悬浮均载行星齿轮减速器结构设计-开题报告
行星减速机开题报告
行星减速机开题报告行星减速机开题报告摘要:行星减速机是一种常用的传动装置,广泛应用于机械设备中。
本文将对行星减速机的结构、工作原理以及应用领域进行探讨,并提出了进一步研究的方向。
引言:行星减速机是一种基于行星齿轮传动原理的减速装置,具有结构紧凑、传动效率高、承载能力强等优点,被广泛应用于工业生产中。
然而,随着科技的不断发展,对行星减速机的要求也越来越高,因此有必要对其进行深入研究,以进一步提高其性能和应用范围。
一、行星减速机的结构行星减速机主要由行星轮、太阳轮、内齿轮和外齿轮等部件组成。
其中,行星轮位于太阳轮和内齿轮之间,通过行星架与太阳轮和内齿轮相连。
行星减速机的结构紧凑,能够实现高扭矩输出和多级传动,适用于各种复杂工况。
二、行星减速机的工作原理行星减速机的工作原理基于行星齿轮传动。
当输入轴带动太阳轮旋转时,太阳轮通过行星架与行星轮相连,行星轮绕自身轴线旋转。
同时,行星轮通过内齿轮与外齿轮相连,外齿轮作为输出轴输出扭矩。
通过合理设计行星轮的数量和齿数,可以实现不同的传动比。
三、行星减速机的应用领域行星减速机广泛应用于机械设备中,如工业机械、冶金设备、矿山设备等。
其主要作用是降低输入轴的转速,提高输出轴的扭矩。
行星减速机的高传动效率和紧凑结构使其成为许多机械设备的理想选择。
四、行星减速机的研究方向尽管行星减速机在许多领域有着广泛的应用,但仍存在一些问题需要进一步研究。
首先,如何提高行星减速机的传动效率是一个重要的研究方向。
其次,如何降低行星减速机的噪声和振动也是一个亟待解决的问题。
此外,随着机械设备的发展,对行星减速机的可靠性和使用寿命的要求也越来越高,因此如何提高行星减速机的可靠性和使用寿命也是一个重要的研究方向。
结论:行星减速机作为一种常用的传动装置,在机械设备中有着广泛的应用。
通过对行星减速机的结构、工作原理和应用领域进行探讨,可以更好地了解行星减速机的特点和优势。
同时,通过进一步研究行星减速机的传动效率、噪声和振动以及可靠性和使用寿命等问题,可以进一步提高行星减速机的性能和应用范围。
行星齿轮减速器三维结构设计报告
1设计任务电动轮行星齿轮减速器主要包含太阳轮、行星齿轮、行星架、行星轴等关键零件,试进行行星齿轮减速器的零件三维建模设计及装配。
主要参数如表1所示。
图1—图5为参考图。
表1中没有列出的其他参数自行设计确定。
表1 电动轮行星齿轮减速器的齿轮基本参数齿数 模数 mm 齿宽 mm 分度圆直径mm 齿根圆直径mm 齿顶圆直径mm 太阳轮 18 2 21 36 31 40 行星齿轮 36 2 21 72 67 76 内齿圈902211801851762 三维模型制作软件及版本Siemens NX 8.02.1 太阳轮制作利用NX 8 中的GC 工具箱-齿轮建模-圆柱齿轮(如图1),创建齿轮,选择直齿轮,外啮合齿轮,滚齿输入对应数据,输入名称gear_1,模数=2mm ,牙数=18,齿宽=21mm ,压力角=20deg 。
输入后点击确定,矢量类型选择XC 轴,点击确定,获得齿轮(如图2)。
在齿轮其中一端面建立基准平面,再次创建一直齿圆柱齿轮,输入名称gear_3,模数=1.5mm ,牙数=18,齿宽=30mm ,压力角=20deg 。
矢量类型-面平面法向,面选择刚才建立的基准平面。
再在该基准平面内插入草图,以原点(0,0)画圆,与gear_3齿顶圆相切,完成草图,用拉伸功能,选取该圆,拉升方向与齿轮方向一致,高度(毫米)=30 。
利用倒斜角功能,距离选取与gear_3齿根圆相切。
然后利用求交功能,选取gear_3和刚才的圆柱体。
参 数齿 轮在gear_1另一端面建立基准平面,拉伸一个直径(mm)=30,高度(mm)=10的圆柱体,选择倒斜角,距离=3mm,角度=30deg。
得到模型(如图3)。
2.2 行星轮制作如2.1中制作齿轮,创建直齿圆柱齿轮gear_2,模数=2mm,牙数=36,齿宽=21mm,压力角=20deg,矢量类型-两点,随机放置。
其他两个行星齿轮分别为gear_4,gear_5,同样随机放置。
行星齿轮减速器设计【开题报告】
行星齿轮减速器设计【开题报告】开题报告机械设计制造及其自动化行星齿轮减速器设计一、综述本课题国内外研究动态,说明选题的依据和意义[国内外研究动态]1.国内行星齿轮传动技术的发展概况:对行星齿轮传动技术的开发及运用在我国自上世纪五十年代就开始了,但直到改革开放前的相当长的一段时间里,由于受设计理念与水平、加工手段与材料及热处理质量等方面的限制,我国各类行星齿轮减速箱的承载能力及可靠性都还处于一个比较低的水平,以至于我国许多行业配套的高性能行星齿轮箱,如磨机齿轮箱等都采用进口产品。
