人教版七年级数学上册整式的加减同步练习2

合集下载

七年级数学上册《第二章-整式的加减》同步练习题及答案(人教版)

七年级数学上册《第二章-整式的加减》同步练习题及答案(人教版)

七年级数学上册《第二章整式的加减》同步练习题及答案(人教版)班级姓名学号一、单选题1.下列计算正确的是( )。

A.3a+2b=5ab B.5a2-2a2=3C.7a+a=7a2D.2a2b-4a2b=-2a2b2.多项式2a4+4a3b4﹣5a2b+2a是()A.按a的升幂排列B.按a的降幂排列C.按b的升幂排列D.按b的降幂排列3.下列各组单项式中是同类项的是()A.2a2b与-3ab2B.-n3m2与3m2n3C.4xy与4x2y2D.- 1a2b与a2c64.下列去括号正确的是()A.−(a+b−c)=−a+b−c B.−(−a−b−c)=−a+b+cC.−2(a−b−c)=−2a−b−c D.−2(a+b−3c)=−2a−2b+6cx3m y n是同类项,则9m2-5mn-17的值是( )5.已知2x6y2和-13A.-1 B.-2 C.-3 D.-46.如果多项式A减去−2x+1后得3x2+7x−2,则A为()A.3x2+5x−1B.3x2−9x−3C.3x2−5x−1D.3x2+9x+37.已知单项式﹣2a2m+3b5与3a5b m﹣2n的和是单项式,则(m+n)2005=()A.1 B.﹣1 C.0 D.0或18.把如图1的两张大小相同的长方形卡片放置在图2与图3中的两个相同大长方形中,已知这两个大长方形的长比宽长20cm,若记图2中阴影部分的周长为C1,图3中阴影部分的周长为C2,那么C1-C2=()A.10cm B.20cm C.30cm D.40cm二、填空题9.减去-2a等于2a2-3a-4的多项式为.10.如果13a m+5b4与5a2b3−n是同类项,那么mn= .11.已知3x﹣3•9x=272,则x的值是.12.若单项式3a3b n与−5a m+1b4所得的和仍是单项式,则m−n的值为. 13.当x=2023时,代数式(x﹣1)(3x+2)﹣3x(x+3)+10x的值为.三、计算题14.化简(1)3(2x2−y2)−2(3y2−2x2)(2)−12(5mn−2m2+3n2)+(−32mn+2m2+n22)15.已知:A=2x2+3ax−2x−1B=x2−ax+1若3A−6B的值与x的取值无关,求a的值.16.合并同类项:(1)15x+4x-10x;(2)(5a-3a2+1)-(4a3-3a2)17.先化简,再求值(-x2-5x+4)+(5x-4+2x2),其中x=2.四、解答题18.有理数a,b,c在数轴上的位置如图所示,试化简|a-b|-|c-a|+|b-c|-|a|.19.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了的多项式,形式如下:﹣(a+2b)2=a2﹣4b2(1)求所捂的多项式;(2)当a=﹣1,b=√3时求所捂的多项式的值.20.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A,B,C.(1)填空:A ,B 之间的距离为 ,B ,C 之间的距离为 ,A ,C 之间的距离为 ;(2)化简:|a+b|﹣|c ﹣b|+|b ﹣a|;(3)a 、b 、c 在数轴上的位置如图所示,且c 2=4,﹣b 的倒数是它本身,a 的绝对值的相反数是﹣2,求﹣a+2b ﹣c ﹣2(a ﹣4c ﹣b )的值.参考答案1.【答案】D2.【答案】B3.【答案】B4.【答案】D5.【答案】A6.【答案】A7.【答案】B8.【答案】D9.【答案】2a 2-5a-410.【答案】311.【答案】312.【答案】-213.【答案】﹣214.【答案】(1)解:3(2x 2-y 2)-2(3y 2-2x 2)=6x 2-3y 2-6y 2+4x 2=10x 2-9y 2;(2)解:-12(5mn-2m 2+3n 2)+(-32mn+2m 2+n 22)=−52mn+m 2-32n 2-32mn+2m 2+n 22=-4mn+3m 2-n 2. 15.【答案】解:3A ﹣6B=3(2x 2+3ax ﹣2x ﹣1)﹣6(x 2﹣ax+1)=6x 2+9ax ﹣6x ﹣3﹣6x 2+6ax ﹣6=(15a ﹣6)x ﹣9∵3A ﹣6B 的值与x 取值无关,∴15a ﹣6=0,∴a= 25 .16.【答案】(1)解:原式=19x −10x =9x ;(2)解:原式=5a -3a 2+1-4a 3+3a 2=-4a 3+5a +1.17.【答案】解:原式=-x 2-5x+4+5x-4+2x 2=-3x 2当x=2时原式=-3×22=-3×4=-12.18.【答案】解:∵a<b<0<c,|a|>|b|>|c|∴a-b<0,c-a>0,b-c<0∴原式=-a+b-c+a-b+c+a=a.19.【答案】解:(1)原式=(a2﹣4b2)+(a+2b)2=a2﹣4b2+a2+4b2+4ab=2a2+4ab;(2)当a=﹣1,b=√3时原式=2×(﹣1)2+4×(﹣1)×√3=2﹣4√3.20.【答案】(1)a﹣b;b﹣c;a﹣c (2)解:由数轴可知,c<b<0<a ∴原式=a+b+c﹣b﹣(b﹣a)=a+b+c﹣b﹣b+a=2a﹣b+c(3)解:由题意得c=﹣2,b=﹣1,a=2原式=﹣a+2b﹣c﹣2a+8c+2b=﹣3a+4b+7c当c=﹣2,b=﹣1,a=2时原式=﹣3×2+4×(﹣1)+7×(﹣2)=﹣6﹣4﹣14=﹣24。

最新人教版七年级上册数学第二章整式的加减同步强化训练(含答案)

最新人教版七年级上册数学第二章整式的加减同步强化训练(含答案)

