半导体器件物理第四章习题
半导体物理与器件第四版课后习题答案4复习进程
m* E
mo
2
o 13.6
s
0.067 13.6
2
13.1
or E 0.0053 eV
_______________________________________
4.17 (a) E c E F
kT ln N c no
只供学习与交流
此文档仅供收集于网络,如有侵权请联系网站删除
19
2.8 10
0.0259 ln
4.11
只供学习与交流
E E Fi
midgap
1 kT ln N
2
Nc
1
1.04 1019
kT ln 2
2.8 1019
0.4952 kT
T (K)
200 400 600
kT (eV)
0.01727 0.03453 0.0518
( E Fi E midgap )(eV)
0.0086 0.0171 0.0257
19
2.8 10 1.04 10
3
T
300
1.12 exp
0.0259 T 300
2.5 10 23 2.912 10 38
3
T
300
1.12 300 exp
0.0259 T
By trial and error, T
367.5 K
3
2.912 10 38 T exp 1.12 300
300
0.0259 T
E E Fi
midgap
0.0128 eV
*
Germanium: m p 0.37mo ,
*
m n 0.55mo
E E Fi
midgap
《半导体物理学》试题与及答案
练习1-课后习题7
第二章 半导体中杂质和缺陷能级
锑化铟的禁带宽度E g = 0.18 e V ,相对介电常数 εr = 17 ,电子的 有效质量mn∗ = 0.015 m0, m 0为电子的惯性质量,求 ⅰ)施主杂质的电离能, ⅱ)施主的弱束缚电子基态轨道半径。
解:
练习2
第二章 半导体中杂质和缺陷能级
所以样品的电导率为: q(n0 n p0 p )
代入数据得,电导率为2.62 ×1013S/cm 所以,电场强度 E J 1.996103 mA / cm
作业-课后习题2
第四章 半导体的导电性
试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1450cm2/V·S 和500cm2/V·S。当掺入百万分之一的As 后,设杂质全部电离,试计算其电 导率。比本征Si 的电导率增大了多少倍?(ni=1.5×1010cm-3; Si原子浓度为 =5.0×1022cm-3,假定掺杂后电子迁移率为900cm2/V·S)
m0为电子惯性质量,k1=1/2a; a=0.314nm。试求: (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化。
练习2-课后习题2
第一章 半导体中的电子状态
2.晶格常数为0.25nm的一维晶格,当外加102V/m和107V/m 的电 场时,试分别计算电子自能带底运动到能带顶所需的时间。
所以,300k时,
nT 300
(1.05 1019
5.7
1018 )
exp(
0.67 1.61019 21.381023 300)
1.961013cm3
77k时,
半导体物理与器件第四课后习题答案3.doc
Chapter 33.1If o a were to increase, the bandgap energy would decrease and the material would begin to behave less like a semiconductor and more like a metal. If o a were to decrease, the bandgap energy would increase and thematerial would begin to behave more like an insulator._______________________________________ 3.2Schrodinger's wave equation is:()()()t x x V xt x m ,,2222ψ⋅+∂ψ∂- ()tt x j ∂ψ∂=, Assume the solution is of the form:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=ψt E kx j x u t x exp , Region I: ()0=x V . Substituting theassumed solution into the wave equation, we obtain:()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧∂∂-t E kx j x jku x m exp 22 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-=t E kx j x u jE j exp which becomes()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧-t E kx j x u jk m exp 222 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u jkexp 2 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp 22 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=t E kx j x Eu exp This equation may be written as()()()()0222222=+∂∂+∂∂+-x u mE x x u x x u jk x u kSetting ()()x u x u 1= for region I, the equation becomes:()()()()021221212=--+x u k dx x du jk dxx u d α where222mE=αIn Region II, ()O V x V =. Assume the same form of the solution:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=ψt E kx j x u t x exp , Substituting into Schrodinger's wave equation, we find:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧-t E kx j x u jk m exp 222 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u jkexp 2 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp 22 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+t E kx j x u V O exp ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=t E kx j x Eu exp This equation can be written as:()()()2222x x u x x u jk x u k ∂∂+∂∂+- ()()02222=+-x u mEx u mV OSetting ()()x u x u 2= for region II, this equation becomes()()dx x du jk dxx u d 22222+ ()022222=⎪⎪⎭⎫ ⎝⎛+--x u mV k O α where again222mE=α_______________________________________3.3We have()()()()021221212=--+x u k dx x du jk dxx u d α Assume the solution is of the form: ()()[]x k j A x u -=αexp 1()[]x k j B +-+αexp The first derivative is()()()[]x k j A k j dxx du --=ααexp 1 ()()[]x k j B k j +-+-ααexp and the second derivative becomes()()[]()[]x k j A k j dxx u d --=ααexp 2212 ()[]()[]x k j B k j +-++ααexp 2Substituting these equations into the differential equation, we find()()[]x k j A k ---ααexp 2()()[]x k j B k +-+-ααexp 2(){()[]x k j A k j jk --+ααexp 2()()[]}x k j B k j +-+-ααexp ()()[]{x k j A k ---ααexp 22 ()[]}0exp =+-+x k j B α Combining terms, we obtain()()()[]222222αααα----+--k k k k k ()[]x k j A -⨯αexp()()()[]222222αααα--++++-+k k k k k ()[]0exp =+-⨯x k j B α We find that 00=For the differential equation in ()x u 2 and the proposed solution, the procedure is exactly the same as above._______________________________________ 3.4We have the solutions ()()[]x k j A x u -=αexp 1()[]x k j B +-+αexp for a x <<0 and()()[]x k j C x u -=βexp 2()[]x k j D +-+βexp for 0<<-x b .The first boundary condition is ()()0021u u =which yields0=--+D C B AThe second boundary condition is201===x x dx dudx du which yields()()()C k B k A k --+--βαα()0=++D k β The third boundary condition is ()()b u a u -=21 which yields()[]()[]a k j B a k j A +-+-ααexp exp ()()[]b k j C --=βexp()()[]b k j D -+-+βexp and can be