《分式》第一课时教案

合集下载

分式第一课时教案

分式第一课时教案

一、指导思想与理论依据本节课紧紧围绕目标的达成进行设计,根据这节课的知识特点,重点放在促使学生不断思考,不断寻求解决途径,让学生会经历探索结论的过程。

不但训练学生的知识技能,也让学生体会转化思想,感受方程的模型作用。

同时,在过程中引领学生形成科学主动的学习方式,提高学生学习兴趣,促进学生的长远发展。

二、教学背景分析(一)首先是对教材的分析。

本节教材内容为“人教版八年级下册第十六章第三节“分式方程”第一课时,可化为一元一次方程的分式方程的解法。

本节教材的地位作用我是这样理解的:方程是七八九年级数学知识系统中很重要的部分,也是中学学段需要学生了解的实用数学模型之一。

学生在七年级已经学习过一元一次方程的解法和应用,而本节分式方程是与整式方程并列的另一类型,且分式方程的解法步骤中包含了整式方程的步骤并体现了转化的数学思想,同时也是解决实际问题的工具之一,不但对下一节列分式方程解应用题做好铺垫,而且对训练学生知识技能和理解应用数学思想方面起到双重作用。

(二)学情分析:学生的知识基础方面:能熟练准确地解一元一次方程;已学过分式的定义;了解分式有意义的条件;能利用分式的基本性质进行约分通分;课前预习知晓分式方程的概念。

在情感态度和能力基础方面:八年级的学生已经具备了一定的自主探究能力和分析问题的能力,并对发现新问题以及寻求解决办法有相当的兴趣和积极的愿望。

三、教学目标与重难点分析课标对本节内容对学生的要求是“会解可化为一元一次方程的分式方程的解法),根据这个要求和我对教材的分析,我把本节的教学重点设置为分式方程的解法和一般步骤。

此外,分式方程与整式方程之间既有联系又有区别,由于教材并不明确讲解方程的同解原理,因此学生对于增根的理解有一定困难,所以我把本节难点设置为增根及其产生的原因。

紧接着,我把教学目标设置为以下三个:教学目标:1.使学生掌握可化为一元一次方程的分式方程解法和一般步骤;2.了解解分式方程时可能产生增根的原因,并掌握解分式方程的验根方法.3. 使学生通过观察,分析,综合,归纳,在动手动脑并参与讨论等探索研究的学习过程中,学会发现问题,分析问题和解决问题并上升为理性认识,从而培养其创新能力。

八年级数学上册(12.1 分式(第1课时))教案 (新版)冀教版 教案

八年级数学上册(12.1 分式(第1课时))教案 (新版)冀教版 教案
学生经历分式的基本性质的探索验证过程.



1、当a=1,2时,分别求分式 的值.
2、当a为何值时,分式 有意义?
3、当a为何值时,分式 值为0?
4、练习3
评价反思
本节课的主要内容:
1、分式的概念
2、分式有(无)意义的条件.
3、运用分式的基本性质进行变形
对本节课知识进行梳理使学生对知识进一步深化
作业
类比分数得到分式有意义的条件,注重合情推理能力的培养



1、当x为何值时,下列分式有意义?
(1) (2)
2、当为何值时,上述分式值为0?
强调:分式值为0,满足的条件是:分子值为0且分母值不为0.
由简单到复杂,循序渐进,突破难点.
一起探究
学生计算回答1、2问.
分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于0的整式,分式的值不变.
三、教学目标
1.以描述实际问题中的数量关系为背景,抽象出分式的概念,知道分式的概念,明确分式与整式的区别,能用分式表示现实情景中的数量关系。
2.学生掌握分式是否有意义的条件,并能够正确判断一个分式有意义的条件和分式值为零时字母的取值。
3、理解并运用分式的基本性质进行变形.
四、重点、难点
重点:分式的概念、分式有意义的条件、分式值为零的条件,运用分式的基本性质进行变形。
类比分数知识得到分式概念.
例题解析
(1)想一想,下列各式中,哪些是整式,哪些是分式?
5x-7,3x2-1, , , , , ,
(2)自己试着举几个分式的例子.
进一步加强新概念的理解
辨析研讨
分式中,字母可以取任意实数吗?
不可以,因为分式中含有字母,而分母作为除式,不能为0,否则,分式就没有意义.例: 当x=5时,就没有意义

初中数学《分式》优秀教案(通用12篇)

初中数学《分式》优秀教案(通用12篇)

初中数学《分式》优秀教案〔通用12篇〕篇1:初中数学分式教案初中分式教案初中数学分式教学反思经历了三周多的学习,学生已根本掌握了分式的有关知识(分式的概念、分式的根本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。

但是,“分式运算”教学中,学生在课堂上感觉不差,做作业或测试时却错处百出,尤其在分式的混合运算更是出错多、空白多、究其根,均属于运算才能问题,因此在教学中应特别关注这一深层根,并根据学生的实际情况寻找相应对策。

下面是我在教学中的几点体会:一、教学中的发现1、本章可以让学生通过观察、类比、猜测、尝试等活动学习分式的运算法那么,开展他们的合情推理才能,所以教学时重点应放在对法那么的探究过程上。

一定要让学生充分活动起来。

在观察、类比、猜测、尝试当一系列思想活动中发现法那么、理解法那么、应用法那么,同时还要关注学生对算理的理解,以培养学生的代数表达才能、运算才能和有理的考虑问题才能。

可是我在知识的传授上并没有注重探究、类比法那么,而重在对分式四那么运算法那么的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。

今后要防止类似事情的发生。

2、问题(1) 分式的运算错的较多。

分式加减法主要是当分子是屡次式时,假如不把分子这个整体用括号括上,容易出现符号和结果的错误。

所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。

其次,分式概念运算应按照先乘方、再乘除,最后进展加减运算的顺序进展计算,有括号先做括号里面的。

(2)分式方程也是错误重灾区。

一是增根定义模糊,对此,我对增根的概念进展深化浅出的阐述,⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;⑵增根能使最简公分母等于0;二是解分式方程的步骤不标准,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的形式中跳出来;(3)列分式方程错误百出。

