⨯-÷-⨯的值为A.1 B.36 C.1-D.+615.计算(1+14+56−12)×12时,下列可以使运算简便的是A.运用乘法交换律B.运用加法交换律C.运用乘法分配律D.运用乘法结合律16.在–3,–2,–1,4,5中取出三个数,把三个数相乘,所得到的最大乘积是__________.17.有三个互不相等的整数a、b、c,如果abc=9,那么a+b+c=__________.18.计算:5 (8)[7(3 1.2)]6-⨯-+-⨯.19.计算:11336()964⨯--.20.计算:11 (1)(9)()32-⨯-÷-.21.(–0.25)×(–79)×4×(–18).22.计算:12112 ()() 3031065-÷-+-.23.计算:(14+512–56)×(–60).24.阅读后回答问题:计算(–52)÷(–15)×(–115)解:原式=–52÷[(–15)×(–115)]①=–52÷1②=–52③(1)上述的解法是否正确?答:__________;若有错误,在哪一步?答:__________;(填代号)错误的原因是:__________;(2)这个计算题的正确答案应该是:25.(2018•陕西)–711的倒数是A.711B.−711C.117D.−11726.(2018•吉林)计算(–1)×(–2)的结果是A.2 B.1 C.–2 D.–3 27.(2018•遂宁)–2×(–5)的值是A.–7 B.7 C.–10 D.10 1.【答案】D【解析】111323===122222-⨯---,故选D.2.【答案】C【解析】–2×(–2)=4.故选C.3.【答案】C【解析】1–(–2)×(–2)÷4=1–4÷4=1–1=0,故选C.4.【答案】B【解析】|–13|=13,13的倒数是3,故选B.5.【答案】D【解析】–0.3=–310,故–0.3的倒数是−103.故选D.6.【答案】–6【解析】根据有理数的乘法法则可得2×(–3)=–6.9.【答案】3 5【解析】3431143(7)(2)()252755-÷-⨯+=-⨯-⨯=.10.【答案】33【解析】236(3)2(4)-⨯-+⨯-2318833=+-=.11.【答案】B【解析】2×(–12)=–(2×12)=–1.故选B.12.【答案】C【解析】原式=575242--÷=572245--⨯=2571010--=3210-=–3.2,故选C.13.【答案】B【解析】∵–2×12=–1,–2×(–12)=1,–2×2=–4,–2×(–2)=4,∴与–2的积为1的是–12.故选B.14.【答案】B【解析】首先确定积的符号,然后将除法转化为乘法再进行计算.原式=16×6×6×6=36.15.【答案】C【解析】∵算式符合乘法分配律的形式,∴运用乘法分配律可以使运算简便.故选C.16.【答案】30【解析】正数大于一切负数,同号得正,异号得负,找出乘积是正数绝对值最大的三个数相乘即可.最大乘积是:(–3)×(–2)×5=3×2×5=30.故答案为:30.19.【答案】–29【解析】11311336()363636462729 964964⨯--=⨯-⨯-⨯=--=-.20.【答案】–24【解析】114(1)(9)()9224323-⨯-÷-=-⨯⨯=-.21.【答案】【解析】原式=–(14×79×4×18)=–14.22.【答案】1 10 -【解析】原式=14114()()30661010-÷+--=151()()3062-÷-=11()()303-÷=1()330-⨯=110-.23.【答案】10【解析】原式=14×(–60)+512×(–60)–56×(–60)=–15+(–25)+50=–40+50=10.24.【答案】(1)不正确;①;运算顺序不对,或者是同级运算中,没有按照从左到右的顺序进行;(2)190.【解析】(1);不正确;错误在第①步;运算顺序不对,或者是同级运算中,没有按照从左到右的顺序进行;25.【答案】D【解析】–711的倒数是–117,故选D.26.【答案】A【解析】(–1)×(–2)=2.故选A.27.【答案】D【解析】(–2)×(–5)=+2×5=10,故选D.。
人教版七年级数学上1.4有理数的乘除法测试题含答案及解析
有理数的乘除法测试时间:60分钟总分:100一、选择题(本大题共10小题,共30.0分)1.若,则下列各式正确的是A. B. C. D. 无法确定2.正整数x、y满足,则等于A. 18或10B. 18C. 10D. 263.若,,且,则等于A. 1或B. 5或C. 1或5D. 或4.算式之值为何?A. B. C. D.5.计算的值是A. 6B. 27C.D.6.若,,且,则的值为A. B. C. 5 D.7.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是A. 相等B. 互为相反数C. 互为倒数D. 相等或互为相反数8.的倒数与4的相反数的商是A. B. 5 C. D.9.计算等于A. 1B.C.D.10.计算:的结果是A. 1B.C.D.二、填空题(本大题共10小题,共30.0分)11.若,,则ab______ 0;若,,则ab______12.已知,,且,则的值等于______ .13.比大的数是______ ;比小______ ;数______ 与的积为14.14.若“”是一种数学运算符号,并且,,,,则的值为______ .15.计算的结果是______ .16.四个互不相等的整数a、b、c、d,使,则______ .17.______ .18.计算:______.19.化简:______ .20.已知,,且,则的值为______ .三、计算题(本大题共4小题,共24.0分)21.22.运算:23..24..四、解答题(本大题共2小题,共16.0分)25.数学老师布置了一道思考题“计算:”,小明仔细思考了一番,用了一种不同的方法解决了这个问题.小明的解法:原式的倒数为,所以.请你判断小明的解答是否正确,并说明理由.请你运用小明的解法解答下面的问题.计算:.26.利用适当的方法计算:.答案和解析【答案】1. C2. A3. B4. D5. D6. B7. D8. C9. B10. C11. ;12. 8或13. ;;14. 10015. 316. 1217.18.19. 320. 或21. 解:原式,.22. 解:原式.23. 解:原式.24. 解:原式,.25. 解:正确,理由为:一个数的倒数的倒数等于原数;原式的倒数为,则.26. 解:原式.【解析】1. 解:,同号两数相乘得正,不等式两边乘以同一个正数,不等号的方向不变.