辽宁省高三上学期数学十月月考试卷

合集下载

2023—2024学年辽宁省高三上学期10月月考数学质量检测模拟试题(含答案)

2023—2024学年辽宁省高三上学期10月月考数学质量检测模拟试题(含答案)

2023-2024学年辽宁省高三上册10月月考数学质量检测模拟试题.....为了得到π2sin3y⎫=-⎪⎭的图象只需把函数(2cos2sin2y x=+的图象().向右平移7π12.向左平移7π12.向右平移7π24.向左平移7π24.下列关于平面向量的说法错误的是()A.()332f=C.π6ϕ=10.已知钝角三角形ABC(1)求角A 的值;(2)若23BM MC =,求BA 19.某种项目的射击比赛规则是开始时在距离目标(1)若王先生采取等额本金的还贷方式,已知第一个还贷月应还12000元,最后一个还贷月应还5000元,试计算王先生该笔贷款的总利息;(2)若王先生采取等额本息的还贷方式,贷款月利率为0.3%,银行规定每月还贷额不得超过家庭月收入的一半,已知王先生家庭月收入为17000元,试判断王先生该笔贷款能否获批(不考虑其他因素).参考数据1191201211.003 1.4281.003 1.4331.003 1.437≈≈≈,,21.设点()()00P t t ≠,是函数()3f x x ax =+与()2g x bx c =+的图象的一个公共点,两函数的图象在点P 处有相同的切线.(1)求证:2c b ba a =++;(2)若函数()()y f x g x =-在()2,1-上单调递减,求t 的取值范围.22.设函数()()2ln 156f x x ax ax a =-+-+,其中a ∈R .(1)若函数()f x 有两个极值点,求a 的取值范围;(2)若2x ∀≥,()0f x ≥成立,求a 的取值范围.216.22.【分析】设222(0)a b t t +=>,得到)。

辽宁点石联考2024-2025学年高三上学期10月月考(二模)数学试题(原卷版)

辽宁点石联考2024-2025学年高三上学期10月月考(二模)数学试题(原卷版)

