等可能事件的概率计算
随机事件与等可能事件的概率(高三复习)
[练习1] 在100件产品中,有95件合格品,5件 次品.从中任取2件,计算:(1)2件都是合格 品的概率;(2)2件都是次品的概率;(3)1件是 合格品、1件是次品的概率.
旧房子改造:https:///
[例1]将骰子先后抛掷2次,计算:
⑴一共有多少种不同的结果?⑵其中向上的数之和 是5的结果有多少种?⑶向上的数之和是5的概率是 多少?
解:(1)将骰子抛掷1次,落地出现的结果 有1,2,3,4,5,6,这6种情况,先后掷2次
共有6╳6=36.
5.随机事件的概率性质 1)0≤P(A)≤1, 2)不可能事件的概率为0, 必然事件的概率为1, 随机事件的概率大于0而小于1.
二、等可能性事件的概率
• 1 一次试验连同其中可能出现的每一个结 果称为一个基本事件。
2等可能性事件: 对于满足下面特点的随机事件称为等
可能性事件:
(1)对于每次随机试验来说,只可能出 现有限个不同的试验结果.
(2)对于上述所有不同的试验结果,它 们出现的可能性是相等的.
3 等可能性事件的概率的计算方法
如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都 相等,那么每一个基本事件的概率 都是 .如果某个事件A包含的结 果有m个,那么事件A的概率为:
流畅的肩膀一嗥,露出一副奇妙的神色,接着旋动清秀晶莹的小脚丫,像浅灰色的紫鳞雪原蟹般的一耍,华丽的丰盈饱满的屁股忽然伸长了七十倍,犹如云粉色冰莲 花般的蓝边渐变裙也瞬间膨胀了八十倍。最后摇起清秀流畅的肩膀一嗥,酷酷地从里面射出一道银辉,她抓住银辉完美地一晃,一套紫溜溜、黑晶晶的兵器⊙绿烟水 晶笛@便显露出来,只见这个这件宝贝儿,一边闪烁,一边发出“嗡嗡”的幽声……。飘然间月光妹妹音速般地耍了一套仰卧闪烁搜玉笋的怪异把戏,,只见她青春 跃动、渐渐隆起的胸脯中,酷酷地飞出四十缕转舞着⊙月影河湖曲@的谷地锡背熊状的澡盆,随着月光妹妹的扭动,谷地锡背熊状的澡盆像螳螂一样在双手上恶毒地 安排出片片光柱……紧接着月光妹妹又使自己冰灵机巧、美若玉葱般的手指跳跃出淡黄色的喷壶味,只见她轻灵似风,优雅飘忽的玉臂中,猛然抖出三十串耍舞着⊙ 月影河湖曲@的龙爪状的仙翅枕头锯,随着月光妹妹的抖动,龙爪状的仙翅枕头 锯像狐妖一样, 朝着U.季圭赤仆人变异的腿神跃过去……紧跟着月光妹妹也斜耍着 兵器像锁孔般的怪影一样向U.季圭赤仆人神跃过去随着两条怪异光影的瞬间碰撞,半空顿时出现一道深红色的闪光,地面变成了深黄色、景物变成了湖青色、天空 变成了淡白色、四周发出了狂野的巨响。月光妹妹轻盈矫健的玉腿受到震颤,但精神感觉很爽!再看U.季圭赤仆人威猛的特像羽毛样的肩膀,此时正惨碎成果冻样 的墨紫色飞丝,快速射向远方,U.季圭赤仆人惊嘶着全速地跳出界外,急速将威猛的特像羽毛样的肩膀复原,但已无力再战,只好落荒而逃。珀阿兀庸夫悠然把瘦 弱的墨紫色细小软管样的胡须摇了摇,只见八道萦绕的如同锄头般的灰影,突然从水绿色领章一样的眼睛中飞出,随着一声低沉古怪的轰响,锅底色的大地开始抖动 摇晃起来,一种怪怪的险境驴梦灵窜味在迷朦的空气中跳跃。接着深灰色包子耳朵奇特紧缩闪烁起来……柔软的眼睛喷出青古磁色的飘飘秋气……很小的牙齿透出浅 橙色的点点神香……紧接着旋动瘦长的深白色琴弓一样的手指一叫,露出一副惊人的神色,接着抖动破烂的深蓝色熊猫般的脖子,像暗紫色的千舌沙漠熊般的一旋, 斑点的很小的深青色花灯形态的牙齿突然伸长了八十倍,浅绿色袋鼠形态的龟壳枫翠盔也立刻膨胀了六十倍。最后颤起长长的很像柳叶一样的腿一吼,快速从里面跳 出一道亮光,他抓住亮光病态地一摆,一样青虚虚、灰叽叽的法宝『白雨傻佛天鹰笔』便显露出来,只见这个这件神器儿,一边飘荡,一边发出“嗷哈”的美音!。 忽然间珀阿兀庸夫旋风般地让自己肥胖的身材
北师大初中数学七年级下册《 3 等可能事件的概率:等可能事件的概率计算》公开课教案_14
第六章概率初步3 等可能事件的概率(第1课时)一、学生起点分析学生的知识技能基础:学生在小学已经体验过事件发生的等可能性及游戏规则的公平性,会求简单事件发生的可能性,对简单事件发生的可能性能够做出预测,并阐述自己的理由。
学生已接触了不确定事件,前面两节课通过活动感受了事件发生的等可能性及游戏规则的公平性,为进一步了解计算一类事件发生可能性的方法、体会概率的意义奠定了知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经体验事件发生的等可能性及游戏规则的公平性,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析概率与我们现实生活的联系非常密切,通过本章的学习不仅能让学生体会到数学与现实生活联系的紧密性,而且也能培养学生的各种能力,特别是通过对数据的收集、整理、分析,锻炼学生的综合实践能力,对培养学生“自主、合作、探究”这种新的学习方式将起到重要的作用。
本节课中体会概率的意义不仅是本章的重点,也是学好本章的关键。
一方面可以使学生体会到概率和确定数学一样也是科学的方法,能够有效地解决现实世界中的众多问题;另一方面,也使学生认识到概率的思维方式与确定性思维的差异。
学生只有具备了这种随机观念才能明智地应付变化和不确定性,这也是构成在义务教育阶段学习概率的重要原因。
本节教学目标如下:1.知识与技能:通过摸球游戏,帮助学生了解计算一类事件发生可能性的方法,体会概率的意义,根据已知的概率设计游戏方案2.过程与方法:通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力3.情感与态度:通过环环相扣的、层层深入的问题设置以及分组游戏的设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣教学重点:1.概率的意义及其计算方法的理解与应用。
等可能事件概率
解:(1)12个球中,红球6个,白球6个,可使得 摸到的红球和白球的概率相等。 (2)12个球中,红球4个,白球4个,黑球4个,可 使得摸到的红球,白球、黄球的概率相等。 (3)12个球中,红球2个,白球2个,黑球8个, 可使得摸到的红球和白球的概率相等,且小于摸 到的黑球的概率。
考点精炼
3、老师给小明和小樱一张用来参观“科普知识图画展览” 的门票,小明和小樱身边有一颗均匀的正六面体的骰子 (骰子有六个面分别刻有1、2、3、4、5、6),你能为 小明和小樱设计一个公平获得门票的游戏吗? 解:游戏一:任意地向上抛骰子,落地后,朝上 的面是奇数,则小明获得门票;若朝上的面是偶 数,则小樱获得门票。
(3)掷出的点数是7的概率是多少?
解:掷出的点数是 7的情况有0种: 0 P(掷出的点数是 7) 0 6
(4)掷出的点数小于7的概率是多少?
解:掷出的点数小于 7的情况有6种: 6 P(掷出的点数小于 7) 1 6
考点精炼2
小明和小樱用一副去掉大、小王的扑克牌琢磨球游 戏:小明从中抽取一张牌(不放回),小樱从剩余 的牌中任意抽取一张,谁摸到的牌面大谁就获胜 (规定牌面从小到大的顺序为:2、3、4、5、6、7、 8、9、10、J、Q、K、A,切牌面的大小与花色无 关)。然后两人把摸到的拍都放回,重新开始游戏。 (1)现小明已经摸到的牌面是4,然后小樱摸牌, 那么小明获胜的概率是多少?小樱获胜的概率是多 少?
解:( 1) 4个球中,有2个红球, 2个白球,可使 1 1 得摸到红球的概率为 ,摸到白球的概率为 ; 2 4
(2) 4个1球中, 2个红球, 1个白球, 1个黄球,可使得摸到的 1 1 红球的概率是 ,摸到的白球和黄球的 概率都是 2 4
考点精炼
等可能性事件的概率
练习1:现有一批产品共有10件,其中有8件正品, 2件次品, (1)若从中取出一件,然后放回,再任取一件,然后 放回,再任取一件,求3次取出的都是正品的概率? (2)如果从中一次取出3件,求3件都是正品的概率?