第二章整式的加减第23课时2.1.1列代数式用字母表示数应注意:①在含有字母的式子中如果出现乘号,通常将乘号写作“·”或省略不写,例如100×t 可以写成__100t__.②当数字与字母相乘时,数字在前,字母在后,例如0.5×t或0.5t.③数字和字母相除时,或字母和字母相除时,可以写成分数形式,如x÷3应写成__x3__.④1乘字母时,1可以省略不写,如1×a可写成__a__;-1乘字母时,只要在那个字母前加上“-”号,如-1×a 可写成__-a__.⑤用含有字母的式子表示某种量时,若结果是加、减关系,有单位的必须把式子用括号括起来后再写单位名称,如(x+3)千米.(1)(2020·长春中考)我市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童票,则共需花费__(30m +15n)__元.(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量是__mn件__.(1)某钢铁厂每天生产钢铁m吨,现在每天比原来增加20%,现在每天钢铁的产量是__1.2m__吨.(2)用式子表示数a 的相反数是__-a__.甲、乙两人的年龄和等于甲、乙两人年龄差的3倍,设甲为x 岁,乙为 y 岁,则他们的年龄和用年龄差表示为( C ) A .(x +y )岁 B .(x -y )岁 C .3(x -y )岁 D .3(x +y )岁用含字母的式子表示下面各题的数量关系:①一个数加上m 后得3,这个数是3-m ;②一个数减去x 后得15,这个数是15-x ;③一个数乘x 得36,这个数是36÷x ;④一个数除以5得k ,这个数是5k ,其中正确的有( C )A .1个B .2个C .3个D .4个下列式子符合代数式书写格式的是( B ) A .215 xy B .12 a C .2÷mD .mn ·7(2021·唐山期中)下列各式:ab ·2,m ÷2n ,53 xy ,113 a ,a -b4 其中符合代数式书写规范的有__2__个.1.式子x -y2 的意义为( B ) A .x 与y 的一半的差 B .x 与y 的差的一半C .x 减去y 除以2的差D .x 与y 的12 的差2.“比t 的13 大4的数”用式子表示是( B )A .t ⎝ ⎛⎭⎪⎫13+4 B .13 t +4 C .53 tD .t 13 +43.某商店举办促销活动,促销的方法是将原价为x 元的衣服以⎝ ⎛⎭⎪⎫45x -10 元出售,则下列说法中,能正确表达该商店促销方法的是( B ) A .原价减去10元后再打8折 B .原价打8折后再减去10元 C .原价减去10元后再打2折 D .原价打2折后再减去10元4.小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x 杯饮料,y 份沙拉,则他们点了几份A 餐?( A )A .10-xB .10-yC .10-x +yD .10-x -y5.用含字母的式子表示下面各题的数量关系. (1)a 与4的和的7倍__7(a +4)__;(2)比m 的8倍少n 的一半的数__8m -12 n __; (3)比x 的5倍少8的数__5x -8__;(4)一台电视机原价 t 元,现按原价的8.5折出售,这台电视机现在的售价是__0.85t __元;(5)一个两位数,十位数字是 a ,个位数字是b ,则这个两位数是__10a +b __; (6)电影院里座位的总排数是m ,若第一排的座位数是a ,并且后一排总比前一排的座位数多1个,则电影院里最后一排有__(a +m -1)__个座位.6.如图为园子一角,正方形边长为x ,里面有两个半圆形花池,阴影部分是草坪,则草坪的面积是__x 2-14 πx 2__.1.某企业今年2月份产值为a 万元,3月份比2月份增加了15%,4月份比3月份减少了5%,则4月份的产值为( C ) A .(a +15%)(a -15%)万元 B .a (1+85%)(1-95%)万元 C .a (1+15%)(1-5%)万元 D .a (1+15%-5%)万元2.(2020·聊城中考改编)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n 个图形用图○n 表示,那么图○50 中的白色小正方形地砖的块数是__355__.3.(2020·抚宁期中)如图,是小明用火柴搭的1条、2条、3条“金鱼”……,分别用去火柴棒8根、14根、20根、…,则搭n条“金鱼”需要火柴棒__(6n+2)__根(含n的代数式表示).第24课时 2.1.2 单 项 式1.表示__数或字母__的积组成的式子叫做单项式.单独的一个__数__或一个__字母__也是单项式.注意:数与字母之间是乘积关系.2.单项式的系数是指单项式中的__数字因数__,如果一个单项式只含有字母因数,是正数的单项式系数为1,是负数的单项式系数为-1.3.一个单项式中,所有字母的__指数的和__叫做这个单项式的次数.在式子1x ,2x +5y ,0.9,-2a ,-3x 2y ,x +13 中,单项式是__0.9,-2a ,-3x 2y__.下列各代数式:(1)x +12 ;(2)abc ;(3)b 2;(4)-5ab 2;(5)y +x ; (6)-xy 2;(7)-5,是单项式的有(填序号):__(2)(3)(4)(6)(7)__.(2020·日照中考)单项式-3ab 的系数是( B ) A .3 B .-3 C .3a D .-3a说出单项式13 a 2h ,2πr ,abc ,-m 的系数与次数. 【解析】单项式13 a 2h2πr abc -m系数 13 2π 1 -1 次数3131写出所有系数是-12 ,且都只含字母x ,y 的五次单项式. 【解析】-12 xy 4,-12 x 2y 3,-12 x 3y 2,-12 x 4y .下面各题的判断是否正确? ①-7xy 2的系数是7;( × ) ②-x 2y 3与x 3没有系数;( × ) ③-ab 3c 2的次数是5;( × ) ④-a 3的系数是-1;( √ ) ⑤-32x 2y 3的次数是7;( × ) ⑥13 πr 2h 2的系数是13 .( × )1.下列各式中,为四次单项式的是( C ) A .3 B .-2πxy C .xyz 2 D .x 3+1 2.(2021·酒泉期末)下列说法中错误的是( C ) A .-23 x 2y 的系数是-23 B .0是单项式 C .23 xy 的次数是1D .-x 是一次单项式3.下列各式:-n ,a +b ,-12 ,x -1,3ab ,1x ,其中单项式有__3__个.4.(1)系数为-3,只含有字母x ,y 的四次单项式有__3__个,它们是__-3xy 3,-3x 2y 2,-3x 3y __.(2)(2021·北京期末)一个单项式满足下列两个条件:①含有两个字母;②次数是3.请写出一个同时满足上述两个条件的单项式__-2ab 2(答案不唯一)__. 5.填表6.用单项式填空,并指出它们的系数和次数:(1)圆的半径为r ,则它的面积为__πr 2__,它的系数是__π__,次数是__2__; (2)每包书有12册,n 包书有12n 册,它的系数是__12__,次数是__1__; (3)a 的相反数是__-a __,它的系数是__-1__,次数是__1__;(4)底边长为a ,高为h 的三角形的面积为12 ah ,它的系数是__12 __,次数是__2__; (5)一台电视机原价a 元,现按原价的9折出售,这台电视机现在的售价为0.9a 元,它的系数是__0.9__,次数是__1__;(6)一个长方形的长是0.5,宽是a ,这个长方形的面积是0.5a ,它的系数是__0.5__,次数是__1__.7.观察下面的三行单项式: x 、2x 2、4x 3、8x 4、16x 5、32x 6……① -2x 、4x 2、-8x 3、16x 4、-32x 5、64x 6……②2x 2、-3x 3、5x 4、-9x 5、17x 6、-33x 7……③(1)根据你发现的规律,第①行第8个单项式为__128x 8__;(2)第②行第8个单项式为__256x 8__,第③行第8个单项式为__-129x 9__. 8.(1)写出系数是-1,含有字母a ,b 的所有四次单项式; (2)写出系数是-12 ,含有字母a ,b ,c 的所有五次单项式. 【解析】(1)-a 3b ,-a 2b 2,-ab 3.(2)-12 ab 2c 2,-12 ab 3c ,-12 a 2bc 2,-12 a 2b 2c ,-12 abc 3,-12 a 3bc .9.刘明家前年收入a 元,去年比前年收入增加x %,求去年收入多少元?今年又比去年收入增加x %,求今年收入多少元? 【解析】去年收入为a +a ×x %=a (1+x %)(元).今年收入为a (1+x %)+ a (1+x %)×x %=a (1+x %)(1+x %)=a ⎝⎛⎭⎫1+x % 2(元).若3x m y n 是含有字母x 和y 的5次单项式,求m n 的最大值.【解析】根据题意得,m =1,n =4 或m =2,n =3 或 m =3,n =2 或m =4,n =1,m n 的最大值是9.第25课时 2.1.3 多 项 式1.__几个单项式的和__叫做多项式.在多项式中,每个单项式叫做多项式的__项__,其中不含字母的项叫做__常数项__.一个多项式有几项就叫做几项式. 2.多项式里,__次数最高项__的次数,叫做这个多项式的次数. 3.__单项式__与__多项式__统称整式.下列各式:2+x 2,2x ,xy 2,3x 2+2x -1,abc ,1-2y ,x -y 3 中,多项式有__4__个.(2021·上海期末)下列说法正确的是( D ) A .a 2+2a +32是三次三项式 B .xy 24 的系数是4 C .x -32 的常数项是-3 D .0是单项式多项式x 2-2xy 3-12 y -1是( C ) A .三次四项式 B .三次三项式 C .四次四项式 D .四次三项式 ,如果多项式(a -2)x 5-23 x b+x -9是关于x 的四次三项式,那么ab 的值为__8__.多项式2-xy 2-4x 3y 的各项为__2,-xy 2,-4x 3y __,次数为__4__. a 2b -ab +1是__三__次__三__项式,写出所有的项:__a 2b ,-ab ,1__,其中三次项的系数是__1__,二次项的系数为__-1__,常数项为__1__.代数式3x 2y -4x 3y 2-5xy 3-1按x 的升幂排列,正确的是( D ) A .-4x 3y 2+3x 2y -5xy 3-1 B .-5xy 3+3x 2y -4x 3y 2-1 C .-1+3x 2y -4x 3y 2-5xy 3 D .-1-5xy 3+3x 2y -4x 3y 2(2021·上海期末)将多项式2-3xy 2+5x 3y -13 x 2y 3按字母y 降幂排列是__-13x 2y 3-3xy 2+5x 3y +2__.1.组成多项式2x 2-x -3的单项式是下列几组中的( B ) A. 2x 2,x ,3 B. 2x 2,-x ,-3 C. 2x 2,x ,-3 D. 2x 2,-x ,32.(2020·绵阳中考)若多项式xy |m -n |+(n -2)x 2y 2+1是关于x ,y 的三次多项式,则mn =__0或8__.3.若多项式(k +1)x 2-3x +1中不含 x 2项,则k 的值为__-1__.4.(2021·辽阳期末)多项式5a m b 4-2a 2b +3与单项式6a 4b 3c 的次数相同,则m 的值为__4__.5.已知多项式(m -1)x 4-x n +2x -5是三次三项式,则(m +1)n =__8__. 6.多项式2x 3-x 2y 2-3xy +x -1是__四__次__五__项式.7.将多项式5x 2y +y 3-3xy 2-x 3按x 的升幂排列为__y 3-3xy 2+5x 2y -x 3__. 8.写出一个只含有字母x ,y 的二次三项式__x 2+xy +y 2(答案不唯一)__. 9.如图,用式子表示圆环的面积.当R =15 cm ,r =10 cm 时,求圆环的面积(结果保留π).【解析】圆环面积为πR 2-πr 2, 当R =15 cm ,r =10 cm , 圆环的面积=πR 2-πr 2=125π cm 2.10.(2021·北京质检)已知多项式-3x 2y m +1+x 3y -3x 4-1是五次四项式,且单项式3x 2n y 3-m 与多项式的次数相同. (1)求m ,n 的值;(2)把这个多项式按x 的降幂排列.【解析】(1)因为多项式-3x 2y m +1+x 3y -3x 4-1是五次四项式,且单项式3x 2n y 3-m 与多项式的次数相同,所以m +1=3,2n +3-m =5,解得:m =2,n =2;(2)按x 的降幂排列为-3x 4+x 3y -3x 2y 3-1.11.(2021·长春期末)已知下面5个式子:①x 2-x +1,②m 2n +mn -1,③x 4+1x+2,④5-x 2,⑤-x 2. 回答下列问题:(1)上面5个式子中有________个多项式,次数最高的多项式为________(填序号),整式有________个.(2)选择2个二次多项式,并进行加法运算.【解析】(1)上面5个式子中有3个多项式,分别是:①②④, 次数最高的多项式为②, 整式有4个,分别是①②④⑤. 答案:3 ② 4(2)选择2个二次多项式:①+④=-x +6.(3m -4)x 3-(2n -3)x 2+(2m +5n )x -6是关于x 的多项式. (1)当m ,n 满足什么条件时,该多项式是关于x 的二次多项式; (2)当m ,n 满足什么条件时,该多项式是关于x 的三次二项式.【解析】(1)因为(3m -4)x 3-(2n -3)x 2+(2m +5n )x -6是关于x 的二次多项式, 所以3m -4=0,2n -3≠0,解得m =43 ,n ≠32 .(2)因为(3m -4)x 3-(2n -3)x 2+(2m +5n )x -6是关于x 的三次二项式, 所以3m -4≠0,2n -3=0,2m +5n =0, 解得n =1.5,m =-3.75.第26课时2.2 整式的加减(1)【合并同类项】1.所含字母相同,并且相同字母的__指数__也相同的项叫同类项.所有的常数项都是同类项.2.把多项式中的同类项合并成一项,叫做__合并同类项__.3.合并同类项后,所得项的系数是合并前各同类项的系数的__和__,且字母连同它的指数__不变__.下列各组中属于同类项的是( D ) A .2a 与2a 2 B .x 2y 3z 与2x 2y 3 C .2x 2与2y 2 D .-52 yx 2与5x 2y下列各组式子中,是同类项的是( B ) A .3x 2y 与-3xy 2 B .3xy 与-2yx C .2x 与2x 3 D .5xy 与5yz(2020·湘潭中考)已知2x n +1y 3与13 x 4y 3是同类项,则n 的值是( B ) A .2 B .3 C .4 D .5(1)若5a 2x -3b 与-3a 5b 4y +5是同类项,则x =__4__,y =__-1__. (2)写出-12 xy 3的一个同类项:xy 3(答案不唯一).下列各式合并同类项结果正确的是( B ) A .3x 3-x 3=3 B .3a 2-a 2=2a 2 C .3a 2-a 2=a D .3x 2+5x 3=8x 5化简:(1)3x 2+x 2-3x 2=__x 2__; (2)2a 2b -3a 2b =__-a 2b __.已知-3x m y 与-5y n x 3是同类项,则m =__3__,n =__1__.1.下面是小明同学做的四道题:①3m +2m =5m ;②5x -4x =1;③-p 2-2p 2=-3p 2;④3+x =3x . 他做正确了( B )A .1道B .2道C .3道D .4道2.(2020·黔西南州中考)若7a x b 2与-a 3b y 的和为单项式,则y x =__8__.1.在下列各组式子中,不是同类项的一组是( B ) A .2,-5B .-0.5xy 2, 3x 2yC .-3t ,200πtD .ab 2,-b 2 a2.把2x 2-5x +x 2+4x +3x 2合并同类项后,所得的多项式是( A ) A .二次二项式 B .二次三项式 C .一次二项式 D. 三次二项式3.把(x +y )看成整体,将(x +y )+2(x +y )-4(x +y )合并同类项得( B ) A. x +yB. -(x +y )C. -x +yD. x -y4.(2020·天津中考)计算x +7x -5x 的结果等于__3x __.5.(2020·广东中考)如果单项式3x m y 与-5x 3y n 是同类项,那么m +n =__4__. 6.求k 为多少时,代数式2x 2-kxy -3y 2+13 xy -8中不含xy 项.【解析】k =137.先化简,再求值:7x 2-3x 2-2x -2x 2+5+6x ,其中x =-2. 【解析】原式=2x 2+4x +5, 当x =-2时,原式=8-8+5=5.8.已知-2a m bc 2与4a 3b n c 2是同类项,求多项式3m 2n -2mn 2-m 2n +mn 2的值. 【解析】由同类项定义得m =3,n =1, 3m 2n -2mn 2-m 2n +mn 2=⎝⎛⎭⎫3-1 m 2n +⎝⎛⎭⎫-2+1 mn 2=2m 2n -mn 2,当m =3,n =1时,原式=2×32×1-3×12 =18-3=15.对于多项式2x2+7xy+3y2+x2-kxy+5y2,老师提出了两个问题,第一个问题是:当k为何值时,多项式中不含xy项,第二个问题是:在第一问的前提下,如果x=2,y=-1,多项式的值是多少?(1)王明同学很快就完成了第一个问题,也请你把你的解答写在下面吧.(2)在做第二个问题时,马小虎同学把y=-1错看成y=1,可是他得到的最后结果却是正确的,你知道这是为什么吗?【解析】(1)因为2x2+7xy+3y2+x2-kxy+5y2=(2x2+x2)+(3y2+5y2)+(7xy-kxy)=3x2+8y2+(7-k)xy.所以只要7-k=0,这个多项式就不含xy项.即k=7时,多项式中不含xy项.(2)因为在第一问的前提下原多项式为3x2+8y2.当x=2,y=-1时,原式=3x2+8y2=3×22+8×(-1)2=12+8=20.当x=2,y=1时,原式=3x2+8y2=3×22+8×12=12+8=20.所以马小虎的最后结果是正确的.第27课时2.2整式的加减(2)【去括号】如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号__相同__;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号__相反__.下列去括号正确的是(B)A.-(a+b-c)=-a+b-cB.-2(a+b-3c)=-2a-2b+6cC.-(-a-b-c)=-a+b+cD.-(a-b-c)=-a+b-c(2019·黄石中考)化简13(9x-3)-2(x+1)的结果是(D)A.2x-2 B.x+1 C.5x+3 D.x-3化简下列各式:(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b). 【解析】(1)原式=13a+b;(2)原式=5a+3b-3a2.化简:(1)m -(5m -3n )+2(n -m ); (2)3a 2-[2a 2-(2ab -a 2)+4ab ].【解析】(1)原式=m -5m +3n +2n -2m =-6m +5n ; (2)原式=3a 2-[2a 2-2ab +a 2+4ab ] =3a 2-2a 2+2ab -a 2-4ab =-2ab .(1)a +b -c =a +(__b -c __); (2)a -b -c =a -(__b +c __); (3)-(x +y )=(__-x -y __).(1)-a +b +c =-(__a -b __)+c; (2)-a +b +c -d =-(__a -b __)+c -d ; (3)-(x -y )=(__-x +y __).先化简,再求值:2(3x 2-y )-(x 2+y ),其中x =-1,y =2. 【解析】原式=5x 2-3y ,当x =-1,y =2时,原式=5-6=-1.2a +[a 2-(3a 2+2a -1)],其中a =12 .【解析】原式=2a +[a 2-3a 2-2a +1]=-2a 2+1, 当a =12 时,原式=-12 +1=12 .1.下列计算中,正确的是(C)A.-2(a+b)=-2a+bB.-2(a+b)=-2a-b2C.-2(a+b)=-2a-2bD.-2(a+b)=-2a+2b2.把a-2(b-c)去括号正确的是(D)A.a-2b-c B.a-2b-2cC.a+2b-2c D.a-2b+2c3.不改变多项式3b3-2ab2+4a2b-a3的值,把后三项放在前面是“-”号的括号中,以下正确的是(D)A.3b3-(2ab2+4a2b-a3)B.3b3-(2ab2+4a2b+a3)C.3b3-(-2ab2+4a2b-a3)D.3b3-(2ab2-4a2b+a3)4.化简x-y-(x-y) 的最后结果是(B)A.2x B.0 C.-2y D.2x-2y5.-a+b-c的相反数是(B)A.a-b-c B.a-b+cC.a+b-c D.a+b+c6.化简下列各式:(1)3(2a+b);(2) -2(m+2n);(3)3(2xy-y)-2xy;(4)(-3a+5b)-(-5a+7b);(5)2(6a-10b)+(-4a+5b);(6)(3x+5y)-3(2x-3y).【解析】(1)原式=6a+3b;(2)原式=-2m-4n;(3)原式=4xy-3y;(4)原式=2a-2b;(5)原式=8a-15b;(6)原式=-3x+14y.7.当k为何值时,多项式2(2x2-3xy-2y2)-(2x2+2kxy+y2)中不含xy项?【解析】原式=4x2-6xy-4y2-2x2-2kxy-y2=2x2-5y2+(-6-2k)xy,因为不含xy项,所以-6-2k=0,k=-3.阅读下面材料:计算:1+2+3+4+…+99+100如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5 050 根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)【解析】a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m +…100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m) =101a+101m×50=101a+5 050m.第28课时2.2整式的加减(3)【求代数式的值】1.整式加减的实质是合并同类项,若有括号,就要先用去括号法则去掉括号,然后再合并同类项.2.应用整式加减解决实际问题,就是把实际问题中的数量关系数学化,把题目中的量用整式表示出来,然后进行整式的加减运算.x-y的相反数是__y-x__,x+y的相反数是__-x-y__.如果a-b=12,那么-3(b-a)的值是(C)A.-35B.23C.32D.16一个整式减去a2-2b2等于a2+2b2,则这个整式是(C)A.2b2B.-2b2C.2a2D.-2a2一个多项式与x2-2x+1的和是3x-2,则这个多项式为(B)A.x2-5x+3 B.-x2+5x-3C.-x2+x-1 D.x2-5x-13某位同学做一道题:已知两个多项式A,B,求A-B的值,他误将A-B看成A+B,求得的结果是3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求A-B的正确答案.【解析】(1)由已知,A+B=3x2-3x+5,则A=3x2-3x+5-(x2-x-1)=3x2-3x+5-x2+x+1=2x2-2x+6;(2)A-B=2x2-2x+6-(x2-x-1)=2x2-2x+6-x2+x+1=x2-x+7.一种笔记本的单价是x(元),圆珠笔的单价是y(元),小红买这种笔记本3本,圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支,买这些笔记本和圆珠笔,小红和小明共花费多少钱?【解析】根据题意列得:(3x+2y)+(4x+3y)=7x+5y,则小红与小明一共花费(7x+5y)元.1.(2020·无锡中考)若x+y=2,z-y=-3,则x+z的值等于(C)A.5 B.1 C.-1 D.-52.化简下列各式:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b);(3)8m2-[4m2-2m-(2m2-5m)];(4) (8xy-x2+y2)-3(-x2+y2+5xy).【解析】(1)原式=7x+y;(2)原式=4a-2b;(3)原式=6m 2-3m ;(4)原式=8xy -x 2+y 2+3x 2-3y 2-15xy =2x 2-2y 2-7xy . 3.先化简,再求值.3a 2+(4a 2-2a -1)-2(3a 2-a +1),其中a =-12 . 【解析】原式=a 2-3 当a =-12 时,原式=-114 .4.(2021·武汉期末)先化简,再求值: 3a 2b -2ab 2-2⎝ ⎛⎭⎪⎫ab -32a 2b +ab +3ab 2,其中a =-3,b =-2.【解析】原式=3a 2b -2ab 2-2ab +3a 2b +ab +3ab 2 =6a 2b +ab 2-ab ;当a =-3,b =-2时,原式=6×9×(-2)+(-3)×4-6=-108-12-6=-126. 5.若A =9a 3b 2-5b 3-1,B =-7a 3b 2+8b 3+2. 求(A +2B )-(B -A )的值. 【解析】(A +2B )-(B -A ) =A +2B -B +A =2A +B . 因为A =9a 3b 2-5b 3-1, B =-7a 3b 2+8b 3+2,所以原式=2(9a 3b 2-5b 3-1)+(-7a 3b 2+8b 3+2) =18a 3b 2-10b 3-2-7a 3b 2+8b 3+2 =11a 3b 2-2b 3.6.(2021·泉州期末)化简求值:(1)化简:(3a2-b2)-3(a2-2b2);(2)先化简,再求值:2(a2b+ab)-3(a2b-1)-2ab-4,其中a=2019,b=12 019. 【解析】(1)原式=3a2-b2-3a2+6b2=5b2;(2)原式=2a2b+2ab-3a2b+3-2ab-4=-a2b-1,当a=2019,b=12 019时,原式=-20192×12 019-1=-2 019-1=-2 020.7.做大小两个长方体纸盒,尺寸如下(单位:厘米).(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?长宽高小纸盒 a b c大纸盒 1.5a 2b 2c【解析】(1)2(1.5a×2b+2b×2c+1.5a×2c)+2(ab+bc+ac)=6ab+8bc+6ac+2ab +2bc+2ac=8ab+10bc+8ac(平方厘米).答:做这两个纸盒共用料(8ab+10bc+8ac)平方厘米.(2)2 (1.5a×2b+2b×2c+1.5a×2c)-2(ab+bc+ac)=6ab+8bc+6ac-(2ab+2bc+2ac)=4ab+6bc+4ac(平方厘米).答:做大纸盒比做小纸盒多用料(4ab+6bc+4ac)平方厘米.已知a+b=6,ab=3,求(5ab-4a-7b)-(6a+3ab)-(4ab+3b)的值.【解析】原式=5ab-4a-7b-6a-3ab-4ab-3b=-2ab-10a-10b=-2ab-10(a+b).当a+b=6,ab=3时,原式=-6-60=-66.第29课时2.2 整式的加减(4)【综合练习】1.计算:(1)(2x -2)-(3x +5); (2)-(2a 2-2a)+3(3a -a 2); (3)2(4x 2y -5xy 2)-3(x 2y -4xy 2); (4)3(2x 2-2x -1)-2(2x 2-x -7); (5)2a -[-3b -3(3a -b)];(6)⎝ ⎛⎭⎪⎫13a 3-2a -6 -12 ⎝ ⎛⎭⎪⎫12a 3-a -7 . 【解析】(1)原式=-x -7; (2)原式=-5a 2+11a ; (3)原式=5x 2y +2xy 2; (4)原式=2x 2-4x +11; (5)原式=11a ;(6)原式=112 a 3-32 a -52 .2.(2021·西安期末)先化简,再求值:2(x 2y +xy 2)-2(x 2y -x)-2xy 2-2y ,其中x =2,y =-2. 【解析】原式=2x 2y +2xy 2-2x 2y +2x -2xy 2-2y =2x -2y ,当x =2,y =-2时,原式=2×2-2×(-2)=4+4=8.3.三个队植树,第一队植树a棵,第二队植的树比第一队的2倍还多8棵,第三队植的树比第二队的一半少6棵,问三队共植树多少棵?并求当a=100时,三个队共植树的棵数.【解析】因为第一队植树a棵,第二队植的树比第一队的2倍还多8棵,所以第二队植的树的棵数为2a+8,第三队植的树的棵数为(2a+8)÷2-6=a-2.所以三个队共植树的棵数=a+(2a+8)+(a-2)=4a+6,当a=100时,4a+6=406(棵).答:三个队共植树(4a+6)棵,当a=100时,三个队共植树406棵.4.小船在静水中的速度是50千米/时,水流速度是a千米/时,顺水航行4小时的行程与逆水航行3小时的行程相差多少千米?【解析】顺水速度为(50+a)千米/时,逆水速度为(50-a)千米/时,故顺水航行4小时比逆水航行3小时多:4(50+a)-3(50-a)=(7a+50)千米.5.已知(2x2+ax-y+b)-(2bx2-3x+5y-1)的值与字母x的取值无关,求3(a2-ab-b2)-(4b2+ab+b2)的值.【解析】原式=2x2+ax-y+b-2bx2+3x-5y+1=(2-2b)x2+(a+3)x-6y+1+b,因为与字母x的取值无关,所以b=1,a=-3,3(a2-ab-b2)-(4b2+ab+b2)=3a2-3ab-3b2-4b2-ab-b2=3a2-4ab-8b2,将b=1,a=-3代入,得3a2-4ab-8b2=3×(-3)2-4×(-3)×1-8×12=31.6.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的12 还多1岁,求这三名同学的年龄之和是多少. 【解析】因为小红的年龄比小明的年龄的2倍少4岁, 所以小红的年龄为(2m -4)岁.又因为小华的年龄比小红的年龄的12 还多1岁, 所以小华的年龄为12 (2m -4)+1(岁), 则这三名同学的年龄的和为m +(2m -4)+⎣⎢⎡⎦⎥⎤12(2m -4)+1 =m +2m -4+[m -2+1]=4m -5. 答:这三名同学的年龄的和是(4m -5)岁. 7.已知□,★,△分别代表1~9中的三个自然数.(1)若□+□+□=15,★+★+★=12,△+△+△=18,那么□+★+△=________;(2)如果用★△表示一个两位数,将它的个位和十位上的数字交换后得到一个新的两位数△★,若★△与△★的和恰好为某自然数的平方,则该自然数是________;和是________;(3)①如果在一个两位数★△前插入一个数□后得到一个三位数□★△,设★△代表的两位数为x ,□代表的数为y ,则三位数□★△用含x ,y 的式子可表示为________;②设a 表示一个两位数,b 表示一个三位数,把a 放在b 的左边组成一个五位数m ,再把b 放在a 的左边,组成一个新五位数n.试探索:m -n 能否被9整除?并说明你的理由.【解析】(1)若□+□+□=15,★+★+★=12,△+△+△=18,则□=5,★=4,△=6,则□+★+△=15.答案:15(2)根据题意,得★△+△★=(★+△)×10+(△+★)=(★+△)×11由于★△与△★之和恰为某自然数的平方,故★+△=11,★△+△★=121.答案:11121(3)①根据题意,得三位数□★△用含x,y的式子可表示为100y+x.答案:100y+x②m-n能被9整除.理由如下:根据题意,得m=1 000a+b,n=100b+a,所以m-n=9(111a-11b)所以m-n能被9整除.第30课时单元复习课——整式的加减①__次数__ ②__同类项__ ③__括号__ ④__合并__用字母表示数1.(2018·常州中考)已知苹果每千克m 元,则2千克苹果共需要的费用是( D ) A .(m -2)元 B .(m +2)元 C .m2 元D .2m 元2.(2018·大庆中考)某商品打七折后价格为a 元,则原价为( B ) A .a 元B .107 a 元 C .30%a 元D .710 a 元【特别提醒】用字母表示数的三个“注意事项”1.注意把握问题中的关键词,如,多、少、倍、分、折等. 2.注意问题中的字母所表示的含义.3.在同一个问题中,相同字母所表示的数是同一个数,不同的数应该用不同的字母来表示.求代数式的值1.(2017·海南中考)已知a =-2,则代数式a +1的值为( C ) A .-3 B .-2 C .-1 D .12.(2017·重庆中考A 卷)若x =-13 ,y =4,则代数式3x +y -3的值为( B ) A .-6 B .0 C .2D .63.(2018·徐州中考)若2m +n =4,则代数式6-2m -n 的值为__2__. 4.(2018·岳阳中考)已知a 2+2a =1,则3(a 2+2a )+2的值为__5__. 【特别提醒】代数式求值的三个“注意事项” 1.求代数式的值时,一定不要改变原来的运算. 2.在代入数值之前,必须把代数式进行化简. 3.在求代数式的值时,经常用到整体思想.整式的有关概念1.(2018·淄博中考)若单项式a m -1b 2与12 a 2b n 的和仍是单项式,则n m 的值 是( C )A .3B .6C .8D .92.(2017·西宁中考)13 x 2y 是__3__次单项式.3.(2017·玉林崇左中考)若4a 2b 2n +1与a m b 3是同类项,则m +n =__3__. 【特别提醒】理解同类项的两“相同”和两“无关”两相同:一是所含字母相同,二是相同字母的指数也相同. 两无关:与字母的顺序无关,与系数无关.整式的加减1.(2017·无锡中考)若a -b =2,b -c =-3,则a -c 等于( B ) A .1 B .-1 C .5 D .-52.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块长方形,则这块长方形较长的边长为( A )A .3a +2bB .3a +4bC .6a +2bD .6a +4b3.代数式2a 2+b -2c 与-4b +c -a 2的和为a 2-3b -c . 4.下面是徐颖化简整式的过程,仔细阅读后解答所提出的问题. 解:x (x +2y )-(x +1)2+2x=x2+2xy-x2+2x+1+2x第一步=2xy+4x+1第二步(1)徐颖的化简过程从第________步开始出现错误;(2)对此整式进行化简.【解析】(1)括号前面是负号,去掉括号应变号,故第一步出错.答案:一(2)x(x+2y)-(x+1)2+2x=x2+2xy-x2-2x-1+2x=2xy-1.【特别提醒】整式的加减的两个注意事项1.准确熟练应用去括号法则和合并同类项法则.2.如果括号外面有数字,在去括号时,可以分为两个步骤:第一,利用乘法分配律把数字与括号内各项相乘,第二,用去括号法则去掉括号.规律探索1.(2018·烟台中考)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第○n个图形中有120朵玫瑰花,则n的值为(C)A.28 B.29 C.30 D.312.如图表示的是用火柴棒搭成的图形,第一个图形用了5根火柴,第二个图形用了8根火柴,…,则用281根火柴棒搭成了第________个图形.(C)A.93 B.94C.80 D.813.(2017·娄底中考)刘莎同学用火柴棒依图的规律摆成六边形图案,用10 086根火柴棒摆出的图案应该是第__2__017__个.【特别提醒】解决探索规律题的一般步骤1.利用已知条件猜测隐含的规律.2.对猜测的规律进行验证.3.依次进行猜测——验证……猜测——验证,直到验证成功为止.。