改革开放以来,随着国内多家单位相继引进了国外先进的行星传动生产和设计技术并在此基础上进行了消化吸收和创新开发,使得国内的行星传动技术有了长足的进步。
在基础研究方面,通过国内相关高校、研究院所及企业的合作,在行星传动的均载技术、优化设计技术、结构强度分析、系统运动学与动力学分析及制造装配技术等方面都取得了一系列的突破,使得我国已全面掌握了行星传动的设计、制造技术并形成了一批具有较强实力的研发制造机构。
继西安重型机械研究所联合多家单位推出国内第一代通用行星齿轮减速器产品系列并完成其标准化工作后,目前正在推出性能更为先进、结构更为合理的新一代行星齿轮减速器产品。
与此同时,国内其他单位也开发出了一系列专用行星齿轮产品。
在制造手段方面,近二十年来通过引进及自主开发的磨齿机、插齿机、加工中心及热处理装置的广泛运用,大大提升了制造水平,在硬件上也切实保证了产品的加工质量。
目前,国内开发的重载行星传动装置已成功运用于许多多年来一直采用国外产品的领域。
如西重所开发的运用于铝铸压机的行星齿轮箱最大输出力矩已达到600KN·m,运用于水泥滚压机的大型行星齿轮箱的输出力矩已达到400KN·m,均成功替代了进口产品。
国内生产的运用于磨机的行星齿轮箱的最大功率已达到3600KW,运用于中小功率的行星齿轮箱更是数不胜数。
二十余年的实践与运用证明目前我国的行星传动齿轮箱的设计制造已达到与先进工业国家相当的水品,完全可满足为国内格行业传动配套的的需求。
行星减速器开题报告
20世纪70年代至90年初,我国的高速齿轮技术经历测绘仿制、技术引进到独立设计制造3个阶段。我国的低速重载齿轮技术,特别是硬齿面齿轮技术也经历了绘测仿制等阶段,从无到有逐步发展起来。除了摸索掌握制造技术外,在20世纪80年代末至90年代初推广硬齿面技术过程中,我们还做了解决“断轴”、“选用”等一系列有意义的工作。
机械毕业设计是机械工程类专业学生完成本专业教学计划的最后一个极为重要的实践性教学环节,是使学生综合运用所学过的基本理论、基本知识与基本技能去解决专业范围内的工程技术问题而进行的一次基本训练。这对学生即将从事的相关技术工作和未来事业的开拓都具有一定意义。
培养学生综合分析和解决本专业的一般工程技术问题的独立工作能力,拓宽和深化学生的知识。
设计条件:
圆锥齿轮转动与NGW串联,卧式轴向部分机体。大修期限为1年,每年工作300日,每日工作24小时。
原始数据:
公称传动比为52,高速轴的转速为1800r/min,低速轴输出转矩为6000 N.M。
6.进度安排
1)查阅文献、收集资料、了解课题、阅读文献及外文资料翻译,开题报告 4-6周
2)总体方案设计 7周
模块化设计技术对通用和标准减速器旨在追求高性能和满足用户多样化大覆盖面需求的同时,尽可能减少零部件及毛坯的品种规格,以便于组织生产,使零部件生产形成批量,降低成本,取得规模效益。
其他技术的发展还表现在理论研究更完善、更接近实际;普通采用各种优质钢锻件;材料和热处理质量控制水平的提高;结构设计更合理;轴承质量和寿命的提高等方面。这些技术的应用和日趋成熟,使齿轮价格比大大提高,产品越来越完美。
127mm涡轮钻具行星齿轮减速器结构设计研究的开题报告
127mm涡轮钻具行星齿轮减速器结构设计研究的开题报告一、选题背景与意义涡轮钻具在石油开采过程中具有不可替代的作用,而其中的行星齿轮减速器作为涡轮钻具的核心部件,直接影响着涡轮钻具的工作效率、质量和寿命。
因此,研究行星齿轮减速器结构设计,对提高涡轮钻具的工作效率和质量、减少故障率以及节约成本具有重要意义。
二、研究目标和内容本课题的研究目标是基于行星齿轮减速器的工作原理和传动特点,进行结构设计研究,主要内容包括:1. 按照涡轮钻具的实际工作需求,确定行星齿轮减速器主要参数和性能指标;2. 通过分析行星齿轮减速器工作原理,探究影响其传动效率和寿命的关键因素,制定结构设计优化方案;3. 进行行星齿轮减速器的建模和仿真分析,验证结构设计方案的可行性和优越性;4. 通过实际试验,对不同结构设计方案进行有效性和可靠性评估。
三、研究方法及技术路线本课题主要采用以下研究方法和技术路线:1. 文献资料调研法:对国内外先进的行星齿轮减速器结构设计及其优化方案进行全面调研和研究分析,以寻求适合涡轮钻具应用的新型结构设计方案。
2. 数值分析法:利用MATLAB/Simulink等软件进行行星齿轮减速器的建模和仿真分析,以验证结构设计方案的可行性和优越性。
3. 实验研究法:通过实际试验,对不同结构设计方案进行有效性和可靠性评估,并对优化方案进行改进和完善。