2024—2025学年高三(25届)二模数学科试卷命题人:孙方辉 校对人:王立冉一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知12i i z −=,则z =( ) A. 1 B. 2C. D. 32. 为了得到函数sin(2)3yx π−的图像,只需把函数sin(2)6y x π+的图像 A. 向左平移4π个长度单位 B. 向右平移4π个长度单位 C. 向左平移2π个长度单位 D. 向右平移2π个长度单位 3. ABC 中,点M 、N 在边BC 上,BM MN NC ==,设AM m = ,AN n = ,则AB = ( ) A. 2m n −B. 2n m −C. 2m n −D. 2n m −4. 设函数()()cos f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( ) A. ()01f =B. ()00f =C. ()01f ′=D. ()00f ′=5. 已知函数()112,02,0x x x f x x +− ≥= −< ,则不等式()()2f x f x −>解集为( )A. (),1∞−−B. (),1−∞C. ()1,−+∞D. ()1,+∞6. 已知函数()()2cos 1f x x a x =−+,若()f x 在()1,1−有唯一的零点,则a =( ) A. 1 B. 2C. 3D. 4 7. 已知函数()()2f x x x c =⋅−在1x =处有极大值,则c =( )A. 1B. 2C. 3D. 48. 已知函数()()()sin ,,0f x A x A ωϕωϕ=+>最小正周期为π,当6074π3x =时,函数()f x 取最小在的的值,则下列结论正确的是( )A. ()()()220f f f <−<B. ()()()202f f f −<<C. ()()()022f f f <<−D. ()()()202f f f <<− 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知O 为坐标原点,()2,1A −,()1,2B ,()1,2C −−,则( )A. AB方向的单位向量为B. 若2AP PB = ,则点P 坐标为4,13 C. π4ACB ∠=D. CA 在CB10. 设函数()πsin 2sin23f x x x=++ ,则下列结论正确的是( )A. 函数()f x 的最大值为2B. ()f x 区间π11π,1212− 有两个极值点C. ()5π06f x f x +−=D.直线3y x =+()y f x =的切线11. ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,下列结论中正确的是()A. ()2222a b c ab bc ca ++<++B. 1a a +,1b b +,1cc +不能构成三角形C. 若333a b c +=,则ABC 为锐角三角形D. 若a ,b ,c 均为有理数,则()cos A B −为有理数三、填空题:本题共3小题,每小题5分,共15分.的在12. 已知单位向量1e ,2e 满足1212e e ⋅= ,则()12R e te t −∈ 的最小值为______.13. 函数y =[)0,+∞,则实数a 的取值范围是______.14. 如图,圆内接四边形ABCD 中,BD 为直径,AB AC ==,1AD =.则BC 的长度为______;AC BD ⋅=______.四、解答题:本题共5小题,共77分,解答应写出文字说明,证明过程或演算步骤 15. 等差数列{aa nn }的前n 项和为n S ,已知60a =,126S =.(1)求数列{aa nn }的通项公式; (2)求数列{}n a 的前n 项和n T .16. 已知函数()22x x f x a −−⋅. (1)若()f x 为偶函数,求()f x 的最小值;(2)当0a >时,判断()f x 的单调性(不用证明),并借助判断的结论求关于x 的不等式()()22log 20f a x f x −+−>的解集.17. 在ABC 中,D 为BC 的中点,π2BCA BAD ∠+∠=,记ABC α∠=,ACB β∠=. (1)证明:αβ=或π2αβ+=;(2)若3AB =,且3BC AC ≥,求AD 的最大值.18. 如图,函数()()πsin 0,02f x x ωθωθ =+>≤≤的图象与y 轴相交于点10,2 ,且在y 轴右侧的第一个零点为5π12.(1)求θ和ω的值;(2)已知π0π2αβ<<<<,π12123f α −= ,π26f αβ+ + cos β的值. 19. 已知函数()e e cos x x f x k x −=++.(1)若2k =−,求()f x 的单调区间; (2)若()f x 在()0,∞+上单调递增,求正实数k 的取值范围;(3)π0,2x ∈ 时,证明:ππ22π1e e e 4x x x −  ++≥+  .。

辽宁省高三数学上学期10月月考试题 理(含解析)

辽宁省高三数学上学期10月月考试题 理(含解析)
【答案】丙
【解析】
【分析】
由题意知乙、丙均不跑第一棒和第四棒,则跑第三棒的人只能是乙、丙中的一个,讨论两种情况,验证是否符合要求即可.
【详解】由题意知乙、丙均不跑第一棒和第四棒,则跑第三棒的人只能是乙、丙中的一个,
当丙跑第三棒时,乙只能跑第二棒,这时丁是第一棒,甲是第四捧,符合题意,
当乙跑第三棒时,丙只能跑第二棒,丁只能跑第四棒,甲跑第一捧,不符合题意,
【详解】A y=log3x+4logx3,当log3x>0,logx3>0,∴y=log3x+4logx3≥4,此时x=9,当log3x<0,logx3<0故不正确;
B y=ex+4e﹣x≥4,当且仅当x=ln2时等号成立.正确.
( ),y= ≥4,此时sinx=2,这不可能,故不正确;
④ ,当x=﹣1时,y=﹣5显然最小值不是4,故不正确;
的图象大致是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
由该函数是奇函数排除A、D项,再由 ,排除B选项,从而可得结果.
【详解】令 ,易知 ,
所以该函数是奇函数,排除选项A、D;
由 ,排除B选项,故选C.
【点睛】函数图象问题就是考查函数性质的问题.除了分析定义域、值域、单调性、奇偶性、极值与最值等性质外,还要注意对特殊点,零点等性质的分析,注意采用排除法等间接法解题.
的最大值为 ,最小值为 ,则 的值为( )
A. B. C. D.
【答案】A
【解析】
【分析】
利用配方法求出求 的最值,可得 与 的值,从而可得结果.
【详解】由函数表达式知定义域为 ,且 恒成立,
要求 的最值,可先求 的最值,

2020-2021学年辽宁省实验中学高三(上)月考数学试卷(10月份)(附答案详解)