1.1 认识分式(第1课时)一等奖创新教案

1.1  认识分式(第1课时)一等奖创新教案

1.1 认识分式(第1课时)一等奖创新教案第五章分式与分式方程1 认识分式(第1课时)●教学目标1.能用分式表示现实情境中的数量关系,体会分式的模型思想,进一步发展符号感.2.了解分式的概念,明确分式与整式的区别.●过程与方法1.经历用字母表示现实情境中数量关系的过程,了解分式的概念,体会分式的模型思想,进一步发展符号感.2.使学生经历分析、类比、归纳等活动,培养学生的自学能力,获得学习代数知识的常用方法.●情感、态度与价值观1.通过教材土地沙化问题的情境,体会保护人类生存环境的重要性.2.培养学生类比联想的思维习惯.●重点与难点【重点】分式的概念.【难点】理解和掌握分式有意义的条件.●教学准备【教师准备】多媒体课件.【学生准备】回忆小学学过的分数的有关知识及七年级学过的整式的有关知识.●新课导入【问题】下列式子中哪些是整式哪些是单项式哪些是多项式a,-3x2y3,5x-1,x2+xy+y2,.解:a,-3x2y3,5x-1,x2+xy+y2,是整式;a,-3x2y3,是单项式;5x-1,x2+xy+y2是多项式.一、认识分式1.分式初探解决下列问题:(1)一箱苹果售价a元,箱子与苹果的总质量为m kg,箱子的质量为n kg,则每千克苹果的售价是多少元(2)一块土地分为两块棉田,第一块x公顷,收棉花m千克,第二块y公顷,收棉花n千克,这块土地平均每公顷的棉产量是多少(3)文林书店库存一批图书,其中一种图书的原价是每册a元,现每册降价x元销售,当这种图书的库存全部售出时,其销售额为b元.降价销售开始时,文林书店这种图书的库存量是多少根据学生交流、讨论,可得出结果.解:(1). (2) kg. (3)册.2.认识分式问题1刚才这些代数式有什么共同特征它们与整式有什么不同学生分组交流讨论,展示讨论结果,教师及时补充.它们的共同特征:(1)它们是由分子、分母与分数线构成的;(2)分母中都含有字母.它们与整式的不同点:它们的分母中都含有字母,而整式的分母中不含有字母,例如,,它们都含有分母,但分母中都不含有字母,所以它们是整式.一般地,用A,B表示两个整式,A÷B可以表示成的形式.如果B中含有字母,那么称为分式,其中A称为分式的分子,B称为分式的分母.问题2分式中,字母可以取任意实数吗学生领会分式的概念并思考得出:不可以.因为分式中分母含有字母,而分母是除式,不能为零,因此字母的取值就受到制约,即字母的取值不能使分母为零,否则分式就会失去意义.问题3在什么情况下分式的值为0学生通过类比分数的性质得出:分式的分子为0的时候,分式的值为0.讨论目的:以小组的形式对前面出现的式子进行讨论,进而得出分式的概念,体会分式的意义.讨论内容:(针对前面列出的三个代数式)这些代数式有什么共同特征它们与整式有什么不同老师提出思考问题:(1)整式中的分母有没有字母(2)前面的三个代数式中,分母中有没有字母(3)前面的三个代数式是不是分数呢(4)前面的三个代数式中,字母能取任意值吗(5)前面的三个代数式的值在什么情况下为零问题预设:学生会比较容易发现这几个式子的分母中都含有字母,但容易与整式中有数字分母的情况混淆,把字母等同于数字看待,这就无法顺利总结出分式的概念.2.认识分式根据学生的观察、讨论,老师进行总结:这三个代数式的共同特征是分母中都含有字母,而整式中虽然也有分母,但分母中不含字母.这样的代数式我们称为分式.一般地,用A,B表示两个整式,A÷B可以表示为的形式,如果B中含有字母,那么称为分式.其中A称为分式的分子,B称为分式的分母.对于任意一个分式,分母都不能为零.●课堂小结1.分式的概念.一般地,用A,B表示两个整式,A÷B可以表示成的形式,如果B中含有字母,那么称为分式.其中A称为分式的分子,B称为分式的分母.2.分式有意义的条件.分式有意义的条件是分母不为0.分式的值为0的条件是分子等于0,且分母不等于0.●布置作业【必做题】教材第109页随堂练习的1,2题.【选做题】教材第109页习题5.1的1,2,3题.●教学后记:。

《分式(第1课时)》教学设计

《分式(第1课时)》教学设计

《分式(第1课时)》教学设计【教材内容分析】本节的主要内容是分式的概念和分式的意义。

分式是与整式完全不同的两种代数式,为了突显分式与整式的区别,教材中给出了一些代数式让学生观察找特征,得出分式的概念;又根据分数的意义得出分式的意义;最后例题中的实际问题可让学生深刻的体会出分式的意义。

【教学目标】1、能根据分式的概念,辨别出分式,理解当分母为零时,分式无意义。

2、能确定分式中字母的取值范围,使分式有意义,或使分式的值为零。

3、会用分式表示实际问题中的数量关系,并会求分式的值,体验分式在实际中的价值。

【教学重点】分式的有关概念【教学难点】理解并能确定分式何时有意义,何时无意义。

【教学过程】(一)创设情景,引出课题。

情景:让学生观察章书图中的灰熊:提问:为了调整珍稀动物资源,动物专家在p平方千米的保护区内找到7只灰熊,你能用代数式表示平均每平方千米保护区内有多少只灰熊吗?______答案为:7÷P=7 p设计说明:通过创设情景,让学生感受到分式来源于实际,激发学生学习兴趣。

教师再出示一些如:ba,232xx-+,a bc-让学生比较说出这些代数式与过去学过的整式有什么不同?(可能学生只讲出有分母,教师应适当的引导。

)设计说明:让学生自己感悟分式与整式的不同,培养学生归纳和表达能力。

(板书)分式:把这些分子、分母都是整式且分母中含有字母的代数式叫做分式。

(二)合作讨论,探求新知做一做:1、下列代数式中,哪些是整式?哪些是分式?32 ,1x ,b a+1 ,3x+2y 5 ,a+b ab 2、议一议:分式a b 的分母中的字母能取任何实数吗?为什么? 分式2x-3x+2中的字母x 呢? 总结得出分式的意义:分式中字母的取值不能使分母为零,当分母的值为零时,分式就没有意义。

设计说明:通过与整式比较突出对分式概念的理解。

通过讨论,加深学生对分式意义的认识。

(三)应用巩固,掌握新知例1:对分式2x+13x-5(1)当x 取什么数时,分式有意义?(2)当x 取什么值时,分式的值为零?(3)当x=1时,分式的值是多少?解:略。

分式 第一课时教案-人教版初二数学第十五章15.1

分式 第一课时教案-人教版初二数学第十五章15.1
(2)分式无意义的条件:分母等于零。
3、注意两点
(1)在确定分式有无意义时,不能对分式进行约分(即化简),若约分,则会扩大字母的取值范围。
(2)如果没有特殊说明,我们所遇到的分式都是有意义的,如 y=1/中就隐含着≠0的条件存在。
【师】对分式概念的详解:
(1)分式是两个整式相除的商,其中分子为被除式,分母为除式,分数线起除号的作用;
(2)分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母。
(3)分式的定义方式是从式子的形式出发,判断一个式子是不是分式关键看形式而不是看式子变形后的结果。
同学们要特别记住分式成立的这三个条件。
【板演/PPT】教师演示分式概念的。
【师】同学们,下面我们看一个例题
【例1】在下列式子中哪些是整式,哪些是分式?
, , , , , , , , , , ,
答案:整式: , , , , , ,
分式: , , , , ,
【师】根据这个例题我们可以得出几个结论:
(1)判断整式与分式的依据是它们的定义,应根据定义进行判断。
2.(1)判断整式与分式的依据是它们的定义,应根据定义进行判断。
(2)整式与分式的判断是针对式子的形式,而不是运算后的结果
二、分式有意义的条件
1.思考: 分式中的分母应满足什么条件?
分母不能为0,即B不能为0
∴当 B≠0 时,分式 才有意义。
2.分式有意义和无意义的条件
(1)分式有意义的条件:分母不等于零。
6.分式 ,当x 时,分式有意义;当x 时,分式的值为零
7.有理式① ,② ,③ ,④ 中,是分式的有(A)
A.①②B.③④C.①③D.①②③④
8.分式 中,当x=-a时,下列结论正确的是(A)

11_1“分式”(第一课时)教学设计

11_1“分式”(第一课时)教学设计

11.1“分式”(第一课时)教学设计一、教材分析本节课的教材“从分数到分式”,通过学生对熟知的实例的思考得出一些具体的分数与分式,然后引导学生,对它们实行观察、分析、类比,找出分式的本质特征,及它们与分数的相同点和不同点,进而归纳得出分式的概念。

在此基础上教材通过实例进一步揭示了分数与分式的“特殊与一般”的关系,并且引导学生去类比思考,从而得出分式的分母不能为0。

本节课教材的编写有以下三个特点:1、背景:从典型实例出发引出分式概念。

2、思想:通过度数与分式的类比,渗透“类比”和“特殊到一般”的数学思想方法。

3、问题性:全部内容都是通过设置恰当的问题引发学生的活动和思考而展开的。

本节课教材的以上三个方面特点为后续知识的学习奠定了基础。

二、教学目标1、知识与技能1)理解分式的含义,能区分整式与分式。

2)理解分式中分母不能为0,会求分式中字母满足什么条件分式有意义。

2、过程与方法1)通过度式与分数的类比,培养学生“从具体到抽象”、“从特殊到一般”的思维水平。

2)通过“思考”、“观察”、“归纳”等活动发展学生提出问题的意识与归纳推理水平。

3)、通过度式概念的实际背景,体会数学概念来源于实际,发展学生应用数学解决实际问题的意识。

4、情感、态度与价值观通过“思考”、“观察”、“归纳”等栏目让学生参与数学的学习活动,使学生学会提出问题,思考问题,从而提高对数学的学习兴趣。

三、教学重、难点从实际问题出发,通过类比与观察,由学生自己抽象出分式的概念。

四、教学方法“问题——活动——达成”式的教学方法五、教学媒体多媒体六、教学过程活动(一)教师引导学生观察章前图,自学本章导言,并回答下列问题:1、我们过去学过整式,请你举出几个整式的例子。