【最新】人教版七年级数学上册同步练习2.2 整式的加减(含答案).doc

【最新】人教版七年级数学上册同步练习2.2 整式的加减(含答案).doc

2.2整式的加减基础检测1.下列各组中的两项,不是同类项的是().A.a2b与-6ab2B.-x3y与2yx3C.2πR与π2R D.35与53 2.下列计算正确的是().A.3a2-2a2=1 B.5-2x3=3x3C.3x2+2x3=5x5D.a3+a3=2a33.减去-4x等于3x2-2x-1的多项式为().A.3x2-6x-1 B.5x2-1 C.3x2+2x-1 D.3x2+6x-1 4.若A和B都是6次多项式,则A+B一定是().A.12次多项式B.6次多项式C.次数不高于6的整式D.次数不低于6的多项式5.多项式-3x2y-10x3+3x3+6x3y+3x2y-6x3y+7x3的值是().A.与x,y都无关B.只与x有关C.只与y有关D.与x,y都有关6.如果多项式3x3-2x2+x+│k│x2-5中不含x2项,则k的值为().A.±2 B.-2 C.2 D.07.若2x2y m与-3x n y3是同类项,则m+n________.8.计算:(1)3x-5x=_______;(2)计算a2+3a2的结果是________.9.合并同类项:-12ab2+23ab2-14ab2=________.10.五个连续偶数中,中间一个是n,这五个数的和是_______.11.若m为常数,多项式mxy+2x-3y-1-4xy为三项式,则12m2-m+2的值是______.12.若单项式-12a2x b m与a n b y-1可合并为12a2b4,则xy-mn=_______.拓展提高13.合并下列各式的同类项:(1)-0.8a2b-6ab-3.2a2b+5ab+a2b;(2)5(a-b)2-3(a-b)2-7(a-b)-(a-b)2+7(a-b).14.先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-12;(2)5ab-92a2b+12a2b-114ab-a2b-5,其中a=1,b=-2;(3)2a2-3ab+b2-a2+ab-2b2,其中a2-b2=2,ab=-3.15.关于x,y的多项式6mx2+4nxy+2x+2xy-x2+y+4不含二次项,求6m-2n+2的值.16.商店出售茶壶每只定价20元,茶杯每只定价5元,该店制定了两种优惠办法:(1)买一只茶壶赠送一只茶杯;(2)按总价的92%付款.某顾客需购茶壶4只,茶杯x•只(x≥4),付款数为y(元),试对两种优惠办法分别写出y与x之间的关系,并研究该顾客买同样多的茶杯时,两种方法哪一种更省钱?2.2答案:1.A 2.D 3.A 4.C 5.A 6.A 7.5 8.(1)-2x (2)4a 2 9.-112ab 2 • 10.•5n •11.6 12.-3 13.(1)-3a 2b -ab (2)(a -b )214.(1)原式=-2a 2-4a-4,值为25 (2)•原式=94a b -5a 2b -5,值为12 (3)原式=a 2-b 2-2ab ,值为815.m=16,n=-12.值为4 16.y 1=20×4+5(x -4)=5x+60,y 2=(20×4+5x )×92%=4.6x+73.6,由y 1=y 2,即5x+60=4.6x+73.6,得x=34.故当4≤x<34时,按优惠办法(1)更省钱; 当x=34时,•两种办法付款相同;当x>34时,按优惠办法 (2)更省钱。