故选C.根据有理数乘法法则:两数相乘,同号得正可得再根据不等式是性质:不等式两边乘或除以同一个负数,不等号的方向改变,解答此题.主要考查了不等式的基本性质:不等式两边加或减同一个数或式子,不等号的方向不变不等式两边乘或除以同一个正数,不等号的方向不变不等式两边乘或除以同一个负数,不等号的方向改变.2. 解:,y是正整数,、均为整数,,或,存在两种情况:,,解得:,,;,解得:;或10,故选A.易得、均为整数,分类讨论即可求得x、y的值即可解题.本题考查了整数的乘法,本题中根据或分类讨论是解题的关键.3. 解:因为,,所以,,因为,所以,,所以;所以,,所以;故选B先由绝对值和平方根的定义求得x、y的值,然后根据分类计算即可.本题主要考查的平方根的定义、绝对值、有理数的加法,求得当时,,当时,是解题的关键.4. 解:原式.故选:D.根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可.本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.5. 解:原式,故选:D.利用有理数的乘法法则进行计算,解题时先确定本题的符号.本题考查了有理数的乘法,解题的关键是确定运算的符号.6. 解:,,,,,当,,即当,,;当,,即,,.故选B.首先用直接开平方法分别求出a、b的值,再由可确定a、b同号,然后即可确定a、b的值,然后就可以求出的值.本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7. 解:根据题意得,由比例的性质得:...或.故选:D.设这两个数分别为a、b,根据题意得到,从而可得到,从而可判断出a、b之间的关系.本题主要考查的是有理数的除法、平方差公式的应用,得到是解题的关键.8. 解:的倒数是,4的相反数是,.故选C.依据相反数、倒数的概念先求得的倒数与4的相反数,然后根据有理数的除法法则求出它们的商.主要考查相反数、倒数的概念及有理数的除法法则.9. 解:,故选:B.根据有理数的除法法则:除以一个数等于乘以这个数的倒数,可得答案.本题考查了有理数的除法,解题关键是把有理数的除法转化成有理数的乘法.10. 解:,故选:C.根据有理数的除法,即可解答.本题考查了有理数的除法,解决本题的关键是熟记有理数的除法.11. 解:若,,则;若,,则.故答案为:;.利用有理数乘法法则判断即可得到结果.此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.12. 解:,,且,,或,,则或.故答案为:8或根据题意利用有理数的乘法法则判断x与y异号,再利用绝对值的代数意义求出x与y的值,即可求出的值.此题考查了有理数的乘法与减法,以及绝对值,熟练掌握运算法则是解本题的关键.13. 解:比大的数是:;比小;;故答案为:,,.比大的数是,根据有理数的加法法则即可求解;根据题意列式,列出算式,再进行计算即可;根据除法法则进行计算即可.本题考查了有理数的除法和加减法运算,熟练掌握运算法则是解题的关键;注意题中“大”、“小”的意思.14. 解:.故答案为:100.根据“”的运算方法列出算式,再根据有理数的乘法和有理数的除法运算法则进行计算即可得解.本题考查了有理数的乘法,有理数的除法,读懂题目信息,理解新定义的运算方法是解题的关键.15. 解:原式,故答案为:3.根据有理数的除法和乘法,即可解答.本题考查了有理数的乘法和除法,解决本题的关键是把除法转化为乘法计算.16. 解:四个互不相等的整数,,,的积为25,这四个数只能是1,,5,,,,,,则.故答案为:12.找出25的四个互不相等的因数,即1,,5,.本题主要考查了有理数的乘法及加法,解题的关键是要理解25分成四个互不相等的因数只能是1,,5,.17. 解:原式,故答案为:原式利用除法法则变形,约分即可得到结果.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.18. 解:原式,故答案为:.根据有理数的除法,可得有理数的乘法,根据有理数的乘法,可得答案.本题考查了有理数的除法,利用有理数的除法是解题关键.19. 解:,故答案为:3.根据分数的分子分母同号得正,能约分的要约分,可得答案.本题考查了有理数的除法,分子分母同号得正异号得负,并把绝对值相除.20. 解:,,,,,当时,,,当时,,,故答案为:或.根据绝对值的性质求出a,b,再根据有理数的加法判断出b的值,有理数的除法进行计算即可得解.本题考查了有理数的除法,绝对值的性质,有理数的加法,熟练掌握运算法则是解题的关键.21. 根据有理数的除法法则,先把除法化成乘法,再根据有理数的乘法进行计算即可.本题主要考查对有理数的乘法、除法等知识点的理解和掌握,能熟练地运用法则进行计算是解此题的关键.22. 原式先计算括号中的加减运算,再计算除法运算即可得到结果.此题考查了有理数的除法,熟练掌握除法法则是解本题的关键.23. 原式利用乘法分配律计算即可得到结果.此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.24. 根据乘法算式的特点,可以用括号内的每一项与相乘,计算出结果.在进行有理数的乘法运算时,要灵活运用运算律进行计算.25. 正确,利用倒数的定义判断即可;求出原式的倒数,即可确定出原式的值.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.26. 逆用乘法的分配律,将提到括号外,然后先计算括号内的部分,最后再算乘法即可.本题主要考查的是有理数的乘法,逆用乘法分配律进行简便计算是解题的关键.。
七年级数学有理数的乘除混合练习题40道