2、观察两个式子v +20100与v-2060,指出它们的特点,它们属于整式吗? 3、本章我们将要学习哪些内容?章前引言,是学习本章知识的一个“导游图”,通过对引言的学习,给学生体现一个全章知识的背景,初步了解本章将要学习哪些知识。

人教版初中数学八年级上册上册第十五章《分式》第一节《分式》教案

人教版初中数学八年级上册上册第十五章《分式》第一节《分式》教案
-分式的概念理解:学生容易混淆分式与整式的区别,需要通过实例和直观图形帮助学生理解。
-约分与通分的技巧:学生在约分和通分时,往往不能找到最简公分母,需要教授寻找公分母的技巧和方法。
-分式的混合运算:学生在面对分式的混合运算时,难以掌握运算顺序和法则,需要通过典型例题和练习逐步突破。
-分式在实际问题中的应用:学生可能不知道如何将实际问题转化为分式问题,需要通过案例分析,引导学生建立数学模型。
举例:难点在于分式的混合运算,教师应通过以下步骤帮助学生克服难点:
a.通过对比整式的运算顺序,引导学生理解分式混合运算的顺序。
b.通过具体例题,展示分式混合运算的步骤和技巧。
c.设计不同难度的练习题,让学生逐步适应并掌握分式混合运算。
d.在解题过程中,强调分式约分与通分的应用,使运算过程简化。
四、教学流程
五、教学反思
在本次教学活动中,我教授了人教版初中数学八年级上册第十五章《分式》的第一节《分式》。回顾整个教学过程,我认为有几个地方值得反思和改进。
首先,关于导入新课环节,我通过提出与分式相关的生活中的问题来激发学生的兴趣,这是一个较好的切入点。但在实际操作中,我发现部分学生可能并没有完全理解问题的实质,导致后续学习过程中对分式的理解不够深入。因此,在以后的教学中,我需要更加关注学生的反应,适时调整问题的难度,确保学生们能够更好地进入学习状态。
本节课的核心素养目标主要包括:
1.培养学生的数学抽象能力,通过引入分式的概念,让学生理解数学表达形式的简洁性与严谨性;
2.提高学生的逻辑推理能力,在学习分式的性质与运算法则中,使学生掌握逻辑推理方法,形成严密的数学思维;
3.培养学生的数学建模素养,让学生在实际问题中运用分式知识建立数学模型,提高解决实际问题的能力;

分式第一课时 教案

分式第一课时 教案

1.1分式(第一课时)教学目标知识与技能:了解分式的概念;会求一个分式有意义的条件。

过程与方法:通过猜想、检验,归纳出分式的基本性质。

情感、态度、与价值观:增强学生学习数学的兴趣。

重点难点重点:分式的概念和基本性质。

难点:对分式的基本性质的理解与运用。

教法和学法教法:自学、探究讨论与练习相结合。

学法:着重引导学生观察、思考、分析、总结。

教学过程一、创设情境引入新课自主学习1.长方形的面积为s cm²,长为8 cm,宽应为___cm;长方形的面积为s ,长为x, 宽应为___.2.把体积为200cm³的水倒入底面积为33cm²的圆柱形容器中,水面高度为____cm;3.如果两块面积分别为x公顷,y公顷的稻田,分别产稻谷a kg,b kg,那么这两块稻田平均每公顷产稻谷______kg.二、合作交流解读探究合作探究(1)1.请大家观察代数式以上几个分式有什么共同点?2.它们与分数有什么相同点和不同点?分式的定义:一个整式f 除以一个非零整式g (g中含有字母),所得的商记作f/g , 把代数式f/g 叫作分式,其中f是分式的分子,g是分式的分母,(g≠0).类比分数、分式的概念及表达形式:注意:分式是不同于整式的另一类有理数代数式,分母中含有字母是分式的一大特点.随堂练习1、自己写出一个分式,然后和同桌交流.合作探究(2):1.分式f/g的分母有什么条件限制?当分母g=0时,分式无意义.当分母g≠0时,分式有意义.2.当分式 f/g=0时,分子和分母应满足什么条件?当分子f=0且分母g≠0时,分式的值为零.三、应用举例巩固提高例题分析:解析见书P3巩固练习:指出下列代数式中,哪些是整式,哪些是分式?x/2 (2x+1)/3x (a+b)/2 (x+1)/9x+4 7/x 9+a/20达标检测:1.若分式(x+3)/(x-2)有意义,则()A.x≠2 B.x≠-3 C.x≠-3或x≠2 D.无法确定2.(江津·中考)下列式子是分式的是()A.x/2B.x/(x+1)C.x/2+yD.X/小结:形如f/g(g中含有字母)的式子叫做分式1.分式有意义:分母g≠0;2.分式无意义:分母g=0;3.分式的值为零:分子f=0且分母g≠0;作业:P6第一题板书设计1.有关定义例1例2 2.分式有(无)意义 3.分式的值为零教学反思:本节课主要内容为分式的定义、分式有意义的条件以及分式的值为零时需要满足哪些条件,对于学生来说,在学习了整式的基础上,本节课的内容相对来说容易接受,大部分同学已经掌握本节课的主要内容,在一些难点方面,还需要课后多做题加以巩固。

分式的第一节教案

分式的第一节教案

一、教学目标:二、(1) 知识目标:理解分式的概念,并能判断一个有理式是不是分式。

掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”。

(2) 能力目标:能通过回忆分数的意义,类比地探索分式的意义及分式的值,渗透数学中的类比,分类等数学思想。

培养学生分析、归纳、概括的能力。

(3) 情感目标:通过学习分式的意义,培养学生的逆向思维能力和学生的辩证唯物主义观点。

二、重点、难点:重点是正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件,即是重点也是本节的难点。

三、教学方法本节课教师将以引路的形式,运用启发式的教学方法,带着学生去发现和探究新知识,教师在实施教学的过程中注意学生的观察能力和语言表达能力的培养,分析、归纳、概括,通过不断的实践和认识,让学生全面地掌握分式的意义,让学生体会到数学不是一门枯燥的学科,对学习数学充满信心。

四、教学过程先问学生两个问题,帮助学生回忆分数。

思考:请各位同学将下列各题用一个恰当的分数来表示:1.矩形的面积是20m2,宽为3m,长为多少?2、甲地到乙地的路程是180千米,一辆汽车从甲地到达乙地行驶了7小时,这辆汽车平均每小时的速度是多少?然后再请学生看以下两个问题。

思考:1.矩形的面积是20m2,宽为xm,长为多少?2.甲地到乙地的路程是180千米,一辆汽车从甲地到达乙地行驶了x小时,这辆汽车平均每小时的速度是多少?学生通过运算、比较,可以发现、是一种新的代数式。

思考:1、这些式子与分数有什么相同和不同之处?2、上述式子有什么共同的特点?接着,教师在此基础上引导学生类比联想,给出分式的概念,引出课题。

分式的概念:两个整式A,B相除时,可以表示为的形式,如果分母B中含有字母,那么叫做分式。

例1、下列各式中,哪些是整式?哪些是分式?(1);(2);(3);(4).例2、当x取什么值时,下列分式有意义?(1);(2)。

分式教案第一课时

分式教案第一课时

分式教案第一课时分式教案第一课时主要讲了教学导入的基本原则和导入方法。

一、数学课堂教学导入的基本原则1、针对性原则。

导入应当针对教学实际有两方面:一是要针对教学内容而设计,不能游离于教学内容之外,要因课型的不同而不同。

二是指针对学生的知识构成、心理状态、年龄特点、兴趣爱好的差异程度。

2、启发性原则。

启发性的导入设计即老师在课堂教学中采取引导、启发式的教学方式,给学生足够的想象空间,培养学生的发散性思维,学生在课堂学习中能由此及彼、由因到果、由表及里、由个别到一般。