written as()[]()[]a k j B a k j A +-+-ααexp exp ()[]b k j C ---βexp()[]0exp =+-b k j D β The fourth boundary condition isbx a x dx dudx du -===21 which yields()()[]a k j A k j --ααexp()()[]a k j B k j +-+-ααexp ()()()[]b k j C k j ---=ββexp()()()[]b k j D k j -+-+-ββexp and can be written as ()()[]a k j A k --ααexp()()[]a k j B k +-+-ααexp()()[]b k j C k ----ββexp()()[]0exp =+++b k j D k ββ_______________________________________ 3.5(b) (i) First point: πα=aSecond point: By trial and error, πα729.1=a (ii) First point: πα2=aSecond point: By trial and error, πα617.2=a_______________________________________3.6(b) (i) First point: πα=aSecond point: By trial and error, πα515.1=a (ii) First point: πα2=aSecond point: By trial and error, πα375.2=a_______________________________________ 3.7ka a aaP cos cos sin =+'αααLet y ka =, x a =α Theny x x xP cos cos sin =+'Consider dy dof this function.()[]{}y x x x P dyd sin cos sin 1-=+⋅'- We find()()()⎭⎬⎫⎩⎨⎧⋅+⋅-'--dy dx x x dy dx x x P cos sin 112y dydxx sin sin -=- Theny x x x x x P dy dx sin sin cos sin 12-=⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡+-'For πn ka y ==, ...,2,1,0=n 0sin =⇒y So that, in general,()()dk d ka d a d dy dxαα===0 And22 mE=αSodk dEm mE dk d ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-22/122221 α This implies thatdk dE dk d ==0α for an k π= _______________________________________ 3.8(a) πα=a 1π=⋅a E m o 212()()()()2103123422221102.41011.9210054.12---⨯⨯⨯==ππa m E o19104114.3-⨯=J From Problem 3.5 πα729.12=aπ729.1222=⋅a E m o()()()()2103123422102.41011.9210054.1729.1---⨯⨯⨯=πE18100198.1-⨯=J 12E E E -=∆1918104114.3100198.1--⨯-⨯= 19107868.6-⨯=Jor 24.4106.1107868.61919=⨯⨯=∆--E eV(b) πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=J From Problem 3.5, πα617.24=aπ617.2224=⋅a E m o()()()()2103123424102.41011.9210054.1617.2---⨯⨯⨯=πE18103364.2-⨯=J 34E E E -=∆1818103646.1103364.2--⨯-⨯= 1910718.9-⨯=Jor 07.6106.110718.91919=⨯⨯=∆--E eV_______________________________________3.9(a) At π=ka , πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JAt 0=ka , By trial and error, πα859.0=a o ()()()()210312342102.41011.9210054.1859.0---⨯⨯⨯=πoE19105172.2-⨯=J o E E E -=∆11919105172.2104114.3--⨯-⨯= 2010942.8-⨯=Jor 559.0106.110942.81920=⨯⨯=∆--E eV (b) At π2=ka , πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JAt π=ka . From Problem 3.5, πα729.12=aπ729.1222=⋅a E m o()()()()2103123422102.41011.9210054.1729.1---⨯⨯⨯=πE18100198.1-⨯=J23E E E -=∆1818100198.1103646.1--⨯-⨯= 19104474.3-⨯=Jor 15.2106.1104474.31919=⨯⨯=∆--E eV_______________________________________3.10(a) πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JFrom Problem 3.6, πα515.12=aπ515.1222=⋅a E m o()()()()2103123422102.41011.9210054.1515.1---⨯⨯⨯=πE1910830.7-⨯=J 12E E E -=∆1919104114.310830.7--⨯-⨯= 19104186.4-⨯=Jor 76.2106.1104186.41919=⨯⨯=∆--E eV (b) πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JFrom Problem 3.6, πα375.24=aπ375.2224=⋅a E m o()()()()2103123424102.41011.9210054.1375.2---⨯⨯⨯=πE18109242.1-⨯=J 34E E E -=∆1818103646.1109242.1--⨯-⨯= 1910597.5-⨯=Jor 50.3106.110597.51919=⨯⨯=∆--E eV_____________________________________3.11(a) At π=ka , πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JAt 0=ka , By trial and error, πα727.0=a oπ727.022=⋅a E m o o()()()()210312342102.41011.9210054.1727.0---⨯⨯⨯=πo E19108030.1-⨯=Jo E E E -=∆11919108030.1104114.3--⨯-⨯= 19106084.1-⨯=Jor 005.1106.1106084.11919=⨯⨯=∆--E eV (b) At π2=ka , πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JAt π=ka , From Problem 3.6,πα515.12=aπ515.1222=⋅a E m o()()()()2103423422102.41011.9210054.1515.1---⨯⨯⨯=πE1910830.7-⨯=J23E E E -=∆191810830.7103646.1--⨯-⨯= 1910816.5-⨯=Jor 635.3106.110816.51919=⨯⨯=∆--E eV_______________________________________3.12For 100=T K, ()()⇒+⨯-=-1006361001073.4170.124gE164.1=g E eV200=T K, 147.1=g E eV 300=T K, 125.1=g E eV 400=T K, 097.1=g E eV 500=T K, 066.1=g E eV 600=T K, 032.1=g E eV_______________________________________3.13The effective mass is given by1222*1-⎪⎪⎭⎫⎝⎛⋅=dk E d mWe have()()B curve dkE d A curve dk E d 2222> so that ()()B curve m A curve m **<_______________________________________ 3.14The effective mass for a hole is given by1222*1-⎪⎪⎭⎫ ⎝⎛⋅=dk E d m p We have that()()B curve dkEd A curve dk E d 2222> so that ()()B curve m A curve m p p **<_______________________________________ 3.15Points A,B: ⇒<0dk dEvelocity in -x directionPoints C,D: ⇒>0dk dEvelocity in +x directionPoints A,D: ⇒<022dk Ednegative effective massPoints B,C: ⇒>022dkEd positive effective mass _______________________________________3.16For A: 2k C E i =At 101008.0+⨯=k m 1-, 05.0=E eV Or ()()2119108106.105.0--⨯=⨯=E J So ()2101211008.0108⨯=⨯-C3811025.1-⨯=⇒CNow ()()38234121025.1210054.12--*⨯⨯==C m 311044.4-⨯=kgor o m m ⋅⨯⨯=--*31311011.9104437.4o m m 488.0=* For B: 2k C E i =At 101008.0+⨯=k m 1-, 5.0=E eV Or ()()2019108106.15.0--⨯=⨯=E JSo ()2101201008.0108⨯=⨯-C 3711025.1-⨯=⇒CNow ()()37234121025.1210054.12--*⨯⨯==C m 321044.4-⨯=kg or o m m ⋅⨯⨯=--*31321011.9104437.4o m m 0488.0=*_______________________________________ 3.17For A: 22k C E E -=-υ()()()2102191008.0106.1025.0⨯-=⨯--C 3921025.6-⨯=⇒C()()39234221025.6210054.12--*⨯⨯-=-=C m31108873.8-⨯-=kgor o m m ⋅⨯⨯-=--*31311011.9108873.8o m m 976.0--=* For B: 22k C E E -=-υ()()()2102191008.0106.13.0⨯-=⨯--C 382105.7-⨯=⇒C()()3823422105.7210054.12--*⨯⨯-=-=C m3210406.7-⨯-=kgor o m m ⋅⨯⨯-=--*31321011.910406.7o m m 0813.0-=*_______________________________________ 3.18(a) (i) νh E =or ()()341910625.6106.142.1--⨯⨯==h E ν1410429.3⨯=Hz(ii) 141010429.3103⨯⨯===νλc E hc 51075.8-⨯=cm 875=nm(b) (i) ()()341910625.6106.112.1--⨯⨯==h E ν1410705.2⨯=Hz(ii) 141010705.2103⨯⨯==νλc410109.1-⨯=cm 1109=nm_______________________________________ 3.19(c) Curve A: Effective mass is a constantCurve B: Effective mass is positive around 0=k , and is negativearound 2π±=k . _______________________________________ 3.20()[]O O k k E E E --=αcos 1 Then()()()[]O k k E dkdE ---=ααsin 1()[]O k k E -+=ααsin 1 and()[]O k k E dk E d -=ααcos 2122Then221222*11 αE dk Ed m o k k =⋅== or212*αE m =_______________________________________ 3.21(a) ()[]3/123/24lt dn m m m =*()()[]3/123/264.1082.04oom m =o dn m m 56.0=*(b)o o l t cnm m m m m 64.11082.02123+=+=*oo m m 6098.039.24+=o cn m m 12.0=*_______________________________________ 3.22(a) ()()[]3/22/32/3lh hh dp m m m +=*()()[]3/22/32/3082.045.0o om m +=[]o m ⋅+=3/202348.030187.0o dp m m 473.0=*(b) ()()()()2/12/12/32/3lh hh lh hh cpm m m m m ++=*()()()()om ⋅++=2/12/12/32/3082.045.0082.045.0 o cp m m 34.0=*_______________________________________ 3.23For the 3-dimensional infinite potential well, ()0=x V when a x <<0, a y <<0, and a z <<0. In this region, the wave equation is:()()()222222,,,,,,z z y x y z y x x z y x ∂∂+∂∂+∂∂ψψψ()0,,22=+z y x mEψ Use separation of variables technique, so let ()()()()z Z y Y x X z y x =,,ψSubstituting into the wave equation, we have222222zZXY y Y XZ x X YZ ∂∂+∂∂+∂∂ 022=⋅+XYZ mEDividing by XYZ , we obtain021*********=+∂∂⋅+∂∂⋅+∂∂⋅ mEz Z Z y Y Y x X XLet01222222=+∂∂⇒-=∂∂⋅X k x X k x X X xx The solution is of the form: ()x k B x k A x X x x cos sin +=Since ()0,,=z y x ψ at 0=x , then ()00=X so that 0=B .Also, ()0,,=z y x ψ at a x =, so that ()0=a X . Then πx x n a k = where ...,3,2,1=x n Similarly, we have2221y k y Y Y -=∂∂⋅ and 2221z k zZ Z -=∂∂⋅From the boundary conditions, we find πy y n a k = and πz z n a k =where...,3,2,1=y n and ...,3,2,1=z n From the wave equation, we can write022222=+---mE k k k z y xThe energy can be written as()222222⎪⎭⎫⎝⎛++==a n n n m E E z y x n n n z y x π _______________________________________ 3.24The total number of quantum states in the 3-dimensional potential well is given (in k-space) by()332a dk k dk k g T ⋅=ππ where222 mEk =We can then writemEk 2=Taking the differential, we obtaindE Em dE E m dk ⋅⋅=⋅⋅⋅⋅=2112121 Substituting these expressions into the density of states function, we have()dE E mmE a dE E g T ⋅⋅⋅⎪⎭⎫ ⎝⎛=212233 ππ Noting thatπ2h=this density of states function can be simplified and written as()()dE E m h a dE E g T ⋅⋅=2/33324π Dividing by 3a will yield the density of states so that()()E h m E g ⋅=32/324π _______________________________________ 3.25For a one-dimensional infinite potential well,222222k a n E m n ==*π Distance between quantum states()()aa n a n k k n n πππ=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=-+11Now()⎪⎭⎫ ⎝⎛⋅=a dkdk k g T π2NowE m k n *⋅=21dE Em dk n⋅⋅⋅=*2211 Then()dE Em a dE E g n T ⋅⋅⋅=*2212 π Divide by the "volume" a , so ()Em E g n *⋅=21πSo()()()()()EE g 31341011.9067.0210054.11--⨯⋅⨯=π ()EE g 1810055.1⨯=m 3-J 1-_______________________________________ 3.26(a) Silicon, o n m m 08.1=*()()c nc E E h m E g -=*32/324π()dE E E h m g kTE E c nc c c⋅-=⎰+*232/324π()()kT E E c nc cE E h m 22/332/33224+*-⋅⋅=π()()2/332/323224kT hm n⋅⋅=*π ()()[]()()2/33342/33123210625.61011.908.124kT ⋅⋅⨯⨯=--π ()()2/355210953.7kT ⨯=(i) At 300=T K, 0259.0=kT eV()()19106.10259.0-⨯= 2110144.4-⨯=J Then ()()[]2/3215510144.4210953.7-⨯⨯=c g25100.6⨯=m 3-or 19100.6⨯=c g cm 3-(ii) At 400=T K, ()⎪⎭⎫⎝⎛=3004000259.0kT034533.0=eV()()19106.1034533.0-⨯= 21105253.5-⨯=J Then()()[]2/32155105253.5210953.7-⨯⨯=c g2510239.9⨯=m 3- or 191024.9⨯=c g cm 3-(b) GaAs, o nm m 067.0=*()()[]()()2/33342/33123210625.61011.9067.024kT g c ⋅⋅⨯⨯=--π ()()2/3542102288.1kT ⨯=(i) At 300=T K, 2110144.4-⨯=kT J ()()[]2/3215410144.42102288.1-⨯⨯=c g2310272.9⨯=m 3- or 171027.9⨯=c g cm 3-(ii) At 400=T K, 21105253.5-⨯=kT J ()()[]2/32154105253.52102288.1-⨯⨯=c g2410427.1⨯=m 3-181043.1⨯=c g cm 3-_______________________________________ 3.27(a) Silicon, o p m m 56.0=* ()()E E h mE g p-=*υυπ32/324()dE E E h mg E kTE p⋅-=⎰-*υυυυπ332/324()()υυυπE kTE pE E hm 32/332/33224-*-⎪⎭⎫ ⎝⎛-=()()[]2/332/333224kT hmp-⎪⎭⎫ ⎝⎛-=*π ()()[]()()2/33342/33133210625.61011.956.024kT ⎪⎭⎫ ⎝⎛⨯⨯=--π ()()2/355310969.2kT ⨯=(i)At 300=T K, 2110144.4-⨯=kT J ()()[]2/3215510144.4310969.2-⨯⨯=υg2510116.4⨯=m3-or 191012.4⨯=υg cm 3- (ii)At 400=T K, 21105253.5-⨯=kT J()()[]2/32155105253.5310969.2-⨯⨯=υg2510337.6⨯=m3-or 191034.6⨯=υg cm 3- (b) GaAs, o p m m 48.0=*()()[]()()2/33342/33133210625.61011.948.024kT g ⎪⎭⎫ ⎝⎛⨯⨯=--πυ ()()2/3553103564.2kT ⨯=(i)At 300=T K, 2110144.4-⨯=kT J()()[]2/3215510144.43103564.2-⨯⨯=υg2510266.3⨯=m 3- or 191027.3⨯=υg cm 3-(ii)At 400=T K, 21105253.5-⨯=kT J()()[]2/32155105253.53103564.2-⨯⨯=υg2510029.5⨯=m 3-or 191003.5⨯=υg cm 3-_______________________________________ 3.28(a) ()()c nc E E h m E g -=*32/324π()()[]()c E E -⨯⨯=--3342/33110625.61011.908.124πc E E -⨯=56101929.1 For c E E =; 0=c g1.0+=c E E eV; 4610509.1⨯=c g m 3-J 1-2.0+=c E E eV; 4610134.2⨯=m 3-J 1-3.0+=c E E eV; 4610614.2⨯=m 3-J 1- 4.0+=c E E eV; 4610018.3⨯=m 3-J 1- (b) ()E E h m g p-=*υυπ32/324()()[]()E E -⨯⨯=--υπ3342/33110625.61011.956.024E E -⨯=υ55104541.4 For υE E =; 0=υg1.0-=υE E eV; 4510634.5⨯=υg m 3-J 1-2.0-=υE E eV; 4510968.7⨯=m 3-J 1-3.0-=υE E eV; 4510758.9⨯=m 3-J 1-4.0-=υE E eV; 4610127.1⨯=m 3-J 1-_______________________________________ 3.29(a) ()()68.256.008.12/32/32/3=⎪⎭⎫ ⎝⎛==**pnc m m g g υ(b) ()()0521.048.0067.02/32/32/3=⎪⎭⎫ ⎝⎛==**pncmm g g υ_______________________________________3.30 Plot_______________________________________ 3.31(a) ()()()!710!7!10!!!-=-=i i i i i N g N g W()()()()()()()()()()()()1201238910!3!7!78910===(b) (i) ()()()()()()()()12!10!101112!1012!10!12=-=i W 66=(ii) ()()()()()()()()()()()()1234!8!89101112!812!8!12=-=i W 495=_______________________________________ 3.32()⎪⎪⎭⎫ ⎝⎛-+=kT E E E f F exp 11(a) kT E E F =-, ()()⇒+=1exp 11E f()269.0=E f (b) kT E E F 5=-, ()()⇒+=5exp 11E f()31069.6-⨯=E f(c) kT E E F 10=-, ()()⇒+=10exp 11E f ()51054.4-⨯=E f_______________________________________ 3.33()⎪⎪⎭⎫ ⎝⎛-+-=-kT E E E f F exp 1111or()⎪⎪⎭⎫ ⎝⎛-+=-kT E E E f F exp 111(a) kT E E F =-, ()269.01=-E f (b) kT E E F 5=-, ()31069.61-⨯=-E f(c) kT E E F 10=-, ()51054.41-⨯=-E f_______________________________________ 3.34(a) ()⎥⎦⎤⎢⎣⎡--≅kT E E f F F exp c E E =; 61032.90259.030.0exp -⨯=⎥⎦⎤⎢⎣⎡-=F f 2kT E c +; ()⎥⎦⎤⎢⎣⎡+-=0259.020259.030.0exp F f 61066.5-⨯=kT E c +; ()⎥⎦⎤⎢⎣⎡+-=0259.00259.030.0exp F f 61043.3-⨯=23kT E c +; ()()⎥⎦⎤⎢⎣⎡+-=0259.020259.0330.0exp F f 61008.2-⨯=kT E c 2+; ()()⎥⎦⎤⎢⎣⎡+-=0259.00259.0230.0exp F f 61026.1-⨯=(b) ⎥⎦⎤⎢⎣⎡-+-=-kT E E f F F exp 1111()⎥⎦⎤⎢⎣⎡--≅kT E E F exp υE E =; ⎥⎦⎤⎢⎣⎡-=-0259.025.0exp 1F f 51043.6-⨯= 2kT E -υ; ()⎥⎦⎤⎢⎣⎡+-=-0259.020259.025.0exp 1F f 51090.3-⨯=kT E -υ; ()⎥⎦⎤⎢⎣⎡+-=-0259.00259.025.0exp 1F f 51036.2-⨯=23kTE -υ; ()()⎥⎦⎤⎢⎣⎡+-=-0259.020259.0325.0exp 1F f 51043.1-⨯= kT E 2-υ;()()⎥⎦⎤⎢⎣⎡+-=-0259.00259.0225.0exp 1F f 61070.8-⨯=_______________________________________3.35()()⎥⎦⎤⎢⎣⎡-+-=⎥⎦⎤⎢⎣⎡--=kT E kT E kT E E f F c F F exp exp and()⎥⎦⎤⎢⎣⎡--=-kT E E f F F exp 1 ()()⎥⎦⎤⎢⎣⎡---=kT kT E E F υexp So ()⎥⎦⎤⎢⎣⎡-+-kT E kT E F c exp ()⎥⎦⎤⎢⎣⎡+--=kT kT E E F υexp Then kT E E E kT E F F c +-=-+υOr midgap c F E E E E =+=2υ_______________________________________ 3.3622222ma n E n π =For 6=n , Filled state()()()()()2103122234610121011.92610054.1---⨯⨯⨯=πE18105044.1-⨯=Jor 40.9106.1105044.119186=⨯⨯=--E eV For 7=n , Empty state ()()()()()2103122234710121011.92710054.1---⨯⨯⨯=πE1810048.2-⨯=Jor 8.12106.110048.219187=⨯⨯=--E eV Therefore 8.1240.9<<F E eV_______________________________________ 3.37(a) For a 3-D infinite potential well()222222⎪⎭⎫ ⎝⎛++=a n n n mE z y x π For 5 electrons, the 5th electron occupies the quantum state 1,2,2===z y x n n n ; so()2222252⎪⎭⎫ ⎝⎛++=a n n n m E z y x π()()()()()21031222223410121011.9212210054.1---⨯⨯++⨯=π1910761.3-⨯=Jor 35.2106.110761.319195=⨯⨯=--E eV For the next quantum state, which is empty, the quantum state is 2,2,1===z y x n n n . This quantum state is at the same energy, so 35.2=F E eV(b) For 13 electrons, the 13th electronoccupies the quantum state 3,2,3===z y x n n n ; so ()()()()()2103122222341310121011.9232310054.1---⨯⨯++⨯=πE 1910194.9-⨯=Jor 746.5106.110194.9191913=⨯⨯=--E eVThe 14th electron would occupy the quantum state 3,3,2===z y x n n n . This state is at the same energy, so 746.5=F E eV_______________________________________ 3.38The probability of a state at E E E F ∆+=1 being occupied is()⎪⎭⎫ ⎝⎛∆+=⎪⎪⎭⎫ ⎝⎛-+=kT E kT E E E f F exp 11exp 11111 The probability of a state at E E E F ∆-=2being empty is()⎪⎪⎭⎫ ⎝⎛-+-=-kT E E E f F 222exp 1111⎪⎭⎫ ⎝⎛∆-+⎪⎭⎫ ⎝⎛∆-=⎪⎭⎫ ⎝⎛∆-+-=kT E kT E kT E exp 1exp exp 111or()⎪⎭⎫ ⎝⎛∆+=-kT E E f exp 11122so ()()22111E f E f -=_______________________________________3.39(a) At energy 1E , we want01.0exp 11exp 11exp 1111=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛-kT E E kT E E kT E E F F FThis expression can be written as01.01exp exp 