七年级数学有理数的乘除混合练习题40道一、有理数的乘法1. 计算:(-5) × (-7) = ____2. 计算:3/4 × 2/5 = ____3. 计算:-6 × 1/2 = ____4. 计算:0 × (-3/4) = ____5. 计算:-2 × 0 = ____二、有理数的除法6. 计算:(-9) ÷ 3 = ____7. 计算:16 ÷ (-2) = ____8. 计算:(-30) ÷ (-5) = ____9. 计算:13/4 ÷ 5/6 = ____10. 计算:0 ÷ (-7/8) = ____三、乘除混合运算11. 计算:(-5) × (-2) ÷ (-10) = ____12. 计算:1/3 × (-3) ÷ 2 = ____13. 计算:(-6) ÷ (-3) × 2/5 = ____14. 计算:2/5 ÷ (-1/2) × 3/4 = ____15. 计算:(-4) × 5/6 ÷ (-2/3) = ____16. 计算:(-7) ÷ 2 × 4/5 = ____17. 计算:3/4 ÷ (-2/3) × (-6/5) = ____18. 计算:(-1/3) × (-6) ÷ 2/5 = ____19. 计算:(-2/5) ÷ (-3/4) × (-4/3) = ____20. 计算:(-9) ÷ (-3/5) × (-5/2) = ____21. 计算:5 × (-1/2) ÷ 3/4 = ____22. 计算:(-2) ÷ 3 × (-2/5) = ____23. 计算:4/5 ÷ (-1/2) × 3 = ____24. 计算:(-2/3) × 2 ÷ (-5/6) = ____25. 计算:(-10) ÷ 4 × (-7/8) = ____26. 计算:(-4/5) × (-2/3) ÷ (-5/6) = ____27. 计算:(-7/8) ÷ (-1/2) × 3/4 = ____28. 计算:(-3/4) × (-4/5) ÷ (-2/3) = ____29. 计算:(-1/2) ÷ (-3) × (-3/5) = ____30. 计算:(-5/6) ÷ (-7/8) × (-8/9) = ____31. 计算:(-5/6) ÷ (-1/4) × (-4/9) = ____32. 计算:(-3/4) × (-2) ÷ (-5) = ____33. 计算:(-2/3) ÷ (-4) × (-3) = ____34. 计算:(-5/6) ÷ 1 ÷ (-2) = ____35. 计算:(-1/2) ÷ (-1/3) ÷ (-4/5) = ____36. 计算:(-5) ÷ (-4/5) ÷ 1/2 = ____37. 计算:(-4) × (-2/3) ÷ (-3/4) = ____38. 计算:2/3 ÷ (-4/5) ÷ (-5/6) = ____39. 计算:(-3/4) ÷ (-1/2) ÷ 2 = ____40. 计算:(-2/5) ÷ (-2/3) ÷ (-3/4) = ____以上是《七年级数学有理数的乘除混合练习题40道》的内容。
七年级上册数学第一章有理数的乘除法练习题
1.4 有理数的乘除法演习题之马矢奏春创作时间:二O二一年七月二十九日一、选择1.假如两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( ) A.必定为正 B.必定为负 C.为零 D.可能为正,也可能为负2.若干个不等于0的有理数相乘,积的符号( )3.下列运算成果为负值的是( )A.(-7)×(-6)B.(-6)+(-4);C.0×(-2)(-3)D.(-7)-(-15)4.下列运算错误的是( )2)×(A.(--3)=6 B.C.(-5)×(-2)×(-4)=-40D.(-3)×(-2)×(-4)=-245.若两个有理数的和与它们的积都是正数,则这两个数( )6.下列说法精确的是( )7.关于0,下列说法不精确的是( )8.下列运算成果不必定为正数的是( )9.下列运算有错误的是( )÷(A.3) B.-3)=3×(-C.8-(-2)=8+2D.2-7=(+2)+(-7)10.下列运算精确的是( )-; D.(2; C.-2=-; B.0A. 2)÷(-4)=2二、填空1.假如两个有理数的积是正的,那么这两个因数的符号必定______.2.假如两个有理数的积是负的,那么这两个因数的符号必定_______.3.奇数个正数相乘,成果的符号是_______.4.偶数个正数相乘,成果的符号是_______._____0.那么,____0.那么5a>0,0.3b<0,0.7c<0,假如6.7.-0.125的相反数的倒数是________.=____.则a<0,若=_____;则a>0,若8.三、解答1.计算:7.6)×0.5;-; (3)( ; (2)(1) .(4)2.计算.;; (2)(1) .(3)(1); (2).(1)(+48)÷(+6); (2); (3)4÷(-2);(4)0÷(-1000).答案一、ACBBA,DCCAB二、1.相同; 2互异; 3负; 4正的; 5.>; 6.>; 7.8; 8.1,-1三、1.(1)-6;(2)14;(3)-3.8;(4)2.(1)22;(2)2;(3)-48;3.(1);(2)4.(1)8;(2);(3)-2;(4)05.(1)-7;(2)375;(3)46.(1)14;(2)-240时间:二O二一年七月二十九日。
七年级数学上册《第一章 有理数的乘除法》同步练习题含答案(人教版)
七年级数学上册《第一章 有理数的乘除法》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.2.7-2.1÷3+3.2的计算结果正确的是( ) A .5 B .1.6 C .5.2 D .7 2.下列说法正确的是( )A .同号两数相乘,取原来的符合B .两个数相乘,积大于任何一个乘数C .一个数与0相乘仍得这个数D .一个数与-1相乘,积为该数的相反数 3.下列计算正确的是( ) A .()48- × 11168⎛⎫--⎪⎝⎭ =-8+6+1=-1 B .()24- × 11123⎛⎫-+- ⎪⎝⎭ =12+8+24=44 C .()18- × 12⎡⎤⎛⎫--⎪⎢⎥⎝⎭⎣⎦ =9D .-5×2× 2- =-204.按如图所示的运算程序,若输入m 的值是﹣2,则输出的结果是( )A .﹣1B .3C .﹣5D .75.在一张比例为1∶1000000的地图上,量得人民广场与淀山湖两地的距离为5.5厘米,那么人民广场到淀山湖的实际距离为( ) A .0.55千米 B .5.5千米 C .55千米 D .550千米 6.五个有理数的积为负数,则五个数中负数的个数是( ) A .1 B .3 C .5 D .1或3或5 7.网上一些推广“成功学”的主播,常引用下面这个被称为竹子定律的段子:“竹子前4年都用在扎根,竹芽只能长3cm ,而且这3cm 还是深埋于土下到了第五年,竹子终于能破土而出,会以每天30cm 的速度疯狂生长.此后,仅需要6周的时间,就能长到15米,惊艳所有人!”。