四、预期成果本课题的预期成果包括:1. 设计出一种适用于涡轮钻具的行星齿轮减速器结构设计方案,并与传统的行星齿轮减速器进行比较分析;2. 针对设计方案的仿真分析和实验研究结果,制定出优化方案,为涡轮钻具的生产和应用提供技术支持;3. 发表2-3篇学术论文,参加国内外学术会议,向学术界和行业界传播先进的涡轮钻具行星齿轮减速器结构设计技术。
行星减速机设计开题报告
1963年朱景教授在太原学院学报上发表了 《少齿差渐开线K—H—V型行星齿轮减速器及其设计》一文,详细阐述了渐开线少齿差传动的原理和设计方法。这些创造性的工作,为少齿差行星齿轮传动在我国的推广应用起了重要的指导作用。
双曲柄输入少齿差行星齿轮传动的优点是:能使行星轴承的载荷下降,而且当内齿板作为行星轮时,行星轴承的径向尺寸可不受限制,从而提高了行星轴承的寿命。另外,这种传动不需要输出机构,还可实现平行轴传动,效率高,适用性强。但是,由于历史原因,双曲柄输入式少齿差传动一直没有得到应有的发展,直到近十几年才逐渐为人们所重视。1985年重庆钢铁设计院提出了平行轴式少齿差内啮合齿轮传动,但是这种减速器的一根曲轴上要安装三片内齿板,需制成偏心套机构。存在着结构复杂加工精度要求高、曲轴联接结构表面产生微动磨损、三套互为120度的双曲柄机构之间存在过约束等问题。1993年重庆大学博士崔建昆提出新型轴销式少齿差行星齿轮传动,并对其进行了理论分析。
行星齿轮洗衣机减速器的设计开题报告
[4]濮良贵,纪名刚.机械设计.北京:高等教育出版社,2001
[5]孔桓,陈作模.机械原理.北京:高等教育出版社,2001
[6]饶振纲.行星齿轮传动设计.北京:化学工业出版社,2003
[7]成大先.机械设计手册.北京:化学工业出版社,2004
行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。然而,自上世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就,并获得了许多的研究成果近20多年来,尤其是我国改革开放以来,随着我国科学枝术的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和技术,经过我国机械科枝入员不断积极地吸收和消化,与时俱进、开拓创新地努力奋进,使得我国的行星传动技术有了迅速发展。
[13]刘光启,赵海霞.机械制造算图手册.北京:化学工业出版社,2004
[14]陈立德.机械设计基础课程设计.北京:高等教育出版社,2006
[15]大西清(日).机械设计制图手册.北京:科学出版社,2006
六、指导教师审批意见
签名:
年月日
[8]王文斌.机械设计手册.减速器和变速器.北京:机械工业出版社,2007
[9]卜言.机械传动装置设计手册.北京:机械工业出版社,1998
[10]骆素君,朱诗顺.机械课程设计简明手册.北京:化学工业出版社,2006
[11]毛谦德,李振清.袖珍机械设计手册.北京:机械工业出版社,2006
[12]成大先.减(变)速器●电机与电器.北京:化学工业出版社,2004
1.选择减速器型式;
2.拟定传动方案;
行星齿轮增速机构的浮动均载及固有特性研究的开题报告
行星齿轮增速机构的浮动均载及固有特性研究的开题报告一、选题背景行星齿轮传动机构由于其传动效率高、结构紧凑、承载能力强等优点,广泛应用于机械传动领域。
而其中的行星齿轮增速机构,由于其能够实现高速比变换、体积小、质量轻等优点,被广泛应用于航空、航天、重型机械和汽车等领域。
然而,在行星齿轮增速机构中,由于轴承的存在,会导致齿轮轴向和径向的振动,影响增速机构的传动精度和使用寿命。
因此,对于行星齿轮增速机构的浮动均载及固有特性的研究具有重要的理论和实际意义。
二、研究目的和意义针对行星齿轮增速机构中存在的轴承振动问题,本研究旨在通过理论分析和实验测试,研究增速机构的浮动均载及固有特性,为提高增速机构的传动精度、减少其振动噪声、提高其使用寿命提供理论和实践指导。
三、研究内容和方法1.研究内容(1)行星齿轮增速机构的工作原理和结构特点分析。
(2)行星齿轮增速机构的运动学和动力学分析,包括确定齿轮轴向和径向的振动情况。
(3)行星齿轮增速机构的浮动均载和固有特性分析,包括对齿轮系统的模态、固有频率、振型等特征参数的研究。
(4)基于理论分析与计算模拟,设计行星齿轮增速机构的实验测试方案。
(5)通过实验测试,验证理论研究的正确性。
2.研究方法(1)文献综述,对行星齿轮增速机构的研究现状和前沿进行分析和总结。
(2)理论分析,通过建立增速机构的运动学和动力学模型,研究其振动特性,采用理论计算方法分析浮动均载和固有特性等问题。
(3)计算仿真,通过计算机仿真,分析增速机构运动学和动力学特性,并查找异常情况和潜在问题。