3、新颖性原则。

课堂导入要保持其新颖性、独特性,保持学生旺盛的好奇心和求知欲,让学生的学习由“让我学”转变成“我要学”,提高学生的学习效果。

4、趣味性原则。

爱因斯坦说:“兴趣是最好的老师。

”只要把握好每节课起始阶段触发兴趣的契机,学生的学习效果就有了一半的保障。

趣味性导入不仅能充分调动学生积极性,提高学生学习兴趣,又能引导学生笑过之后进一步深思,加深对所学知识的理解。

5、简洁性原则。

导入的设计要短小精悍,有画龙点睛之妙。

力争用最少的话语、最短的时间,迅速而巧妙地缩短师生间的距离以及学生与教材间的距离。

将学生的注意力迅速地集中到听课上来,一般两三分钟就要转入正题,时间过长就会喧宾夺主。

二、数学课堂教学导入的方法1、开门见山。

单刀直入―点题式导入。

有些课是无须“引”的过程,就不必绕弯子。

2、承上启下。

以旧引新―复习式导入。

3、以石击浪。

启发思维―提问式导入。

心理学中认为思维过程通常是从需要应付某种困难、解决某个问题开始的,概括地说,思维总是从问题开始的。

提问式导入课题,容易唤起学生的自觉思维,使课题集中,目标明确,一旦所提问题被解决,对新授内容也就开始有所领悟了。

如讲正数和负数这课时。

一开始即向学生提出“5-3=?”“3-5=?”的问题。

4、感悟出发,联系实际――实例式导入。

为了测量一个池塘的宽度AB,有人在池外取一点C,连接AC,BC,及其中点D,E,量得DE的长度。

15.1分式教案第一课时

15.1分式教案第一课时

15.1分式教案第一课时15.1分式教案第一课时是高中数学教学中比较重要的一节课程,对于学生来说,这是一次深入学习分式知识的机会。

本文将从分式的定义和性质、分式的化简、分式的乘除法等几个方面来详细介绍这节课的教学内容。

一、分式的定义和性质分式是指分子和分母都是整式的代数式,以横线将分子与分母分开表示。

分式有两种类型:真分式和带分式。

其中真分式是指分子次数小于分母次数的分式,带分式是指分子次数大于或等于分母次数的分式。

在教学中,我们需要通过实例来让学生了解分式的定义和性质,并且要说明分式是一个有限个有理数的和或差。

可以让学生通过观察分式的形式来判断是否是真分式或者带分式,这样可以帮助学生更好地理解分式的基本概念和性质。

二、分式的化简化简在分式中是非常重要的一步,化简后的分式更加简洁明了,便于计算,所以我们需要重点讲解化简的方法和技巧。

首先,要让学生掌握约分的方法,这是化简分式中非常常见的一种技巧。

其次,还需要教给学生通分的方法,这种方法可以让分子与分母都乘上相应的因式,从而化简分式。

此外,还需要让学生掌握提公因式的方法以及合并同类项的方法,这样才能够更好地应对分式化简中出现的各种情况。

需要注意的是,化简分式时要先将分子与分母进行因式分解,然后再进行约分或通分等操作。

三、分式的乘除法分式的乘除法一般来说对学生来说会比较困难,因为需要掌握一定的运算技巧。

在教学中,我们需要给学生一些实例进行练习,以帮助学生更好地理解分式的乘除法。

乘法的运算首先要将分子与分母分别相乘,然后再将乘积约分;而除法的运算则要将被除式与除式分别乘以除式的倒数,然后再将积约分。

需要注意的是,进行乘除法运算时,一般要先将分式化简,以便更好地进行运算。

四、学生自主学习与作业布置在教学结束后,我们需要给学生一定时间进行自主学习,再根据学生的实际情况来布置相应的作业。

一般来说,可以选取一些习题或者真题进行练习,以锻炼学生运用分式知识进行解题的能力。

湘教版八年级数学上册第一章《分式》教案

湘教版八年级数学上册第一章《分式》教案

第1章分式1.1 分式第1课时分式的概念1.了解分式的概念,明确分式和整式的区别.2.使学生能够求出分式有意义的条件.3.让学生经历用字母表示实际问题中数量关系的过程,体会分式是表示现实世界中的一类量的数学模型.4.培养学生观察、归纳、类比的思维,让学生学会自主探索,合作交流.【教学重点】理解分式有意义的条件,分式的值为零的条件.【教学难点】能熟练地求出分式有意义的条件,分式的值为零的条件.一、情景导入,初步认知下列式子中哪些是整式?【教学说明】因为分式概念的学习是学生通过观察,比较分式与整式的区别从而获得的,所以必须熟练掌握整式的概念.二、思考探究,获取新知1.思考:(1)某长方形画的面积为Sm2,长为8m,则它的宽为____m.(2)某长方形画的面积为Sm2,长为xm,则它的宽为____m.(3)如果两块面积为x公顷,y公顷的稻田,分别产稻谷akg,bkg,那么这两块稻田平均每公顷产稻谷_____kg.【教学说明】要给学生一定的思考时间,让学生积极投身于问题情景中,根据学生的情况,教师可以给予适当的提示和引导.2.讨论内容:前面出现的代数式如下,它们有什么共同特征?它们与整式有什么不同?【教学说明】让学生通过观察、归纳、总结出整式与分式的异同,从而得出分式的概念.【归纳结论】一般地,一个整式f除以一个非零整式g(g中含有字母)所得的商记作fg,那么代数式fg叫做分式.3.当x取什么值时,分式223xx--的值满足下列条件:(1)不存在;(2)等于0.解:(1)当分母2x-3=0时,即x=32时,分子的值为32-2≠0,因此x=32时,分式223xx--的值不存在.(2)当x -2=0,即x=2时,分式223xx--的值等于0.【教学说明】让学生通过观察,归纳、总结出整式与分式的异同,从而得到分式的概念.三、运用新知,深化理解1.下列各式中,哪些是整式?哪些是分式?解:(2)、(4)是整式,(1)、(3)是分式.2.若分式13x-有意义,则x的取值范围是()A.x≠3B.x≠-3C.x>3D.x>-3解:当分母x-3≠0,即x≠3时,分式有意义,故选A.3.x取什么值时,下列分式无意义?解:(1)因为当分母的值为零时,分式没有意义.由2x-3=0,得x =32, 所以当x=32时,分式无意义.(2)因为当分母的值为零时,分式没有意义.由5x+10=0,得x=-2,所以当x=-2 时,分式无意义.4.若分式||11xx-+的值为零,则x的值为 1 .【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解:要使||11xx-+的值为0,则|x|-1=0,即x=±1,且x+1≠0,即x≠-1.故x=1.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题1.1”中第1、2题.在学习分式的概念时,借助整式的概念,用类比的思想进行教学,学生掌握的较好,能够紧抓概念,很容易的区分整式与分式.而在分式的值等于0的教学中,一部分学生都只考虑分式的分子等于0,而没有考虑分式的分母.因此,在后面的教学中对这方面的教学有待加强.第2课时分式的基本性质和约分1.使学生理解并掌握分式的基本性质,并能运用这些性质进行分式约分.2.通过对分式的基本性质的归纳,培养学生观察、类比、推理的能力.3.让学生在讨论活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.【教学重点】掌握分式的基本性质.【教学难点】运用分式的基本性质来化简分式.一、情景导入,初步认知1.分数的基本性质是什么?2.31=62的依据是什么?【教学说明】通过分数的约分,复习分数的基本性质,通过类比来学习分式的基本性质.二、思考探究,获取新知1.填空,并说一说下列等式从左到右变形的依据是什么?2.思考:34与分式34aa相等吗?分式22a bab与分式ab相等吗?【归纳结论】分式的分子与分母同乘以或除以一个非零整式,所得分式与原分式相等.即:f f gg g h⋅=⋅(h≠0).【教学说明】通过对分数的基本性质的理解,可类比得出分式的基本性质,但学生只想到分式的分子分母同时乘以或除以一个数,不容易想到整式,另外这个整式不能为零,老师要引导学生想到这一点.3.想一想:下列等式成立吗?为什么?;f f f fg g g g--==-- 【教学说明】先让学生讨论,待学生回答后,教师引导学生得出结论:分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.4.根据分式的基本性质填空:【教学说明】有的学生在应用分式的基本性质时往往分式的分子与分母没有同时乘以或除以同一个公因式,有的学生不能正确找到分子、分母的公因式,导致约分的错误和不彻底,所以教师适当引导.【归纳结论】把一个分式的分子和分母的公因式约去,叫作分式的约分. 分子和分母没有公因式的分式叫作最简分式. 三、运用新知,深化理解【教学说明】在教学中让学生将约分的步骤分为这样几步,首先找出分子和分母公因式并提取,再将分式的分子和分母同时除以公因式,最后看看结果是否为最简分式或整式.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题1.1”中第5、6题.学生对分式的基本性质,能说能背.从表面上来看,掌握的比较好.但从练习中可以发现很多问题.如:不会找分式的分子、分母的公因式;分子、分母不同时乘或除;约分不彻底等.