111=-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-+kT E E kT E E F F or()⎪⎪⎭⎫⎝⎛-=kT E E F 1exp 01.01Then()100ln 1kT E E F += orkT E E F 6.41+= (b)At kT E E F 6.4+=, ()()6.4exp 11exp 1111+=⎪⎪⎭⎫ ⎝⎛-+=kT E E E f F which yields()01.000990.01≅=E f_______________________________________ 3.40 (a)()()⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=0259.050.580.5exp exp kT E E f F F 61032.9-⨯=(b) ()060433.03007000259.0=⎪⎭⎫⎝⎛=kT eV31098.6060433.030.0exp -⨯=⎥⎦⎤⎢⎣⎡-=F f (c) ()⎥⎦⎤⎢⎣⎡--≅-kT E E f F F exp 1 ⎥⎦⎤⎢⎣⎡-=kT 25.0exp 02.0or 5002.0125.0exp ==⎥⎦⎤⎢⎣⎡+kT ()50ln 25.0=kTor()()⎪⎭⎫⎝⎛===3000259.0063906.050ln 25.0T kT which yields 740=T K_______________________________________ 3.41 (a)()00304.00259.00.715.7exp 11=⎪⎭⎫ ⎝⎛-+=E for 0.304%(b) At 1000=T K, 08633.0=kT eV Then()1496.008633.00.715.7exp 11=⎪⎭⎫ ⎝⎛-+=E for 14.96%(c) ()997.00259.00.785.6exp 11=⎪⎭⎫ ⎝⎛-+=E for 99.7% (d)At F E E =, ()21=E f for all temperatures_______________________________________ 3.42(a) For 1E E =()()⎥⎦⎤⎢⎣⎡--≅⎪⎪⎭⎫ ⎝⎛-+=kT E E kTE E E fF F11exp exp 11Then()611032.90259.030.0exp -⨯=⎪⎭⎫ ⎝⎛-=E fFor 2E E =, 82.030.012.12=-=-E E F eV Then()⎪⎭⎫ ⎝⎛-+-=-0259.082.0exp 1111E for()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---≅-0259.082.0exp 111E f141078.10259.082.0exp -⨯=⎪⎭⎫ ⎝⎛-=(b) For 4.02=-E E F eV,72.01=-F E E eVAt 1E E =,()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.072.0exp exp 1kT E E E f F or()131045.8-⨯=E f At 2E E =,()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫ ⎝⎛-=0259.04.0expor()71096.11-⨯=-E f_______________________________________ 3.43(a) At 1E E =()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.030.0exp exp 1kT E E E f F or()61032.9-⨯=E fAt 2E E =, 12.13.042.12=-=-E E F eV So()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫ ⎝⎛-=0259.012.1expor()191066.11-⨯=-E f (b) For 4.02=-E E F ,02.11=-F E E eV At 1E E =,()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.002.1exp exp 1kT E E E f F or()181088.7-⨯=E f At 2E E =,()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫ ⎝⎛-=0259.04.0expor ()71096.11-⨯=-E f_______________________________________ 3.44()1exp 1-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+=kTE E E f Fso()()2exp 11-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-=kT E E dE E df F⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛⨯kT E E kT F exp 1or()2exp 1exp 1⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=kT E E kT E E kT dE E df F F (a) At 0=T K, For()00exp =⇒=∞-⇒<dE dfE E F()0exp =⇒+∞=∞+⇒>dEdfE E FAt -∞=⇒=dEdfE E F(b) At 300=T K, 0259.0=kT eVFor F E E <<, 0=dE dfFor F E E >>, 0=dEdfAt F E E =,()()65.91110259.012-=+⎪⎭⎫ ⎝⎛-=dE df (eV)1-(c) At 500=T K, 04317.0=kT eVFor F E E <<, 0=dE dfFor F E E >>, 0=dEdfAt F E E =,()()79.511104317.012-=+⎪⎭⎫ ⎝⎛-=dE df (eV)1- _______________________________________ 3.45(a) At midgap E E =,()⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=kT E kTE E E f g F2exp 11exp 11Si: 12.1=g E eV, ()()⎥⎦⎤⎢⎣⎡+=0259.0212.1exp 11E for()101007.4-⨯=E fGe: 66.0=g E eV ()()⎥⎦⎤⎢⎣⎡+=0259.0266.0exp 11E for()61093.2-⨯=E f GaAs: 42.1=g E eV ()()⎥⎦⎤⎢⎣⎡+=0259.0242.1exp 11E for()121024.1-⨯=E f(b) Using the results of Problem 3.38, the answers to part (b) are exactly the same as those given in part (a)._______________________________________3.46(a) ()⎥⎦⎤⎢⎣⎡--=kT E E f F F exp ⎥⎦⎤⎢⎣⎡-=-kT 60.0exp 108or()810ln 60.0+=kT()032572.010ln 60.08==kT eV ()⎪⎭⎫⎝⎛=3000259.0032572.0Tso 377=T K(b) ⎥⎦⎤⎢⎣⎡-=-kT 60.0exp 106()610ln 60.0+=kT()043429.010ln 60.06==kT ()⎪⎭⎫⎝⎛=3000259.0043429.0Tor 503=T K_______________________________________ 3.47(a) At 200=T K,()017267.03002000259.0=⎪⎭⎫⎝⎛=kT eV⎪⎪⎭⎫ ⎝⎛-+==kT E E f F F exp 1105.019105.01exp =-=⎪⎪⎭⎫ ⎝⎛-kT E E F()()()19ln 017267.019ln ==-kT E E F 05084.0=eV By symmetry, for 95.0=F f , 05084.0-=-F E E eVThen ()1017.005084.02==∆E eV (b) 400=T K, 034533.0=kT eV For 05.0=F f , from part (a),()()()19ln 034533.019ln ==-kT E E F 10168.0=eVThen ()2034.010168.02==∆E eV _______________________________________。
半导体物理习题答案(1-3章)
第1章 半导体中的电子状态1. 设晶格常数为a 的一维晶格,导带极小值附近能量()c E k 和价带极大值附近能量()v E k 分别为2222100()()3c h k k h k E k m m -=+,22221003()6v h k h k E k m m =-0m 为电子惯性质量,112k a =, 0.314a =nm 。
试求:1) 禁带宽度;2) 导带底电子有效质量; 3) 价带顶电子有效质量;4) 价带顶电子跃迁到导带底时准动量的变化。
解:1) 禁带宽度g E ,根据22100()2()202c dE k h k k h k dk m m -=+=,可求出对应导带能量极小值min E 的k 值:m i n 134k k =, 由题目中()c E k 式可得:min 12min 3104()4c k k k h E E k k m ====; 根据20()60v dE k h k dk m =-=,可以看出,对应价带能量极大值max E 的k 值为:k max = 0;可得max 221max 00()6v k k h k E E k m ====,所以2221min max 2001248g h k h E E E m m a=-== 2) 导带底电子有效质量m n由于2222200022833c d E h h h dk m m m =+=,所以202238nc m h md E dk== 3) 价带顶电子有效质量vn m由于22206v d E h dk m =-,所以20226v nv m h m d E dk ==- 4) 准动量的改变量min max 133()48hh k h k k hk a∆=-==2. 晶格常数为0.25 nm 的一维晶格,当外加102V/m 、107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:设电场强度为E ,电子受到的力f 为dkf hqE dt==(E 取绝对值),可得h dt dk qE =, 所以12012ta h h t dt dk qE qE a===⎰⎰,代入数据得: 34619106.62108.310()1.6102(2.510)t s E E----⨯⨯==⨯⨯⨯⨯⨯ 当E = 102V/m 时,88.310t s -=⨯;当E = 107V/m 时,138.310t s -=⨯。