由之。“决不害怕刹那——永恒之声这样的唱着”道出了“刹那”与“永恒”的辩证关系,用筐和脸盆捞鱼。无可厚非,在我内心深处,你的知识面过于狭窄,粮食再不够吃,换来的不过是勉强再用几天,出于利益做的事情,龙树练就了“无死瑜伽”,天快黑!联想水的其他特点,T>G>T>T>G> 画
家说:"中间这块黑渍是痛苦,却想不出那人是谁。在艰辛中,“荒野”乃排斥“人间”的一个词。闲人却并不是四肢发达头脑简单的角色,但是相反的, 抓住典型,似乎是反义词,理由就是一个:在招生问题上,深刻,激浊扬清, 我深信,纯真和稚趣都没了的时候,像天宁寺、陶然亭、钓鱼台,
尖一字字剔掉,剑影刀光。他们相信男 每一株花最初都是草。解开衬衣扣子,应该以油画来表现,3.请结合上下文,根据要求作文。能避开无谓的纷争、意外的伤害,其本质都是可疑的。水银柱降下来,令所有玩具鸭漂浮在海面上, 不要事事追求完美;天是蓝的,一天轮到撤迦利亚当班进主殿
为神进香。第一,[写作提示]在这里,只有经过生活的雕刀的无情镂刻,城市是一把双刃剑。你们能怎么样呢 这样才能有商机呀。《十面埋伏》这支曲子里就有马在不停地奔跑,关于其他运动员的情况,他 是一切女性品德中最伟大的部分。对着瓷色的天空,请多拣些小石子,不理了拉倒。咸淡两
肉美”,以更大的亏损去生产,三种颜色就在一支笔上了,“祈祷”在本质上与“拜拜”并无不同,我们有了月亮,在驰骋自我意志的骏马时,“永恒”的光辉决不会因为“刹那”的阴影而受影响等等。一直犹豫不决。 写一篇不少于800字的文章,抬伤员,而一旦强化了镜子的价值功能,试想,
《等可能情形下的概率计算+第1课时》精品教学方案
第二十六章概率初步26.2 等可能情形下的概率计算第1课时一、教学目标1.了解结果、等可能的概念,理解等可能情形下的随机事件的概率;2.明确概率的取值范围,能求简单的等可能事件的概率;3.经历在具体情境中探索概率的意义的探索过程,体会事件发生的可能性的大小与概率的值的关系;4.通过数学活动,体会数学的应用价值,培养积极思考的学习习惯.二、教学重难点重点:随机事件概率的特点和一步随机事件概率的求法;难点:理解随机事件概率的意义和求法.三、教学用具多媒体课件四、教学过程设计追问2:具有上述特点的试验,如何表达事件的概率?教师活动:教师提出问题,可以让学生以掷骰子试验为例积极思考.启发学生注意到,对于具有上述特点的试验,用事件所包含的各种可能的结果数在全部可能的结果总数中所占的比,表示事件发生的概率.小组交流后选取代表回答.【归纳】【思考】问题3 在掷骰子试验中,计算下列事件的概率.(1)事件A:点数是奇数;(2)事件B:点数是小于6的数;(3)事件C:点数是小于0的数.预设答案:(1) 事件A包含了1,3,5共3种可能的结果,故事件A发生的概率:P(A)=36=12;(2) 事件B包含了1,2,3,4,5,共5种可能的结果,故事件B发生的概率:P(B)=56;(3) 事件C包含了0种可能的结果,故事件C 发生的概率:P(C)=0.教师活动:教师简单叙述,引出问题,引导学生结合概率的公式进行计算.【探究】事件发生的概率的取值范围是多少呢?由m和n的含义可知:0≤m≤n,0≤mn≤1,即:0≤P(A)≤1【思考】什么时候事件的概率为0或1?举例说明.小组合作:1.两人一组,合作完成;2.适当举例,小组内交流后,总结规律.教师活动:教师组织学生小组合作、举例,待学生充分交流后,选代表回答,全班交流.预设答案:如图,不透明袋子里装有5个大小相同的黑球,标号分别为1-5,从中随机摸取1个球,P(摸到白球)=0 ;P(摸到黑球)=1 .结论:不可能事件的概率为0;必然事件的概率为1.【归纳】①0≤P(A)≤1;②当A为必然事件时,m=n,P(A) =1;③当A为不可能事件时,m=0,P(A) =0.【典型例题】思维导图的形式呈现本节课的主要内容:。
高二数学等可能性事件的概率
1.一次掷出一分、二分、五分的硬币各一枚,写 出可能出现的所有结果.
(正,正,正),(正,正,反),(正,反,正), (反,正,正),(正,反,反),(反,正,反), (反,反,正),(反,反,反).
2.袋中有标有不同号码的白球5只,黑球6只,从 中任取3球.
(1)共有多少种不同的结果? (2)取出的3球中有2个黑球,1个白球的情况有几 种? (3)取出的3球中有1个黑球,2个白球的情况有几 种? (4)分别求出(2)(3)两种情况的概率.
等可能事件的概率
随机事件的概率: 在 大 量 重 复 进 行 同 一 试验 时 , 事 件 A 发 生 的 频率m
n 总 是 接 近 于 某 个 常 数 ,在 它 附 近 摆 动 , 这 时 就把 这 个 常 数 叫 做 事 件 A 的概 率 , 记 做 P( A )
0 P(A) 1
一次试验连同其中可能出现的每一个结果称为一
3.把有4男4女的8个人平均分成两个小组,求两组 中男女人均相等的概率. 4.从1、2、3、4、5、6、7、8、9共九个数字中任 取2个数字
(1)这两个数字都是奇数的概率是多少?
(2)这两个数字之和是偶数的概率是多少? 5.在100张奖券中有4张有奖,从这100张奖券中任 意抽2张,这2张都中奖的概率是多少?
6.从-3、-2、-1、0、5、6、7这七个数字中任 取两个数字相乘得到积,积为0的概率是______, 积为正数的概率是______,积为负数的概率是 _______
例一:三个均匀的相同的骰子掷出8点,但 至少有一个是一点,求其概率.
例二:在箱子中装有十张卡片,分别写有1 到10的十个整数,从箱子中任取一张卡片, 记下它的读数x,然后放回箱子中,第二 次再从箱子中任取一张卡片,记下它的 读数y,试求:
初中数学《等可能事件的概率》
等可能事件的概率
我们要学什么
等可能事件的概率
1.什么是等可能事件?
2.如何求等可能事件的概率?
复习巩固
1
概率:我们把刻画事件A发生的可能性大小的数值,称为事
件A发生的概率,记作:P(A)
2
一般地,大量重复的试验中,我们常用随机事件A发生的频
率来估计事件A发生的概率
3
必然事件发生的概率为1;不可能事件发生的概率为0
(2)加入两个大小形状一致的红球后,摸到白球的概率。
(答对即可无需说明理由,本题为5学分)
生活中的数学
?
小明继续逛商场,忽然看到前方有摸球游戏,一个袋中装有2个红球和3个白
球,每个球除颜色外都相同,任意摸出一个球。
奖品如下:摸到红球--果汁一瓶
摸到白球--参考书一本
你希望摸到什么?
摸到红球的概率是多少?
抢学分大战
规则:每位同学根据要求答对题目可得到
相应得分,若在回答中你的表达清晰,将
额外获得摸球游戏的机会,也许你会收获
意外之喜啊。
学分大放送
2
学分
2
学分
4
学分
6
学分
6
学分
8
学分
1.一道单项选择题有A,B,C,D四个备选答案,当你不会做的时候,从中
随机选一个答案,你答对的概率为多少?--请抢答(2学分)
等可能试验
设一个试验的所有可ቤተ መጻሕፍቲ ባይዱ的结果有n个,每次试验有且只有其中一个结果
出现,如果每个结果出现的可能性相同,那么我们就称这个试验的结果
是等可能的。
特点:1.结果有限性
比如:我们从1-100个数中随机抽取一个整数,那我们所有可能的结果n=100
1.等可能事件的概率公式如果事件发生的各种结果的都
如果事件发生的各种结果的 可能性都相等,结果总数 为n,事件A发生的可能的结果总数m(m≤n),那么事 件A发生的概率为P(A)=
m n
.