所以在这些方面要多练习.1.2分式的乘法和除法第1课时分式的乘除法1.理解分式的乘、除运算法则,会进行简单的分式的乘、除法运算.2.经历探索分式的乘、除法法则的过程,并结合具体情境说明其合理性.3.通过师生讨论、交流,培养学生合作探究的意识和能力.【教学重点】掌握分式的乘、除法运算法则.【教学难点】熟练地运用乘除法法则进行计算,提高运算能力.一、情景导入,初步认知计算,并说出分数的乘除法的运算法则:【教学说明】复习小学学过的分数的乘除法运算,为学习分式乘除法的法则做准备.二、思考探究,获取新知1.探究:分式的乘除法法则你能总结分式乘除法的运算法则吗?与同伴交流.【归纳结论】分式乘分式,把分子乘分子、分母乘分母分别作为积的分子、分母分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即:【教学说明】让学生观察运算,通过小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的运算法则.【教学说明】学生独立完成,教师点评.3.计算:【教学说明】如果分子、分母含有多项式因式,应先分解因式,然后按法则计算.三、运用新知,深化理解3.先化简,再求值:222396a aba ab b--+,其中a=-8,b=12.解:当a=-8,b=12时,4.甲队在n天内挖水渠a米,乙队在m天内挖水渠b米,如果两队同时挖水渠,要挖x米,需要多少天才能完成?(用代数式表示)【教学说明】需要给学生强调的是分式运算的结果通常要化成最简分式或整式,对于这一点,很多学生在开始学习分式计算时往往没有注意到结果要化简.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第1、4、5 题.在练习中暴露出一些问题,例如我在传授过程中急于求成,法则的引入没有给学生过多的时间,如果时间足够,学生自己得出法则并不是一件难事.在解决习题时,对学生容易出现的错误没有重点强调,所以学生在后面的练习中仍然出现这样那样的错误.学生答题的规范性还差了些,在黑板上的板书不到位,在以后的教学中应加强学生答题的规范性练习.第2课时分式的乘方1.使学生牢记分式乘方的运算法则,并能根据此法则进行熟练无误的运算.2.学生能够熟练进行简单的分式乘除与乘方的混合运算.3.经历分式乘方法则的探究过程,采用自主探索与合作交流的方式,亲历“做数学”的过程,培养探究数学问题的能力.4.体验数学充满着探索与创造,感受数学的严谨性,对数学产生强烈的好奇心和求知欲.【教学重点】准确熟练地进行分式的乘方运算.【教学难点】准确熟练地进行简单的分式乘除与乘方的混合运算.一、情景导入,初步认知1.分式乘除法则是什么?2.什么叫最简分式?3.分数的乘方法则是什么?让学生举例.【教学说明】复习旧知,为本节新知打基础.二、思考探究,获取新知1.计算:由乘方的意义和分数乘法的法则,可得根据上面的规律,请总结分式乘方的运算法则.【归纳结论】分式的乘方就是把分子、分母各自乘方.即:【教学说明】通过类比分数的乘方运算方法,总结出分式的乘方运算法则.2.做一做:取一条长度为1个单位的线段AB,如图:第一步:把线段AB三等分,以中间一段为边作等边三角形,然后去掉这一段,就得到了由___条长度相等的线段组成的折线,每一段等于_____,总长度等于_____.第二步:把上述折线中的每一条重复第一步的做法,得到______.继续下去.情况怎么样呢?(1)把结果填入下表:(2)进行到第n步时得到的线段总长度是多少呢?【教学说明】引导学生寻找并总结规律.三、运用新知,深化理解1.教材P10例3、例4.6.计算:【教学说明】培养运用新知识解决问题的能力.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第2 题.在分式的乘方运算这一课的教学中,我采用了类比的方法,让学生回忆以前学过的分数的乘方的运算方法,提示学生分式的乘方法则与分数的乘方法法则类似,要求他们用语言描述分式的乘方法则.学生反应较好,能基本上完整地讲出分式的乘方法则.本节课存在的不足:学生主动性还不够强,教师对学生自学能力估计不足,舍不得放手,抑制部分学生的思维发展.1.3整数指数幂1.3.1同底数幂的除法1.了解同底数幂的除法的运算性质,并能解决一些实际问题.2.经历探索同底数幂的除法的运算性质的过程,进一步体会幂的意义.3.发展推理能力和有条理的表达能力.【教学重点】同底数幂的除法法则以及利用该法则进行计算.【教学难点】同底数幂的除法法则的应用.一、情景导入,初步认知【教学说明】复习分式的约分,为本节课的学习作铺垫.二、思考探究,获取新知1.计算机硬盘的容量最小单位为字节(B),千字节记作(KB),兆字节(MB),吉字节(GB)它们的换算单位如下:1GB=210MB=1024MB;1MB=210KB;1KB=210B .一张普通的CD光盘的存储容量约为640MB,请问一个320GB的移动硬盘的存储容量相当于多少张光盘容量?因为320GB=320×210MB因此一个320GB的移动硬盘的存储容量相当于512张光盘容量.2、如果把数字改为字母:一般地,设a≠0,m,n是正整数,且m>n,则mnaa等于多少?这是什么运算呢?通过上面的计算,归纳同底数幂除法的法则.【归纳结论】同底数幂相除,底数不变,指数相减.即:·m n m nm n n na a aaa a--==【教学说明】让学生从有理数的运算出发,由特殊逐渐过渡到一般,得到同底数幂的运算法则,再运用幂的意义加以说明.在此过程中,发展学生类比、归纳、符号演算、推理能力和有条理的表达能力.三、运用新知,深化理解1.教材P15例1、例2.4.已知a x=2,a y=3,求a3x-2y的值.5.计算:6.计算机硬盘的容量单位KB,MB,GB的换算关系,近视地表示成:1KB≈1000B,1MB≈1000KB,1GB≈1000MB(1)硬盘总容量为40GB的计算机,大约能容纳多少字节?(2)1个汉字占2个字节,一本10万字的书占多少字节?(3)硬盘总容量为40GB的计算机,能容纳多少本10万字的书?一本10万字的书约高1cm,如果把(3)小题中的书一本一本往上放,能堆多高?解:略.【教学说明】让学生通过上述题的训练,以达到巩固提高的效果.五、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.3”中第1 题.在同底数幂的除法这节教学活动中,通过让学生从特殊到一般,从生活到课堂,从未知到已知,一步步的探索,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步的发展,同时,也加深了我对新教材的理解,从而更好地完善新的教学模式.1.3.2 零次幂和负整数指数幂1.通过探索掌握零次幂和负整数指数幂的意义.2.会熟练进行零次幂和负整数指数幂的运算.3.会用科学记数法表示绝对值较少的数.4.通过探索,让学生体会到从特殊到一般是研究数学的一个重要方法.5.通过探索,让学生体会到从特殊到一般是研究数学的一个重要方法.【教学重点】零次幂和负整数指数幂的公式推导和应用,科学记数法表示绝对值较小的数.【教学难点】零次幂和负整数指数幂的理解.一、情景导入,初步认知1.同底数的幂相除的法则是什么?用式子怎样表示?用语言怎样叙述?a m÷a n=m na (a≠0,m、n是正整数,且m>n)2.这个公式中,要求m>n,如果m=n,m<n,就会出现零次幂和负指数幂,如:有没有意义?这节课我们来学习这个问题.【教学说明】通过复习让学生更好的用旧知识迁移推导出新的知识:零指数幂、负整数指数幂的计算.二、思考探究,获取新知1.探究:mmaa等于多少?【分析】根据分式的基本性质.可以得到mmaa=11·mmaa=11=1.根据同底数幂的除法,可以得到a m÷a m=11·mm a a=0a (a ≠0)由此,你能得到什么结论?【归纳结论】任何不等于零的数的零次幂等于1.即:0a =1(a ≠0) 【教学说明】通过引导学生进行计算,合理推导出零指数幂等于1. 2.试试看:填空:3.探究:负整数指数幂的意义. (1)填空:(2)思考:2333与23÷33的意义相同吗?因此他们的结果应该有什么关系呢?【归纳结论】n a =1na (a ≠0) 【教学说明】通过计算让学生推导出负指数幂计算公式(法则).3.做一做:(1)用小数表示下列各数:110-,210-,310-,410-.你发现了什么?(10n -= )(2)用小数表示下列各数:1.08×210-,2.4×310-,3.6×410-思考:1.08×10-2,2.4×10-3,3.6×10-4这些数的表示形式有什么特点?(a ×10n (a 是只有一位整数,n 是整数))叫什么记数法?(科学记数法)当一个数的绝对值很小的时候,如:0.00036怎样用科学记数法表示呢?你能从上面问题中找到规律吗?【归纳结论】我们可以用科学记数法表示一些绝对值较小的数,即将它们表示成a ×10-n 的形式,其中n 是正整数,1≤|a|≤10,其公式为00.0001n ⋯个=10n -.三、运用新知,深化理解 1.教材P17例3 ,P18例4、例6. 