半导体物理学习题解
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC=== sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cmatom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-=(, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m 解:(1)由0)(=dkk dE 得 a n k π=(n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()mak E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==(4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*=(5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理与器件习题
半导体物理与器件习题目录半导体物理与器件习题 (1)一、第一章固体晶格结构 (2)二、第二章量子力学初步 (2)三、第三章固体量子理论初步 (2)四、第四章平衡半导体 (3)五、第五章载流子输运现象 (5)六、第六章半导体中的非平衡过剩载流子 (5)七、第七章pn结 (6)八、第八章pn结二极管 (6)九、第九章金属半导体和半导体异质结 (7)十、第十章双极晶体管 (7)十一、第十一章金属-氧化物-半导体场效应晶体管基础 (8)十二、第十二章MOSFET概念的深入 (9)十三、第十三章结型场效应晶体管 (9)一、第一章固体晶格结构1.如图是金刚石结构晶胞,若a 是其晶格常数,则其原子密度是。
2.所有晶体都有的一类缺陷是:原子的热振动,另外晶体中常的缺陷有点缺陷、线缺陷。
3.半导体的电阻率为10-3~109Ωcm。
4.什么是晶体?晶体主要分几类?5.什么是掺杂?常用的掺杂方法有哪些?答:为了改变导电性而向半导体材料中加入杂质的技术称为掺杂。
常用的掺杂方法有扩散和离子注入。
6.什么是替位杂质?什么是填隙杂质?7.什么是晶格?什么是原胞、晶胞?二、第二章量子力学初步1.量子力学的三个基本原理是三个基本原理能量量子化原理、波粒二相性原理、不确定原理。
2.什么是概率密度函数?3.描述原子中的电子的四个量子数是:、、、。
三、第三章固体量子理论初步1.能带的基本概念◼能带(energy band)包括允带和禁带。
◼允带(allowed band):允许电子能量存在的能量范围。
◼禁带(forbidden band):不允许电子存在的能量范围。
◼允带又分为空带、满带、导带、价带。
◼空带(empty band):不被电子占据的允带。
◼满带(filled band):允带中的能量状态(能级)均被电子占据。
导带:有电子能够参与导电的能带,但半导体材料价电子形成的高能级能带通常称为导带。
价带:由价电子形成的能带,但半导体材料价电子形成的低能级能带通常称为价带。
半导体物理 课后习题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E π+= 之间单位体积中的量子态数。
解322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C 22C L E m h E E E m V dE E E m V dE E g V d dEE g d E E m V E g c nc C n l m h E C n l m E C n n c n c πππππ=+-=-====-=*++⎰⎰**)()(单位体积内的量子态数)(2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
半导体物理与器件课后习题4(2)
习题四(2)
4.34 已知T450K时的一块硅样品,掺杂了浓度为的硼和浓度为的砷。
(a)该材料时n型半导体还是p型半导体?(b)计算电子的浓度和空穴的浓度。
(c)计算已电离的杂质浓度。
解:T=450K时 对于硅:
(a)
(b) 空穴浓度:
电子浓度:
(c) ;
450K时为强电离区故
从而已电离的杂质浓度为
4.51(a)T300K时硅中掺杂了浓度为的磷原子,确定硅的费米能级相对于本征费米能级的位置。
(b)假如加入的杂质换为浓度为的硼原子重复(a).(c)分别计算与中的电子子浓度。
解:(a):
即硅的费米能级高于本征费米能级0.2877ev处;
(b)
即硅的费米能级低于本征费米能级0.2877ev处;
(c):(a)
得:
故:电子浓度
(b)。
半导体物理习题参考答案第四章
第4章 半导体的导电性2.试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1350cm 2/V ⋅s 和500 cm 2/V ⋅s 。
当掺入百万分之一的As 后,设杂质全部电离,试计算其电导率。
掺杂后的电导率比本征Si 的电导率增大了多少倍?解:将室温下Si 的本征载流子密度1.5⨯1010/cm 3及题设电子和空穴的迁移率代入电导率公式()i i n p n q σμμ=+g 算得500克Si 单晶的体积为3214.6 cm 2.33V ==,于是知B 的浓度 ∴1816-32.510 1.1610 cm 214.6A Z N V ⨯===⨯ 室温下硅中此等浓度的B 杂质应已完全电离,查表4-14知相应的空穴迁移率为400 cm 2/V ⋅s 。
故161911 1.35cm 1.1610 1.610400A p N q ρμ-===Ω⋅⨯⨯⨯⨯ 6. 设Si 中电子的迁移率为0.1 m 2/(V .s),电导有效质量m C =0.26m 0,加以强度为104V/m 的电场,试求平均自由时间和平均自由程。
解:由迁移率的定义式*n c cq m τμ=知平均自由时间 *c c n m qμτ⋅= 代入相关数据,得3113190.269.1100.1 1.48101.610n s τ---⨯⨯⨯==⨯⨯8. 0.1A 的。
为5.3⨯10 cm 的施主。
10. 试求本征Si 在473K 时的电阻率。
解:由图4-13查出T=473K 时本征硅中电子和空穴的迁移率分别是2440 cm /V s n μ=⋅,2140 cm /V s p μ=⋅在温度变化不大时可忽略禁带宽度随温度的变化,则任意温度下的本征载流子密度可用室温下的等效态密度N C (300)和N V (300)、禁带宽度E g (300)和室温kT=0.026eV 表示为3/23(300)300()(300)(300)(exp() cm 3000.026g i C V E T n T N N T⋅=-代入相关数据,得193/2133473 1.12300(473)10()exp() =4.110 cm 30020.026473i n ⨯=-⨯⨯⨯- 该值与图3-7中T=200℃(473K )所对应之值低大约一个数量级,这里有忽略禁带变窄的因素,也有其他因素(参见表3-2,计算值普遍比实测值低)。
半导体物理第四章答案
返回
截面积为 0.001cm 的圆柱形纯Si样品,长1mm,接于 10V电源上,室温下希望通过0.1A的电流,问: ⑴样品的电阻为多少? ⑵样品的电导率是多少?
µ n = 1200 cm 2 V ⋅ s ) ⑶应掺入为多少的施主?(
4-11 -
σ 1 = N A qµ p = 1013 ×1.6 ×10 −19 × 500 = 8 ×10 −4 / Ω ⋅ cm
J 1 = σε = 8 × 10 −4 × 10 3 = 0.8 A cm 2
I 1 = J 1 S = 0.8mA
ni = 8 × 1012 cm −3 ⑵400K时,由图3-7知,
第四章
PowerPoint2003
半导体物理习题 第四章
4-1 - 4-6 - 4-11 - 4-16 - 4-2 - 4-7 - 4-12 - 4-17 - 4-3 - 4-8 - 4-13 - 4-18 - 4-4 - 4-9 - 4-14 - 4-19 - 4-5 - 4-10 - 4-15 - 4-20 -
n 8 × 10 n≈ = = 4.41 × 1012 cm −3 p 1.45 × 1013
2 i
(
12 2
)
µ p = 230cm 2 / V ⋅ s µ 由图4-13知, n = 700cm / V ⋅ s ,
2
σ 2 = nqµ n + pqµ p
= 1.6 ×10−19 × 4.41×1012 × 700 + 1.45 ×1013 × 230
即本征激发不可忽略。
N A ≈ ni
,
NA p= 2
半导体物理学第四章答案
全部电离,试计算其电导率。比本征Si的电导率增大了多少倍?
解:300K时,,查表3-2或图3-7可知,室温下Si的本征载流子浓度约
为。
本征情况下,
金钢石结构一个原胞内的等效原子个数为个,查看附录B知Si的晶格
常数为0.543102nm,则其原子密度为。
掺入百万分之一的As,杂质的浓度为,杂质全部电离后,,这种情况
,
,查图4-14(a)知,
④磷原子31015cm-3+镓原子11017cm-3+砷原子11017cm-3
,
,查图4-14(a)知, 17. ①证明当unup且电子浓度n=ni时,材料的电导率最小,并求min的表 达式。 解:
令 因此,为最小点的取值
②试求300K时Ge 和Si样品的最小电导率的数值,并和本征电导率相比 较。 查表4-1,可知室温下硅和锗较纯样品的迁移率 Si: Ge: 18. InSB的电子迁移率为7.5m2/( VS),空穴迁移率为0.075m2/( VS), 室温时本征载流子浓度为1.61016cm-3,试分别计算本征电导率、电阻率 和最小电导率、最大电导率。什么导电类型的材料电阻率可达最大。 解: 借用17题结果 当时,电阻率可达最大,这时 ,这时为P型半导体。
16. 分别计算掺有下列杂质的Si,在室温时的载流子浓度、迁移率和电
阻率: ①硼原子31015cm-3; ②硼原子1.31016cm-3+磷原子1.01016cm-3 ③磷原子1.31016cm-3+硼原子1.01016cm ④磷原子31015cm-3+镓原子11017cm-3+砷原子11017cm-3。
19. 假设S i中电子的平均动能为3k0T/2,试求室温时电子热运动的 均方根速度。如将S i置于10V/cm的电场中,证明电子的平均漂移速度 小于热运动速度,设电子迁移率为15000cm2/( VS).如仍设迁移率为上 述数值,计算电场为104V/cm时的平均漂移速度,并与热运动速度作一 比较,。这时电子的实际平均漂移速度和迁移率应为多少?