(4)实验测试,设计合理的实验方案,并使用测试仪器对增速机构进行实验测试,获取实验数据并分析。
四、预期结果与目标1.预期结果(1)行星齿轮增速机构的工作原理和结构特点分析。
(2)行星齿轮增速机构的运动学和动力学分析,包括确定齿轮轴向和径向的振动情况。
(3)行星齿轮增速机构的浮动均载和固有特性分析,包括提出受力条件下的浮动均载计算方法、建立增速机构的振动模态和固有频率等特征参数的理论计算模型。
减速器的开题报告
减速器的开题报告减速器的开题报告一、引言减速器是一种常见的机械传动装置,广泛应用于各个领域,如机械制造、汽车工业、航空航天等。
减速器的作用是通过减小输入轴的转速,增加输出轴的扭矩,从而实现机械系统的传动和控制。
本文将对减速器的原理、分类和应用进行研究和探讨。
二、减速器的原理减速器的原理是通过齿轮传动来实现输入轴和输出轴之间的转速和扭矩的转换。
齿轮是减速器的核心部件,其传动效率高、传动比稳定,因此被广泛应用。
减速器的工作原理可以简单概括为:输入轴通过齿轮的转动将动力传递给输出轴,同时减小转速和增加扭矩。
三、减速器的分类根据传动方式的不同,减速器可以分为齿轮减速器、链传动减速器、带传动减速器等。
其中,齿轮减速器是最常见和常用的一种。
根据齿轮的组合方式,齿轮减速器又可以分为平行轴齿轮减速器、直角轴齿轮减速器和行星齿轮减速器等。
每种减速器都有其特点和适用范围,根据实际需求选择合适的减速器非常重要。
四、减速器的应用减速器广泛应用于各个领域,以下是几个典型的应用案例:1. 机械制造:在机床、起重机械、输送设备等机械制造领域,减速器常用于传动和控制系统。
通过合理选择减速器,可以实现精确的转速控制和高效的动力传递。
2. 汽车工业:在汽车的发动机、变速器和传动系统中,减速器起着至关重要的作用。
它们能够将发动机的高速旋转转换为车轮的低速高扭矩输出,从而提供足够的动力和驾驶舒适性。
3. 航空航天:在航空航天领域,减速器被广泛应用于飞机、直升机、航天器等飞行器的动力传动系统。
减速器的高可靠性和高效率对于飞行器的安全和性能至关重要。
五、减速器的发展趋势随着科技的进步和工业的发展,减速器也在不断演进和改进。
以下是几个减速器发展的趋势:1. 小型化:随着机械设备的小型化和轻量化趋势,减速器也需要变得更加紧凑和轻便,以适应现代机械系统的需求。
2. 高效率:提高减速器的传动效率是一个重要的发展方向。
通过采用新材料、精密制造和优化设计,减少能量损失,提高传动效率。
齿轮减速器开题报告
齿轮减速器开题报告齿轮减速器开题报告引言:齿轮减速器作为一种常见的机械传动装置,广泛应用于工业生产和机械设备中。
它通过齿轮的啮合,将高速旋转的输入轴转变为低速旋转的输出轴,从而实现传动比的调节。
本文旨在探讨齿轮减速器的工作原理、设计和应用领域,以及未来的发展方向。
一、齿轮减速器的工作原理齿轮减速器的工作原理基于齿轮的啮合原理。
当两个齿轮啮合时,驱动齿轮(输入轴)的旋转会传递给被驱动齿轮(输出轴),从而实现转速的减小。
齿轮减速器的传动比取决于驱动齿轮和被驱动齿轮的齿数比例。
一般而言,驱动齿轮的齿数较大,被驱动齿轮的齿数较小,传动比就越大,输出转速就越低。
二、齿轮减速器的设计齿轮减速器的设计需要考虑多个因素,包括传动比、承载能力、可靠性和效率等。
首先,传动比的选择应根据实际需求来确定,以确保输出轴的转速满足要求。
其次,齿轮的材料和制造工艺也需要仔细选择,以确保其承载能力和可靠性。
同时,减速器的效率也是一个重要指标,设计时应尽量减小能量损失,提高传动效率。
三、齿轮减速器的应用领域齿轮减速器广泛应用于各个领域,如机械制造、汽车工业、航空航天等。
在机械制造中,齿轮减速器常用于各类机床、起重设备和输送设备等,用于调节转速和提供扭矩。
在汽车工业中,齿轮减速器用于汽车变速器,将发动机的高速旋转转变为车轮的低速旋转,以满足不同速度和扭矩要求。
在航空航天领域,齿轮减速器被广泛应用于飞机发动机和飞行控制系统中,用于提供可靠的传动和控制。
四、齿轮减速器的发展方向随着科技的进步和工业的发展,齿轮减速器也在不断演进和改进。
未来,齿轮减速器的发展方向主要包括以下几个方面。
首先,应注重减速器的小型化和轻量化,以适应紧凑空间和高效能的要求。
其次,应提高齿轮的制造精度和材料强度,以提高减速器的可靠性和承载能力。
此外,应加强减速器的智能化设计和监测系统,以实现远程监控和故障诊断。
最后,应注重减速器的节能和环保性能,以适应可持续发展的要求。
减速器设计开题报告
一、选题依据及意义设计圆柱齿轮减速器,是讲原动机的运动与动力,以一定的速度,转矩或推动力传递给皮带输送机。
减速器是一种相对精密的机械,实用它的目的是降低转速,增加转矩。