2020-2021学年辽宁省实验中学高三(上)月考数学试卷(10月份)(附答案详解)

2020-2021学年辽宁省实验中学高三(上)月考数学试卷(10月份)一、单选题(本大题共10小题,共50.0分)1. 集合A ={x|y =√2x −1},B ={x|x 2−5x −6<0},则∁R (A ∩B)=( )A. {x|x <2或x >3}B. {x|x ≤2或x ≥3}C. {x|x <12或x ≥6}D. {x|x ≤12或x >6}2. 下列命题正确的是( )A. 若a <b ,则ac 2<bc 2B. 若a >b ,则1a <1b C. 若a >b ,c >d ,则ac >bdD. 若1ab 2<1a 2b ,则a <b3. 已知q :∀x ∈[−2,3),x 2<9,则¬q 为( )A. ∃x ∈[−2,3),x 2<9B. ∃x ∉[−2,3),x 2<9C. ∃x ∈[−2,3),x 2≥9D. ∃x ∉[−2,3),x 2≥94. 已知函数f(x)={(13)x ,x ≥3f(x +1),x <3,则f(2+log 32)的值为( )A. −227B. 154C. 227D. −545. 函数y =f(x +1)为偶函数且满足f(x)+f(−x)=0,x ∈[0,1]时,f(x)=x 3,则f(985)=( )A. 1B. −1C. 9853D. −98536. 甲、乙、丙三位同学被调查是否去过A 、B 、C 三个城市,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为( )A. AB. BC. CD. A 和B7. 已知函数f(x)=ln(e x +1)−12x ,下列选项正确的是( )A. 奇函数,在(−1,1)上有零点B. 奇函数,在(−1,1)上无零点C. 偶函数,在(−1,1)上有零点D. 偶函数,在(−1,1)上无零点8. 如图,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子,原高一丈(1丈=10尺),现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为( )尺.A. 5.45B. 4.55C. 4.2D. 5.89.下列命题正确的是()A. x+1x≥2恒成立B. √a2+4+1√a2+4的最小值为2C. m,n都是正数时,(m+1m )(n+1n)最小值为4D. a>0,b>0是b3a +3ab≥2的充要条件10.函数y=lncosx(−π2<x<π2)的图象是()A. B.C. D.二、多选题(本大题共2小题,共10.0分)11.为了了解市民对各种垃圾进行分类的情况,加强垃圾分类宣传的针对性,指导市民尽快掌握垃圾分类的方法,某市垃圾处理厂连续8周对有害垃圾错误分类情况进行了调查.经整理绘制了有害垃圾错误分类重量累积统计图,图中横轴表示时间(单位:周),纵轴表示有害垃圾错误分类的累积重量(单位:吨).根据图形分析,下列结论正确的是()A. 第1周和第2周有害垃圾错误分类的重量加速增长B. 第3周和第4周有害垃圾错误分类的重量匀速增长C. 第5周和第6周有害垃圾错误分类的重量相对第3周和第4周增长了30%D. 第7周和第8周有害垃圾错误分类的重量相对第1周和第2周减少了1.8吨12.已知当x>0时,f(x)=−2x2+4x,x≤0时,y=f(x+2),以下结论正确的是()A. f(x)在区间[−6,−4]上是增函数B. f(−2)+f(−2021)=2C. 函数y=f(x)周期函数,且最小正周期为2<k<4−2√2或k=2√2−4D. 若方程f(x)=kx+1恰有3个实根,则12三、单空题(本大题共4小题,共20.0分)13.命题“∃x∈R,2x2−3ax+9<0”为假命题,则实数a的取值范围为______.14.函数f(x)=x2sinx−2,则f(2021)+f(−2021)=______ .15.有一支队伍长L米,以一定的速度匀速前进,排尾的传令兵因传达命令赶赴排头,到达排头后立即返回,且往返速度不变,如果传令兵回到排尾后,整个队伍正好前进了L米,则传令兵所走的路程为______ .16.