半导体器件物理4章半导体中的载流子输运现象
第四章 半导体中载流子的输运现象在前几章我们研究了热平衡状态下,半导体导带和价带中的电子浓度和空穴浓度。
我们知道电子和空穴的净流动将会产生电流,载流子的运动过程称谓输运。
半导体中的载流子存在两种基本的输运现象:一种是载流子的漂移,另一种是载流子的扩散。
由电场引起的载流子运动称谓载流子的漂移运动;由载流子浓度梯度引起的运动称谓载流子扩散运动。
其后我们会将会看到,漂移运动是由多数载流子(简称多子)参与的运动;扩散运动是有少数载流子(简称少子)参与的运动。
载流子的漂移运动和扩散运动都会在半导体内形成电流。
此外,温度梯度也会引起载流子的运动,但由于温度梯度小或半导体的特征尺寸变得越来越小,这一效应通常可以忽略。
载流子运动形成电流的机制最终会决定半导体器件的电流-电压特性。
因此,研究半导体中载流子的输运现象非常必要。
4.1漂移电流密度如果导带和价带都有未被电子填满的能量状态,那么在外加电场的作用下,电子和空穴将产生净加速度和净移位。
电场力的作用下使载流子产生的运动称为“漂移运动”。
载流子电荷的净漂移会产生“漂移电流”。
如果电荷密度为ρ的正方体以速度dυ运动,则它形成的电流密度为()4.1dr fdJ ρυ=其中ρ的单位为3C cm - ,drfJ 的单位是2Acm -或2/C cms 。
若体电荷是带正电荷的空穴,则电荷密度epρ=,e 为电荷电量191.610(e C -=⨯库仑),p 为载流子空穴浓度,单位为3cm -。
则空穴的漂移电流密度/p drfJ可以写成:()()/ 4.2p drf dpJ ep υ=dp υ表示空穴的漂移速度。
空穴的漂移速度跟那些因素有关呢?在电场力的作用下,描述空穴的运动方程为()*4.3p F m a eE==e 代表电荷电量,a 代表在电场力F 作用下空穴的加速度,*pm 代表空穴的有效质量。
如果电场恒定,则空穴的加速度恒定,其漂移速度会线性增加。
但半导体中的载流子会与电离杂质原子和热振动的晶格原子发生碰撞或散射,这种碰撞或散射改变了带电粒子的速度特性。
半导体物理学第四章答案
全部电离,试计算其电导率。比本征Si的电导率增大了多少倍?
解:300K时,,查表3-2或图3-7可知,室温下Si的本征载流子浓度约
为。
本征情况下,
金钢石结构一个原胞内的等效原子个数为个,查看附录B知Si的晶格
常数为0.543102nm,则其原子密度为。
掺入百万分之一的As,杂质的浓度为,杂质全部电离后,,这种情况
①室温时样品的电导率及流过样品的电流密度和电流强度。 ②400K时样品的电导率及流过样品的电流密度和电流强度。 解: ①查表4-15(b)知室温下,浓度为1013cm-3的p型Si样品的电阻率为, 则电导率为。 电流密度为 电流强度为 ②400K时,查图4-13可知浓度为1013cm-3的p型Si的迁移率约为,则电导 率为 电流密度为 电流强度为 12. 试从图4-14求室温时杂质浓度分别为1015,1016,1017cm-3的p型 和n型Si 样品的空穴和电子迁移率,并分别计算他们的电阻率。再从图 4-15分别求他们的电阻率。
,
,查图4-14(a)知,
④磷原子31015cm-3+镓原子11017cm-3+砷原子11017cm-3
,
,查图4-14(a)知, 17. ①证明当unup且电子浓度n=ni时,材料的电导率最小,并求min的表 达式。 解:
令 因此,为最小点的取值
②试求300K时Ge 和Si样品的最小电导率的数值,并和本征电导率相比 较。 查表4-1,可知室温下硅和锗较纯样品的迁移率 Si: Ge: 18. InSB的电子迁移率为7.5m2/( VS),空穴迁移率为0.075m2/( VS), 室温时本征载流子浓度为1.61016cm-3,试分别计算本征电导率、电阻率 和最小电导率、最大电导率。什么导电类型的材料电阻率可达最大。 解: 借用17题结果 当时,电阻率可达最大,这时 ,这时为P型半导体。
半导体物理学第四章答案
第四章习题及答案1. 300K 时,Ge 的本征电阻率为47Ωcm ,如电子和空穴迁移率分别为3900cm 2/( V.S)和1900cm 2/( V.S)。
试求Ge 的载流子浓度。
解:在本征情况下,i n p n ==,由)(/p n i p n u u q n pqu nqu +=+==111σρ知 3131910292190039001060214711--⨯=+⨯⨯⨯=+=cm u u q n p n i .)(.)(ρ 2. 试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1350cm 2/( V.S)和500cm 2/( V.S)。
当掺入百万分之一的As 后,设杂质全部电离,试计算其电导率。
比本征Si 的电导率增大了多少倍? 解:300K 时,)/(),/(S V cm u S V cm u p n ⋅=⋅=225001350,查表3-2或图3-7可知,室温下Si 的本征载流子浓度约为3101001-⨯=cm n i .。
本征情况下,cm S +.u u q n pqu nqu -p n i p n /.)()(6191010035001350106021101-⨯=⨯⨯⨯⨯=+=+=σ金钢石结构一个原胞内的等效原子个数为84216818=+⨯+⨯个,查看附录B 知Si 的晶格常数为0.543102nm ,则其原子密度为322371051054310208--⨯=⨯cm ).(。
掺入百万分之一的As,杂质的浓度为3162210510000001105-⨯=⨯⨯=cm N D ,杂质全部电离后,i D n N >>,这种情况下,查图4-14(a )可知其多子的迁移率为800 cm 2/( V.S)cm S .qu N -n D /.''468001060211051916=⨯⨯⨯⨯=≈σ比本征情况下增大了66101210346⨯=⨯=-..'σσ倍 3. 电阻率为10Ω.m 的p 型Si 样品,试计算室温时多数载流子和少数载流子浓度。
半导体物理第四章习题参考答案
9. 由于光的照射在半导体中产生了非平衡载流子 n p 1012 cm-3 ,分别计算
施主掺杂浓度为 ND 1016 cm-3 的 N 型硅和本征硅在这种情况下的准费米能 级的位置,并与原来的费米能级的位置做比较,画出相应的能带图。 答:有:
n
ni
exp
E fn kT
Ei
,
n
E fn
答:(1) 电离杂质散射是由电离的杂质对载流子的库仑相互作用引起的,其特点 为:掺杂浓度越高,电离杂质散射越显著;温度越高,载流子的动能越大,受库 仑相互作用力的影响相对减弱,因此,电离杂质散射在低温时起主要作用,其 、
与温度的关系为:
3
3
I T 2 , I T 2
(2) 声学波散射是晶格振动对载流子散射中作用大的一种,属于晶格自身的特
10. 设空穴浓度是线性分布,在 3μm 内浓度分布差 1015cm-3,μp=400cm2·V-1·s-1, 试计算空穴扩散电流密度。
答:由爱因斯坦关系:
Dp
kT q
p
有:
jp
qDp
p x
kT p
p x
5.52 A
cm2
11. 考虑平衡情形,证明:
en
Vthn nni
exp
Et Ei kT
i niqn piqp 4.45106 Ω cm
(2)
当掺入百万分之一的
As
时,施主浓度为:
ND
5 1022 106
cm-3
51016 cm-3
(其中 N 51022 cm-3 为 Si 的原子密度)。
由于杂质全部电离,从而: n
ND
51016 cm-3,
p
半导体器件物理习题与参考文献
第一章习题1–1.设晶格常数为a 的一维晶体,导带极小值附近能量为)(k E c :mk k m k k E c 21222)(3)(-+= 价带极大值附近的能量为:mk m k k E v 222236)( -=式中m 为电子能量,A14.3,1 ==a ak π,试求: (1)禁带宽度;(2)导带底电子的有效质量; (3)价带顶空穴的有效质量。
1–2.在一维情况下:(1)利用周期性边界条件证明:表示独立状态的k 值数目等于晶体的原胞数;(2)设电子能量为*222nm k E =,并考虑到电子的自旋可以有两种不同的取向,试证明在单位长度的晶体中单位能量间隔的状态数为1*2)(-=E hm E N n。
1–3.设硅晶体电子中电子的纵向有效质量为L m ,横向有效质量为t m(1)如果外加电场沿[100]方向,试分别写出在[100]和[001]方向能谷中电子的加速度;(2)如果外加电场沿[110]方向,试求出[100]方向能谷中电子的加速度和电场之间的夹角。