2.-2.040×510表示的原数为( A ) A .-204000 B .-0.000204 C .-204.000 D .-20400 3.用科学记数法表示下列各数. (1)30920000 (2)0.00003092 (3)-309200 (4)-0.000003092【分析】用科学记数法表示数时,关键是确定a 和n 的值. 解:(1)30920000=3.092×710 (2)0.00003092=3.092×510- (3)-309200=-3.092×510 (4)-0.000003092=-3.092×610-6.已知9m ÷223m +=13n(),求n 的值8.把下列各式写成分式形式:2x -,32xy - 解:2x -=21x;32xy -=32x y . 9.(1)原子弹的原料——铀,每克含有2.56×2110个原子核,一个原子核裂变时能放出3.2×1110-J 的热量,那么每克铀全部裂变时能放出多少热量?(2)1块900mm 2的芯片上能集成10亿个元件,每一个这样的元件约占多少mm 2?约多少m 2?(用科学计数法表示)【分析】第(1)题直接列式计算;第(2)题要弄清m 2和mm 2之间的换算关系,即1m=1000mm=103mm ,1m 2=106mm 2,再根据题意计算.解:(1)由题意得2.56×2110×3.2×1110-=8.192×1010(J)答:每克铀全部裂变时能放出的热量8.192×1010J.答:每一个这样的元件约占9×10-7平方毫米;约9×1310-平方米. 【教学说明】通过练习,牢固掌握本节课所学知识,并能运用知识计算. 四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.3”中第2、3、4 题.1.进行有关0次幂和负整数幂的运算要注意底数一定不能为0,特别是当底数是代数式时,要使底数的整体不能为0;2.在正整数幂的基础上,我们又学习了零次幂和负整数幂的概念,使指数概念推广到整数的范围;3.对0指数幂、负整数指数幂的规定的合理性有充分理解,才能明了正整数指数幂的运算性质对整数指数幂都是适用的.1.3.3整数指数幂的运算法则1.会用整数指数幂的运算法则熟练进行计算.2.通过探索把正整数指数幂的运算法则推广到整数指数幂的运算法则.3.发展推理能力和计算能力. 【教学重点】用整数指数幂的运算法则进行计算. 【教学难点】整数指数幂的运算法则的理解.一、情景导入,初步认知 正整数指数幂有哪些运算法则? (1)a m ·a n =m n a +(m 、n 都是正整数) (2)()nm mn aa =(m 、n 都是正整数)(3))··(n n n a b a b =(n 是正整数) (4)a m a n =m n a -(m 、n 都是正整数,a ≠0且m>n )(5) (nn n a a b b=)(b ≠0,n 是正整数)这些公式中的m 、n 都要求是正整数,能否是所有的整数呢?这5个公式中有没有内在联系呢?这节课我们来探究这些问题.【教学说明】复习正整数指数幂的运算法则,为本节课的教学作准备. 二、思考探究,获取新知1.幂的指数从正整数推广到了整数.可以说明:当a ≠0、b ≠0时,正整数指数幂的上述运算法则对于整数指数幂也成立,即:(1)a m ·a n =m n a +(a ≠0,m 、n 都是正整数) (2)()nm mn aa =(a ≠0,m 、n 都是正整数)(3))(a≠0,n是整数)a b a b(n n n··2.思考:(1)同底数幂的除法法则可以转换成什么运算法则?(2)分式的乘方法则可以转换成什么运算法则?【归纳结论】幂的除法运算可以利用幂的乘法进行计算,分式的乘方运算可以利用积的乘方进行运算.【教学说明】鼓励学生相互交流讨论.三、运用新知,深化理解1.教材P20例7、例8.3.计算:5.计算下列各式,并把结果化为只含有正整数指数幂的形式:6.当x=14,y=8时,求式子2522?x yx y----的值.解:2522?x yx y----=-2x33y当x=14,y=8时,上式=-16.7.计算下列各式,并把结果化为只含有正整数指数幂的形式.【分析】正整数指数幂的相关运算对负整数指数幂和零指数幂同样适用.对于第(2)题,在运算过程中要把(x+y)、(x-y)看成一个整体进行运算.【教学说明】通过练习,巩固本节课所学内容.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.作以补充.布置作业:教材“习题1.3”中第6、7 题.课堂的有效性是当下教学的瞩目点,一堂高效的课,不仅仅是要让学生获得知识与技能,更多的是学习动机被唤醒、学习习惯的养成和思维方式的提升.本节课不足之处是学生容易把原有的5条性质混淆,导致指数幂范围扩大,就更混了,单独做做还可以过关,一旦混合运算,就基本上搞不清楚是哪一条了.总之,课堂还是要放手让给学生.1.4分式的加法和减法第1课时同分母分式的加减1.理解同分母的分式加减法的运算法则,能进行同分母的分式加减及分母互为相反式的分式加减法运算.2.类比同分母分数加减法的法则归纳出同分母分式的加减法法则.3.通过学习认识到数与式的联系,理解事物拓延的内在本质,丰富数学情感与思想.【教学重点】同分母的分式加减法的运算.【教学难点】同分母的分式加减法的运算.一、情景导入,初步认知做一做:【教学说明】通过“做一做”的几道同分母分数加减的题,引导学生用类比的思想,猜一猜同分母分式的加减运算,并试图让学生认识其合理性.从而抛出同分母分式加减法的运算法则,点明本节课的主要内容.二、思考探究,获取新知1.你能根据分数的加减法运算法则,总结出当分母相同时,分式的加减法运算法则吗?【归纳结论】同分母的分式相加减,分母不变,把分子相加减.【教学说明】类比时注意引导学生正确猜想,使法则的提出顺理成章,也为后面的学习做好铺垫.三、运用新知,深化理解1.教材P23例1、P24例2.计算:4.计算:【教学说明】通过演练巩固,让学生对同分母分式的加减法有更好的认识与掌握.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.4”中第1题.本节课的关键是法则的探究,重点是法则的应用.易错点是分母互为相反数,要化为同分母.在这个过程中要注意变号,学生先独立自学,完成不了的再小组内讨论交流.充分发挥学生自主、合作的意识.第2课时 通分、最简公分母的概念1.会找最简公分母,能进行分式的通分.2.认真阅读课本,比照分数通分的方法,类比归纳分式通分的方法.3.通过学习认识到数与式的联系,理解事物拓延的内在本质,丰富教学情感与思想.【教学重点】 分式的通分. 【教学难点】 找最简公分母.一、创设情境,导入新课 分式2214a b 与36xab c的最简公分母是_________,通分后的结果分别是_________.二、思考探究,获取新知 1.什么是分式的通分呢?【归纳结论】根据分式的基本性质,把几个异分母的分式化成同分母的分式的过程,叫作分式的通分.2.如何把分式12x 、13y通分呢? 【归纳结论】通分时,关键是确定公分母.一般取各分母的所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母.上面的两个分式的分母中,有哪些因式呢?所有因式的最高次幂的积是多少?最简公分母是什么?三、示例讲解,掌握新知1.见教材P26例3、例4.2.把下列各式通分.3.不改变分式的值,把下列分式中分子、分母的各项系数化为整数.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题1.4”中第1 、2 题.教师应注重提高在验证、交流环节中学生的参与率,尤其是一些后进生可能普遍会感觉无从下手,在交流时不主动,从而停留在一知半解的状态.在巩固练习环节上,教师要注意学生的练习密度,确保能达到一定的练习量.第3课时异分母分式的加减1.理解并掌握异分母分式加减法的法则.2.经历异分母分式的加减运算的探讨过程,训练学生的分式运算能力.3.培养学生在学习中转化未知问题为已知问题的能力和意识;进一步通过实例发展学生的符号感和用数学的意识.【教学重点】异分母分式加减法的计算.【教学难点】异分母分式加减法的计算.一、创设情境,导入新课1.同分母分式是怎样进行加减运算的?2.异分母分数又是如何进行加减?3.那么314a a+=?你是怎么做的?【教学说明】通过回忆同分母分式的加减法法则、异分母分数的加减法运算,来引出本节课的内容,同时对问题3运用类比的思想方法,使进入新知识的学习顺理成章.二、思考探究,获取新知1.类比异分母的分数相加减的法则,异分母的分式如何进行加减呢?【归纳结论】异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.2.思考:从甲地到乙地依次经过1千米的上坡路和2千米的下坡路.已知小明骑车在上坡路上的速度为vkm/h,在下坡路上的速度为3vkm/h,则他骑车从甲地到乙地需要多长时间?【分析】他骑车从甲地到乙地的时间分为2段,即,走上坡路所用时间、走下坡路所用时间.解:根据题意可得,。