若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一个分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={−1,0,2}的不同分拆种数是______ .四、解答题(本大题共6小题,共70.0分)+a,x>−1}.17.已知集合A={x|y=log2(4−2x)+1},B={y|y=x+1x+1(1)求集合A和集合B;(2)若“x∈∁R B”是“x∈A”的必要不充分条件,求a的取值范围.18.已知函数f(x)=2(m+1)x2+4mx+2m−1.(Ⅰ)若m=0,求f(x)在[−3,0]上的最大值和最小值;(Ⅱ)若关于x的方程f(x)在[0,1]上有一个零点,求实数m的取值范围.19.已知函数f(x)为偶函数,x≥0时,f(x)=x2+4x.(1)求f(x)解析式;(2)若f(2a)<f(1−a),求a的取值范围.20.新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A公司扩大生产提供x(x∈[0,10])(万元)的专项补贴,并以每套80元的价格收购其生产的全部防)(万护服.A公司在收到政府x(万元)补贴后,防护服产量将增加到t=k⋅(6−12x+4件),其中k为工厂工人的复工率(k∈[0.5,1]).A公司生产t万件防护服还需投入成本(20+9x+50t)(万元).(1)将A公司生产防护服的利润y(万元)表示为补贴x(万元)的函数(政府补贴x万元计入公司收入);(2)在复工率为k时,政府补贴多少万元才能使A公司的防护服利润达到最大?(3)对任意的x∈[0,10](万元),当复工率k达到多少时,A公司才能不产生亏损?(精确到0.01).21.已知函数f(x)=−x|x−2a|+1(x∈R).(1)当a=1时,求函数y=f(x)的零点;),求函数y=f(x)在x∈[1,2]上的最大值.(2)当a∈(0,3222.若存在常数k(k>0),使得对定义域D内的任意x1,x2(x1≠x2),都有|f(x1)−f(x2)|≤k|x1−x2|成立,则称函数f(x)在其定义域D上是“k−利普希兹条件函数”﹒(1)举例说明函数f(x)=log2x不是“2−利普希兹条件函数”;(2)若函数f(x)=√x(1≤x≤4)是“k−利普希兹条件函数”,求常数k的最小值;(3)若存在常数k(k>0),使得对定义域D内的任意x1,x2(x1≠x2),都有|f(x1)−f(x2)|>k|x1−x2|成立,则称函数f(x)在其定义域D上是“非k−利普希兹条件函数”.若函数f(x)=log2(2x−a)为[1,2]上的“非1−利普希兹条件函数”,求实数a的取值范围.答案和解析1.【答案】C【解析】解:集合A={x|y=√2x−1}={x|x≥12},B={x|x2−5x−6<0}={x|−1< x<6},所以A∩B={x|12≤x<6},则∁R(A∩B)={x|x<12或x≥6}.故选:C.先求出集合A,B,然后利用集合交集与补集的定义求解即可.本题考查了集合的运算,主要考查了集合交集与补集定义的运用,涉及了函数定义域的求解以及一元二次不等式的解法,属于基础题.2.【答案】D【解析】解:对于A,若c=0,则ac2=bc2,故A错误;对于B,若a>0>b,则1a >1b,故B错误;对于C,若a>b,c>d,取a=2,b=1,c=−1,d=−2,此时ac=bd,故C错误;对于D,若1ab2<1a2b,则a2b2>0,所以a2b2⋅1ab2<a2b2⋅1a2b,即a<b,故D正确.故选:D.由不等式的性质逐一判断即可.本题主要考查不等式的基本性质,考查逻辑推理能力,属于基础题.3.【答案】C【解析】解:命题q:∀x∈[−2,3),x2<9,则¬q:∃x∈[−2,3),x2≥9.故选:C.根据全称命题的否定是存在量词命题,写出对应的命题即可.本题考查了全称命题的否定是存在量词命题应用问题,是基础题.4.