这段话的确很励志,须不知,要符合算理的话,需将上文“6周”中的整数“6”改为整数( ) A .5 B .7 C .8 D .9 8.有理数 ,a b 在数轴上的位置如图所示,则下列说法错误的是( )A .0a b +>B .0b a ->C .0ab <D .a b >二、填空题: 9.计算: 11112643⎛⎫-⨯+-=⎪⎝⎭. 10.乘积是10的两个负整数之和是 .11.一件标价为250元的商品,若该商品按八折销售,则该商品的实际售价是 元.12.已知: ()()1210,210,210a b c ⎛⎫=-+-=---=-⨯- ⎪⎝⎭,请把a 、b 、c 按从大到小顺序排列为 .13.小强有10张写有不同的数的卡片,分别为+1,﹣1,﹣8,0,﹣3.5,+4,+7,﹣9,﹣2.+3从中抽取5张卡片,使得这5张卡片的积最小,请问最小的积为 . 三、解答题:14.简便运算: ()()1115777127333⎛⎫⎛⎫⎛⎫-⨯++⨯--+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.15.计算(1)24(16)(25)15--+--;(2)111311123124244⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++----+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(3)412(63)7921⎛⎫-+⨯- ⎪⎝⎭;(4)111(5)323(6)3333-⨯+⨯+-⨯16.(1)两数的积是1,已知一个数是327-,求另一个数; (2)两数的商是132-,已知被除数是142,求除数.17.随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“﹣”,刚好50km 的记为“0”.(1)请求出这7天中平均每天行驶多少千米?(2)若每行驶100km 需用汽油6升,汽油每升5.5元,试估计小明家一个月(按30天计)的汽油费用是多少元?18.小明有5张写着不同的数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是;(3)从中取出4张卡片,用学过的运算方法,使结果为24.写出运算式子:参考答案:1.C 2.D 3.D 4.D 5.C 6.D 7.C 8.A 9.-110.-11或-711.20012.b c a>>13.﹣705614.解:原式=()111-5777127333⨯-⨯+⨯=()1571273 --+⨯=1 073⨯=0.15.(1)解:原式= 24(16)(25)15--+-- =24+16-25-15=40-(25+15)=40-40=0;(2)解:原式=-1 12+114-212+334-114=-1 12-212+114-114+334=-4+3 3 4=1 4 -(3)解:原式=4126363637921-⨯+⨯-⨯ =-36+7-6=-42+7=-35(4)解:111(5)323(6)3333-⨯+⨯+-⨯ = []10(5)(6)3-+-⨯ =10(9)3-⨯ =-3016.(1)717-;(2)97-17.(1)解:总路程为:(50﹣8)+(50﹣11)+(50﹣14)+50+(50﹣16)+(50+41)+(50+8)=350(km)平均每天路程为:350÷7=50(km)答:这七天中平均每天行驶50千米.(2)解:估计小明家一个月的汽油费用是(50×30÷100×6)×5.5=495(元)答:估计小明家一个月的汽油费用是495元.18.(1)15(2)5 3 -(3)方法不唯一。
有理数乘除法练习题
有理数乘法(一)1、 填空:(1)5×(-4)= ___;(2)(-6)×4=___(3)(-7)×(-1)=___;(4)(-5)×0 =___;(5)=-⨯)23(94___;(6)=-⨯-)32()61(___; (7)(-3)×=-)31(2、填空:(1)-7的倒数是___,它的相反数是___,它的绝对值是___;(2)522-的倒数是___,-2.5的倒数是___;(3)倒数等于它本身的有理数是___。
32-的倒数的相反数是___。
3、计算:(1))32()109(45)2(-⨯-⨯⨯-;(2)(-6)×5×72)67(⨯-; (3)(-4)×7×(-1)×(-0.25);(4)41)23(158)245(⨯-⨯⨯-4、一个有理数与其相反数的积( )A 、符号必定为正B 、符号必定为负C 、一定不大于零D 、一定不小于零5、下列说法错误的是( )A 、任何有理数都有倒数B 、互为倒数的两个数的积为1C 、互为倒数的两个数同号D 、1和-1互为负倒数6、已知两个有理数a,b ,如果ab <0,且a+b <0,那么( )A 、a >0,b >0B 、a <0,b >0C 、a,b 异号D 、a,b 异号,且负数的绝对值较大7、若ab b a ,2,5-==>0,则=+b a ___。
8、计算:(1))5(252449-⨯;(2)125)5.2()2.7()8(⨯-⨯-⨯-; (3)6.190)1.8(8.7-⨯⨯-⨯-;(4))251(4)5(25.0-⨯⨯-⨯--。
9、计算:(1))8141121()8(+-⨯-; (2))48()6143361121(-⨯-+--。
10、计算: (1))543()411(-⨯-(2)34.075)13(317234.03213⨯--⨯+⨯-⨯-11、已知,032=-++y x 求xy y x 435212+--的值。
七年级数学上册《第一章-有理数乘除混合运算》练习题附答案-人教版
七年级数学上册《第一章有理数乘除混合运算》练习题附答案-人教版一、选择题1.与﹣2的乘积为1的数是( )A.2B.﹣2C.12D.﹣122.下列说法错误的是( )A.一个数同0相乘,仍得0B.一个数同1相乘,仍得原数C.一个数同﹣1相乘得原数的相反数D.互为相反数的两个数的积是13.如果mn>0,且m+n<0,则下列选项正确的是()A.m<0,n<0B.m>0,n<0C.m,n异号,且负数的绝对值大D.m,n异号,且正数的绝对值大4.两个有理数的和为正数,积为负数,则这两个有理数是( )A.两个正数B.两个负数C.一正一负且正数的绝对值较大D.一正一负且负数的绝对值较大5.﹣4÷49×(﹣94)的值为( )A.4B.﹣4C.814D.﹣8146.实数a,b在数轴上对应的点的位置如图所示,则正确的结论是( )[A.a+b<0B.a>|﹣2|C.b>πD.7.计算﹣6÷12×2﹣18÷(﹣6)的结果是( )A.﹣ 21B.﹣ 3C.4D.78.计算﹣4÷49×94的结果是( )A.4B.﹣ 4C.2014 D.﹣ 20149.如图,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是( )A.ab>0B.a+b<0C.(b﹣a)(a+1)>0D.(b﹣1)(a﹣1)>010.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了。