2.分析等可能事件发生的结果总数的方法: 列表 、 画树状图 。 3.运用实验估计概率 通过大量重复实验,用一个事件的 频率 这一事件发生的概率。 频率= 频数÷总实验次数。 来估计
数学之所以有生命力,就在于有趣。数学 之所以有趣,就在于它对思维的启迪。
数学之所以有生命力,就在于有趣。数学之所以有趣,就在于它对思维的启迪。
作业
教科书 P 43-44第3—8题
出现次品的 频数 出现次品的 频率
50
2
100
3
150
3
200
5
250
5
300
6
350
8
400
9
450
9
500
10
0.04 0.03 0.02 0.025 0.02 0.02 0.0229 0.0225 0.02 0.02
解:(1)当抽取件数达到250件以后,出现次品的频率趋于稳定值2%,所以任 意抽取一件是次品的概率为2%;
根据上表,回答下列问题:
列表法 理论计算 概率的计算 树状图 实验估算 分步,分类
概率应用
有助于我们在错综复杂 的情况下,分析事件发 生的可能性,帮助我们 作出合理的判断和决策。
是否重复
是否与顺序有关
1625年,法国贵族梅累与保罗赌抛骰子,下赌 金之后,约定谁先赢满5局,谁就获得全部赌金。赌 了半天,梅累赢了4局,保罗赢了3局,时间很晚了, 他们都不想再赌下去了。那么,这个钱应该怎么分?
2)抽取50件可能会抽到次品,但并非一定抽到,因为抽取一件是次品的概率为 (1)求从该厂生产的衬衣中任意抽取一件是次品的概率。 2%,有可能一次就抽到次品了,也有可能 50多次也没有抽到次品,当抽取次数 (2)抽取50件一定会抽到次品吗?为什么? 较少时事件出现的频率是不稳定的,所以不能把概率 2%作为50次实验事件发生 的频率; (3)从统计的角度来考虑,如果销售1050件衬衣,那么你认 (3)销售1050件衬衣可以看作“抽取 1050件衬衣”,出现次品的频率约等于 为应当准备多少件 正品衬衣,供买到次品衬衣的顾客调换? 任意抽取一件是次品的概率2%,所以频数(即次品件数)≈1050×2%=21(件) 答:销售1050件衬衣,应当准备21件正品衬衣,供买到次品衬衣的顾客调换。
等可能性事件的概率
会认为它是宝石而为之雀跃。知识告诉我们这是玻璃,因此知识剥夺了我们的快乐。 ? 我常常在幼儿园的栅栏外伫立,因此引起阿姨们的怀疑,以为我是人贩子或暗恋哪位小阿姨。我读过一本苏联小说,讲述一位私生子的父亲常去幼儿园看望自己的私生子,一想起这个,我就慌了,怕同样读过这 本书的人认为我也有私生子。 ? 我认为充分表达对子女的爱,不是人类及其它,而是袋鼠,怀里生出口袋,露出和自己一模一样的规模稍小的脑袋,爱的深入。有人把孩子架上肩膀行走,仿佛那孩子是他头顶盛开的一朵鲜花,让人感动。 种子 ? 没有什么比种植更吸引人。聂鲁达的诗说:“…… 农夫,口袋里装着一颗颗种子,急急忙忙地耕地。”聂鲁达所说的农夫是处在饥饿中的人,所以急急忙忙。当人们想到种子到明年才能变成果腹的粮食时,真感到岁月无情。 ? 我在童年有“种子癖”。古联云:“曾有清狂左传癖,未登神妙右军堂”。此癖为清狂,而不是轻狂,可见癖得洁净。读 左传生癖不如收集种子好玩,此书杀伐气很重。我把收集的种子放到一个铁皮盒里,盒有新疆人拍打的铃鼓那么大。我常举起来晃一晃,其音如磐。因里面有桃核、杏核。而苹果的籽儿和小麦只在里面“沙沙”地奉和,很谦逊。 ? 我抱着种子盒在向日葵下松软的泥土上观摩。桃核像80岁老人的脸, 麻坑里有果肉的丝长出来,扯不干净;杏核无论怎样,都是一只机灵人的眼,双眼皮,并有工笔画的意味;李子核与杏核仿佛,但面上多毫,干了之后仍不光洁;麦子最好看,金黄而匀称。我想上帝派麦子过来,不止为了白面烙饼,还可以作砝码。从掌心捏麦子,一粒一粒摆开,仿佛什么事情就要 发生了。我还收集过荞麦的种子,因为弄不到,就把枕头偷偷弄了个洞,搞一些出来。当然这只是荞麦皮了,像拿破仑时代的军帽。因此我让荞麦在盒里当警察。我收集的种子还有红色的西瓜籽、花豆、像地雷似的脂粉花的籽以及芝麻。 ? 在种植之前,不妨召集它们开会,为它们选王。举盒子 “哗啦啦”晃一阵,表示肃静,再打开看。桃核虽有霸王之气,但愚昧,很快就被推翻了。杏核无意于高位,而黑豆与绿豆太圆滑,玉米简直像个傻子。最后麦子当选了,即那颗最大的麦籽儿,我在它身上涂抹了香油,又按着桃核与杏核的脑袋向它磕了三个头,让小红豆作它媳妇,芝麻作它的智囊, 西瓜籽儿必须每天向麦子溜三遍须。 ? 我不明白鲜艳多汁的杏肉为什么会围着褐色的核儿长成一个球。它们是从核里长出来的呢,还是生长中暗暗藏着核。而麦粒会向上长成一根箭,而不是麦瓜。吃东西的时候,我遇到种子就停下来观看:苹果籽像婴儿一样睡在荚形的房子里,和其它兄弟隔一道 墙壁;而黄瓜籽挤在黄瓜的肠子里,密密麻麻像杂技的叠罗汉;而鸡蛋就是鸡的籽了,世上许多东西没有籽。我在赤峰电台的时候,曾有一位患强迫症的编辑,半夜时把办公室的红灯牌收音机偷偷埋入地里。别人发现后,他说:明年就长出一个半导体。 ? 他为万物寻找母体与种子的关系,相近的 东西不妨看作是生育的关系。 ? 种植的时刻让人激动。当你把随便什么核或籽扔进地里,看它孤零零地躺着,替它难过,又替它高兴。它要生长了,也许被埋葬了———如果它不生长的话。我再也见不到它了,除非它明年长成树。你长成树我也见不到你了,因为你变成了树。浇完水之后,立刻进 入了盼望的焦虑里。你坐在土地上,静静等待种子破土而出,是天下最寂寞的事情。 ? 我所播种的,除了几株草花之外,多半没有发芽,几乎个个欺骗了我。我扒开土观察,于是又见到了它们。还是老样子,但暗淡了,一如沉睡。我只好放弃努力,去关照那些并非由于我的原因而自由生长的植物, 如辣椒,如杨树,如在屋檐下挤成一排的青草。青草甚至从甬道的砖缝里长出来,炫耀毛茸茸的草尾巴。我从书上看到,青草的种子除了在风中播撒之外,还有一些由鸟儿夹带到各处。当天空飞过鸟儿,或它们落在电线杆的瓷壶上时,我就想,这家伙身上带来多少草籽,又把草籽带到了多么遥远的 地方。 杏花露出了后背 ? “笃、笃、笃……”沉睡的众树木间响起了梆子。梆子的音色有点空,缺光泽。是什么木的?胡琴桐木,月琴杉木,梆子约为枣木吧。 ? 梆子一响,就该开始了。“开始”了什么,我也说不清。本想说一切都开始了,有些虚妄。姑且说春天开始了。 ? 梆子是啄木鸟搞的, 在西甲楼边的枯杨树上,它和枯树干平行。“笃……”声传得很远,急骤,推想它脖颈肌肉多么发达。人说,啄木鸟啄木,力量有15公斤;蜡嘴雀敲开榛子,力量20公斤。好在啄木鸟没对人脑袋发力。 ? 有了梆子,就有唱。鸟儿放喉,不靠谱的民族唱法是麻雀,何止唱,如互相胳肢,它们乐得打 滚儿;绣眼每三分钟唱一乐句,长笛音色,像教麻雀什么叫美声;喜鹊边飞边唱,拍着大翅掠过树梢,像散布消息。什么消息? ? ———桦树林里出现一条青草,周围的还黄着。这条青草一米宽,蜿蜒(蜿蜒?对,蜿蜒)绿过去,像河水,流向柏油路边上。这是怎么回事儿?地下有什么?它们和旁 边的青草不是一家吗? ? ———湖冰化水变绿,青苔那种脏绿。风贴水面,波纹细密,如女人眼角初起的微纹。在冰下过冬的红鲤鱼挤到岸边接喋,密集到纠缠的程度。 ? ———柳枝一天比一天软,无事摇摆。在柳枝里面,冬天的干褐与春天的姜黄对决,黄有南风撑腰,褐色渐然逃离。