人教版数学七年级上册第2章2.2整式的加减同步练习(附模拟试卷含答案)

人教版数学七年级上册第2章2.2整式的加减同步练习(附模拟试卷含答案)

人教版数学七年级上册第2章2.2整式的加减同步练习一、选择题1.下列式子正确的是()A.7m+8n=8m+7nB.7m+8n=15mnC.7m+8n=8n+7mD.7m+8n=56mn2.若a-b=2,b-c=-3,则a-c等于()A.1B.-1C.5D.-53.单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2B.3C.4D.54.下列计算正确的是()A.4x-7x=3xB.5a-3a=2C.a2+a=aD.-2a-2a=-4a5.下列各组是同类项的一组是()A.a3与b3B.3x2y与-4x2yzC.x2y与-xy2D.-2a2b与ba26.若-63a3b4与81a x+1b x+y是同类项,则x、y的值为()A. B. C. D.7.去括号正确的是()A.-(3x+2)=-3x+2B.-(-2x-7)=-2x+7C.-(3x-2)=3x+2D.-(-2x+7)=2x-7二、填空题8.计算:2(x-y)+3y= ______ .9.若x+y=3,xy=2,则(5x+2)-(3xy-5y)= ______ .10.若单项式x3y n与-2x m y2是同类项,则(-m)n= ______ .11.若2x3y2n和-5x m y4是同类项,那么m-2n= ______ .三、计算题12.先化简再求值:(2a2b-ab)-2(a2b+2ab),其中a=-2,b=-.13.先化简,再求值:x-(2x-y2+3xy)+(x-x2+y2)+2xy,其中x=-2,y=.14.先化简再求值:4x-3(3x-)+2(x-y),其中x=,y=-.人教版数学七年级上册第2章2.2整式的加减同步练习答案和解析【答案】1.C2.B3.D4.D5.D6.D7.D8.2x+y9.1110.911.-112.解:原式=2a2b-ab-2a2b-4ab=-5ab,当a=-2,b=-时,原式=-5.13.解:原式=x-2x+y2-3xy+x-x2+y2+2xy=-x2+y2-xy,当x=-2,y=时,原式=-4++1=-.14.解:原式=4x-9x+2y2+5x-2y=2y2-2y,当y=-时,原式=2y2-2y=2×(-)2-2×(-)=0.5+1=1.5.【解析】1. 解:7m和8n不是同类项,不能合并,所以,7m+8n=8n+7m.故选C.根据合并同类项法则解答.本题考查了合并同类项,熟记同类项的概念是解题的关键.2. 解:∵a-b=2,b-c=-3,∴a-c=(a-b)+(b-c)=2-3=-1,故选B根据题中等式确定出所求即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3. 解:由题意,得m=2,n=3.m+n=2+3=5,故选:D.根据同类项的定义,可得m,n的值,根据有理数的加法,可得答案.本题考查了同类项,利用同类项的定义得出m,n的值是解题关键.4. 解:A、合并同类项系数相加字母及指数不变,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.根据合并同类项系数相加字母及指数不变,可得答案.本题考查了合并同类项,合并同类项系数相加字母及指数不变.5. 解:如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项.且与字母的顺序无关.故选(D)根据同类项的概念即可求出答案.本题考查同类项的概念,注意同类项与字母的顺序无关.6. 解:∵-63a3b4与81a x+1b x+y是同类项,∴x+1=3,x+y=4,∴x=2,y=2,故选D.根据同类项的定义进行选择即可.本题考查了同类项,掌握同类项的定义是解题的关键.7. 解:A、-(3x+2)=-3x-2,故A错误;B、-(-2x-7)=2x+7,故B错误;C、-(3x-2)=-3x+2,故C错误;D、-(-2x+7)=2x-7,故D正确.故选:D.依据去括号法则判断即可.本题主要考查的是去括号,掌握去括号法则是解题的关键.8. 解:原式=2x-2y+3y=2x+y,故答案为:2x+y原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.9. 解:∵x+y=3,xy=2,∴原式=5x+2-3xy+5y=5(x+y)-3xy+2=15-6+2=11.故答案为:11.原式去括号合并后,将已知等式代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.10. 解:由单项式x3y n与-2x m y2是同类项,得m=3,n=2.(-m)n=(-3)2=9,故答案为:9.由同类项的定义可先求得m和n的值,再根据负数的偶数次幂是正数,可得答案.本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.11. 解:∵2x3y2n和-5x m y4是同类项,∴m=3,2n=4.∴n=2.∴m-2n=3-2×2=-1.故答案为:-1.由同类项的定义可知:m=3,2n=4,从而可求得m、n的值,然后计算即可.本题主要考查的是同类项的定义,根据同类项的定义求得m、n的值是解题的关键.12.原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.13.原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.14.原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A.3a+bB.3a-bC.a+3bD.2a+2b2.A 看B 的方向是北偏东21°,那么B 看A 的方向( )A .南偏东69° B.南偏西69° C.南偏东21° D.南偏西21°3.如图,点C 、O 、B 在同一条直线上,∠AOB=90°,∠AOE=∠DOB ,则下列结论:①∠EOD=90°;②∠COE=∠AOD ;③∠COE=∠DOB ;④∠COE+∠BOD=90°.其中正确的个数是( )A.1B.2C.3D.44.下列所给条件,不能列出方程的是( )A.某数比它的平方小6B.某数加上3,再乘以2等于14C.某数与它的12的差 D.某数的3倍与7的和等于29 5.在矩形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE 。

人教版七年级数学上册《2.2.3整式的加减》同步专题练习(含参考答案)

人教版七年级数学上册《2.2.3整式的加减》同步专题练习(含参考答案)

七年级数学上册——整式的加减专题练习(满分120分,90分钟完卷)学校:班级:七()班姓名:___________1.化简:(1)3(x-y)-2(x+y)-5(x-y)+4(x+y)+3(x-y)(4分); (2)y-{y-2x+[5x-3(y+2x)+6y]} (4分).2.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和.(7分)3.先化简,再求值:3(y+2x)-[3x-(x-y)]-2x,其中x,y互为相反数.(6分)4.求4x2+3xy+2y2与x2-5xy+2y2的差.(6分)5.已知A=x2+xy+y2,B=x2-xy+y2,x2+3xy+4y2=2,4x2-2xy+y2=3,求4A+B-(A-B)的值.(7分)6.如果关于x的多项式(3x2+2mx-x+1)+(2x2-mx+5)-(5x2-4mx-6x)的值与x的取值无关,试确定m的值,并求m2+(4m-5)+m的值.(6分)1.(2016·山东济南一模)化简(2x-3y)-3(4x-2y)的结果为()(4分)A.-10x-3yB.-10x+3yC.10x-9yD.10x+9y2.(2015·江苏镇江中考)计算-3(x-2y)+4(x-2y)的结果是()(4分)A.x-2yB.x+2yC.-x-2yD.-x+2y3.(2016·河北邢台二模)设A,B,C均为多项式,小方同学在计算“A-B”时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=x2+x-1,C=x2+2x,那么A-B=()(4分)A.x2-2xB.x2+2xC.-2D.-2x4.(2016·福建厦门一模)多项式2x2+3x-2与下列一个多项式的和是一个一次二项式,则这个多项式可以是() (4分)A.-2x2-3x+2B.-x2-3x+1C.-x2-2x+2D.-2x2-2x+15.(2016·辽宁辽阳月考)如果b=2a-1,c=3b,则a+b+c等于() 4分)A.9a-4B.9a-1C.9a-2D.9a-36 (2015·山东淄博模拟)若A=x2-5x+2,B=x2-5x-6,则A与B的大小关系是()(4分)A.A>BB.A=BC.A<BD.无法确定7.(4分)(2016·湖南株洲中考)计算:3a-(2a-1)=.8.(4分)(2016·河北中考)若mn=m+3,则2mn+3m-5mn+10=.9.(4分)(2016·辽宁沈阳期中)若(a+1)2+|b-2|=0,则化简a(x2y+xy2)-b(x2y-xy2)的结果为.10.(4分)2016·江苏东台市期中)定义新运算“*”为a*b=则当x=3时,计算2*x-4*x的结果为.11.(2016·江苏无锡期中)小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.(6分)12.(2015·湖北武汉期中)某商店有一种商品每件成本a元,原来按成本增加b元定出售价,售出40件后,由于库存积压减价,按售价的80%出售,又销售60件.(8分)(1)销售100件这种商品后的总销售额为多少元?(2)销售100件这种商品共盈利多少元?13. (2016·吉林农安县期末)已知:A-2B=7a2-7ab,且B=-4a2+6ab+7.(8分)(1)求A; (2)若|a+1|+(b-2)2=0,计算A的值.14.已知式子A=2x2+3xy+2y-1,B=x2-xy+x-.(9分)(1)求A-2B; (2)若A-2B的值与x的取值无关,求y的值.15.已知A=2x2-3x-1,B=x2-3x-5, (1)计算2A+3B; (2)通过计算比较A与B的大小.(9分)七年级数学上册——整式的加减专题练习(参考答案)1.化简:-2(x+y)-5(x-y)+4(x+y)+3(x-y); (2)y-{y-2x+[5x-3(y+2x)+6y]}.x-y)-2(x+y)-5(x-y)+4(x+y)+3(x-y) (2)y-{y-2x+[5x-3(y+2x)+6y]}=3(x-y)-5(x-y)+3(x-y)-2(x+y)+4(x+y)=y-[y-2x+(5x-3y-6x+6y)]=(x-y)+2(x+y)=x-y+2x+2 =y-(y-2x+5x-3y-6x+6y)y=3x+y. =y-y+2x-5x+3y+6x-6y=3x-3y.2.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和.(2m-4)岁,小华的年龄为岁,则这三名同学的年龄的和为m+(2m-4)+=m+2m-4+(m-2+1)=4m-5(岁).答:这三名同学的年龄的和是(4m-5)岁.,再求值:3(y+2x)-[3x-(x-y)]-2x,其中x,y互为相反数.y+2x)-[3x-(x-y)]-2x=3y+6x-3x+x-y-2x=2(x+y).因为x,y互为相反数,所以x+y=0.所以3(y+2x)-[3x-(x-y)]-2x=2(x+y)=2×0=0.4x2+3xy+2y2与x2-5xy+2y2的差.x2+3xy+2y2)-(x2-5xy+2y2)=4x2+3xy+2y2-x2+5xy-2y2=3x2+8xy.A=x2+xy+y2,B=x2-xy+y2,x2+3xy+4y2=2,4x2-2xy+y2=3,求4A+B-(A-B)的值.A+B-(A-B)=4A+B-A+B=3A+2B.∵∴∴3A+2B=5x2+xy+5y2=(x2+3xy+4y2)+(4x2-2xy+y2)=2+3=5.∴4A+B-(A-B)=5.6.如果关于x的多项式(3x2+2mx-x+1)+(2x2-mx+5)-(5x2-4mx-6x)的值与x的取值无关,试确定m的值,并求m2+(4m-5)+m的值.x2+2mx-x+1)+(2x2-mx+5)-(5x2-4mx-6x)=(2m-m+4m+6-1)x+6=(5m+5)x+6.因为它的值与x的取值无关,所以5m+5=0,所以m=-1.因为m2+(4m-5)+m=m2+5m-5,所以当m=-1时,m2+(4m-5)+m=(-1)2+5×(-1)-5=-9.1.(2016·山东济南一模)化简(2x-3y)-3(4x-2y)的结果为(B)A.-10x-3yB.-10x+3yC.10x-9yD.10x+9y2.(2015·江苏镇江中考)计算-3(x-2y)+4(x-2y)的结果是(A)A.x-2yB.x+2yC.-x-2yD.-x+2y3.(2016·河北邢台二模)设A,B,C均为多项式,小方同学在计算“A-B”时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=x2+x-1,C=x2+2x,那么A-B=(C)A.x2-2xB.x2+2xC.-2D.-2x4.(2016·福建厦门一模)多项式2x2+3x-2与下列一个多项式的和是一个一次二项式,则这个多项式可以是(D)A.-2x2-3x+2B.-x2-3x+1C.-x2-2x+2D.-2x2-2x+15.(2016·辽宁辽阳月考)如果b=2a-1,c=3b,则a+b+c等于(A)A.9a-4B.9a-1C.9a-2D.9a-36.导学号19054071(2015·山东淄博模拟)若A=x2-5x+2,B=x2-5x-6,则A与B的大小关系是(A)A.A>BB.A=BC.A<BD.无法确定7.(2016·湖南株洲中考)计算:3a-(2a-1)=a+1.8.(2016·河北中考)若mn=m+3,则2mn+3m-5mn+10=1.9.(2016·辽宁沈阳期中)若(a+1)2+|b-2|=0,则化简a(x2y+xy2)-b(x2y-xy2)的结果为-3x2y+xy2.10.导学号19054072(2016·江苏东台市期中)定义新运算“*”为a*b=则当x=3时,计算2*x-4*x的结果为8.11.(2016·江苏无锡期中)小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.A+B=9x2-2x+7,B=x2+3x-2,∴A=9x2-2x+7-(x2+3x-2)=9x2-2x+7-x2-3x+2=8x2-5x+9.∴A-B=8x2-5x+9-(x2+3x-2)=8x2-5x+9-x2-3x+2=7x2-8x+11.12.(2015·湖北武汉期中)某商店有一种商品每件成本a元,原来按成本增加b元定出售价,售出40件后,由于库存积压减价,按售价的80%出售,又销售60件.(1)销售100件这种商品后的总销售额为多少元?(2)销售100件这种商品共盈利多少元?解(1)根据题意得40(a+b)+60(a+b)×80%=88a+88b(元),则销售100件这种商品后的总销售额为(88a+88b)元;(2)根据题意,得88a+88b-100a=-12a+88b(元),则销售100件这种商品后共盈利(-12a+88b)元.13.导学号19054073(2016·吉林农安县期末)已知:A-2B=7a2-7ab,且B=-4a2+6ab+7.(1)求A;(2)若|a+1|+(b-2)2=0,计算A的值.解(1)由题意得A=2(-4a2+6ab+7)+7a2-7ab=-8a2+12ab+14+7a2-7ab=-a2+5ab+14.(2)根据题意及绝对值与平方的非负性可得a=-1,b=2,故A=-a2+5ab+14=3.14.已知式子A=2x2+3xy+2y-1,B=x2-xy+x-.(1)求A-2B; (2)若A-2B的值与x的取值无关,求y的值.解(1)A-2B=2x2+3xy+2y-1-2=2x2+3xy+2y-1-2x2+2xy-2x+1=5xy+2y-2x;(2)由(1)得A-2B=5xy+2y-2x=(5y-2)x+2y,因为A-2B的值与x的取值无关,所以5y-2=0,即y=.15.导学号19054074已知A=2x2-3x-1,B=x2-3x-5,2A+3B; (2)通过计算比较A与B的大小.解(1)因为A=2x2-3x-1,B=x2-3x-5,所以2A+3B=2(2x2-3x-1)+3(x2-3x-5)=4x2-6x-2+3x2-9x-15=7x2-15x-17;(2)因为A-B=(2x2-3x-1)-(x2-3x-5)=2x2-3x-1-x2+3x+5=x2+4≥4>0,所以A>B.。