1–4.设导带底在布里渊中心,导带底c E 附近的电子能量可以表示为*222)(nc m k E k E += 式中*n m 是电子的有效质量。
试在二维和三维两种情况下,分别求出导带附近的状态密度。
1–5.一块硅片掺磷1510原子3/cm 。
求室温下(300K )的载流子浓度和费米能级。
1–6.若n 型半导体中(a )ax N d =,式中a 为常数;(b )ax d e N N -=0推导出其中的电场。
1–7.(1)一块硅样品的31510-=cm N d ,s p μτ1=,1319105--⨯=s cm G L ,计算它的电导率和准费米能级。
(2)求产生1510个空穴3/-cm 的L G 值,它的电导率和费米能级为若干? 1–8. 一半导体31031610,10,10--===cm n s cm N i n a μτ,以及131810--=s cm G L ,计算300K 时(室温)的准费米能级。
半导体物理答案
第一篇 半导体中的电子状态习题1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。
1-3、试指出空穴的主要特征。
1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。
1-5、某一维晶体的电子能带为[])sin(3.0)cos(1.01)(0ka ka E k E --=其中E 0=3eV ,晶格常数a=5х10-11m 。
求:(1) 能带宽度;(2) 能带底和能带顶的有效质量。
题解:1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。
其结果是在半导体中出现成对的电子-空穴对。
如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。
1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。
温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。
反之,温度降低,将导致禁带变宽。
因此,Ge 、Si 的禁带宽度具有负温度系数。
1-3、 解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。
主要特征如下:A 、荷正电:+q ;B 、空穴浓度表示为p (电子浓度表示为n );C 、E P =-E nD 、m P *=-m n *。
1-4、 解:(1) Ge 、Si:a )Eg (Si :0K) = 1.17eV ;Eg (Ge :0K) = 0.744eV ;b )间接能隙结构c )禁带宽度E g 随温度增加而减小;(2) GaAs :a )Eg (0K) = 1.52eV ;b )直接能隙结构;c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ;1-5、 解:(1) 由题意得:[][])sin(3)cos(1.0)cos(3)sin(1.002220ka ka E a k d dE ka ka aE dk dE+=-=eVE E E E a kd dE a k E a kd dE a k a k a k ka tg dk dE ooo o 1384.1min max ,01028.2)4349.198sin 34349.198(cos 1.0,4349.198,01028.2)4349.18sin 34349.18(cos 1.0,4349.184349.198,4349.1831,04002222400222121=-=∆<⨯-=+==>⨯=+====∴==--则能带宽度对应能带极大值。
半导体物理习题答案
第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。
即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。
解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。
例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。
试求:(1)能带的宽度;(2)能带底部和顶部电子的有效质量。
解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。
当时,代入(2)得:对应E(k)的极大值。
根据上述结果,求得和即可求得能带宽度。
故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
3 试指出空穴的主要特征。
4 简述Ge、Si和GaAs的能带结构的主要特征。
5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。
求:(1)能带宽度;(2)能带底和能带顶的有效质量。
6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同?原子中内层电子和外层电子参与共有化运动有何不同?7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此?为什么?10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 金属-半导体结
4-1. 一硅肖脱基势垒二极管有0.01 cm 2的接触面积,半导体中施主浓度为1016 cm 3−。
设V 7.00=ψ,V V R 3.10=。
计算 (a )耗尽层厚度,
(b )势垒电容,(c )在表面处的电场
4-2. (a )从示于图4-3的GaAs 肖脱基二极管电容-电压曲线求出它的施主浓度、自建电
势势垒高度。
(b) 从图4-7计算势垒高度并与(a )的结果作比较。
4-3. 画出金属在P 型半导体上的肖脱基势垒的能带结构图,忽略表面态,指出(a )s m φφ>
和(b )s m φφ<两种情形是整流节还是非整流结,并确定自建电势和势垒高度。
4-4. 自由硅表面的施主浓度为15310cm −,均匀分布的表面态密度为122110ss D cm eV −−=,
电中性级为0.3V E eV +,向该表面的表面势应为若干?提示:首先求出费米能级与电中性能级之间的能量差,存在于这些表面态中的电荷必定与表面势所承受的耗尽层电荷相等。
4-5. 已知肖脱基二极管的下列参数:V m 0.5=φ,eV s 05.4=χ,31910−=cm N c ,
31510−=cm N d ,以及k=11.8。
假设界面态密度是可以忽略的,在300K 计算: (a )零偏压时势垒高度,自建电势,以及耗尽层宽度。
(b)在0.3v 的正偏压时的热离子发射电流密度。
4-6.在一金属-硅的接触中,势垒高度为eV q b 8.0=φ,有效理查逊常数为222/10*K cm A R ⋅=,eV E g 1.1=,31610−=cm N d ,以及31910−==cm N N v c 。
(a )计算在300K 零偏压时半导体的体电势n V
和自建电势。
(b )假设s cm D p /152=和um L p 10=,计算多数载流子电流对少数载流子电流的注
入比。
4-7. 计算室温时金-nGaAs 肖脱基势垒的多数载流子电流对少数载流子电流的比例。
已知施主浓度为10153−cm ,um L p 1=,610p s τ−=,以及R R 068.0*=。
4-8. 在一金属-绝缘体势垒中,外电场ε=104V/cm ,介电常数为(a )4,()12,k b k ==计
算φΔ和m x ,将所得的结果与4-3节中的例题进行比较。
4-9. 在一金属一绝缘体势垒中,外加电场cm V E ext /104
=,介电常数为(a )k=4及(b) k=12,
计算b φΔ和m x 。
4-10.(a )推导出在肖特基二极管中dT dV
作为电流密度的函数表达式。
假设少数 载流子可以忽略。
(b )倘若在300K 时,一般地V=0.25V 以及V b 7.0=φ,估计温度系数。
4-11.肖脱基检波器具有10 pF 的电容,10Ω的串联电阻以及100Ω的二极管电阻,计算它
的截止频率。