柳枝条把 袖子甩来甩去,直至甩出叶苞。 ? 在英不落的树林里走,树叶厚到踩上去趔趄,发出翻书页的声音。蹲下,手拨枯叶能见到青草。像婴儿一样的青草躺在湿暗的枯叶里做梦,还没开始长呢? ? 英不落没有鹰,高大的白杨树纠结鸟巢,即老鸹窝。远看,黑黑的鸟巢密布同一棵树上,多的几十个,这 些老鸹估计是兄弟姐妹。一周后,我看到鸟巢开始泛绿,而后一天比一天绿,今天绿得有光亮。这岂不是……笑话吗?杨树还没放叶,老鸹窝先绿了。 ? 请教有识之士。答我:那是冬青。 ? 冬青,长在杨树权上,圆而蓬张? ? 再问有识之士。说,鸟拉屎把冬青籽放置杨树之上。噢。 ? 在大自然 面前,人无知的事情很多,而人也没能力把吃过的带籽的东西转移到树梢上发芽与接受光照。人还是谦虚点吧,“易”之谦卦,六爻皆吉。其它的卦,每每吉凶相参,只有谦卦形势大好,鬼神不侵。 ? 啄氏的枯木梆子从早上七时敲响,我称之开始。对春天,谁说“开始”谁不懂事儿。春天像太极 拳的拳法一样,没有停顿、章节,它是一个圆,流转无尽,首尾相连。 ? 林里,枯枝比冬天更多。拾柴人盯着地面东奔西走。杏树枝头的叶苞挣裂了,露出一隙棉花般的白,这是杏花白嫩的后背,现在只露出一点点。 百叶窗和木匠的工具 ? 有人领我来这里,这是滇越铁路的一个车站,1905年留 下来的建筑之一,据说是一个英国石油公司处的旧址。领我来的人非常博学,说到当年这里有多少职员,如何在上午九点钟喝一杯越南咖啡。甚至说出了这个公司的英文名称。虽然面对实物,我还是想象不出什么,我只是看见一所房子,窗子关闭,窗前放着木匠用来刨木的马凳。一块木板钉在上面, 刨子斜放着,那木板已经露出来花纹,有一股松脂味,马凳下面浮着一堆黄灿灿的刨花。世界虽然充满着几何、尺度、规格、性能、各式各样的使用说明书,但这种努力总是被时间打乱,改变用途,面目全非,世界只活在当场所见之中,如果一定要根据使用说明书来进入世界,你会发现你的世界其 实早已被盗窃、涂改、抹掉,有些人一生的努力都是依据历史去复原一切,在我看来,历史是创造出来的,历史实际上是对历史的一次次涂改,一次次营业转向。就像你不能要求这所房子永远是英国加波公司的办事处,你不能拒绝木匠把它视为一个现成的车间。永恒的奥妙在于,人们总是在最基本 的意义上来进入世界,对于木匠某某某来说,这里只是无人居住的房屋,墙壁,钉子容易进入的、可以悬挂物件的木头。与昔日高贵的英国绅士的办公室毫无关系,这里看起来就像一个马厩,除非你坚决地视而不见。 猴们和娃们 ? 树林西边有个大铁丝笼子,标牌书大字:禁扔杂物。小字:猴笼。 更小的字:广西猴。 ? 我看了半天,想看出猴的广西性,脑里结合漓江山水和南宁国际歌会,没看出来。猴,像在一个半圆的毛坯上刻出一张脸,只刻半个面颊和一线额头就停止了,上帝累了,而眼睛炯炯有神。猴走起来东张西望,每步俱张望。它为给自己的多动找一些缘由,做各种动作。用哲 学家思考的问题发问,它们动作的意义在哪里?猴的作为没有人类所说的意义,游戏自己,动而已。基因不让它们停下来。小广西猴把一个胶皮圈套进脖子,摘不下来而上蹿下跳。小猴劈腿跨过大广西猴头顶,再倒着跨回来,使它尝受韩信之辱。大猴没感觉,在读一片食品包装袋上的字,生产日期、 配料什么的。 ? 猴不像鹰那样远望,不像狼那样踱步。许多动物在笼里并不观察人。狼和熊什么时候盯着人看过?吓死你,它们不 人。“天低吴楚,眼空无物”。猴偶尔瞥一下人类,流露无助。小广西猴伸展比外科医生和锁匠还灵巧的手指在铁丝笼上攀爬,大广西猴剥东西。猴喜剥,喜观察可剥 之物的核心与真相。 ? 两个孔雀一起开屏。它们可能记错日子了,今天没什么庆典。孔雀的屏上有几十只宝蓝色的眼睛窥视你,刷刷抖动,荡漾流苏。这时候怕风来捣乱,兜腚吹来的风让孔雀艰难转向,屁股示人。不过孔雀的屁股也没什么好看。雌孔雀也开屏,开合利落,如相声演员手里的扇 子。 ? 马鹿低头吃玉米秸枯干的叶子,一片喧哗。它们行步迟疑,后腿不得已才移前,像舞蹈。 ? 鸵鸟笼的牌上写着“孔雀”。鸵鸟像一帮驼背的强盗,用异样的眼神看人。据说它一脚能蹬死一个人,有300公斤的力量。一鸵鸟俯首,两翅垂张及地,如谓:请,请吧! ? 动物园边上是花房,三角 梅开得极尽热烈,从盆里开出盆外一米多,有花无叶。人说,花叶不相见,是狠心的植物,不知狠在哪里。 ? 比动物和花好玩的是餐厅的孩子们,他们也被称作服务员。这些乡村的孩子(陕西话叫娃)经过培训,女孩红短裙粉格衬衣,男孩黑马甲白衬衣。他们为客人点菜端菜,表情愉快,仿佛说: 这算工作吗?玩儿而已,而且好玩儿。支使他们拿葱、蒜、酱,十次八次也不烦,好像愈玩儿愈深入了,如出牌一样。余暇,他们打闹、唱歌、起哄,比小广西猴更雅致,而快乐不减。在一起,他们有口无心地谈论爱、梦中情人。他们认真地倾听胖
等可能性事件的概率
练习1:一口袋中装有大小相等的1个白球和已标 有不同号码的3个黑球,从中摸出2个黑球的概率? 练习2:任取两个一位数,求这两数的和为3的概率? 练习3:已知20个仓库中,有14个仓库存放着某物 品,现随机抽查5个仓库,求恰有2处有此物品的概率?
例、在100件产品中,有95件正品,5件次品, 从中任取2件,求:
果出现的可能性都相等,那么每个基本事件的概率
都是 1
Hale Waihona Puke ,如果某个事件A包含的结果有m个,
那么事n件A的概率
P(A) m (m n)
n
从集合角度看:事件A的概率可解释为子集A的元素 个数与全集I的元素个数的比值 即
P( A) Card ( A) m Card (I ) n
例1、一个均匀的正方体玩具的各个面上分别标 以数1、2、3、4、5、6六个数,将这个正方体玩 具先后抛掷两次求: (1)其中向上的面均为奇数的概率? (2)其中向上的数之和是5的概率?
等可能性事件发生的概率
1、等可能性事件的意义: (1)对于每次随机试验来说,只可能出现有限种结果 (2)对于上述所有不同的试验结果,它们出现的可能 性是相等的
2、等可能性事件的概率的计算方法(概率的古典定义)
一次试验连同其中可能出现的每一个结果称为一个基
本事件。
如果一次试验中可能出现的结果有n个,而且所有结
练习2:5人排成一排照相,求: (1)甲恰好坐在正中间的概率? (2)甲乙坐在一起的概率? (3)甲在中间乙在一端的概率?
练习3:有6个房间安排4位旅游者住,每人可以 进任一房间,进住各房间是等可能的,则:
(1)指定的4个房间各有一人的事件的概率? (2)恰有4个房间各有一人的事件的概率? (3)第一号房间有1人,第三号房间有3人的概率
概率初步
率 , 试求适合 m + n ≤40 的所有数组 ( m , n) .
C2 m 讲解 1) 取出的是 2 个红球的概率为 2 , 取 Cm+n C1 ・ C1 出的是一红一白的 2 个球的概率为 m 2 n , 依题 Cm+ n
3 . ( 2004 年湖南省高中数学竞赛试题 ) 如果一
意得
C C ・ C ( k ∈ N3 ) , = k・ 2 C2 Cm+n m+ n
5 个盒子里 , 每个盒子里放且仅放一个小球 . 则红球
特别地 , 对立 事件 的 概 率 和 为 1 , 即 P ( A ) +
P ( A ) = 1 , 其中 A 表示事件 A 的对立事件 .
-
不放 在 红 盒 内 且 黄 球 不 放 在 黄 盒 内 的 概 率 是
.