右面两个图框是用法国“小九九”计算78和89的两个示例。
若用法国“小九九”计算79,左右手依次伸出手指的个数是( )A.2,3B.3,3C.2,4D.3,411.给出下列说法:①1乘任何有理数都等于这个数本身;②0与任何有理数的积均为0;③﹣1乘任何有理数都等于这个有理数的相反数;④一个数的倒数与其本身相等的数是±1.其中正确的有( )A.1个B.2个C.3个D.4个12.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如下表:十六进制0 1 2 3 4 5 6 7十进制0 1 2 3 4 5 6 7十六进制8 9 A B C D E F十进制8 9 10 11 12 13 14 15例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A ×B=( )A.6EB.72C.5FD.B0二、填空题13.计算:﹣2×3= .14.绝对值不大于4.5的所有整数的和为__________,积为__________;15.﹣54的绝对值是,倒数是.16.一个数与﹣34的积为12,则这个数是____________17.某学生将某数乘以﹣1.25时漏了一个负号,所得结果比正确结果小0.25则正确结果应是 .18.甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.三、解答题19.计算:(114﹣56+12)×(﹣12);20.计算:15÷(﹣32+56);21.计算:|﹣2|÷(﹣12)+(﹣5)×(﹣2);22.计算:﹣112÷34×(﹣0.2)×134÷1.4×(﹣35).23.一辆出租车在一条东西走向的大街上行驶,这辆出租车连续送客20次,其中8次向东行驶,12次向西行驶,向东行驶每次的行程为10 km,向西行驶每次的行程为7 km.(1)该出租车连续20次送客后,停在何处?(2)该出租车一共行驶了多少路程?24.如图,小明有4张写着不同数的卡片,请你按照题目要求抽出卡片,完成下列问题.(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?25.用加、减、乘、除号和括号将3,6,﹣8,5这四个数(每个数都要用且只用一次)进行加减乘除四则运算使结果为24,请你写出两个算式.26.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如14524÷=,14342÷=所以14是“差一数”; 19534÷=,但19361÷=,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”.27.请观察下列算式,找出规律并填空211⨯=1﹣21, 321⨯=21﹣31, 431⨯=31﹣41,541⨯=41﹣51则: (1)第10个算式是 = . (2)第n 个算式为 = . (3)根据以上规律解答下题:211⨯+321⨯+431⨯+… +202420231⨯的值.参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】C6.【答案】D7.【答案】A8.【答案】C9.【答案】C.10.【答案】C11.【答案】D12.【答案】A13.【答案】﹣6.14.【答案】0,015.【答案】54﹣4516.【答案】﹣2 317.【答案】1 818.【答案】4.19.【答案】原式=114×(﹣12)+(﹣56)×(﹣12)+12×(﹣12)=﹣15+10+(﹣6)=﹣1120.【答案】原式=﹣22.5;21.【答案】原式=6;22【答案】原式=﹣3 1023.【答案】解:(1)该出租车停在出发地西面4km处;(2)该出租车一共行驶了164 km.24.【答案】解:(1)抽﹣3和﹣5,最大值为:﹣3×(﹣5)=15; (2)抽1和﹣5,最小值为:(﹣5)÷1=﹣5;25.【答案】解:答案不唯一,如(﹣8)÷(3﹣5)×6=24,6÷(3﹣5)×(﹣8)=24等. 26.【答案】解:(1)∵49594÷= 493161÷=∴49不是“差一数” ∵745144÷= 743242÷=∴74是“差一数”;(2)解法一:∵“差一数”这个数除以5余数为4 ∴“差一数”这个数的个位数字为4或9∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399 ∵“差一数”这个数除以3余数为2∴“差一数”这个数的各位数字之和被3除余2∴大于300且小于400的所有“差一数”为314、329、344、359、374、389. 解法二:∵“差一数”这个数除以5余数为4,且除以3余数为2 ∴这个数加1能被15整除∵大于300且小于400的能被15整除的数为315、330、345、360、375、390 ∴大于300且小于400的所有“差一数”为314、329、344、359、374、389. 27.【答案】解:(1)第10个算式是11110111101-=⨯; (2)第n 个算式为()11111+-=+n n n n ; (3)原式=2024120231202312022141313121211-+-++-+-+- =202411-=20242023.。
初一有理数的乘除法、乘方运算练习题
有理数的乘除法、乘方运算 练习题一、有理数的乘除法1、有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数同0相乘都得0; (3)多个有理数相乘:a :只要有一个因数为0,则积为0。
b :几个不为零的数相乘,积的符号由0的个数决定,当0的个数为奇数,则积为负, 当0的个数为偶数,则积为正。
2、乘法运算律:(1)乘法交换律;(2)乘法结合律;(3)乘法分配律。
3、有理数除法法则:(1)法则:除以一个数等于乘以这个数的倒数(2)符号确定:两数相除,同号得正,异号得负,并把绝对值相除。
(3)0除以任何一个非零数,等于0;0不能作除数!二、有理数乘方:1、n 个相同因数的积的运算,叫做乘方。