人教版七年级上册第二章整式的加减 2.2 整式的加减 同步练习(含答案)

人教版七年级上册第二章整式的加减 2.2 整式的加减   同步练习(含答案)

整式的加减同步练习一、选择题(共12题)1、若3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣2 B.﹣1 C.2 D.12、下列判断中正确的是().A.与不是同类项 B.不是整式C.单项式的系数是 D.是二次三项式3、下列计算正确的是()A. x5﹣x4=xB. x+x=x2C. x3+2x5=3x8D.﹣x3+3x3=2x34、下列各项中,去括号正确的是()A. x2-2(2x-y+2)=x2-4x-2y+4B. -3(m+n)-mn=-3m+3n-mnC. -(5x-3y)+4(2xy-y2)=-5x+3y+8xy-4y2D. ab-5(-a+3)=ab +5a-35、减去-3x得x2-3x+6的式子是()A.x2+6B.x2+3x+6C.x2-6xD.x2-6x+66、已知多项式x2–kxy–3(x2–12xy+y)不含xy项,则k的值为()A. 36 B.-36 C.0 D.127、已知a2+2a=1,则代数式1﹣2(a2+2a)的值为()A.0 B.1 C.﹣1 D.﹣28、一个多项式加上3y2﹣2y﹣5得到多项式5y3﹣4y﹣6,则原来的多项式为()A.5y3+3y2+2y﹣1 B.5y3﹣3y2﹣2y﹣6C.5y3+3y2﹣2y﹣1 D.5y3﹣3y2﹣2y﹣19、代数式4x3﹣3x3y+8x2y+3x3+3x3y﹣8x2y﹣7x3的值()A.与x,y有关 B.与x有关 C.与y有关 D.与x,y无关10、若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3 B.3 C.5 D.711、如果多项式A加上﹣2x2﹣1得4x2+1,那么多项式A是()A.6x2+2 B.2x2 C.6x4+2 D.﹣2x2+212、为求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S =2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32018的值是 ( )A.32019-1 B. 32018-1 C. D.二、填空题(共6题)13、 (徐州中考)若2m+n=4,则代数式6-2m-n的值为.14、若代数式3a5b m与-2a n b2是同类项,m+n= .15、有一名同学把一个整式减去多项式xy+5yz+3xz误认为加上这个多项式,结果答案为 5yz-3xz+2xy,则原题正确答案为 .16、一个多项式加上-3+x-2x2得到x2-1,那么这个多项式为 ____________ ;17、一种商品每件成本是a元,原来按成本增加20%定出价格进销售,一段时间后,由于库存积压减价,按原价的9折出售,则现在每件售价为元.18、多项式与﹣3x+1的和是x2﹣3.三、解答题(共6题)19、 (m-5n+4mn)-2(2m-4n+6mn),其中m-n=4,mn=-3.20、(1)合并下列同类项: 4a2-3b2+2ab-4a2-3b2+5ba(2)先化简,再求值:2(3x2﹣4xy)﹣4(2x2﹣3xy﹣1),其中|x﹣1|+(y+2)2=0.21、 2a+3(a2-b)-2(2a2+a-b),其中a=,b=-2;22、某同学做一道数学题,已知两个多项式A、B,B=3x2y﹣5xy+x+7,试求A+B.这位同学把A+B误看成A﹣B,结果求出的答案为6x2y+12xy﹣2x﹣9,请你替这位同学求出A+B的正确答案.23、先化简,再求值:求代数式x2﹣[2(2x2﹣xy+y2)﹣3(x2+xy﹣2y2)+y2]的值,其中x=﹣2,y=3.24、探究题.用棋子摆成的“T”字形图如图所示:(1)填写下表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数.(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?)参考答案一、选择题1、 A;2、 C ;3、 D;4、 C;5、 D;6、 A;7、C.;8、D.;9、 D;10、C;11 A;12、C;二、填空题13、 214、 .715、-5yz-9xz.16、3x2-x+3 ;17、1.08a(18、x2+3x﹣4三、解答题19、解:1220、解:(1)原式= 7ab-6b2(2)原式=由|x﹣1|+(y+2)2=0, 解得:x=1, y=-2当x=1, y=-2时,原式=-621、解:322、解:∵B=3x2y﹣5xy+x+7,A﹣B=6x2y+12xy﹣2x﹣9,∴A+B=(A﹣B)+2B=6x2y+12xy﹣2x﹣9+2(3x2y﹣5xy+x+7)=6x2y+12xy﹣2x﹣9+6x2y﹣10xy+2x+14=12x2y+2xy+5.23、解:原式=x2﹣4x2+2xy﹣2y2+3x2+3xy﹣6y2﹣y2=5xy﹣9y2,当x=﹣2,y=3时,原式=﹣30﹣81=﹣111.24、解:(1)11 14 32(2)3n+2 (3)3n+2=3×20+2=62(个) (4)(5+62)×=670(个)。

4.2 整式的加减同步练习人教版(2024新教材)七年级数学上册(含答案)

4.2 整式的加减同步练习人教版(2024新教材)七年级数学上册(含答案)

4.2 整式的加减第 1 课时合并同类项A层知识点一同类项的概念1.下列各式中,与2a²b 为同类项的是 ( )A.-2a²bB.-2abC.2ab²D.2a²2.下面不是同类项的是 ( )A.2m 与 2nB.-2a³b与ba³C.−x²y²与6x²y²D.-2 与53.已知−x³y²与3y²xⁿ是同类项,则n 的值为( )A.2B.3C.5D.2 或3【变式题】(1)若5⁴x" 与5"x³是同类项,则n=(2)如果单项式3xᵐy与−5x³yⁿ是同类项,那么m+n= .4.在多项式0.8x²−0.8x−1+0.2x²−1.3x²−0.2x+3 的各项中,与 0.8x²是同类项的是 ,与一0.8x 是同类项的是,与-1是同类项的是 .知识点二合并同类项及其应用5.下列运算中,正确的是 ( )A.2a+3b=5abB.3a²−2a²=1C.4a²b−3ba²=a²bD.-a-2a-3a=06.若等式2a³+□=3a³成立,则“□”填写的单项式是 ( )A. aB. a²C. a³D.17.某工厂第一年生产a件产品,第二年比第一年增产了20%,则两年共生产产品的件数为( )A.0.2aB. aC.1.2aD.2.2a8.把多项式2x²−5x+x³+4x+3x²合并同类项后,所得结果按x 的降幂排列为9.合并下列各式中的同类项:(1)3x+5x-4x;(2)3a²−2a+4a²−7a;(3)−12mn+5mn2−1+13mn−5n2m+1.10.小明用3天看完一本课外读物,第一天看了a 页,第二天看的比第一天多50 页,第三天看的比第二天少8 5 页.(1)用含 a 的式子表示这本书的页数;(2)当a=50时,这本书的页数是多少?B层11.若关于x的多项式mx³+x²+2x³−2不含三次项,则m 的值为( )A.2B.1C.-2D.-112.如果单项式−12x m+3y与2x⁴yⁿ⁺³(m,n为常数)的差是单项式,那么(m+n)²⁰²ˡ的值为( )A.--1B.0C.1D.2²⁰21【变式题】若ax²yᵇ与3xᶜ⁻¹y²合并的结果为0,则a-b+c=13.如图,左边三角形的面积为2m²−3m,右边三角形的面积为9+5m,空白部分的面积为m²,则图中阴影部分的面积为 .14.先合并同类项,再求式子的值:(1)32m2−2m−52m2+6m−5,其中m=2;(2)5x2y2+14xy−2x2y2−16xy−3x2y2,其中x=3,y=-4;(3)14(x−y)−0.3(x−y)+0.75(x−y)+310(x−y)−2(x−y)+7,其中x=y+3.15.七年级有三个班,这三个班在参加植树造林活动中,一班植了 x 棵树,二班植的树比一班的2倍少5棵,三班植的树比一班的13多10棵.(1)求这三个班共植树多少棵;(2)当x=60时,三个班共植树多少棵?C层16.有这样的一道题:“当x=14,y=2022时,求多项式7x³−6x³y+3x²y+3x³+6x³y−3x²y−10x³+3的值.”小聪同学说题目中给出的条件x=14,y=2022”是多余的,他的说法有道理吗?为什么?第 2 课时去括号A层知识点一去括号1.式子-a+(b-2)去括号的结果是 ( )A.-a-b-2B. a+b-2C.-a-b+2D.-a+b-22.将a—(b—c)去括号后,结果正确的是 ( )A. a-b-cB. a-b+cC. a+b+cD. a+b-c3.下列去括号正确的是 ( )A.--(a+b)=-a+bB.-2(a-2b)=-2a+4bC.-(-a-b)=-a+bD.-(2a-b)=-2a-b知识点二去括号化简4.化简-2a+(2a-1)的结果是 ( )A.-4a-1B.4a-1C.1D.-15.化简:(1)2a²−(a²+2)=;(2)(5a²+2a)−4(2+2a²)=.6.化简:(1)x+(-3y-2x);(−2a−b);(2)(a+2b)−12(3)3(x-3y)-2(y-2x)-x;(4)2a²+(6a²+2a−1)−(3−4a+4a²).知识点三去括号化简的应用7.一条线段长为6a+8b,将它剪成两段,其中一段长为2a+b,则另一段长为 ( )A.4a+5bB. a+bC.4a+7bD. a+7b8.三个连续奇数,最小的一个是2n+1(n为自然数),则这三个连续奇数的和为 ( )A.6n+6B.2n+9C.6n+9D.6n+39.笔记本的单价是x 元,圆珠笔的单价是 y 元.小红买3本笔记本,6支圆珠笔;小明买6本笔记本,3支圆珠笔.(1)买这些笔记本和圆珠笔,小红和小明一共花费多少元钱?(2)若每本笔记本比每支圆珠笔贵2元,求小明比小红多花费了多少元钱.B层10.下列各式中,不能由a-b+c 通过变形得到的是 ( )A. a-(b-c)B. c-(b-a)C.(a-b)+cD. a-(b+c)11.已知一个数为三位数,十位数字是a,个位数字比a 小2,百位数字是a 的2倍,用多项式表示这个数正确的是 ( )A.21a-2B.211a-2C.200a-2D.3a-212.小明在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个一次二项式,如图所示,则所捂的一次二项式为 .+(m²−m−2)=m²−2m,剩下的地种植时令13.一个菜地共占地(6m+2n)亩,其中(3m+6n)亩种植白菜,种植黄瓜的地是种植白菜的地的13蔬菜,则种植时令蔬菜的地有亩.14.先化简,再求值:(1)(b+3a)-2(2-5b)-(1-2b-a),其中a=2,b=1;a2b+ab2)−[3a2b−2(1−ab--2ab²)],其中a 为最大的负整数,b为最小的正整数.(2)2ab+6(1215.已知A=2a²+3ab−2a−1,B=a²+ab+1.(1)求A-2B;(2)若(1)中的式子的值与a 的取值无关,求b 的值.16.为了在中小学生中进行爱国主义教育,我校七年级开展了“纪念一二·九”红领巾知识竞赛活动,并设立了一、二、三等奖.根据需要购买了100件奖品,其中二等奖的奖品件数比一等奖奖品的件数的3倍多10,各种奖品(1)请用含 x 的式子把表格补全;(2)求购买 100件奖品所需的总费用(用含 x的整式表示);(3)若一等奖奖品购买了 10件,求共需花费的钱数.第 3 课时 整式的加减A 层知识点一 整式的加减1.化简 2a+b-2(a-b)的结果为 ( )A.4aB.3bC.-bD.02.化简 2(x +12)−13(3x −6)的结果是 ( )A.3x+3B.3x-3C. x+3D. x-33.多项式 2x³−10x²+4x −1与多项式 3x³− 4x −5x²+3相加,合并后不含的项是 ( )A.三次项B.二次项C.一次项D.常数项4.计算:(1)2(x²−2x )−(x²−2x );(2)4(2x²−y²)−3(3y²−2x²);(3)−a²b +(3ab²−a²b )−2(2ab²−a²b ).5.如图,约定:下方箭头共同指向的整式等于上方两个整式之和.(1)求整式 N;(2)当x=-2时,求 N 的值.知识点二整式加减的应用6.某地居民生活用水收费标准如下:每月用水量不超过17 立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为 ( )A.20a 元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元7.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为千米/时.8.一个长方形一边长为7a—4b+5,另一边长为2b--a+1.(1)用含有a,b的式子表示这个长方形的周长;(2)若a,b满足3a-b=5,求它的周长.B层9.若多项式−ax²+x与多项式bx²−3x的差是一个单项式,则a 与b的关系是 ( )A. a+b=0B. a-b=0C. ab=1D. ab=-110.如果M=4x²−5x+12,N=2x²−5x+9,那么 M和N 的大小关系是 ( )A. M<NB. M=NC. M>ND.无法判断11.数 a,b 在数轴上的位置如图所示,化简:|2a-b|--|b-a|+|b|= .-2 b -1 0 a 1 212.若A=x²+3xy+y²,B=x²−3xy+y²,则A--[B+2B--(A+B)]化简后的结果为 (用含x,y 的式子表示).13.(1)化简:1—[6xy—2(4xy—2)—x²y]+ 4x²y;(2)先化简,再求值:−13(a3b−ab)+ab3−ab−b2−12b+13a3b,其中a=2,b=1.14.一辆大客车上原有乘客(3m-n)人,中途一半的乘客下车,又上来若干乘客,使车上共有乘客(8m--5n)人,问中途上车的乘客有多少人?当m=10,n=8时,中途上车的乘客有多少人?C层15.阅读理解:如果5a+3b=-4,求多项式2(a+b)+4(2a+b)的值.小颖同学提出了一种解法如下:原式=2a+2b+8a+db=1 0a+6b,把式子5a+3b=—4 两边同时乘以 2,得 10a+6b=—8.仿照小颖同学的解题方法,完成下面的问题:(1)如果−a²=a,那么a²+a+1=;(2)已知a-b=-3,求3(a-b)-5a+5b+5 的值;(3)已知a²+2ab=−2,ab−b²=−4求2a²+72ab+12b2的值.第 1 课时合并同类项1. A2. A3. B 【变式题】(1)3 (2)44.0.2x²,−1.3x²−0.2x35. C6. C7. D 88.x³+5x²−x9.解:(1)原式=4x. (2)原式=7a²−9a.(3)原式=−16mn.10.解:(1)这本书的页数为a+a+50+a+50-85=3a+15.(2)当a=50时,3a+15=3×50+15=165.答:当a=50时,这本书的页数是165.11. C 12. A 【变式题】—2 13.2m+914.解:(1)原式: =−m²+4m−5..当m=2时,原式=-1.(2)原式=112xy.当x=3,y=--4 时,原式=--1.(3)原式=-(x-y)+7.由x=y+3,得原式=--(y+3-y)+7=-3+7=4.15.解:(1)由题意得二班植树(2x—5)棵,三班植树(13x+10)棵x+2x−5+13x+10=(103x+5)(棵).答:三个班共植树(103x+5)棵.(2)当x=60 时, 103x+5=103×60+5=205.答:当x=60时,三个班共植树 205棵.16.解:小聪的说法有道理.理由如下:因为7x³−6x³y+3x²y+3x³+6x³y−3x²y−10x³+3=(7+3−10) x³+(6−6)x³y+(3−3)x²y+3=3,,所以无论 x,y 取何值,此多项式的值总等于3,即此多项式的值与x,y的取值无关.故小聪的说法有道理.第 2 课时去括号1. D2. B3. B4. D5.(1)a²-2( (2)−3a²+2a−86.解:(1)原式=-x-3y. (2)原式=2a+52b.(3)原式=6x-lly. (4)原式: =4a²+6a−4.7. C 8. C9.解:(1)由题意得 3x+6y+6x+3y=9x+9y.答:买这些笔记本和圆珠笔,小红和小明一共花费了(9x+9y)元.(2)由题意得(6x+3y)--(3x+6y)=3x-3y.因为每本笔记本比每支圆珠笔贵2元,即x--y=2,所以3x-3y=6.答:小明比小红多花费了6元钱.10. D 11. B 12.2—m13.(2m—6n) 解析:种植时令蔬菜的地的面积为6m+2n−[(3m+6n)+13(3m+6n)]=6m+2n-4m-8n=(2m—6n) (亩).14.解:(1)原式=b+3a--4+10b--1+2b+a=13b+4a--5.当a=2,b=1时,原式=13×1+4×2-5=13+8-5=16.(2)因为a 为最大的负整数,b为最小的正整数,所以 a=--1,b=1.原式=2ab+ 3a²b+6ab²−(3a²b−2+2ab+4ab²)=2ab+3a²b+6ab²−3a²b+2−2ab−4ab²=2ab²+2.当a=-1,b=1时,原式= 2×(−1)×1²+2=0.15.解:(1)因为A=2a²+3ab−2a−1,B=a²+ab+1,所以. A−2B=2a²+3ab−2a−1−2(a²+ab+1)=2a²+3ab−2a−1−2a²-2ab-2=ab-2a-3.(2)因为A-2B=(b-2)a-3,式子的值与a 的取值无关,所以b-2=0.所以b=2.16.解:(1)3x+10 90-4x(2)购买 100 件奖品的总费用为 22x +15(3x+10)+5(90-4x)=(47x+600)元.(3)当x=10时,总费用为 47×10+600=1070(元).答:共需花费1070元.第 3课时整式的加减1. B2. C3. C4.解:(1)原式=x²−2x.(2)原式=14x²−13y².(3)原式=−ab².5.解:(1)整式N=3x²+2x+1+(−4x²+2x−5)=3x²+2x+1−4x²+2x−5=−x²+4x−4.(2)当x=-2时,N=-4-8-4=-16.6. D7.3b8.解:(1)这个长方形的周长为2(7a--4b+5)+2(2b--a+1)=14a--8b+10+4b-2a+2=12a-4b+12.(2)因为3a--b=5,则4(3a--b)=12a-4b=20.所以该长方形的周长为 12a-4b+12=20+12=32.9. A 10. C 11. a-b 12.12xy13.解:(1)原式=1−(6xy−8xy+4−x²y)+4x²y=1−6xy+8xy−4+x²y+4x²y=2xy−3+5x²y,(2)原式=−13a3b+13ab+ab3−12ab+12b−12b+13a3b=−16ab+ab3.当a=2,b=1时,原式=−16×2×1+2×13=53.14.解: (8m−5n)−12(3m−n)=132m−92n.当m=10,n=8时, 132m−92n=132×10−92×8=65−36=29.答:中途上车的乘客有(132m−92n)人.当m=10,n=8时,中途上车的乘客有29人.15.解:(1)1(2)因为a-b=-3,所以-5a+5b=--5×(--3)=15.所以原式=3×(-3)+15+5=11.(3)因为a²+2ab=−2,ab−b²=−4,所以2a2+4ab=−4,12b2−12ab=−4×(−12)=2.则原式=2a2+4ab−12ab+12b2=−4+2=-2.。