减速器的种类繁多,不同种类有不同的用途按照传动类型可分为齿轮减速器,蜗杆减速器,行星齿轮减速器;按照传动级数不同可分为单极和多级减速器;按照齿轮形状可分为圆柱齿轮减速器,圆锥齿轮减速器和圆柱-圆锥齿轮减速器:按照传动的布置形状又可分为展开式,分流式和同轴式减速器二、原始数据及工作条件k)运行阻力(kN)运行速度(m/s) 车轮直径(mm)启动速度(d2.0 0.8 400 1.6工作情况减速装置可以正反转,载荷平稳,环境温度不超过40℃;运动要求运动速度误差不超过5%使用寿命忙闲程度中等,工作类型中等,传动零件工作总时数410小时。
滚动轴承寿命4 000小时;三、设计内容及研究方法1)设计内容①电动机的选型;②减速器的设计;③开式齿轮传动设计;④传动轴设计;⑤联轴器选型设计;⑦车轮及其轴系计算。
四、设计任务2)设计工作量①传动系统安装图1张;②减速器装配图1张;③零件图2张;④设计计算说明书一份。
五、设计进程安排一、设计准备工作(2013年7月~8月)二、传动装置的总体设计(2013年7月~8月)三、传动零件的设计(9月)四、绘制装配图和零件的工作图(10月)五、撰写计算说明书和毕业设计论文(11月)六、修改论文、定稿(12月1日~17日)七、准备答辩(12月18日~30日)六、参考文献1、学校图书馆的中文电子期刊2、相关网站资料查寻[1]《简明机械设计手册》[2]《机械设计课程设计》[3]《机械设计》[4]《机械制图》[5]《工程材料》[6]《机械设计课程设计图册》。
减速器开题报告
减速器开题报告一、引言在我们的日常生活和工业生产中,减速器那可是无处不在呀!小到家里的电动玩具,大到工厂里的大型机械,都能看到减速器的身影。
今天咱们就来好好研究研究这神奇的减速器。
记得有一次,我去一家工厂参观,看到一台巨大的机器正在轰隆隆地运转。
我好奇地凑过去看,发现里面有一个部件在起着关键作用,那就是减速器。
当时我就想,这小小的减速器到底有啥能耐,能让这么大的机器乖乖听话呢?从那时候起,我就对减速器产生了浓厚的兴趣。
二、研究背景随着科技的不断进步,各种机械设备对传动系统的要求越来越高。
减速器作为传动系统中的重要组成部分,它的性能直接影响着整个设备的工作效率和稳定性。
目前,市场上的减速器种类繁多,有齿轮减速器、蜗轮蜗杆减速器、行星减速器等等。
不同类型的减速器有着各自的特点和适用范围,因此选择合适的减速器对于设备的设计和制造至关重要。
三、研究目的和意义咱研究减速器,目的就是为了深入了解它的工作原理、结构特点和性能优势,为今后的设计和应用提供理论依据。
这意义可大了去了,比如说可以提高机械设备的传动效率,降低能耗,延长使用寿命,还能为新型减速器的研发提供参考呢。
四、研究内容首先得搞清楚减速器的分类和特点,像齿轮减速器,它结构简单,传动效率高;蜗轮蜗杆减速器呢,能实现大传动比,但效率相对较低。
然后呢,要研究减速器的设计方法,包括参数选择、结构设计、强度计算等等。
还有就是要分析减速器的制造工艺和装配过程,看看怎么才能保证质量。
五、研究方法为了把这减速器研究明白,我打算采用理论分析和实验研究相结合的方法。
先通过查阅大量的文献资料,掌握减速器的基本理论和设计方法。
然后呢,利用计算机软件进行建模和仿真分析,预测减速器的性能。
最后,再通过实际制作和实验测试,验证理论分析和仿真结果的准确性。
六、预期成果希望通过这次研究,能够设计出一款性能优越、结构合理的减速器。
同时,能够撰写一篇高质量的学术论文,把研究成果分享给更多的人。
减速器开题报告
减速器开题报告减速器开题报告一、引言减速器作为机械传动系统中的重要组成部分,广泛应用于各个领域。
其主要作用是将高速旋转的动力传动装置的转速降低,并通过输出轴传递给负载。
减速器在工业生产中具有重要的作用,其性能的优劣直接影响到整个机械系统的工作效率和稳定性。
因此,对减速器的研究和开发具有重要的意义。
二、背景随着工业技术的发展,对减速器的要求也越来越高。
传统的减速器存在着体积大、噪音高、效率低等问题,无法满足现代工业对高效、节能、环保的要求。
因此,研发一种新型的减速器成为了迫切的需求。
三、研究目标本次研究的目标是设计一种新型的减速器,以解决传统减速器存在的问题,并提高其性能。
具体目标如下:1. 降低减速器的体积,提高其紧凑性;2. 减少减速器的噪音,提高工作环境的舒适性;3. 提高减速器的传动效率,节约能源;4. 增加减速器的承载能力,提高工作稳定性。
四、研究方法本次研究将采用以下方法:1. 文献综述:对现有的减速器相关研究进行综述,了解目前的研究进展和存在的问题;2. 理论分析:通过数学模型和仿真软件,对减速器的结构和工作原理进行分析和优化;3. 实验验证:设计并制作减速器样机,通过实验测试对比,验证新型减速器的性能优势。