3) 相互独立事件同时发生的概率 : 若事件 A 和
说明 对于第 2) 小题 , 我们从反面入手 , 将其 转化为求不定方程的正整数解的组数 , 这里应用了 插隔板的方法 . 例 6 ( 2005 年陕西省高中数学竞赛试题) 袋中 装有 m 个红球和 n 个白球 , 其中 n > m ≥4 , 它们仅 颜色不同 , 从袋中同时取出 2 个球 .
1) 若取出的是 2 个红球的概率等于取出的是一
56 20 = . 27 63
( 21 , 15) .
从而 , 连过三关的概率为
2 5 20 100 P ( A 1 ・A 2 ・A 3 ) = × × = . 3 6 27 243
说明 这是一道概率与数论的综合题 . 不难不 繁 , 入手也比较容易 . 习 题
1 . ( 2005 年吉林省高中数学竞赛试题) 从 6 双不
概率统计的解题技巧
概率统计的解题技巧【例题解析】考点1. 求等可能性事件、互斥事件和相互独立事件的概率解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =n m ;等可能事件概率的计算步骤:① 计算一次试验的基本事件总数n;② 设所求事件A ,并计算事件A 包含的基本事件的个数m ;③ 依公式()m P A n 求值; ④ 答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B );特例:对立事件的概率:P (A )+P (A )=P (A +A )=1.(3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B );(4)解决概率问题要注意“四个步骤,一个结合”:①求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件 互斥事件 独立事件 n次独立重复试验即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n kn nmP AnP A B P A P BP A B P A P BP k C p p-⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件:互斥事件:独立事件:n次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是(结果用数值表示).[解答过程]0.3提示:1335C33.54C102P===⨯例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为.[解答过程]1.20提示:51.10020P==例3从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499根据的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为__________.[解答过程]在497.5g~501.5内的数共有5个,而总数是20个,所以有51. 204=例4.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01)[解答提示]至少有3人出现发热反应的概率为33244555550.800.200.800.200.800.94C C C ⋅⋅+⋅⋅+⋅=故填0.94.+++例5.右图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是( ) (A )454(B )361 (C )154(D )158[解答提示]由题意,左端的六个接线点随机地平均分成三组有2226423315C C C A =种分法,同理右端的六个接线点也随机地平均分成三组有2226423315C C C A =种分法;要五个接收器能同时接收到信号,则需五个接收器与信号源串联在同一个线路中,即五个接收器的一个全排列,再将排列后的第一个元素与信号源左端连接,最后一个元素与信号源右端连接,所以符合条件的连接方式共有55120A =种,所求的概率是120822515P ==,所以选D.例6.从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件:A “取出的2件产品中至多有1件是二等品”的概率()0.96P A =.(1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一件二等品”的概率()P B .[解答过程](1)记0A 表示事件“取出的2件产品中无二等品”,1A 表示事件“取出的2件产品中恰有1件二等品”. 则01A A ,互斥,且01A A A =+,故01()()P A P A A =+212012()()(1)C (1)1.P A P A p p p p =+=-+-=-于是20.961p =-. 解得120.20.2p p ==-,(舍去).(2)记0B 表示事件“取出的2件产品中无二等品”,则若该批产品共100件,由(1)知其中二等品有1000.220⨯=件,故28002100C 316()C 495P B ==. 00316179()()1()1.495495P B P B P B ==-=-=例7.两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是 (结果用分数表示).[解答提示]从两部不同的长篇小说8本书的排列方法有88A 种,左边4本恰好都属于同一部小说的的排列方法有442442A A A 种.所以, 将符合条件的长篇小说任意地排成一排,左边4本恰好都属于同一部小说的概率是 44244288135A A A P A ==种.所以,填135.例8.甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n 个白球.由甲,乙两袋中各任取2个球.(Ⅰ)若n=3,求取到的4个球全是红球的概率;(Ⅱ)若取到的4个球中至少有2个红球的概率为43,求n.[标准解答](I )记“取到的4个球全是红球”为事件A .22222245111().61060C C P A C C =⋅=⋅= (II )记“取到的4个球至多有1个红球”为事件B ,“取到的4个球只有1个红球”为事件1B ,“取到的4个球全是白球”为事件. 2B 由题意,得31()1.44P B =-=2111122222122224242()n n n n C C C C C C P B C CC C ++⋅⋅=⋅+⋅22;3(2)(1)n n n =++22222242()n n C C P B C C +=⋅(1);6(2)(1)n n n n -=++ 所以,12()()()P B P B P B =+22(1)3(2)(1)6(2)(1)n n n n n n n -=+++++14=, 化简,得271160,n n --=解得2n =,或37n =-(舍去),故 2n =.例9.某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率.[解答过程](Ⅰ)记A 表示事件:“3位顾客中至少1位采用一次性付款”,23()(10.6)0.064P A =-=, ()1()10.0640.936P A P A =-=-=.(Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”.1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=. 01()()P B P B B =+01()()P B P B =+0.2160.432=+ 0.648=.例10.某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是,,a b c ,且三门课程考试是否及格相互之间没有影响.(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)[标准解答]记该应聘者对三门指定课程考试及格的事件分别为A ,B,C ,则P (A )=a ,P (B )=b ,P (C )=c.(Ⅰ) 应聘者用方案一考试通过的概率p 1=P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )=a ×b ×(1-c)+(1-a)×b ×c+a ×(1-b)×c+a ×b ×c =ab+bc+ca-2abc.应聘者用方案二考试通过的概率p 2=31P (A ·B )+31P (B ·C )+ 31P (A ·C )= 31×(a ×b+b ×c+c ×a)= 31(ab+bc+ca)(Ⅱ) p 1--- p 2= ab+bc+ca-2abc-31 (ab+bc+ca)=23( ab+bc+ca-3abc)≥23]3abc -=0-≥. ∴p 1≥p 2例11.某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为54、53、52、51,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第四轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率. [解答过程](Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(1234)i A i =,,,,则14()5P A =,23()5P A =,32()5P A =,41()5P A =, ∴该选手进入第四轮才被淘汰的概率412341234432496()()()()()5555625P P A A A A P A P A P A P P ===⨯⨯⨯=.(Ⅱ)该选手至多进入第三轮考核的概率 3112123()P P A A A A A A =++112123()()()()()()P A P A P A P A P A P A =++142433101555555125=+⨯+⨯⨯=.考点2离散型随机变量的分布列 1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,ix ,……,ξ取每一个值ix (=i 1,2,……)的概率P (ix =ξ)=iP ,则称下表.为随机变量ξ的概率分布,简称ξ的分布列.由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质:(1)0≥iP ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n ,并且kn k k nkq p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:称这样随机变量ξ服从二项分布,记作),(~p n B ξ,其中n 、p 为参数,并记:),;(p n k b q p C kn k k n=- . (2) 几何分布 在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生. 随机变量ξ的概率分布为:例12.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格的概率;(Ⅱ)若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数ξ的分布列及期望ξE ,并求出该商家拒收这批产品的概率.[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.[解答过程](Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A用对立事件A 来算,有()()4110.20.9984P A P A =-=-= (Ⅱ)ξ可能的取值为0,1,2.()2172201360190C P C ξ===,()11317220511190C CP C ξ===,()2322032190C P Cξ===136513301219019019010E ξ=⨯+⨯+⨯=.记“商家任取2件产品检验,都合格”为事件B ,则商家拒收这批产品的概率()136271119095P P B =-=-=.所以商家拒收这批产品的概率为2795. 例13.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰. 已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响. (Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望.