分式优质课教案

分式优质课教案

分式【课时安排】2课时【第一课时】【教学目标】1.了解分式的概念。

2.通过具体情境感受分数的基本性质并类比得出分式的基本性质。

3.理解分式有意义的条件。

【教学重难点】1.重点:分式的概念和性质。

2.难点:理解分式的性质。

【教学过程】(一)创设情境,导入新课。

探究:1.把三个一样的苹果分给4位小朋友,每位小朋友分到多少苹果?你怎么分给他们?(交流讨论。

)(1)每位小朋友分。

(2)分法:a .每个苹果切成四个相等的小块,共12块,每人分3块,这3块占一个苹果的。

b .为了每个小朋友吃起来方便,每个苹果切成8块,共24块,每人分6块,这六块占一个苹果的。

想想这两种分法分得的是否一样多?(,即:。

)由此表明了什么?分数的分子和分母都乘以或除以一个不等于零的数,分数的值不变。

分数的分子与分母约去公因数,分数的值不变。

这就是分数的基本性质。

34346836=483326==4428⨯⨯2.(1)把上面问题变为:把3个一样的苹果分给n(n>0)位小朋友,每位小朋友分到多少苹果?用除法表示:,用分数表示为:,相等吗?(。

)这里的n 可以是实数吗?(n 不能为0。

)(2)有什么区别?(后者分母含有字母。

)我们把前者叫分数,后者叫分式,什么叫分式呢?分式有没有和分数一样的性质?这节课我们来学习——分式的基本性质。

(板书课题。

)(二)合作交流,探究新知。

1.分式的概念:填空:(1)如果小王用a 元人民币买了b 袋相同的瓜子,那么每袋瓜子的价格是______元。

(2)一个梯形木板的面积是6,如果梯形上底是am ,下底是bm ,那么这个梯形的高是________m 。

(3)两块面积分别为a 亩,b 亩的稻田m (kg ),n (kg ),这两块稻田平均每亩产稻谷________kg 。

观察多项式:这些代数式有什么共同的特点?(分子分母都是整式,分母含有字母。

)一般地,如果f 、g 分别表示两个整式,并且g 中含有字母,那么代数式叫分式。

冀教版-数学-八年级上册-12.1 分式第1课时 教案

冀教版-数学-八年级上册-12.1 分式第1课时 教案

分式教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.重点难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.3.认知难点与突破方法难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别.教学过程一、例、习题的意图分析本章从实际问题引出代数式am bnm n++和sa,给出分式的描述性的定义:一般的,如果a,b表示两个整式,并且b中含有字母,那么式子ab叫做分式,其中a叫做分式的分子,b叫做分式的分母.整式和分式统称为有理式.1.本节进一步提出就以上的式子am bnm n++和sa有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是ab(即a÷b)的形式.分数的分子a与分母b都是整数,而这些式子中的a、b都是整式,并且b中都含有字母.顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别.希望老师注意:分式比分数更具有一般性,例如分式ab可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数.2.引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当b≠0时,分式ab才有意义.3.例2(1)是应用分式有意义的条件——分母不为零,解出字母x的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.4.例2(2)题提到了“在什么条件下,分式的值为0?”分式的值为0时,必须同时满足两个条件:1.分母不能为零;2.分子为零。

《分式》第一课时参考教案

《分式》第一课时参考教案

分式(1)教学目标知识与技能目标1.使学生了解分式的概念,明确分母不得为零是分式概念的组成部分.2.使学生能够求出分式有意义的条件.过程与方法目标能用分式表示现实情境中的数量关系,体会分式是表示现实世界中一类量的数学模型,进一步发展符号感,通过类比分数研究分式的教学,引导学生运用类比转化的思想方法研究解决问题.情感与价值目标在土地沙化问题中,体会保护人类生存环境的重要性。

培养学生严谨的思维能力.教学重点和难点准确理解分式的意义,明确分母不得为零既是本节的重点,又是本节的难点.教学方法:分组讨论.教学过程1、情境引入:面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林 2400公顷,实际每月固沙造林的面积比原计划多 30公顷,结果提前4个月完成原计划任务,原计划每月固沙造林多少公顷?这一问题中有哪些等量关系?如果设原计划每月固沙造林x公顷,那么原计划完成一期工程需要____________个月,实际完成一期工程用了____________个月;根据题意,可得方程;2、解读探究,,认真观察上面的式子,方程有什么特点? 做一做1.正n 边形的每个内角为 度2.一箱苹果售价a 元,箱子与苹果的总质量为mkg ,箱子的质量为nkg ,则每千克苹果售价是多少元?上面问题中出现的代数式x2400,302400+x ,nn 180)2(⨯-;它们有什么共同特征?(1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:用A 、B 表示两个整式,A ÷B 就可以表示成BA 的形式;如果B 中含有字母,式子BA 就叫做分式,其中A 叫做分式的分子,B 叫做分式的分母.(2)由学生举几个分式的例子.(3)学生小结分式的概念中应注意的问题. ①分母中含有字母.②如同分数一样,分式的分母不能为零.(4)问:何时分式的值为零?(以(2)中学生举出的分式为例进行讨论) 3、典型例题:例1(1)当a=1,2时,求分式aa 21+的值;(2)当a 取何值时,分式aa 21+有意义?解:(1)当a=1时,1121121=⨯+=+aa ;当a=2时43221221=⨯+=+aa(2)当分母的值等于零时,分式没有意义,除此以外,分式都有意义. 由分母 2a=0,得a=0,所以,当a 取零以外的任何实数时,分式aa 21+有意义.例2当x 取何值时,分式141+-x x 有意义?解:由分母4x+1 = 0,得x = −41∴当x ≠−41时,原分式有意义.思考:若把题目要求改为:“当x 取何值时下列分式无意义?”该怎样做? 例3 当x 取何值时,分式723-+x x 的值为零?解:由分子x+3 = 0得x = −3. 而当x = −3时,分母2x −7 = −6−7≠0. ∴当x = −3时,原分式值为零.小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零. 课堂小结本节课你学到了哪些知识和方法? 1.分式与分数的区别. 2.分式何时有意义? 3.分式何时值为零? 练习:教材P .61 作业教材P . 61 A 组3.1。