五、预期成果通过本次研究,预期可以得到以下成果:1. 设计出一种新型的减速器结构,具有较小的体积和噪音;2. 优化减速器的传动效率,提高能源利用率;3. 提高减速器的承载能力和工作稳定性;4. 提出一套完整的减速器设计和优化方法。
六、研究意义本次研究的意义在于:1. 推动减速器技术的发展,满足现代工业对高效、节能、环保的需求;2. 提高机械传动系统的整体性能,提高工业生产效率;3. 为相关领域的研究提供理论和实践基础。
七、研究计划本次研究的计划如下:1. 第一阶段:文献综述和理论分析,了解现有研究成果和问题,建立数学模型;2. 第二阶段:设计和制作减速器样机,进行实验验证;3. 第三阶段:根据实验结果进行优化,完善减速器的设计;4. 第四阶段:总结研究成果,撰写论文并进行学术交流。
齿轮减速器开题报告
主要研究内容:
1、电动机的选择与运动参数计算
2、蜗杆齿轮设计计算
3、确定模数、齿数、螺旋角、齿宽、变位系数等几何参数
毕业设计(论文)开题报告
工程技术学院(系)机械制造与自动化专业
设计(论文)题目
齿轮减速箱设计
学生姓名
学号
指导教师
选题目的和意义:
机械工业素有“工业的心脏”之称。它是其他经济部门的生产手段,也可说是一切经济部门发展的基础。它的发展水平是衡量一个国家工业化程度的重要标志。机器制造业是工业的心脏,它为工业、农业、交通运输业、国防等提供技术装备,是整个国民经济和国防现代化的物质技术基础,因此,机器制造工业的发达与否及机器装备的自给水平是衡量一国经济发展水平与科学技术水平的真正标志。机器制造业的门类多,现在已成为拥有几十个独立生产部门的最庞大的工业体系。由于机器产品结构复杂,零部件多,技ห้องสมุดไป่ตู้性强,所以实行生产专门化、标准化、自动化对于机器制造业的发展具有重大意义。
4、设计箱体以及零件图的绘制
5、提交设计说明书一份
实验设计:
减速器是机械行业中较为常见而且比较重要的机械传动装置。减速器的种类非常多,各种减速器的设计各有各的特点,但总的设计步骤大致相同。其设计都是根据工作机的性能和使用要求,如传递的功率大小、转速和运动方式,工作条件,可靠性,尺寸,维护等等。本文是关于圆锥齿轮减速器的设计,主要用于运输带的传送。这种减速器相对于其他种类的减速器来讲,运用不是很广泛。本课题主要通过计算机辅助设计(CAD)完成。计算机辅助设计及辅助制造(CAD/CAM)技术是当今设计以及制造领域广泛采用的先进技术,通过本课题的研究,将进一步深入地对这一技术进行了解和学习。
齿轮减速器设计 开题报告
研究内容:
1.设计内容
减速器总装配图一张
齿轮、轴零件图一张
设计说明书一份
2.主要研究方式、方法
1)查找资料:为了搞好毕业设计,我在网上查阅了大量有关齿轮减速器方面的资料,了解齿轮减速器的基本工作原理。
2)自学软件:本次设计所需要的是AutoCAD。我对这个软件的使用已经有了一定的基础,尽管如此,但不能满足毕业设计的需要,所以必须深入学习并熟练掌握其功能和使用方法。
行星齿轮减速器报告
1.2点击圆命令,选择中心和半径,中心点为原点,支持面选择xy面 ,邮件点击半径处,选择公式,找到要画圆的半径参数,依次画出分 度圆,齿根圆,齿顶圆,基圆。
1.3点击点命令,右键点击X处,选择公式,选择中间栏LAW,选择创 建的X函数,选择左边法则曲线,双击法则曲线的成员,输入数据0, 得到X值;相同方法得到Y值。重复此步骤,依次输入数据 0.1,0.12,0.15,0.2,得到5个点。
THANK YOU For Watching!
4.CATIA零部件组装
4.1 新建一个product文件,切换到数字化装配——DMU运动机构模 块; 4.2导入齿圈文件,并设置为机械装置1; 4.3导入支架文件,与齿圈旋转接合1,支架中心上表面与齿圈下表面 零偏移; 4.4分别导入一个行星齿轮和太阳轮,分别与之间的不同位置作相合 约束,遵循约束沿平行z轴的指定轴线旋转使其不打齿;
1.4点击样条线命令,依次选择这5个点,连接成一条曲线。
1.5点击分割命令,去除样条线多余齿顶圆和齿根圆之间的部分。
1.6点击相交命令得到样条线与分度圆的交点。
1.7点击面命令,创建平面
1.7.1
1.7.2
1.8再次点击面命令,得到样条线的对称面
1.9直接连接的方式启动太阳齿轮,太阳齿轮将组合 于行星齿轮架上的行星齿轮带动运转。整组行星齿轮系统沿着外齿轮环 自动运行转动,行星架连接出力轴输出达到加速目的。更高减速比则需 要由多组阶段齿轮与行星齿轮倍增累计而成。
1.CATIA齿轮绘画步骤
1.1进入创成式去面设计,点击公式命令,新建类型参数。选择规则 命令,依次创建法则曲线X和法则曲线Y.