人教版七年级数学上册第二章 整式的加减同步练习(含答案)

人教版七年级数学上册第二章 整式的加减同步练习(含答案)

第二章 整式的加减一、单选题1.代数式225a b -,用语言叙述准确的是( )A .a 与5b 的平方差B .a 的平方减5乘b 的平方C .a 的平方与b 的平方的5倍的差D .a 与5b 的差的平方 2.单项式-3πxy²z³的系数和次数分别是(). A .-3π,5 B .-3,6C .-3π,6D .-3,7 3.关于整式的概念,下列说法正确的是() A .3267x y π-的系数是67-B .233xy 的次数是6C .3是单项式D .27xy xy -+-是5次三项式 4.已知62m n -与25y x m n 是同类项,则() A .2x =,1y = B .1x =,3y =C .32x =,6y =D .3x =,1y =5.下列计算正确的是( )A .-2a +5b =3abB .-22+│-3│=7C .3ab 2-5b 2a =-2ab 2D .-5÷3×(-13)=5 6.下列各题去括号错误的是( )A .m a b c m a b cB .m a b c m a b cC .()m a b c m a b c ---+=-+-D .m a b c m a b c7.当多项式()()225x 21231m x n x ---+--不含二次项和一次项时,mn 的值为( ) A .4 B .43- C .34 D .38.如果22622,63M x x N x x =++=-+-,那么M 与N 的大小关系是( ) A .M N > B .M N < C .M N D .无法确定 9.观察下列图形中点的个数,若按其规律再画下去,可以得到第5个图形中所有点的个数为( )A .16个B .25个C .36个D .49个10.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个A .1B .2C .3D .4二、填空题 11.单项式2527x y -的系数是m ,次数是n ,则mn =_______. 12.若单项式12m xy -与232n x y --的和为0,则m n -的值是_____.13.多项式M 加上237x x -+的和为2524,x x +-则这个多项式M 为_________. 14.如图,四张大小不一的四方形纸片分别放置于矩形的四个角落,其中①和②纸片既不重。

人教版七年级数学上册第二章整式的加减法练复习试题二(含答案) (17)

人教版七年级数学上册第二章整式的加减法练复习试题二(含答案) (17)

人教版七年级数学上册第二章整式的加减法练习题二(含答案)有这样一道题,计算(2x 4﹣4x 3y ﹣x 2y 2)﹣2(x 4﹣2x 3y ﹣y 3)+x 2y 2的值,其中x=2,y=﹣1,甲同学把“x=2”错抄成“x=﹣2”,但他计算的结果也是正确的,请用计算说明理由.【答案】2y 3,理由见解析.【解析】【分析】原式去括号合并后,把x=2”与“x=-2”都代入计算,即可作出判断.【详解】解:原式=2x 4-4x 3y-x 2y 2-2x 4+4x 3y+2y 3+x 2y 2=2y 3,不再含有x , 当y=-1时,原式=-2.故“x=2”错抄成“x=-2”,但他计算的结果也是正确的.【点睛】此题考查整式的加减-化简求值,熟练掌握运算法则是解本题的关键.62.计算:(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)357()(24)468--+⨯- (3)8x 2-4(2x 2+3x -1)(4) 5x 2-2(3y 2-5x 2)+(-4y 2+7xy)【答案】(1)14;(2)17;(3)-12x+4;(4)15x 2-10y 2+7xy.【解析】(1)把除法改为乘法,进行乘法运算,注意要先定符号,后算绝对值;(2) 运用乘法分配律简算;(3)、(4)原式去括号合并即可得到结果;【详解】解:(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭=16-2=14;(2)方法一:()35724468⎛⎫--+⨯- ⎪⎝⎭=()()()357242424468-⨯--⨯-+⨯- =18+20-21=17; 方法二()35724468⎛⎫--+⨯- ⎪⎝⎭= -(357242424468-⨯-⨯+⨯) =—(-18-20+21)=17;(3)原式=8x 2-8x 2-12x+4=-12x+4;(4)原式=5x 2-6y 2+10x 2-4y 2+7xy=(5+10)x 2+(-6-4)y 2+7xy=15x 2-10y 2+7xy .本题考查有理数和整式的混合运算,解题技巧是仔细注意观察题目中数字构成的特点和规律,运用运算定律或运算技巧,进行简便计算.63.(1)4342(1)(10.5)(2)2(3)⎡⎤---⨯-⨯--⎣⎦(2)2222()3()4x y xy x y xy x y +---其中15x =-,10y = 【答案】(1)15;(2)- 5x 2y+5xy - 12【解析】【分析】(1)根据有理数的混合运算法则分别进行计算,先算乘方,再去括号,然后合并即可;(2)首先去掉括号,然后合并同类项,求出最简结果,然后代入数值计算即可求出结果.【详解】(1)()()()()4342110.5223⎡⎤---⨯-⨯--⎣⎦, =1-1168⨯⨯(2-9), =1+14,=15;(2)2(x 2y+xy )-3(x 2y-xy )-4x 2y ,=2x 2y+2xy-3x 2y+3xy-4x 2y ,=-5x 2y+5xy ,当x=15-,y=10时,原式=-5×(15-)2×10+5×(15-)×10=-12. 【点睛】主要考查的是整式的加减运算,主要利用合并同类项化简多项式,然后代入数值计算即可.64.计算与化简:(1)|﹣2|÷(﹣53)+245 (2)﹣|﹣9|÷(﹣3)2+(12﹣23)×12﹣(﹣1)2019 (3)已知:A =3x 2﹣4xy+2y 2,B =x 2+2xy ﹣5y 2,若2A ﹣B+C =0,求C .(4)先化简,再求值:2(a 2b+32ab 2)﹣(4a 2b ﹣2ab 2)﹣3(ab 2﹣2a 2b),其中(2a ﹣4)2+|b+4|=0【答案】(1)2;(2)-2;(3)225109x xy y -+-;(4)()22ab a b +,0.【解析】【分析】(1)首先去掉绝对值符号以及化简乘方,再算除法,最后算加减从而得出答案;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(3)根据2A-B+C=0,得到C=B-2A ,将A 与B 代入计算即可求出值;(4) 原式去括号合并得到最简结果,再由()22440a b -++=求出a ,b 的值,最后把a 与b 的值代入化简结果中计算即可求出值.【详解】(1)原式=316255⎛⎫⨯-+ ⎪⎝⎭ =61655⎛⎫-+ ⎪⎝⎭=2(2)原式=99681-÷+-+= -1+6-8+1=﹣2(3)∵20A B C -+=∴2C B A =-把 A =22342x xy y -+,B =2225x xy y +-代入得()2222252342C x xy y x xy y =+---+,222225684x xy y x xy y =+--+-, 225109x xy y =-+-;(4)原式=222222234236a b ab a b ab ab a b +-+-+=2242a b ab +=()22ab a b +∵()22440a b -++= ∴2a =,4b =-代入上式得原式=()()224224⨯⨯-⨯-=160-⨯=0【点睛】此题主要考查了有理数的混合运算以及整式的化简求值,熟练掌握运算法则是解题关键.65.化简()()2327322+---a a a a 【答案】24a a --【解析】【分析】原式去括号合并得到最简结果.【详解】原式:222372644a a a a a a =--+-=-- 【点睛】本题考查的知识点是整式的加减—化简,解题的关键是熟练的掌握整式的加减—化简.66.先化简,再求值:(x+y )(x ﹣y )+(2x 3y ﹣4xy 3)÷2xy ,其中x =﹣1,y =2.【答案】﹣10.【解析】【分析】首先利用整式的乘法以及除法运算法则化简,进而合并同类项,最后代入求出即可.【详解】解:原式=x 2﹣y 2+x 2﹣2y 2,=2x 2﹣3y 2,当x =﹣1,y =2时,原式=2x 2﹣3y 2,=2×(﹣1)2﹣3×22,=﹣10.故答案为-10.【点睛】本题主要考查了整式的混合运算,正确利用整式的乘法以及除法运算法则是解题关键.67.化简并求值:2ab﹣[ab2(ab﹣ab2)],其中a=﹣1,b=2.【答案】2ab﹣a2b3+a2b4,原式=4.【解析】【分析】先根据整式的混合运算顺序和运算法则化简原式,再代入求值可得【详解】解:原式=2ab﹣(a2b3﹣a2b4)=2ab﹣a2b3+a2b4,当a=﹣1,b=2时,原式=2×(﹣1)×2﹣(﹣1)2×23+(﹣1)2×24=﹣4﹣8+16=4.【点睛】本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和运算法则是解题的关键.68.小明化简(4a2-2a-6)-2(2a2-2a-5)的过程如下,请指出他化简过程中的错误,写出对应的序号,并写出正确的化简过程.解:(4a2-2a-6)-2(2a2-2a-5)=4a2-2a-6-4a2+4a+5 …①=(4-4)a2+(-2+4)a+(-6+5) …②=2a-1 …③他化简过程中出错的是第步(填序号),正确的解答是:【答案】①,解答见详解.【解析】【分析】观察可知在第①步去第二个括号时最后一个数-5漏乘了;正确的解答是先去括号,然后再合并同类项即可.【详解】他化简过程中出错的是第①步,故答案为①;正确的解答是:(4a2-2a-6)-2(2a2-2a-5)=4a2-2a-6-4a2+4a+10=(4-4)a2+(-2+4)a+(-6+10)=2a+4.【点睛】本题考查了整式的加减,熟练掌握去括号法则以及合并同类项法则是解题的关键.69.先化简,再求值:3(x2y+2xy)+2(x2y﹣2xy)﹣5x2y,其中x=14,y=﹣8.【答案】2xy;-4.【解析】【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【详解】原式=3x2y+6xy+2x2y﹣4xy﹣5x2y=2xy,当x=14,y=﹣8时,原式=﹣4.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解题的关键.70.已知多项式2x2+25x3+x﹣5x4﹣13.(1)请指出该多项式是几次几项式,并写出它的二次项、一次项和常数项;(2)按要求把这个多项式重新排列:①按x的降幂排列;②按x的升幂排列.【答案】(1)该多项式是四次五项式,它的二次项是2x2,一次项是x,常数项是﹣13;(2)①﹣5x4+25x3+2x2+x﹣13;②﹣13+x+2x2+25x3﹣5x4.【解析】【分析】(1)分别利用多项式的次数以及各项名称和多项式的项数定方法求出即可;(2)根据多项式的升幂、降幂排列,即可解答.【详解】(1)该多项式是四次五项式,它的二次项是2x2,一次项是x,常数项是-13;(2)①按x降幂排列为:-5x4+25x3+2x2+x-13;②按x的升幂排列为:-13+x+2x2+25x3-5x4.【点睛】本题考查了多项式的定义,正确掌握多项式的系数与次数判定方法及熟记多项式的升幂、降幂排列是解题的关键.。