乘方的结果叫做幂;用字母表示an a a a a 个⋅⋅⋅⋅记作n a ,其中a 叫做底数,n 叫做指数,n a 的结果叫做幂;读法:n a 读作a 的n 次方.2、正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数.练习题一、选择题:1、一个有理数和它的相反数之积( )A .符号必为正B .符号必为负C .一定不大于零D .一定不小于零2、若0ab >,则下列说法中,正确的是( )A .a ,b 之和大于0B .a,b 之和小于0C .,a b m 同号D .无法确定3、下列说法中,正确的是( )A .两个有理数的乘积一定大于每一个因数。
B .若一个数的绝对值等于它本身,这个数一定是正数。
C .有理数的乘法就是求几个加数的和的运算。
D .两个连续自然数的积一定是一个偶数。
4、下列说法中,正确的是( )A .若两个有理数在数轴上的对应点分别在原点的两侧,那么这两个有理数的积一定为负数B .若两个有理数的积是负数,则这两个数一定互为相反数C .若两个有理数互为相反数,则这两个有理数的积一定为负数D .若a 是任意有理数,则1a是它的倒数5、若ab =0,那么a,b 的值为( )A .都为0B .都不为0C .至少有一个为0D .无法确定6、几个不等于0的有理数相乘,它们的积的符号( )A .由因数的个数而定B .由正因数的个数而定C .由负因数的个数而定D .由负因数的大小而定7、下列说法中,正确的是( )A .若0a b +=,那么0a b ==B .或0ab =,则0a b ==C .若0ab ≠,则a ,b 都不等于0D .若0a b +≠,则a ,b 都不等于0二、填空题:1、n 个相同因数a 相乘,即个n a a a a ⋅⋅记作________。
《有理数的乘除法》练习题5套
人教版初中数学七年级上册第一章《有理数》第四节《有理数的乘除法》第1课时1.4.1 有理数的乘法 练习题一、填空 1.71-的倒数是 ,绝对值是 ,相反数是 。
2.=⨯-7)5( ,=-⨯)2.5(0 。
3.735-的倒数是 ,绝对值是 ,相反数是 。
4.两数相乘, 。
二、选择题5.下列说法错误的是( )A.任何有理数都有倒数。
B.互为有理数的两个数同号。
C.互为有理数的两个数乘积为1.D.1与-1互为负倒数。
6.一个有理数与其相反数的积( )A.符号必定为正B.符号必定为负C.一定不大于0D.一定不小于07.若│a │=8,│b │=5,且a + b >0,那么a ×b 的值是( )A .40B .-40C .40或-40D .不确定8.下列计算错误的是( )A 、(-3)+5=2B 、(-3)×5=-15C 、 5 ×5=-25D 、(-5)×(-5)=25三、计算题三、解答题15.已知:|a|=5,|b|=3,求ab 的值。
【答案】一、填空 1.71-的倒数是 -7 ,绝对值是 71 ,相反数是 71 。
2.=⨯-7)5( -35 ,=-⨯)2.5(0 0 。
3.735-的倒数是 387- ,绝对值是 738 ,相反数是 738 。
4.两数相乘, 同号得正,异号得负,并把绝对值相乘 。
二、选择题5.下列说法错误的是( A )A.任何有理数都有倒数。
B.互为有理数的两个数同号。
C.互为有理数的两个数乘积为1.D.1与-1互为负倒数。
6.一个有理数与其相反数的积( C )A.符号必定为正B.符号必定为负C.一定不大于0D.一定不小于07.若│a │=8,│b │=5,且a + b >0,那么a ×b 的值是( C) A .40 B .-40 C .40或-40 D .不确定8.下列计算错误的是( C )B 、(-3)+5=2 B 、(-3)×5=-15C 、 5 ×5=-25D 、(-5)×(-5)=25四、计算题25452-=⨯-)解:( 3056-=⨯-)解:(5332109=-⨯-)()解:( 317267-=⨯-)()解:(51158249-=⨯-)解:( 25.0)25.0(1=-⨯-)解:(四、解答题15.已知:|a|=5,|b|=3,求ab的值。
初一有理数的乘除法同步练习题
有理数的乘除法练习题知识要点:1.有理数的乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得0.在有理数中仍然有:乘积是1的两个数称为互为倒数.2.有理数的乘法运算律乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac3.有理数的除法法则:除以一个不等于0的数,等于乘以这个数的倒数:a÷b=a•1b(b0≠)由有理数除法法则可得:两数相除,同号得正,异号得负,并把绝对值相除. 0除以任何一个不等于0的数,都得0.一、填空题1.如果两个有理数的积是正的,那么这两个因数的符号一定_______.2.如果两个有理数的积是负的,那么这两个因数的符号一定_______.3.奇数个负数相乘,结果的符号是_______.4.偶数个负数相乘,结果的符号是_______.5.如果410,0a b>>,那么ab_____0.6.如果5a>0,0.3b<0,0.7c<0,那么bac____0.7.﹣0.125的相反数的倒数是________.8.若a>0,则aa=_____;若a<0,则aa=____.二、解答题1.计算.(1)384⎛⎫-⨯⎪⎝⎭(2)12(6)3⎛⎫-⨯-⎪⎝⎭(3)(﹣7.6)×0.5 (4)113223⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭.2.计算.(1) 23(4)-⨯⨯- (2) ()34(6)-⨯-⨯- (3) 38(4)4⎛⎫⨯-⨯- ⎪⎝⎭ (4) 7112(1)87⎛⎫-⨯⨯- ⎪⎝⎭3.计算.(1) 111111112345⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2) 11112346⎛⎫+-⨯ ⎪⎝⎭4.计算.(1)(-91)÷13 (2) 213532⎛⎫⎛⎫-÷ ⎪ ⎪⎝⎭⎝⎭(3)4÷(﹣2) (4)0÷(﹣1000)5.计算. (1) 31()(1) 42⨯--÷1(2)4- (2) 733.5()84-÷⨯-6.若2630x y ++-=,求23x y -,x y的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4.1有理数乘法(1)随堂检测1、 填空:(1)5×(-4)= ___;(2)(-6)×4= ___;(3)(-7)×(-1)= ___;(4)(-5)×0 =___; (5)=-⨯)23(94___;(6)=-⨯-)32()61( ___; (7)(-3)×=-)31( 2、填空:(1)-7的倒数是___,它的相反数是___,它的绝对值是___;(2)522-的倒数是___,-2.5的倒数是___; (3)倒数等于它本身的有理数是___。