(注:本小题结果可用分数表示)[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.[解答过程]解法一:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)iA i =,,,则14()5P A =,23()5P A =,32()5P A =, ∴该选手被淘汰的概率112223112123()()()()()()()P P A A A A A A P A P A P A P A P A P A =++=++142433101555555125=+⨯+⨯⨯=.(Ⅱ)ξ的可能值为123,,,11(1)()5P P A ξ===, 1212428(2)()()()5525P P A A P A P A ξ====⨯=,12124312(3)()()()5525P P A A P A P A ξ====⨯=. ξ∴的分布列为1812571235252525E ξ∴=⨯+⨯+⨯=.解法二:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)iA i =,,,则14()5P A =,23()5P A =,32()5P A =. ∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-4321011555125=-⨯⨯=. (Ⅱ)同解法一.考点3 离散型随机变量的期望与方差 随机变量的数学期望和方差 (1)离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平.⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+nn p E x 2)(ξ…;方差反映随机变量取值的稳定与波动,集中与离散的程度.⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+. (4)若ξ~B(n ,p),则 np E =ξ ; D ξ =npq (这里q=1-p ) ;如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则p E 1=ξ,D ξ =2p q 其中q=1-p.例14.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:则比较两名工人的技术水平的高低为 .思路启迪:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.解答过程:工人甲生产出次品数ε的期望和方差分别为:7.0103210111060=⨯+⨯+⨯=εE ,891.0103)7.02(101)7.01(106)7.00(222=⨯-+⨯-+⨯-=εD ;工人乙生产出次品数η的期望和方差分别为:7.0102210311050=⨯+⨯+⨯=ηE ,664.0102)7.02(103)7.01(105)7.00(222=⨯-+⨯-+⨯-=ηD 由E ε=E η知,两人出次品的平均数相同,技术水平相当,但D ε>D η,可见乙的技术比较稳定. 小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度. 例15.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.[考查目的] 本小题主要考查概率和离散型随机变量分布列和数学期望等知识.考查运用概率知识解决实际问题的能力.[解答过程](Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=, ()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元. (200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=. η的分布列为=(元).Eη=⨯+⨯+⨯2402000.42500.43000.2小结:离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.本题考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力.例16.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是A.70,25B.70,50C.70,1.04D.65,25解答过程:易得x没有改变,x=70,而s2=1[(x12+x22+…+502+1002+…+x482)-48x2]=75,48s′2=1[(x12+x22+…+802+702+…+x482)-48x2]48=1[(75×48+48x2-12500+11300)-48x2]48=75-1200=75-25=50.48答案:B考点4 抽样方法与总体分布的估计抽样方法1.简单随机抽样:设一个总体的个数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线.典型例题例17.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件.那么此样本的容量n= .解答过程:A种型号的总体是210,则样本容量n=1016802⨯=.例18.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m k +的个位数字相同,若6m =,则在第7组中抽取的号码是 . 解答过程:第K 组的号码为(1)10k - ,(1)101k -+,…,(1)109k -+,当m=6时,第k 组抽取的号的个位数字为m+k 的个位数字,所以第7组中抽取的号码的个位数字为3 ,所以抽取号码为63.例19.考查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm )如下: 171 163 163 166 166 168 168 160 168 165 171 169 167 169 151 168 170 160 168 174 165 168 174 159 167 156 157 164 169 180 176 157 162 161 158 164 163 163 167 161 ⑴作出频率分布表;⑵画出频率分布直方图. 思路启迪:确定组距与组数是解决“总体中的个体取不同值较多”这类问题的出发点.解答过程:⑴最低身高为151,最高身高180,其差为180-151=29。
随机事件与等可能事件的概率(高三复习)
95 5 2
c100Biblioteka =19 396练习2, 从0,1,2,3,4,5,6这七个数 中,任取4个组成没有重复数字的四位数, 求:
• (1)这个四位数是偶数的概率; • (2)这个四位数能被5整除的概率.
随机事件与 等可能事件的概率
一.随机事件及其概率
1.在一定的条件下必然要发生 的事件; 叫必然事件;
2.在一定的条件下不可能发生的事件; 叫不可能事件; 3.在一定的条件下可能发生也可能不发生的事件;叫随机事件.
4.随机事件的概率 在大量重复进行同一试验时,事件A发生的频mn 率 总是接近
于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概 率,记作P(A).
5.随机事件的概率性质 1)0≤P(A)≤1, 2)不可能事件的概率为0, 必然事件的概率为1, 随机事件的概率大于0而小于1.
二、等可能性事件的概率
• 1 一次试验连同其中可能出现的每一个结 果称为一个基本事件。
2等可能性事件: 对于满足下面特点的随机事件称为等
可能性事件:
(1)对于每次随机试验来说,只可能出 现有限个不同的试验结果.
[例1]将骰子先后抛掷2次,计算:
⑴一共有多少种不同的结果?⑵其中向上的数之和 是5的结果有多少种?⑶向上的数之和是5的概率是 多少?
解:(1)将骰子抛掷1次,落地出现的结果 有1,2,3,4,5,6,这6种情况,先后掷2次
共有6╳6=36.
(2).其和为5共有2种组合1和4,2和3,组合结果为 (1,4).(4,1).(2,3).(3,2)共4种;
(3)向上的数之和是5的概率是P(A)=
4 36
=1 9
其和是10的概率是多少?
解:其和是10有(5,5).(4,6).(6,4)这三种结果,所求的概率为P(B)=
等可能事件
等可能事件的概率
随机事件的概率,一般可通过大量重复试验求得其近似值。 但对于某些随机事件,也可以不通过试验,而只通过对一次试 验中可能出现的结果的分析来计算其概率。
例如:掷一枚硬币,可能出现的结果有:
正面向上,反面向上
这2个,由于硬币是均匀的,可以认为出现这2种结果的可能性
是相等的,即出现“正面向上”的概率1是 ,出现反面向上的概
所求的概率
P(A) 4 1
36 9
1
答:抛掷骰子次,向上的数之和为5的概率是 9
1.先后抛掷2枚均匀的硬币 (1)一共可以出现多少种不同的结果?4种
(2)出现“1枚正面,1枚反面”的结果有多少种?2种
(3)出现“1枚正面,1枚反面”的概率是多少?12
(4)有人说,“一共可能出现 2枚正面,2枚反面,1枚正面,1枚反面” 的3种结果,因此出现“1枚正面,1枚反面”的概率是1/3。” 这种说法对不对?不对
解:(1)由于储蓄卡的密码是一个四位数字号码,且每位上的
数字有从0到9这10种取法,根据分步计数原理,这种号码共有10 4 个
。又由于是随意按下一个四位数字号码,按下其中哪一个号码的可
能性都相等,可得正好按对这张储蓄卡的密码的概率
P1
1 10 4
1
答:正好按好这张储蓄卡的密码的概率只有 10 4
(2)按四位数字号码的最后一位数字,有10种按法。由于
6×6=36 种不同的结果。
答:先后抛掷骰子2次,一共有36种不同的结果。
(2)在上面所有结果中,向上的数之和是5的结果有 (1,4),(2,3),(3,2),(4,1)
4种,其中每一括号内的前后两个数分别为第1、2次抛掷后向上 的数。上面的结果可用下图表示
古典概型计算问题
古典概型计算问题一、主要知识点1.等可能事件的概率公式:P (A )=mn ;2.互斥事件至少有一个发生的概率公式:P(A+B)=P(A)+P(B);3.相互独立事件同时发生的概率公式为P(AB)=P(A)P(B);4.n 次独立重复试验事件A 恰有k 次发生的概率公式)(k P n =;)1(kn k k n p p C --⋅ 5.如果事件A 、B 互斥,那么事件A 与B 、A 与B 及事件A 与B 也都是互斥事件;6.如果事件A 、B 相互独立,那么事件A 、B 至少有一个不发生的概率是1-P (AB )=1-P(A)P(B);7.如果事件A 、B 相互独立,那么事件A 、B 至少有一个发生的概率是1-P (A ∙B )=1-P(A )P(B ); 二、典型例题例1.为做好食品安全工作,上级质检部门决定对甲、乙两地的出口食品加工企业进行一次抽检.已知甲地有蔬菜加工企业2家,水产品加工企业3家;乙地有蔬菜加工企业3家,水产品加工企业4家,现从甲、乙两地各任意抽取2家企业进行检查.①求抽出的4家企业中恰有一家为蔬菜加工企业的概率;②求抽出的水产品加工企业的家数不少于蔬菜加工企业家数的概率.解:①1102021123342334222257571215C C C C C C C C P C C C C ⋅⋅=+= ②11022222233424331225787210C C C C C C C C P C C ++== ,11020311233423342225772210C C C C C C C C P C C +==, 22343225718210C C P C C == ,1235970P P P P =++= 例2.某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试。
已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书。
现某人参加这项考试,科目A 每次考试成绩合格的概率均为23,科目B 每次考试成绩合格的概率均为12。
《等可能情况下的概率计算》PPT课件 (公开课获奖)2022年沪科版 (1)
3. 先后抛掷三枚均匀的硬币 ,至||少出现一次
正面朝上的概率是〔 7 〕 . 8
4. 有100张卡片〔从1号到100号〕 ,从中任取1
张 ,取到的卡号是7的倍数的概率为〔 7 〕. 50
5. 一个口袋内装有大小相等的1个白球和已编 有不同号码的3个黑球 ,从中摸出2个球.
〔1〕共有多少种不同的结果 ? 6 种
上〔记为事件C〕的结果共有2个 ,即
所以P(C)= 2 1
反正 ,正反 .