行星齿轮减速机主要传动结构为:行星轮,太阳轮,内齿圈。 行星减速机因为结构原因,单级减速最小为3,最大一般不超过10, 常见减速比为:3/4/5/6/8/10,减速机级数一般不超过3,但有部分大 减速比定制减速机有4级减速。相对其他减速机,行星减速机具有高 刚性、高精度(单级可做到1分以内)、高传动效率(单级在97%-98%) 、高的扭矩/体积比、终身免维护等特点。因为这些特点,行星减速 机多数是安装在步进电机和伺服电机上,用来降低转速,提升扭矩, 匹配惯量。行星减速机额定输入转速最高可达到18000rpm(与减速机 本身大小有关,减速机越大,额定输入转速越小)以上,工作温度一 般在-25℃到100℃左右,通过改变润滑脂可改变其工作温度。 精密行星减速机因搭配伺服电机所以背隙等级(弧分)相当重要,不同 背隙等级价格差异相当大,行星减速机可做多齿箱连结最高减速比达 100000。
减速器设计的开题报告
减速器设计的开题报告1. 研究背景减速器作为机械传动系统中的重要组成部分,广泛应用于各行业的机械设备中。
其主要作用是通过减小输入轴的转速,提高转矩输出的同时实现机械系统各组件之间的协调运动。
因此,减速器的设计对机械传动的高效运行有着重要影响。
然而,目前随着工业自动化的不断发展,对减速器的要求也越来越高。
传统的减速器设计在体积、寿命、效率等方面存在一定的局限性。
因此,开展减速器设计的研究具有重要的意义和价值。
2. 研究目的本次研究旨在设计一种新型的减速器,以满足现代工业对减速器的高要求。
具体目的如下:•提高减速器的效率,降低能量损耗;•减小减速器的体积和重量,以适应紧凑空间的机械设备需求;•提高减速器的寿命和可靠性,减少维修和更换成本;•实现减速器组件的模块化设计,方便生产和维护;•考虑环保因素,减少减速器的噪音和振动。
3. 研究内容为实现上述研究目的,本研究拟开展以下内容:3.1 减速器传动原理研究首先,对减速器传动原理进行详细的研究。
包括了解不同类型减速器的传动机制、原理及其优缺点,了解减速器在机械传动系统中的作用和重要性,为进一步设计优化提供理论指导。
3.2 减速器设计与优化在了解减速器传动原理的基础上,对减速器进行设计和优化。
主要包括如下方面:3.2.1 齿轮设计对不同类型的齿轮进行设计,考虑齿轮的模数、齿轮数、齿轮齿形等因素。
借助计算机模拟软件(如Solidworks、ANSYS等),进行齿轮的强度、承载能力、传动效率等方面的仿真分析。
3.2.2 轴承选型与布置根据减速器的传动原理和要求,选取适合的轴承类型,并合理布置在传动系统中。
考虑轴承的承载能力、寿命等因素,优化轴承的选型和布置,提高减速器的可靠性和寿命。
3.2.3 传动效率分析与优化利用计算机辅助工程软件,对减速器的传动效率进行分析和优化。
借助数值模拟方法,研究减速器在不同工况下的能量损耗和传动效率,通过合理优化传动配比和传动环境(如润滑、冷却等),提高减速器的传动效率。
悬浮均载行星齿轮减速器结构设计
关键词:工程牵引车;行星齿轮;减速器;悬浮均mary content of this article is about planetary gear reducer with floating balance for engineering hauling Vehicles.This article is in the foundation of several engineering hauling Vehicles, which elaborated the chassis's transmission scheme of arrangement ,and is about to design one kind of third-level planetary gear reducer with suitable power and the torque for the project hauling Vehicles. In the roadmap of technology,we analysis the transmission programme of the project hauling vehicles,determined the structure of the planetary transmission,achieve thedecision of basic parameters,the calculation the computation of geometry size and the check of the two main strengths.we also degisn and check the other parts of the reducer with end to end.At the respect of economy , we analysis the optional condition of the reducer , the technical parameter, factor efficiency and so on.The measure, the transmission efficiency, the bearing capacity, the quality and the price should be compared with different type and variety to choose the most suitable reduction.The Superior advantage of the design is to make the former department and the next department joint integrative for one part , which not only reduces supporting and simplified structure , but also to be non-radial direction supporting with better floating balance and larger bearing capacity.If properly framed the transmission efficiency can go up to 91~94% .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文)开题报告
学生姓名系部汽车与交通工程学
院
专业、班级
指导教师姓名职称教授从事
专业
车辆工程是否外聘□是■否