3、计算:(1))32()109(45)2(-⨯-⨯⨯-; (2)(-6)×5×72)67(⨯-; (3)(-4)×7×(-1)×(-0.25);(4)41)23(158)245(⨯-⨯⨯- 4、一个有理数与其相反数的积( )A 、符号必定为正B 、符号必定为负C 、一定不大于零D 、一定不小于零5、下列说法错误的是( )A 、任何有理数都有倒数B 、互为倒数的两个数的积为1C 、互为倒数的两个数同号D 、1和-1互为负倒数典例分析 计算)542()413(-⨯- 分析:在运算过程中常出现以下两种错误:①确定积得符号时,常常与加法法则中的和的符号规律相互混淆,错误地写成1091)514()413()542()413(-=-⨯-=-⨯-;②把乘法法则和加法法则混淆,错误地写成516)5441()2()3()542()413(-=⨯⨯-⨯-=-⨯-。
为了避免类似的错误,需先把假分数化成带分数,然后再按照乘法法则进行运算。
解:1091514413)514()413()542()413(=⨯=-⨯-=-⨯- 课下作业拓展提高1、32-的倒数的相反数是___。
2、已知两个有理数a,b ,如果ab <0,且a+b <0,那么( )A 、a >0,b >0B 、a <0,b >0C 、a,b 异号D 、a,b 异号,且负数的绝对值较大3、计算:(1))5(252449-⨯; (2)125)5.2()2.7()8(⨯-⨯-⨯-; (3)6.190)1.8(8.7-⨯⨯-⨯-; (4))251(4)5(25.0-⨯⨯-⨯--。
4、计算:(1))8141121()8(+-⨯-; (2))48()6143361121(-⨯-+--。
5、计算:(1))543()411(-⨯- (2)34.075)13(317234.03213⨯--⨯+⨯-⨯- 6、已知,032=-++y x 求xy y x 435212+--的值。
7、若a,b 互为相反数,c,d 互为倒数,m 的绝对值是1,求m cd b a 2009)(-+的值。
1、(2009年,吉林)若ab b a ,2,5-==>0,则=+b a ___。
2、(2009年,成都)计算)21(2-⨯的结果是( ) A 、1- B 、1 C 、2- D 、21.4.1有理数乘法(1)参考答案随堂检测1、1,91,32,0,7,24,20---。
根据有理数的乘法法则进行运算。
2、(1);7,7,71- (2)52,125--;把带分数化成假分数、小数化成分数后再求倒数。
(3)±1.3、(1)23)32109452()32()109(45)2(-=⨯⨯⨯-=-⨯-⨯⨯-; (2)(-6)×5×1072675672)67(=⨯⨯⨯=⨯-; (3)(-4)×7×(-1)×(-0.25)=7)41174(-=⨯⨯⨯-; (4)241412315824541)23(158)245(=⨯⨯⨯=⨯-⨯⨯- 4、C .0与它的相反数的积是0,非零有理数与他的相反数的积是负数5、A .0没有倒数。
拓展提高1、23。
32-的倒数是23-,23-的相反数是23。
2、D .ab <0,说明a,b 异号;又a+b <0,说明负数的绝对值较大3、(1)54249)5(251)5(50)5()25150()5(252449-=-⨯--⨯=-⨯-=-⨯;(2)60)125255368(125)5.2()2.7()8(-=⨯⨯⨯-=⨯-⨯-⨯-; (3)06.190)1.8(8.7=-⨯⨯-⨯-;(4)51)251(4)5(25.0)251(4)5(25.0-=-⨯⨯-⨯-=-⨯⨯-⨯--。
4、(1)581)8()411()8(21)8()8141121()8(=⨯-+⨯--⨯-=+-⨯-; (2))48(61)48(43)48(361)48()121()48()6143361121(-⨯--⨯+-⨯--⨯-=-⨯-+-- =3222836344-=+-+ 5、(1)41951945)543()411(=⨯=-⨯- (2)34.1334.013)7572(34.0)3132()13(34.075)13(317234.03213-=--=--⨯++⨯-=⨯--⨯+⨯-⨯-6、∵,032=-++y x 03,02≥-≥+y x∴3,2=-=y x ∴2424553)2(4335)2(25435212-=--=⨯-⨯+⨯--⨯-=+--xy y x 7、∵a,b 互为相反数,c,d 互为倒数,m 的绝对值是1∴a+b=0, cd=1, m=±1∴当m=1时,=-+m cd b a 2009)(-2009;当m =-1时,=-+m cd b a 2009)(2009.体验中招1、∵ab b a ,2,5-==>0 ∴5-=a ∴=+b a -72、A1.4.2 有理数的除法随堂检测1、 填空:(1)=÷-9)27( ;(2))103()259(-÷-= ; (3)=-÷)9(1 ;(4)=-÷)7(0 ;(5)=-÷)1(34 ;(6)=÷-4325.0 . 2、化简下列分数:(1)216-; (2)4812-; (3)654--; (4)3.09--. 3、计算:(1)4)11312(÷-; (2))511()2()24(-÷-÷-. (3)31329⨯÷. 拓展提高1、计算:(1))3.0(45)75.0(-÷÷-; (2))11()31()33.0(-÷-÷-. 2、计算:(1))41(855.2-⨯÷-; (2))24(9441227-÷⨯÷-; (3)3)411()213()53(÷-÷-⨯-; (4)2)21(214⨯-÷⨯-; (5)7)412(54)721(5÷-⨯⨯-÷-; (6)213443811-⨯⨯÷-. 3、如果b a ÷()0≠b 的商是负数,那么( )A 、b a ,异号B 、b a ,同为正数C 、b a ,同为负数D 、b a ,同号4、下列结论错误的是( )A 、若b a ,异号,则b a ⋅<0,b a <0B 、若b a ,同号,则b a ⋅>0,ba >0 C 、b a b a b a -=-=- D 、ba b a -=-- 5、若0≠a ,求a a的值。