人教版七年级数学上册同步练习试题第2章第2节 整式的加减(含答案)【推荐】.doc

人教版七年级数学上册同步练习试题第2章第2节 整式的加减(含答案)【推荐】.doc

七年级数学(人教版上)同步练习第二章第二节整式的加减一. 本周教学内容:整式的加减二. 知识要点:1. 知识点概要(1)理解同类项的概念,掌握判别同类项的依据。

(2)理解去括号法则,能准确、熟练地去括号。

(3)理解添括号法则,能根据要求正确地添加括号。

(4)理解合并同类项的法则,能正确地合并同类项(5)熟练掌握数与整式相乘的运算,能进行整式的加减运算。

(6)会用字母表示代数式,运用整体代换的方法进行整式的加减运算及求值。

2. 重点难点(1)判别同类项。

(2)去括号、添括号。

(3)合并同类项。

(4)整式加减。

三. 考点分析:(一)同类项1. 同类项的概念:所含字母相同,并且相同字母的次数也分别相等的项叫做同类项。

2. 同类项的识别:找相同——“所含字母相同,相同字母的指数分别相同”;避无关——“与系数、字母排列顺序无关”;常数都是同类项。

可简化为“同类项,除了系数都一样,常数都是同类项。

”3. 合并同类项的法则:把所在单项式的系数相加,所得的结果作为系数,字母和字母的指数保持不变。

(二)去括号与添括号1. 去括号法则:括号前面是“+”号,把括号与它前面的“+”号去掉,括号里的各项都不变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都变号。

此法则可简记为:“-”变“+”不变。

2. 添括号法则:所添括号前没有“+”号,括号里的各项都不变号;所添括号前面是“-”号,括号里的各项都要改变符号。

(三)整式加减1. 整式的加减,实际上就是去括号和合并同类项,进行整式加减运算的一般步骤是:(1)根据去括号法则去掉括号;(2)准确找出同类项,按照合并同类项法则合并同类项。

2. 求多项式的值时,一般先合并同类项,再求值。

【典型例题】例1. 下列各组中,不是同类项的是()。

A. y a 312与323ya B. y x 321与321xy - C. 32abx 与365bax - D. mb a 26与bm a 2-分析:要判断两个单项式是否为同类项,只需抓住两个“相同”即可:一看这两个项中所含字母是否相同;二看相同字母的指数是否相等,它与两项的系数无关,也与式中字母排列的顺序无关。

【最新】人教版七年级数学上册课后同步练习2.2整式的加减含答案.doc

【最新】人教版七年级数学上册课后同步练习2.2整式的加减含答案.doc

课后训练基础巩固1.下列各组中的两个单项式能合并的是().A .4和4xB .3x 2y 3和-y 2x3C .2ab 2和22ab D .m 和2nm2.下列各题中合并同类项正确的是().A .2x 2+3x 2=5x 4B .3x +2y =5xyC .7x 2-3x 2=4 D .9a 2b -9ba 2=0 3.下面计算正确的是().A .6a -5a =1B .a +2a 2=3a3C .-(a -b)=-a +bD .2(a +b)=2a +b4.计算6a 2-2ab -2(3a 2+12ab )所得的结果是().A .-3abB .-abC .3a2D .9a25.如果m -n =15,那么-2(n -m)的值是().A .25B .52C .25D .110能力提升6.若A =x 2-5x +2,B =x 2-5x -6,则A 与B 的大小关系是().A .A >B B .A =BC .A <BD .无法确定7.把(x -3)2-2(x -3)-5(x -3)2+(x -3)中的(x -3)看成一个因式合并同类项,结果应是().A .-4(x -3)2+(x -3) B .4(x -3)2-x(x -3) C .4(x -3)2-(x -3)D .-4(x -3)2-(x -3)8.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是().A .4m cmB .4n cmC .2(m +n)cmD .4(m -n)cm9.计算:(1)2(2a -3b)+3(2b -3a);(2)2(x 2-xy)-3(2x 2-3xy)-2[x 2-(2x 2-xy +y 2)].10.先化简,再求值.(1)-2x 3+4x -213x -(x +3x 2-2x 3),其中x =3;(2)12x -2(x -213y )+231()23xy ,其中x =-2,y =-3.11.一个多项式加上-2x3-x2y+4y3后,得x3-x2y+3y3,求这个多项式,并求当x=12,y=12时,这个多项式的值.12.七年级(1)班分成三个小组,利用星期日参加公益活动.第一组有学生m名;第二组的学生数比第一组学生人数的2倍少10人;第三组的学生数是第二组学生人数的一半.七年级(1)班共有多少名学生?13.有这样一道题:“当a=2 012,b=-2 013时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b -10a3+2 013的值.”小明说:本题中a=2 012,b=-2 013是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.参考答案1答案:C点拨:实质考查同类项概念,只有同类项才能合并,只有C 选项字母相同,相同字母的指数也相同.故选C.2答案:D 点拨:合并同类项,系数相加,字母部分(字母及其指数)不变,所以A 、B 、C 都错,系数互为相反数的同类项相加为0,D 正确.3答案:C 点拨:A.6a -5a =a ,故此选项错误; B.a 与2a 2不是同类项,不能合并,故此选项错误;C.-(a -b)=-a +b ,故此选项正确; D.2(a +b)=2a +2b ,故此选项错误;故选 C.4答案:A 点拨:去括号,6a 2-2ab -212(3)2aab =6a 2-2ab -6a 2-ab ,合并同类项得-3ab. 5答案:A点拨:-2(n -m)=2(m -n)=2×15=25,故选 A.6答案:A 点拨:求差法比较大小,A -B =(x 2-5x +2)-(x 2-5x -6)=x 2-5x +2-x 2+5x +6=8>0,差大于0,被减数大于减数,所以A >B. 7答案:D 点拨:把(x -3)看成一项,那么(x -3)2与-5(x -3)2,-2(x -3)与(x -3)就是同类项,分别合并,得-4(x -3)2,-(x -3),所以结果是-4(x -3)2-(x -3),故选 D.8答案:B 点拨:设小长方形的长为a ,宽为b ,∴上面的阴影周长为:2(n -a +m -a),下面的阴影周长为:2(m -2b +n -2b),∴总周长为:4m +4n -4(a +2b),又∵a +2b =m ,∴4m +4n -4(a +2b)=4n.9解:(1)2(2a -3b)+3(2b -3a)=4a -6b +6b -9a =4a -9a -6b +6b =-5a ;(2)2(x 2-xy)-3(2x 2-3xy)-2[x 2-(2x 2-xy +y 2)]=2x 2-2xy -6x 2+9xy -2(x 2-2x 2+xy -y 2) =-4x 2+7xy -2(-x 2+xy -y 2)=-4x 2+7xy +2x 2-2xy +2y2=-2x 2+5xy +2y 2.点拨:有括号的先去括号,再合并同类项.10解:(1)原式=-2x 3+4x -213x -x -3x 2+2x3=-2x 3+2x 3+4x -x -213x -3x2=3x -2103x .当x =3时,原式=3×3-103×32=9-30=-21.(2)原式=22123122323x xyxy=-3x +y 2.当x =-2,y =-3时,原式=-3×(-2)+(-3)2=6+9=15.点拨:对于整式加减的求值问题,如果能化简,要先化简,再求值,这样可以简化计算.必须注意:在代入求值时,如果字母的取值为负数,要添加括号.11解:由题意,得(x 3-x 2y +3y 3)-(-2x 3-x 2y +4y 3)=x 3-x 2y +3y 3+2x 3+x 2y -4y 3=3x 3-y 3;当x =12,y =12时,3x 3-y 3=3331111342222.答:这个多项式是3x 3-y 3;当x =12,y =12时,这个多项式的值是12.点拨:本题是已知和与一个加数求另一个加数,所以根据“所求多项式=和-加数”可列式计算求出,再代入求值.12解:根据题意,得m+(2m-10)+1(210) 2m=3m-10+m-5=(4m-15)(人).答:七年级(1)班共有学生(4m-15)人.点拨:由题意可知:第一组有学生m名;第二组的学生数是(2m-10)人;第三组的学生数是1(210)2m人,相加即可得到总人数.13解:7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+2 013=(7+3-10)a3+(-6+6)a3b+(3-3)a2b+2 013=2 013.∵化简后式子的值是一个常数,式子的值不变,∴a=2 012,b=-2 013是多余的条件,故小明的观点正确.点拨:需要通过计算说明,数学说理要严谨.。

人教版七年级上册数学第二单元 整式的加减 单元测试卷2(Word版,含答案)

人教版七年级上册数学第二单元 整式的加减 单元测试卷2(Word版,含答案)

人教版七年级上册数学第二单元 整式的加减 单元测试卷2一.选择题(每题4分,共40分)1. 在多项式-3x 3-5x 2y 2+xy 中,次数最高的项的系数为( )A.3B.5C.-5D.1 2.若m-n=-1,则(m-n)2-2m+2n 的值为( )A.-1B.1C.2D.33.下列计算正确的是( ).(A )x x 1248=+ (B )y y =-44 (C )y y y =-34 (D )33=-x x4.有一捆粗细均匀的电线,现要确定它的长度.从中先取出1m 长的电线,称出它的质量为a ,再称出其余电线的总质量为b ,则这捆电线的总长度是( )A .(ab+1)mB .(b a -1)mC .(b a +1)mD .(b a a++1)m 5.下列说法中,正确的是( )A .-234x 的系数是34B .232a 的系数是32C .3a 2b 的系数是3aD .25x 2y 的系数是25 6.若多项式12 x |m|-(m -4)x +7是关于x 的四次三项式,则m 的值是( )A.4B .-2 C.-4 D .4或-47.某药店在市场上抗病毒药品紧缺的情况下,将某药品提价100%,物价部门查处后,限定其提价幅度只能是原价的10%,则该药品现在降价的幅度是( )A.45% B .50% C .90% D .95%8.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长为2b 的小正方形后,再将剩下的三块拼成一块长方形,则这块长方形较长的边长为( )A.3a +2bB.3a +4bC.6a +2bD.6a +4b9.当1<a<2时,式子|a-2|+|1-a|的值是()A.-1B.C.3D.-310.设M=x2+8x+12,N=-x2+8x-3,那么M与N的大小关系是()A.M>NB.M=NC.M<ND.无法确定二.填空题(每题4分,共20分)7a b的次数是.11.单项式3212.已知m2﹣2m﹣1=0,则2m2﹣4m+3= .13.若a-b=3,ab=2,则a2b-ab2= .14.代数式a2+a+3的值为8,则代数式2a2+2a﹣3的值为.15.甲、乙二人一起加工零件.甲平均每小时加工a个零件,加工2小时;乙平均每小时加工b个零件,加工3小时.甲、乙二人共加工零件个.三.解答题(每题10分,共50分)16.化简:(1)(8x-7y)-2(4x-5y);(2)-(3a2-4ab)+[a2-2(2a2+2ab)].。

人教版七年级数学上册第二章整式的加减专题训练试题(解析版)

人教版七年级数学上册第二章整式的加减专题训练试题(解析版)