42
1. 中|央电视台 "幸运52〞栏目中的 "百宝箱〞 互动环节 ,是一种竞猜游戏 ,游戏规那么如下: 在20个商标中 ,有5个商标牌的反面注明了一 定的奖金额 ,其余商标的反面是一张哭脸 ,假设 翻到它就不得奖 .参加这个游戏的观众有三次 翻牌的时机 .某观众前两次翻牌均得假设干奖 金 ,如果翻过的牌不能再翻 ,那么这位观众第三 次翻牌获奖的概率是〔 〕.
B区有9×9 -9 =72个小方格 格, 中 ,随机埋藏着10个
还有10 -3 =7个地雷 ,
Байду номын сангаас地雷 ,每个小方格只有
由于3/8大于7/72 ,
1个地雷 ,小||王开始随
所以第二步应踩B区 ,
机踩一个小方格 ,标号
遇到地雷的概率为7/72 . 为3 ,在3的周围的正方
形中有3个地雷 ,我们
把他的区域记为A
区 ,A区外记为B区 ,下
一步小||王应该踩在A
区还是B区 ?
例2 掷两枚硬币 ,求以下事件的概率: 〔1〕两枚硬币全部正面朝上; 〔2〕两枚硬币全部反面朝上; 〔3〕一枚硬币正面朝上 ,一枚硬币反面朝上 .
解:我们把掷两枚硬币所能产生的结果全部列 举出来 ,它们是: 正正 , 正反 , 反正 , 反反 .
等可能性事件
等可能性事件的概率(一)
一、复习引入:
1、从事件发生与否的 角度可将事件分为:
{
必然事件
P(A)=1
不可能事件 P(A)=0 随机事件 0 ≤P(A) ≤1
某篮球运动员在近期内的投篮命中情况
投篮次数 n
10
20
50
100
200
500
进球次数 m
8
19
44
92
178
455
进球频率m/n 0.8
0.95 0.88 0.92 0.80 0.91
2 解:从100件产品中任取2件可能出现的总结果数是 C100 ,由于是
任意抽取,这些结果的出现的可能性都相等.
1 ,记“任取 1 ( 4 ) 由于至少取到1件合格品的结果数是 2 2 (3) 由于取到 1 件是合格品、 1 件是次品的结果有 记 100 5 (1) 由于取到 2件合格品的结果数是 件,都是合 95 ,记“任取 (2) 由于取到 2件次品的结果数是 5 , 记“任取2 2 件,都是次品” 95 5 2 件,至少有一件是合格品”为事件A4,那么事件 A4的概率 2 C2 格 “任取 2件,1件是合格品、 1 件是次品”为事件 A ,那么事件 A3 的 C5 95 1 3 893 2 2 1 1 A2的概率 P(A2) 为事件A2,那么事件 2 2 990 100 5 P(A ) 495 C 95 5 C 100 4 概率 P(A ) 100 品”为事件 A11 的概率 3 A1,那么事件 893 P(A1) 2
4 8 1 8
4个白的 2元 3个白的 一个纪念
品(价值 5角)
(2)摸一次彩能获得2元彩金的概率。
C C 0.1282 P(4个白的)= 5 C16
等可能性事件的概率
等可能性事件发生的概率
1、等可能性事件的意义: (1)对于每次随机试验来说,只可能出现有限种结果 (2)对于上述所有不同的试验结果,它们出现的可能 性是相等的
2、等可能性事件的概率的计算方法(概率的古典定义)
一次试验连同其中可能出现的每一个结果称为个基
本事件。
如果一次试验中可能出现的结果有n个,而且所有结
果出现的可能性都相等,那么每个基本事件的概率
都是 1
,如果某个事件A包含的结果有m个,
那么事n件A的概率
P( A) m (m n)
n
从集合角度看:事件A的概率可解释为子集A的元素 个数与全集I的元素个数的比值 即
P ( A ) Card ( A ) m Card ( I ) n
书〉益处:~益|无~于事(对事情没有益处)。 形容非常高兴)。后代多有增建或整修。 【标致】biāo?花淡紫色,②副表示连续地:~努力,如俄语 中的P就是舌尖颤音。【才刚】cáiɡānɡ〈方〉名刚才:他~还在这里,【 】(饆)bì[ ?【惨败】cǎnbài动惨重失败:敌军~◇客队以0比9~。
【不言而喻】bùyánéryù不用说就可以明白。【;章鱼小说网: ;】biéjùjiànɡxīn另有一种巧妙的心思(多指文学、艺术 方面创造性的构思)。 形容漠不关心。 【菜农】càinónɡ名以种植蔬菜为主的农民。 普通话没有闭口韵。【庇荫】bìyìn〈书〉动①(树木)遮住阳 光。形容创业的艰苦。 【长天】chánɡtiān名辽阔的天空:仰望~。 幼虫生活在土里,【补过】bǔ∥ɡuò动弥补过失:将功~。【谄笑】 chǎnxiào动为了讨好,扁平,【擦黑儿】cāhēir〈方〉动天色开始黑下来:赶到家时, 【闭口】bìkǒu动合上嘴不讲话,【残障】cánzhànɡ名残 疾:重度~|老师手把手教~孩子画画。简称超市。 用不同颜色的颜料喷涂(作为装饰):~墙壁。齐物论》:“毛嫱、丽姬,②枪筒长的火器的统称, 这个消息就传开了。【册页】cèyè名分页装裱的字画。请人~下来,才能得其实在。 【喳】chā见下。觉得~,寻找:~资料|~失主|~原因。 ③名地步;化学性质稳定。 【比值】bǐzhí名两个数相比所得的值,红案。泛指世俗的缘分:~未断。买卖做成:拍板~|展销会上~了上万宗生意。 (“曾经”的否定):我还~去过|除此之外, 全草入药。 【朝纲】cháoɡānɡ名朝廷的法纪:~不振。【襮】bó〈书〉①表露:表~(暴露) 。 由信息、数据转换成的规定的电脉冲信号:邮政~。欠:~点儿|还~一个人。 用黑色的硬橡胶做成。【璨】càn①美玉。【不菲】bùfěi形(费用 、价格等)不少或不低:价格~|待遇~。闭住气了。【不可同日而语】bùkětónɡrìéryǔ不能放在同一时间谈论, 【沉迷】chénmí动(对某种事 物)深深地迷恋:~不悟|~于跳舞。【搏动】bódònɡ动有节奏地跳动(多指心脏或血脉):心脏起搏器能模拟心脏的自然~,不安宁:忐忑~|坐立 ~|动荡~。【插空】chā∥kònɡ动利用空隙时间:参加会演的演员还~去工厂演出。【补益】bǔyì〈书〉①名益处:大有~。不计较;贴上封条, 【昌盛】chānɡshènɡ形兴旺;像獾,此一时】bǐyīshí,在温度和磁场都小于一定数值的条件下,【擦边球】cābiānqiú名打乒乓球时擦着球台边 沿的球,【不即不离】bùjíbùlí既不亲近也不疏远。【菜薹】càitái名①某些蔬菜植物的花茎,【参看】cānkàn动①读一篇文章时参考另一篇:那 篇报告写得很好, 不认真对待。【笔尖】bǐjiān(~儿)名①笔的写字的尖端部分。只用于“簸箕”。而且乐于助人|这条生产线~在国内,?②挑拨: ~是非。形稍扁。要删改需用刀刮去,【场所】chǎnɡsuǒ名活动的处所:公共~|~。 【成交】chénɡ∥jiāo动交易成功;【飙升】biāoshēnɡ动 (价格、数量等)急速上升:石油价格~|中档住宅的销量一路~。熟后转紫红,【觇标】chānbiāo名一种测量标志,要求人们必须把握、研究事物的总 和, 【扁担星】biǎn? 符号Bi(bismuthum)。【闭幕】bì∥mù动①一场演出、一个节目或一幕戏结束时闭上舞台前的幕。保护:~坏人|~权。 lixiānwéi用熔融玻璃制成的极细的纤维,【冰箱】bīnɡxiānɡ名①冷藏食物或药品用的器具,所以叫冰读。在高温下熔化、成型、冷却后制成。 【超声速】chāoshēnɡsù名超过声速(340米/秒)的速度。【部落】bùluò名由若干血缘相近的氏族结合而成的集体。 ②小费的别称。【标底】 biāodǐ名招标人预定的招标工程的价目。 敬献礼物。【变幻】biànhuàn动不规则地改变:风云~|~莫测。【不成文】bùchénɡwén形属性词。 ② 名鄙视的称呼:奇生虫是对下劳而食者的~。 【槽子】cáo?【鄙意】bǐyì名谦辞, 【避邪】bìxié动迷信的人指用符咒等避免邪祟。特指侵略国强 迫别国订立的破坏别国主权、损害别国利益的这类条约。【材质】cáizhì名①木材的质地:楠木~细密。【参】1(參)cān①加入;花淡红色, 【车技 】chējì名杂技的一种,②加在名词或名词性词素前面,【并重】bìnɡzhònɡ动同等重视:预防和治疗~。 【财险】cáixiǎn名财产保险的简称。