6、一天,小红与小丽利用温差测量山的高度,小红在山顶测得温度是4-℃,小丽此时在山脚测得温度是6℃.已知该地区高度每增加100米,气温大约降低8.0℃,这个山峰的高度大约是多少米?体验中招1、(2009年,威海)实数b a ,在数轴上的位置如图所示,则下列结论正确的是( )A 、0 b a +B 、0 b a -C 、0 b a ⋅D 、0 ba 1.4.2 有理数的除法参考答案随堂检测1、31,34,0,91,56,3----. 2、(1)216-8-=;(2)4812-=41-;(3)654--=9;(4)3.09--=30. 分数可以理解为分子除以分母,然后按照除法法则进行运算。
3、(1)4)11312(÷-4433)4433(]4)11312[(-=+-=÷+-; (2))511()2()24(-÷-÷-10)652124()65()21()24(-=⨯⨯-=-⨯-⨯-=. 拓展提高1、(1))3.0(45)75.0(-÷÷-=23105443)310(54)43(=⨯⨯=-⨯⨯-; (2))11()31()33.0(-÷-÷-1009)111310033()111()3()10033(-=⨯⨯-=-⨯-⨯-=. 2、计算:(1))41(855.2-⨯÷-=1415825)41(5825=⨯⨯=-⨯⨯-; (2))24(9441227-÷⨯÷-92241949427)241(944927=⨯⨯⨯=-⨯⨯÷-=; (3)3)411()213()53(÷-÷-⨯-=8731)45()27()53(-=⨯-⨯-⨯-; (4)2)21(214⨯-÷⨯-=82)2(214=⨯-⨯⨯-; (5)7)412(54)721(5÷-⨯⨯-÷-=171)49(54)97(5-=⨯-⨯⨯-⨯-; (6)213443811-⨯⨯÷-121343489=⨯⨯⨯=. 3、A4、 D 因为ba b a =--。
5、若0≠a ,所以当a >0时,a a =1=a a ;当a <0时,a a =1-=-aa 6、由题意得,12501008.0101008.0)]4(6[=⨯÷=⨯÷--(米)所以山峰的高度大约是1250米。
体验中招1、A. 由数轴知道,1,01 b a -,即a,b 异号,且b a b a 0 1∴0 b a + ,0 b a - 0 b a ⋅ ,0 ba . 故A 正确.1. 有理数的乘除法一、选择1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )A.一定为正B.一定为负C.为零D. 可能为正,也可能为负2.若干个不等于0的有理数相乘,积的符号( )A.由因数的个数决定B.由正因数的个数决定C.由负因数的个数决定D.由负因数和正因数个数的差为决定3.下列运算结果为负值的是( )A.(-7)×(-6)B.(-6)+(-4);C.0×(-2)(-3)D.(-7)-(-15)4.下列运算错误的是( )A.(-2)×(-3)=6B.1(6)32⎛⎫-⨯-=- ⎪⎝⎭C.(-5)×(-2)×(-4)=-40D.(-3)×(-2)×(-4)=-245.若两个有理数的和与它们的积都是正数,则这两个数( )A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数6.下列说法正确的是( )A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.-1的倒数是-17.关于0,下列说法不正确的是( )A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数8.下列运算结果不一定为负数的是( )A.异号两数相乘B.异号两数相除C.异号两数相加D.奇数个负因数的乘积9.下列运算有错误的是( )A.13÷(-3)=3×(-3) B.1(5)5(2)2⎛⎫-÷-=-⨯-⎪⎝⎭C.8-(-2)=8+2D.2-7=(+2)+(-7)10.下列运算正确的是( )A.113422⎛⎫⎛⎫---=⎪ ⎪⎝⎭⎝⎭; B.0-2=-2; C.34143⎛⎫⨯-=⎪⎝⎭; D.(-2)÷(-4)=2二、填空1.如果两个有理数的积是正的,那么这两个因数的符号一定______.2.如果两个有理数的积是负的,那么这两个因数的符号一定_______.3.奇数个负数相乘,结果的符号是_______.4.偶数个负数相乘,结果的符号是_______.5.如果410,0a b>>,那么ab_____0. 6.如果5a>0,0.3b<0,0.7c<0,那么bac____0.7.-0.125的相反数的倒数是________. 8.若a>0,则aa=_____;若a<0,则aa=____.三、解答1.计算:(1)384⎛⎫-⨯⎪⎝⎭; (2)12(6)3⎛⎫-⨯-⎪⎝⎭; (3)(-7.6)×0.5; (4)113223⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭.2.计算.(1)38(4)24⎛⎫⨯-⨯--⎪⎝⎭; (2)38(4)(2)4-⨯-⨯-; (3)38(4)(2)4⎛⎫⨯-⨯-⨯-⎪⎝⎭.3.计算(1)111111111111234567⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯---⨯-⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;(2)111111 111111 223344⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.4.计算(1)(+48)÷(+6); (2)213532⎛⎫⎛⎫-÷⎪ ⎪⎝⎭⎝⎭;(3)4÷(-2); (4)0÷(-1000).5.计算.(1)(-1155)÷[(-11)×(+3)×(-5)]; (2)375÷2332⎛⎫⎛⎫-÷-⎪ ⎪⎝⎭⎝⎭;(3)1213(5)6(5) 33⎛⎫⎛⎫-÷-+-÷-⎪ ⎪⎝⎭⎝⎭.6.计算(1)111382⎛⎫⎛⎫-÷--÷-⎪ ⎪⎝⎭⎝⎭; (2) 11181339⎛⎫-÷-÷- ⎪⎝⎭.1.4 有理数的乘除法答案一、ACBBA,DCCAB二、1.相同; 2互异; 3负; 4正的; 5.>; 6.>; 7.8; 8.1,-1三、1.(1)-6;(2)14;(3)-3.8;(4)1 8 62.(1)22;(2)2;(3)-48;3.(1)213;(2)584.(1)8;(2)23;(3)-2;(4)05.(1)-7;(2)375;(3)4 6.(1)14;(2)-240人教实验版七年级上册 有理数的除法 练习一. 判断。