人教版七年级数学上册第二章整式的加减专题训练考试时间:90分钟;考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、下列式子中a ,﹣23xy 2,29x y-+,0,是单项式的有()个.A.2B.3C.4D.52、若3223323M x x y xy y =-++,322325N x x y xy y =-+-,则322327514x x y xy y -++的值为().A.M N+B.M N-C.3M N-D.3N M-3、观察下面一列有序数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按这些规律,第50个有序数对是()A.(3,8)B.(4,7)C.(5,6)D.(6,5)4、已知一个多项式与239x x +的和等于2541x x +-,则这个多项式是()A.28131x x +-B.2251x x -++C.2851x x -+D.2251x x --5、下列去括号错误的个数共有().①222(33)233y x y z y x y z --+=--+;②229[(54)]954x y z x y z --+=-++;③4[6(51)]4651x y z x y z +-+-=--+;④(92)(4)924x y z x y z -+++=----.A.0个B.1个C.2个D.3个6、下列代数式中单项式共有()2312314,,,0.3,,,,0,353a b m ax b r a x y ππ+--+-.A.2个B.4个C.6个D.8个7、下列不能用4m 表示的是()A.葡萄的价格是4元/千克,买kg m 葡萄的价钱B.一个正方形的边长是m ,这个正方形的周长C.甲平均每小时加工m 个零件,4h 后共加工的零件个数D.若4和m 分别表示一个两位数中的十位数字和个位数字,表示这个两位数8、用代数式表示:a 的2倍与3的和.下列表示正确的是()A.2a -3B.2a +3C.2(a -3)D.2(a +3)9、下列运算中,正确的是()A.3x+4y=12xy B.x 9÷x 3=x 3C.(x 2)3=x6D.(x﹣y)2=x 2﹣y210、下列是按一定规律排列的多项式:﹣x +y ,x 2+2y ,﹣x 3+3y ,x 4+4y ,﹣x 5+5y ,x 6+6y ,…,则第n 个多项式是()A.(﹣1)nxn +ny B.﹣1nxn +nyC.(﹣1)n +1xn +nyD.(﹣1)nxn +(﹣1)nny第Ⅱ卷(非选择题70分)二、填空题(5小题,每小题4分,共计20分)1、已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数 ,x y ,代数式 2A B -的值不变,则12()(2)33a Ab B ---的值是_______.2、某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、5元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q =______;(2)若共购进3510⨯本甲种书及3310⨯本乙种书,Q =______(用科学记数法表示).3、多项式2333325467a c bc ab a -+--最高次项为__________,常数项为__________.4、多项式112510m x x -+-是关于x 的四次三项式,则m =________________5、去括号:3254(1)a a a ⎡⎤---=⎣⎦________.三、解答题(5小题,每小题10分,共计50分)1、如图,用字母表示图中阴影部分的面积.2、已知230a b -++=,试求:(1)a b +的值;(2)a b +的值.3、化简求值:132(41)(34)2x x x +-+--,其中12x =-.4、化简:(1)4xy -(3x 2-3xy )-2y +2x 2(2)(a+b)-2(2a-3b)+3(a-2b)5、探究规律题:按照规律填上所缺的单项式并回答问题:(1)a,﹣2a2,3a3,﹣4a4,,;(2)试写出第2017个和第2018个单项式;(3)试写出第n个单项式;(4)当a=﹣1时,求代数式a+2a2+3a3+4a4+…+99a99+100a100+101a101的值.-参考答案-一、单选题1、B【解析】【分析】根据单项式的定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式进行逐一判断即可.【详解】解:式子中a,﹣23xy2,29x y-+,0,是单项式的有a,﹣23xy2,0,一共3个.故选B.【考点】本题主要考查了单项式的定义,解题的关键在于能够熟练掌握单项式的定义.2、C【解析】【分析】分别计算:M N +,M N -,3M N -,3N M -化简后可得答案.【详解】解:32232532M N x x y xy y +=-+-,故A 不符合题意;2238M N x y xy y -=-++,故B 不符合题意;322332233396925M N x x y xy y x x y xy y -=-++-+-+3223=27514x x y xy y -++,故C 符合题意;322332233=36315323N M x x y xy y x x y xy y --+--+--3223=2318x x y xy y -+-,故D 不符合题意;故选:.C 【考点】本题考查的是整式的加减运算,掌握合并同类项的法则与去括号的法则是解题的关键.3、C 【解析】【分析】不难发现横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,根据此规律即可知第50个有序数对.【详解】观察发现,横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,12345678945++++++++= ,∴第46、47、48、49、50个有序数对依次是()1,10、()2,9、()3,8、()4,7、()5,6.所以C 选项是正确的.【考点】本题主要考查了点的坐标探索规律题,找出有序数对的横、纵坐标变化规律是解决问题的关键.4、D 【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】解:根据题意列得:2541x x +--(239x x +)=2251x x --,故选D.【考点】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.5、D 【解析】【分析】根据整式加减的计算法则进行逐一求解判断即可.【详解】解:①222(33)233y x y z y x y z --+=-+-,故此项错误;②229[(54)]954x y z x y z --+=-++,故此项正确;③4[6(51)]4651x y z x y z +-+-=-+-,故此项错误;④(92)(4)924x y z x y z -+++=--++,故此项错误;故选D.【考点】本题主要考查了整式的加减运算,解题的关键在于能够熟练掌握相关知识进行求解.6、C 【解析】【分析】根据单项式的定义,即可得到答案.【详解】解:2312314,,,0.3,,,,,0,353a b m ax b r a x y ππ+--+-中,单项式有,m -30.3,,,5b π-340,3r π,共6个,故选C.【考点】本题主要考查单项式的定义,掌握“数字和字母,字母和字母的乘积叫做单项式,单独的字母和数字也叫单项式”是解题的关键.7、D 【解析】【分析】对选项逐个计算,查看是否为4m 即可.【详解】解:A.m 千克葡萄的价钱是4m ,不合题意;B.正方形的周长是4m ,不合题意;C.甲4h 后共加工4m 个零件,不合题意;D.这个两位数是410m ⨯+,也就是40m +,符合题意.故选D.【考点】此题考查了根据题意列代数式,解题的关键是理解题意.8、B 【解析】【分析】a 的2倍与3的和也就是用a 乘2再加上3,列出代数式即可.【详解】9、C 【解析】【分析】直接应用整式的运算法则进行计算得到结果【详解】解:A、原式不能合并,错误;B、原式=6x ,错误;C、原式=6x ,正确;D、原式=22x 2xy y -+,错误,故选:C.【考点】整式的乘除运算是进行整式的运算的基础,需要完全掌握.10、A 【解析】【分析】从三方面(符号、系数的绝对值、指数)总结规律,再根据规律进行解答便可.【详解】解:按一定规律排列的多项式:﹣x +y ,x 2+2y ,﹣x 3+3y ,x 4+4y ,﹣x 5+5y ,x 6+6y ,…,则第n 个多项式是:(﹣1)nxn +ny ,故选:A .【考点】本题考查的是整式中的多项式的规律探究,掌握探究的方法是解题的关键.二、填空题1、-2【解析】【分析】先根据代数式 2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可.【详解】222(251)2(34)A B x ax y x x by -=+-+-+--222512628x ax y x x by =+-+--++(6)(25)9a xb y =-+-+∵对于任意有理数 ,x y ,代数式 2A B -的值不变∴60,250a b -=-=,29A B -=56,2a b ∴==∵121()(2)2(2)333a Ab B a b A B ---=---∴原式=51629653223-⨯-⨯=--=-故答案为:-2【考点】本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.2、4m +5n43.510⨯【解析】【分析】(1)根据题意列代数式即可;(2)根据题意列出算式进行化简即可.【详解】解:(1)由题意,得Q =4m +5n ;(2)Q =4×3510⨯+5×3310⨯=20×310+15×310=35×310=43.510⨯.故答案为:4m +5n ,43.510⨯.【考点】本题考查了整式中的列代数式,科学记数法的运算,正确地理解能力和计算能力是解决问题的关键.3、35ab 4-【解析】【分析】根据多项式的项数和次数的确定方法即可求出答案.【详解】多项式2333325467a c bc ab a -+--各项分别是:22a c ,37bc -,35ab ,4-,336a -最高次项是35ab ,常数项是4-.故答案为:35ab ,4-.【考点】本题主要考查了多项式的有关定义,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.4、5【解析】【分析】根据多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:∵多项式1110m x -+2x -5是关于x 的四次三项式,∴m ﹣1=4,解得m =5,故答案为:5.【考点】此题考查的是多项式的次数,掌握多项式的次数的定义是解决此题的关键.5、32541a a a -+-【解析】【分析】先去小括号,再去中括号.括号外为负,则括号内每项均要变号;括号外为正,则直接去括号即可.【详解】原式()3232541541a a a a a a =--+=-+-.故答案为:32541a a a -+-.【考点】本题考查的知识点是去括号的方法,解题关键是注意从外到内去括号.三、解答题1、阴影部分的面积为mn pq-【解析】【分析】根据阴影部分面积=大长方形面积-空白部分长方形面积进行求解即可.【详解】解:由题意得:==S S S mn pq --阴影大长方形空白长方形,∴阴影部分的面积为mn pq -.【考点】本题考查列代数式,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.2、(1)﹣1;(2)5【解析】【分析】(1)由非负数的性质可求得a 、b 的值,然后将a 、b 的值代入a b +即可;(2)由非负数的性质可求得a 、b 的值,然后分别求得a 、b 的绝对值,最后带入计算即可.【详解】解:(1)∵230a b -++=,∴20a -=,30b +=,∴2a =,3b =-,∴()+231a b =+-=-;(2)∵2a =,3b =-,∴2=a ,3=3b =-,∴=2+3=5a b +.【考点】本题主要考查的是求代数式的值、求一个数绝对值、非负数的性质,几个非负数的和为0,这几数都为0.3、132x -+,2【解析】【分析】利用去括号法则先化简再求值.【详解】解:原式338222x x x =-+-+132x =-+,把12x =-代入上式得,原式2=.【考点】此题主要考查学生利用去括号法则先化简再求值的能力,学生做这类题时要认真细心.4、(1)-x 2+7xy -2y ;(2)b-3a .【解析】【分析】(1)去括号,根据合并同类项法则计算;(2)去括号,根据整式的加减混合运算法则计算.(1)解:4xy -(3x 2-3xy )-2y +2x 2=4xy -3x 2+3xy -2y +2x2=-x 2+7xy -2y ;(2)解:(a +b )-2(2a -3b )+3(-2b )=a +b-4a +6b-6b=b-3a .【考点】本题考查的是整式的加减,掌握整式的加减运算法则是解题的关键.5、(1)55a ,66a -;(2)20172017a ,20182018a -;(3)1(1)n n a +-;(4)51-【解析】【分析】(1)根据规律找出系数和次数的规律即可;(2)根据(1)的规律即可求得第2017个和第2018个单项式;(3)根据(1)的规律写出第n 个单项式;(4)将1a =-代入求值即可【详解】(1)根据规律第5个单项式为55a ,第6个单项式为66a -故答案为:55a ,66a -(2)第2017个和第2018个单项式分别为20172017a ,20182018a -(3)系数的规律:第n 个对应的系数是1(1)n n +-⨯,指数的规律:第n 个对应的指数是n ,∴第n 个单项式是1(1)n n a +-,(4)当a =﹣1时,a +2a 2+3a 3+4a 4+…+99a 99+100a 100+101a 1011234100101=-+-+-+-……()()()123499100101=-++-+++-+- (50101)=-51=-【考点】此题考查单项式的规律探索,分别找出单项式的系数和指数的规律是解决此类问题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学上册整式的加减同步练习2 一﹨填空题 1.3xy 与-3xy 的差是_____.
2.一个多项式减去5ab -3b 2等于2a 2-2ab +b 2,这个多项式是_____.
3.[( )+2a -3]+[-3a 2-2a +( )]=a 2-1.
4.被减式为32x 2-43+21x ,差式为-10-x 2+3x ,则减式为_____.
5.2x 2y m 与-3x n y 是同类项,则m =_____,n =_____.
6.三个连续自然数,设中间一个为x ,则这三个连续自然数的和为_____.
7.某同学计算“15+2ab ”的值时,把中间的运算符号“+”看成“-”,从而得出其值为7,那么,它的正确值应为_____.
8.实数a ﹨b ﹨c 在数轴上的对应点如图1,化简a +|a +b |-|b -c |-|b +c -a |=_____.
图1
9.如图2,一块长a 米,宽b 米的矩形土地开出两条宽都是2米的小路,则S 1_____S 2(填>﹨<或=),两条小路浪费的土地面积是_____.
图2
二﹨选择题
10.计算(3a 2-2a +1)-(2a 2+3a -5)的结果是( )
A.a 2-5a +6
B.a 2-5a -4
C.a 2+a -4
D.a 2+a +6 11.长方形的一边长为2a +b ,另一边比它大a -
21b ,则周长为( ) A.10a +3b
B.5a +b
C.7a +b
D.10a -b
12.若a <0,b >0,且|a |<|b |,则下列整式的值中为负数的是( )
A.a +b
B.a -b
C.b -a
D.|a -b |
13.一个多项式加上ab -3b 2等于b 2-2ab +a 2
,则这个多项式为( ) A.4b 2-3ab +a 2 B.-4b 2+3ab -a 2
C.4b 2+3ab -a 2
D.a 2-4b 2-3ab 三﹨解答题
14.计算
(1)-35ab 3+2a 3b -29a 2b -ab 3-21
a 2
b -a 3b (2)(7m 2-4mn -n 2)-(2m 2-mn +2n 2)
(3)-3(3x +2y )-0.3(6y -5x )
(4)(31
a 3-2a -6)-21(21
a 3-4a -7)
15.求下列整式的值
(1)2a -3(a -2b )-[1-5(2a -b )],其中a =1,b =-5.
(2)5x 2-[(x 2+5x 2-2x )-2(x 2-3x )],其中x =-0.5.
16.已知A =a 3-2a 2b +ab 2,B =3a 2b +2ab 2-a 2,且A =2B +C ,求C .
参考答案
一﹨1.6xy 2.2a 2+3ab -2b 2 3.4a 2 2 4.4
37
2535
2+-x x 5.1 2 6.3x 7.23 8.b -a 9.= 4b 米2
二﹨10.A 11.A 12.B 13.A
三﹨14. (1)-38
ab 3+a 3b -5a 2b (2)5m 2-3mn -3n 2
(3)-7.5x -7.8y (4)25
1213-a
15.(1)9a +b -1 当a =1,b =-5时 原式=3
(2)x 2-4x 当x =-0.5时 原式=-47
16.a 3-8a 2b -3ab 2+2a 2。

相关文档
最新文档