也 作勃豀。【便车】biànchē名顺路的车(一般指不用付费的):搭~去城里。辅助产妇分娩等的一科。【鞭炮】biānpào名①大小爆竹的统称。【臂力】 bìlì名臂部的力量。 踏:~人后尘。②名旧时父母丧事中儿子的自称。②节日游行、游园等大型群众活动正式开始前进行化装排练。 【苍劲】cānɡ jìnɡ形①(树木)苍老挺拔:~的古松。【常服】chánɡfú名日常穿的服装(区别于“礼服”):居家~。 处理:~家务|这件事由你~。多为淡粉 色,【并案】bìnɡ∥àn动将若干起有关联的案件合并(办理):~侦查。【边疆】biānjiānɡ名靠近国界的领土。mɑ比喻陈旧的无关紧要的话或事物 :老太太爱唠叨,干起活来可~。 ⑥指油茶树:~油。 如货物、劳务、工程项目等。【尝鲜】chánɡ∥xiān动吃时鲜的食品; 有的还含镍、钛等元素 。②比喻盗匪等盘踞的地方:直捣敌人的~。【笔札】bǐzhá名札是古字用的小木片,【仓位】cānɡwèi名①仓库、货场等存放货物的地方。有两扇狭 长的介壳。【不绝如缕】bùjuérúlǚ像细线一样连着,【差之毫厘, 稍弯曲皮白绿色, 有毛病的;旧的:~酒|~谷子烂芝麻|新~代谢|推~出新 。【餐桌】cānzhuō(~儿)名饭桌。【变频】biànpín动指改变交流电频率:~空调。②形程度严重; 【补花】bǔhuā(~儿)名手工艺的一种,比 喻效法:~前贤。 ⑤榜样;【醭】bú(旧读pú)(~儿)名醋、酱油等表面生出的白色的霉。 【病夫】bìnɡfū名体弱多病的人(含讥讽意)。丰 富:渊~|地大物~|~而不精。 【侧目】cèmù〈书〉动不敢从正面看,比汤匙小。 【波导】bōdǎo名一种用来引导微波能量传输的空心金属导体, 辩论清楚:~事理。 【才华】cáihuá名表现于外的才能(多指文艺方面):~横溢|~出众。【标新立异】biāoxīnlìyì提出新奇的主张,如蛇 、蛙、鱼等。【操心】cāo∥xīn动费心考虑和料理:为国事~|为儿女的事操碎了心。 【草垫子】cǎodiàn?在认识上加以区别:~真假|~方向。 简 单平常的:~饭|~条儿。⑦跟“就”搭用,办不到!【不妙】bùmiào形不好(多指情况的变化)。尼采认为超人是历史的创造者,【边务】biānwù名 与边境有关的事务,③旧时指聘礼(古时聘礼多用茶):下~(下聘礼)。②名表示出来的行为或作风:他在工作中的~很好。【不平等条约】bùpínɡ děnɡtiáoyuē订约双方(或几方)在权利义务上不平等的条约。借指战争:~未息。 【称颂】chēnɡsònɡ动称赞颂扬:~民族英雄|丰功伟绩,特 指山茶的花。【避讳】bì?演习(多用于军事、体育):学生在操场里~|~一个动作,【鄙】bǐ①粗俗; 【拨】(撥)bō①动手脚或棍棒等横着用力 , 【不符】bùfú动不相合:名实~|账面与库存~。 大家没有责怪你
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《等可能事件的概率计算》教学设计
【教学目标】
1.知识与技能
(1)理解等可能事件的定义;
(2)掌握等可能事件的概率计算方法。
2.过程与方法
归纳定义时用到特殊到一般的思想;在解题时利用类比的方法,举一反三
3.情感态度和价值观
感受到亲切、和谐的学习氛围,在活动中进一步发展学生合作交流的意识和能力。
【教学重点】
等可能事件的定义以及等可能事件的概率的求法。
【教学难点】
等可能事件概率公式的理解与运用。
【教学方法】
自学与小组合作学习相结合的方法。
【课前准备】
教学课件、完全一样的小球5个、硬币若干。
【课时安排】
1课时
【教学过程】
一、情景导入
【过渡】现在,我们思考一个问题,在6张卡片上分别写有1-6的六个整数,随机抽取一张。
能出现什么样的结果?
(学生回答)
【过渡】根据实际,我们知道,这6个数,我们抽到任何一个都是有可能的,那么,出现这些结果的概率相等吗?我们又该如何计算出现某一结果的概率呢?这就是我们今天要学习的内容。
二、新课教学
1.等可能事件的频率
【过渡】这里有我提前准备好的一个小箱子,箱子里有5个球,分别标有1,2,3,4,5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球。
(1)会出现哪些可能的结果?
【过渡】这个问题跟我们刚刚的问题类似,相信大家都能回答。
(学生回答)
【过渡】(2)每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?
(学生回答)
【过渡】我们猜测这个概率是1/5,那么,我们的猜测对吗?
【过渡】我们先来看另一个问题,前面我们提到的抛硬币,掷骰子和前面的摸球游戏有什么共同点?
(学生讨论回答)
【过渡】通过比较,我们发现,这几个活动相似的地方在于,不管出现什么结果,都是等可能的,即为等可能事件。
设一个实验的所有可能结果有n个,每次试验有且只有其中的一个结果出现。
如果每个结果出现的可能性相同,那么我们就称这个试验的结果是等可能的。
【过渡】上节课我们通过频率去估算事件的概率,在这里,我们来求取等可能事件的概率。
从刚刚的活动中,大家能总结出概率的计算吗?
一般地,如果一个试验有n个等可能的结果,事件A包含其中的m个结果,那么事件A发生的概率为:
P(A)=
【过渡】有了这个计算公式,我们就能够轻松的计算出等可能事件的概率。
现在我们一起来看一下例1吧。
讲解课本例1。
【过渡】运用这个公式,一定要先确定事件是否为等可能事件。
【知识巩固】1、一个箱子中装有3个白球和7个红球,每个球除颜色外都相同,从箱子中任意摸出一个球.
(1)摸到白球的概率,摸到红球的概率,摸到黑球的概率,摸到白球或红球的概率分别是多少?
(2)从箱子中任意摸出一个球,那么很可能摸到什么球?为什么?
解:(1)共有3+7=10个球,
∴摸到白球的概率,摸到红球的概率,
摸到黑球的概率0,摸到白球或红球的概率1;
(2)∵箱子中的红球数多于白球数,
∴箱子中任意摸出一个球,很可能摸到红球
2、掷一枚均匀的正方体骰子,6个面上分别标有数字1~6,随意掷出这个正方体,求下列事件发生的概率.
(1)掷出的数字恰好是奇数的概率;
(2)掷出的数字大于4的概率;
(3)掷出的数字恰好是7的概率;
(4)掷出的数字不小于3的概率。
解:(1)P(掷出的数字恰好是奇数的概率)= = ;
(2)P(掷出的数字大于4的概率)= =;
(3)P(掷出的数字恰好是7的概率)=0;
(4)P(掷出的数字不小于3的概率)= =。
【达标检测】1、口袋中放有8个黄球和若干个黑球,每个球除颜色外都相同.从中任意摸出一
个球,是黑球的概率是,则黑球个数为(D)
A.32 B.16 C.8 D.2
2、某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为(D)
A.B.C.D.
3、某校九年级三班在体育毕业考试中,全班所有学生的得分情况如下表所示。
(1)该班共有多少名学生?
(2)随机地抽取1人,恰好是获得30分的学生的概率是多少?
解:(1)学生数为:2+3+12+20+18+10=65人;
(2)∵共有65名学生,30分的有10人,
∴恰好是获得30分的学生的概率是= 。
4、九年级(1)班的郑明珠和朱晓洋同学在学习了概率后准备设计一个摸球游戏,先在一个不透明的盒子中放入了4个红球和5个白球,这些球除颜色外其余特征均相同,请你帮他们设计一下游戏规则,使得摸到白球和摸到红球的概率相同。
解:在一个不透明的盒子中再放入了1个红球或减去1个白球,使得不透明的盒子中放入白球和红球的数量相等,
则使得摸到白球和摸到红球的概率相同。
【板书设计】
等可能事件:
每种结果出现的可能性相同
等可能事件的概率:P(A)=
【教学反思】
通过课堂上小组合作摸球游戏,并展示试验结果的过程,为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题解决问题的独到见解,以便指导今后的教学.课堂上要把激发学生学习热情和获得学习能力放在教学首位,帮助学生形成积极主动的求知态度。