【答案】B【解析】解:∵2+log 31<2+log 32<2+log 33,即2<2+log 32<3 ∴f(2+log 32)=f(2+log 32+1)=f(3+log 32) 又3<3+log 32<4∴f(3+log 32)=(13)3+log 32=(13)3×(13)log 32=127×(3−1)log 32=127×3−log 32=127×3log 312=127×12=154∴f(2+log 32)=154故选B先确定2+log 32的范围,从而确定f(2+log 32)的值本题考查指数运算和对数运算,要求能熟练应用指数运算法则和对数运算法则.属简单题5.【答案】A【解析】解:根据题意,函数y =f(x +1)为偶函数,则f(x)的图象关于直线x =1对称,则有f(−x)=f(x +2),又由f(x)满足f(x)+f(−x)=0,即f(−x)=f(x +2), 则有f(x +2)=−f(x),综合可得:f(x +4)=−f(x +2)=f(x),f(x)是周期为4的函数, 则f(985)=f(1+4×246)=f(1)=1, 故选:A .根据题意,分析可得f(x +4)=f(x),则f(x)是周期为4的函数,据此可得f(985)=f(1),结合函数的解析式计算可得答案.本题考查函数的奇偶性的性质以及应用,涉及函数的周期性,属于基础题.6.【答案】A【解析】解:由乙说:我没去过C 城市,则乙可能去过A 城市或B 城市,但甲说:我去过的城市比乙多,但没去过B 城市,则乙只能是去过A ,B 中的任一个, 再由丙说:我们三人去过同一城市, 则由此可判断乙去过的城市为A . 故选:A .可先由乙推出,可能去过A 城市或B 城市,再由甲推出只能是A ,B 中的一个,再由丙即可推出结论.本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.7.【答案】D【解析】解:根据题意,函数f(x)=ln(e x +1)−12x =ln(√e x+1√ex),其定义域为R ,有f(−x)=ln(√e x+1√ex)=f(x),即函数f(x)为偶函数,设t =√e x+1√ex ,在区间[0,1)上,t =√e x+1√ex>2且是增函数,而y =lnt ,在(2,+∞)上为增函数,则f(x)在区间[0,1)上为增函数,又由f(0)=ln2>0,则在区间[0,1)上,f(x)≥f(0)>0恒成立,故f(x)在区间[0,1)上没有零点,又由f(x)为偶函数,则f(x)在(−1,1)上无零点; 故选:D .根据题意,先分析函数的奇偶性,再设t =√e x+1√ex,则y =lnt ,利用复合函数的单调性判断方法可得f(x)在区间[0,1)上为减函数,求出f(1)的值,分析可得区间[0,1)上没有零点,结合函数的奇偶性分析可得答案.本题考查函数奇偶性的性质以及应用,涉及函数零点的判断,属于基础题、8.【答案】B【解析】解:如图,已知AC +AB =10(尺),BC =3(尺),AB 2−AC 2=BC 2=9,所以(AB +AC)(AB −AC)=9,解得AB −AC =0.9, 因此{AB +AC =10AB −AC =0.9,解得{AB =5.45AC =4.55,故折断后的竹干高为4.55尺,故选:B.由题意可得AC+AB=10(尺),BC=3(尺),运用勾股定理和解方程可得AB,AC,即可得到所求值.本题考查三角形的勾股定理的运用,考查方程思想和运算能力,属于基础题.9.【答案】C【解析】解:x+1x≥2恒成立,不成立,因为x可以小于0,所以A不正确;√a2+4√a2+4的最小值大于2,所以B不正确;m,n都是正数时,(m+1m )(n+1n)≥2√m⋅1m⋅2⋅√n⋅1n=4,当且仅当m=n=1,表达式取得最小值为4,所以C正确;a>0,b>0是b3a +3ab≥2的充分不必要条件,所以D不正确;故选:C.利用基本不等式,判断选项的正误即可.本题考查命题的真假的判断与应用,基本不等式的应用,是基础题.10.【答案】A【解析】【分析】本题主要考查复合函数的图象识别.属于基础题.利用函数y=lncosx(−π2<x<π2)的奇偶性可排除一些选项,利用函数值与0的关系可排除一些选项.从而得以解决.