《分式第一课时》教学设计

《分式第一课时》教学设计

15.1.1《从分数到分式》教学设计一、教学目标1.了解分式的概念,能确定分式有意义的条件,能确定使分式的值为0的条件;2.通过解决实际问题,抽象出分式的概念,体会分式是刻画现实世界中数量关系的一类代数式;3.体会集合、类比等数学思想或方法,获得代数学习的成功经验.二、教学重难点及教法【教学重点】分式的概念,分式有意义的条件.【教学难点】分式有意义的条件,分式的值为0的条件.【教学方法】采用“设置情境-引导发现”的教法引入分式概念;采用学生自主观察归纳与教师启发点拨相结合的教法突出概念的形成过程;采用“精讲精练”的教法落实双基要求.在教学中注重:(1)从分数到分式,是从具体到抽象、从特殊到一般的概念形成过程;(2)类比分数的相关知识得到分式的相关知识是研究分式的基本方法.三、教学过程设计(一)复习铺垫1、什么叫单项式?2、什么叫多项式?通过举例协助学生唤醒旧知,归纳单项式和多项式统称整式,为后面分式与整式的区分作好铺垫。

(二)新知探索(三)【情境引入】千里江陵一日还,速度要为多少呢?听朗诵,回忆诗文内容,教师对“千里江陵”能否“一日还”提出疑问,并依次提出下列涉及船速、水速、距离和时间等数量关系的具体问题(其中问题(1) (2)中不考虑水速): (1)如果半日行船530千米,船速约为多少千米/时?(2)如果行船距离s 千米,船速v 千米/时,用时多少小时? (3)如果距离530千米,船速千米/时,水速10千米/时,则顺水行船需多少小时?(4)如果距离s 千米,船速千米/时,水速千米/时,则逆水行船需多少小时? 学生根据数量关系列出式子:001530530,,,1210S S V V V V +-进一步提问,从特殊到一般,让学生体会数学无处不在,进一步拓宽知识面:1.长方形的面积是10cm 2,长为7cm, 宽应为_____cm.2.如果长方形的面积是S ,长为a, 宽又为______.3.把体积为200cm ³的水倒入底面积为33cm ²的圆柱形容器中,水面高度为____cm.4.把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为____.学生根据已学知识再次写出以下式子:10200,,,733s v a s【形成概念】1、请将刚才得到的八个式子按照你认为的共同特征分成两类,并将同一类移入一个圈内(说明理由)。

分式教案第一课时

分式教案第一课时

分式教案第一课时分式教案第一课时是初中数学教学中的重要内容,主要涉及分式的概念、性质和简化方法等方面。

本文将从课时安排、教学目标、教学内容和教学方法等方面进行介绍和分析,帮助教师更好地开展教学工作。

一、课时安排分式教案第一课时通常安排在初中数学的第二学期,适合初二或初三年级的学生。

课时时长一般为40分钟,可以根据实际情况适当延长或缩短。

课程设置如下:1. 课程名称:分式教案第一课时2. 课程目标:学习分式的概念和性质,掌握分式简化的方法和技巧,能够灵活运用分式解决实际问题。

3. 教学内容:分式的概念、分式的基本性质、分式的简化方法。

4. 教学方法:讲授、演示、实验、探究、练习。

二、教学目标1. 知识与技能:掌握分式的概念和定义,了解分式的基本性质,掌握分式的简化方法,能够正确地进行加、减、乘、除、约减等基本运算,能够在实际问题中应用分式进行计算和解决问题。

2. 过程与方法:善于观察、思考和发现问题,具有良好的分析和解决问题的能力,能够通过实验和探究发现规律,能够独立思考和合作探讨。

3. 情感态度:积极参与课堂讨论和互动,能够理解和尊重他人观点,具有良好的敬业精神和团队合作精神,能够积极应对挑战和压力。

三、教学内容1. 分式的概念分式是数的有理表示,由分子和分母组成。

分子和分母都是整式或单项式,分母不为零。

分式可以表示实数中除法的算式,它包含了除数、被除数和商三个元素。

例如a/b表示a÷b 的运算,a称为分子,b称为分母。

2. 分式的基本性质(1)两个分式的和(差)是分子和分母的和(差)再写成一个分式;(2)两个分式的积是它们各自的分子的积与各自的分母的积写成一个分式;(3)两个分式的商是第一个分式的分子乘第二个分式的分母,第一个分式的分母乘第二个分式的分子再写成一个分式;(4)两分式相等的充要条件是它们的分子分母分别相等;(5)分式的除法可以转化为乘法,即把除法改为乘以被除数的倒数。

3. 分式的简化方法分式的简化是化简分式为分子与分母都不含括号、未知数非负的最简形式,主要有以下三种方法:(1)约分:分子分母同时除以它们的公因式,消去公因式,得到最简形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式
学习目标:
1.了解分式产生的背景和分式的概念,了解分式与整式概念的区别与联系.
2.掌握分式有意义的条件,认识事物间的联系与制约关系.
学习重点: 了解分式的形式B
A (A 、
B 是整式),并理解分式概念中的一个特点:分母中含有字母;一个要求:字母的取值限制于使分母的值不得为零.
学习难点:
分式的一个特点:分母含有字母;一个要求:字母的取值限制于使分母的值不能为零.
学习过程:
一.自主探究:
1、自主完成课本P65练习题后写下你的疑惑
2、完成下列练习,看看他们的答案和我们以前学过的整式有什么不同? 做一做
(1)正n 边形的每个内角为__________度.
(2)一箱苹果售价a 元,箱子与苹果的总质量为m kg ,箱子的质量为n kg ,则每千克苹果的售价是多少元?
(3)有两块棉田,有一块x 公顷,收棉花m 千克,第二块y 公顷,收棉花n 千克,这两块棉田平均每公顷的棉产量是多少?
(4)文林书店库存一批图书,其中一种图书的原价是每册a 元,现降价x 元销售,当这种图书的库存全部售出时,其销售额为b 元.降价销售开始时,文林书店这种图书的库存量是多少?
不同之处:
二、学习反馈:
1、什么是分式?
2、分式的分母及其分母中的字母应当而且必须满足什么要求?
三、针对性练习:
1、揣摩例1并且完成下列练习题。

下列各式中,哪些是整式?哪些是分式?并且说明理由。

①5x -7, ②3x 2-1, ③ 123+-a b , ④7)
(p n m +,
⑤-5, ⑥1222-+-x y xy x , ⑦ 72, ⑧ c b +54
.
2、 ①当a=1,2时,分别求分式 a a 21
+的值.
②当a 为何值时,分式a a 21
+ 有意义?
③当a 为何值时,分式 a a 21
+的值为零?
四、课堂检测:
1.当x 取什么值时,下列分式有意义?
(1)18-x ; (2)91
2-x ;
(3)122+x (4)自主完成P68习题3.1第4题
五、应用拓展: 分式1a b
a -+的值为零时,实数a ,
b 应该满足什么条件?
六、学习体会:
1、通过练习你掌握了什么?请写在下面:
2、这节课你还有什么疑惑?请写在下面。

相关文档
最新文档