题目名称悬浮均载行星齿轮减速器结构设计
一、课题研究现状、选题目的和意义
随着科学技术的飞速发展,机械和汽车工业都在软件和硬件方面有了长足的进步。
工程机械车辆,它广泛应用于建筑、水利、矿山、筑路、港口、军事建设等工程之中。
作为重要工程车辆之一的工程牵引车,它的的历史几乎与交通工具上采用机械动力一样历史悠久。
近年来的研究结果表明,牵引车在港口、铁道、矿山等部门得到了广泛的应用,冲击压路机以其良好的压实性能正逐渐被施工部门所接受。
行星齿轮传动的减速器在减速器行业中应用非常广泛。
由于行星齿轮传动采用功率分流,由数个行星轮承担载荷,采用合理的内啮合传动。
与定轴传动相比,具有体积小、质量轻、承载能力大和效率高之优点。
行星齿轮传动是一种新型高效的传动型式,它与普通定轴齿轮传动相比有承载能力大、体积小、效率高、重量轻、传动比大、噪声小、可靠性高、寿命长、便于维修等优点,通过行星传动可以把能量由一根主动轴传给若干根从动轴,这些从动轴角速度的关系在工作时可变化。
由一系列齿轮组成的传动装置称齿轮机构或轮系,是应用最广泛的机械传动形式之一。
根据轮系运转时各齿轮的几何轴线相对位置是否变动,可将轮系分为下列几种基本类型:
1、定轴轮系
当轮系运转时,若组成该轮系的所有齿轮的几何轴线位置是固定不变的,称为定轴轮系或普通轮系。
2、周转轮系
当轮系运转时,若组成轮系的齿轮中至少有一个齿轮的几何轴线不固定,而绕着另一个齿轮的几何轴线回转者,称为周转轮系。
周转轮系的组成:
(1)行星轮
在周转轮系中作自转和公转运动。
(2)转臂
支承行星轮并使其公转的构件。
(3)中心轮
与行星轮相啮合而其轴线又与主轴线相重合的齿轮。
通常又将最小的外齿中心轮称为太阳轮,而将固定不动的中心轮称为支持轮(内齿轮)。
(4)构件
转臂H绕其转动的轴线称为主轴线。
凡是轴线与主轴线重合而又承受外力矩的构件称为基本构件。
周转轮系按其平面机构自由度的数目,可分为行星轮系和差动轮系两种。
1、行星轮系
将周转轮系的中心轮之一固定于机壳,其他两个基本构件分别为主动构件和从动构件的结构,都是行星轮系。
2、差动轮系
周转轮系三个基本构件都可以转动时就成为差动轮系。
拥有两个中心轮(2K)、一个转臂(H)的行星齿轮传动机构的代号为2K-H。
根据手册及多年来工厂的长期实践,选择NGW型(行星齿轮减速器标准JB/T6502-1993),其中按首字汉字拼音N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,该类型由内啮合和公用行星轮组成。
它的结构简单、轴向尺寸小、工艺性好、效率高,然而传动比小。
但NGW型能多级串联从而形成传动比大的轮系,这样便克服了单级传动比较小的缺点。
(1)NGW型该型由内外和公用行星齿轮组成。
(2)NW型该型由一对内啮合和一对外啮合组成。
由于把行星轮做成双联轮,使其为双排内外啮合而没有公用齿轮。
(3)WW型该型由双排两对外啮合齿轮组成。
其突出特点是能通过调整四个齿轮的齿数,轻而易举的得到1.2至数千范围的传动比.但效率低。
(4)NN型该型由双排两对内啮合齿轮组成,通过调整行星齿轮与中心轮的齿数关系,可以得到的传动比范围较大,但效率低。
(5)NUWGW型该型由两对外啮合锥齿轮组成,有一个公用行星轮。
二、设计(论文)的基本内容、拟解决的主要问题
(1)确定悬浮均载减速器总体设计方案与减速器悬浮均载原理;(2)选择悬浮均载减速器基本参数,确定行星齿轮传动类型;(3)确定悬浮均载减速器各零件结构形式;
(4)悬浮均载减速器初步设计与校核;
(5)悬浮均载减速器的总体设计;
(6)悬浮均载减速器的零件设计
三、技术路线(研究方法)
1、研究调查;
2、牵引车总体方案确定;
3、牵引车主要参数确定;
4、牵引车底盘传动设计;
5、减速器方案确定;
6、减速器主要参数确定;
7、减速器主要参数计算;
8、完成CAD绘图;
9、编写说明书。
四、进度安排
(1)第1~2周(2011年2月28日~2011年3月13日)调研、开题报告,开题答辩
(2)第3~4周(2014年3月14日~2011年3月27日)总体传动方案确定,各级传动比计算及常啮齿轮齿数分配(3)第5~6周(2011年3月28日~2011年4月10日)各档位齿轮设计计算及输入轴、输出轴的设计及校核(4)第7~9周(2011年4月11日~2011年5月1日)
减速器装配草图设计
(5)第10~11周(2011年5月2日~2011年5月15日)
减速器正式装配图设计
(6)第12~13周(2011年5月16日~2011年5月29日)
零件图设计
(7)第14~15周(2011年5月30日~2011年6月12日)
编写设计说明书
(8)第16周(2011年6月13日~2011年6月19日)
设计审核、修改
(9)第17周(2011年6月20日~2011年6月26日)
毕业设计答辩准备及答辩
五、参考文献
[1] 陈家瑞.汽车构造(上,下册) [M].北京:人民交通出版社,1994
[2] 高维山.变速器[M].北京:人民交通出版社,1990
[3] 刘海江,于信汇,沈斌.汽车齿轮[M].上海:同济大学出版社,1997
[4] 王望予.汽车设计(第四版)[M].北京:机械工业出版社,2004
[5] 刘惟信.汽车设计[M].北京:清华人学出版社,2001
[6] 徐灏.机械设计手册[M].北京:机械工业出版社,1991
[7]江渡,陈世刚,马铁强.基于Pro/E的行星齿轮减速器三维参数化CAD系统,机械设计,2006年第23卷第02期
[8]陈广生等.新型Q2NQY-1型牵引车研制,邵阳学院学报,2005.2
[9] 张淳等.NGW行星减速器的参数化程序设计,机械传动,2005第29卷第05期
[10] 高学径,马文瑾.紧凑结构NGW型行星减速器的设计,凿岩机械气动工具,2007年第04期
[11] Masahiko Hurishige, Takayuki Kifuku, Noriyuki Inoue. A Control Strategy to Reduce Steering Torque for Stationary Vehicles Equipped With EPS. Mitsubishi Electric Cop
[12] Zuo Li, Wu Wenjiang, Study on Stability of Electric Power Steering System
[13] Moriwaki, K,On automatic motion control with optimization,SICE 2003 Annual Conference
六、备注
指导教师意见:
签字:年月日。