【解答】解:∵cos(−x)=cosx,∴y=lncosx(−π2<x<π2)是偶函数,可排除B、D,由cosx≤1⇒lncosx≤0排除C,故选:A.11.【答案】ABD【解析】对于A ,第1周和第2周有害垃圾错误分类的重量明显增多,是加速增长,故A 正确;对于B ,第3周和第4周有害垃圾错误分类的重量图象是线段,是匀速增长,故B 正确; 对于C ,第5周和第6周有害垃圾错误分类的重量相对第3周和第4周是减少,故C 错误;对于D ,第7周和第8周有害垃圾错误分类的重量增长0.6吨, 第1周和第2周有害垃圾错误分类的重量增长2.4吨,∴第7周和第8周有害垃圾错误分类的重量相对第1周和第2周减少了1.8吨,故D 正确. 故选:ABD .由分段函数图象,能够读出各段上y 对于x 变化状态,由此能求出结果.本题考查命题真假的判断,考查折线图等基础知识,考查运算求解能力、数据分析能力等数学核心素养,是基础题.12.【答案】BD【解析】解:x ≤0时,y =f(x +2),∴f(x)在x ≤0时的图象以2为周期进行循环,如下图所示,由图象可知,f(x)在区间[−6,−4]上先增后减,所以A 错误; f(−2)+f(−2021)=f(0)+f(1)=0+2=2,所以B 正确;当x >0时,f(x)=−2x 2+4x ,f(3)≠f(1),所以y =f(x)不是以2为周期的周期函数,所以C 错误;y =kx +1恒过(0,1),由图象可知,直线与f(x)交点只可能在x ∈(−2,0)或x ∈(0,+∞)处取到,x ∈(−2,0)时,f(x)=−2x 2−4x ,∴{−k =2x +1x +4,−2<x <0−k =2x +1x −4,x >0,即y =−k 和g(x)={2x +1x +4,−2<x <02x +1x−4,x >0交点个数为3,画出g(x)图象,如下图所示,x ∈(−2,0)时,g(x)最大值为4−2√2,g(−2)=−12,x ∈(0,2)时,g(x)最小值为2√2−4, ∴y =−k 和y =g(x)要有3个交点,满足−k =4−2√2或2√2−4<−k <−12, 解得12<k <4−2√2或k =2√2−4,所以D 正确. 故选:BD .画出图象,即可判断A ;由x >0时,f(x)=−2x 2+4x ,x ≤0时,y =f(x +2),即可判断BC ;参变分离得{−k =2x +1x +4,−2<x <0−k =2x +1x −4,x >0,即可判断D . 本题考查了函数的图象与性质,函数零点问题,D 选项较难下手,属于难题.13.【答案】[−2√2,2√2]【解析】解:原命题的否定为“∀x ∈R ,2x 2−3ax +9≥0”,且为真命题, 则开口向上的二次函数值要想大于等于0恒成立, 只需△=9a 2−4×2×9≤0,解得:−2√2≤a ≤2√2. 故答案为:[−2√2,2√2]根据题意,原命题的否定“∀x ∈R ,2x 2−3ax +9≥0”为真命题,也就是常见的“恒成立”问题,只需△≤0.存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错.所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定.注意“恒成立”条件的使用.14.【答案】−4【解析】解:根据题意,函数f(x)=x2sinx−2,则f(−x)=−x2sinx−2,则f(x)+f(−x)=−4,则有f(2021)+f(−2021)=−4,故答案为:−4.根据题意,求出f(−x)的解析式,分析可得f(x)+f(−x)=−4,据此分析可得答案.本题考查函数值的计算,涉及函数奇偶性的性质以及应用,属于基础题.15.【答案】(√2+1)L.【解析】解:设传令兵的速度为V1,队伍的速度为V2,传令兵从队尾到队头的时间为t1,从队头到队尾的时间为t2,队伍前进用时间为t.由传令兵往返总时间与队伍运动时间相等可得如下方程:t=t1+t2,即:LV2=LV1−V2+LV1+V2整理上式得:V12−2V1V2−V22=0解得:V1=(√2+1)V2;将上式等号两边同乘总时间t,即V1t=(√2+1)v2tV1t即为传令兵走过的路程S1,V2t即为队伍前进距离S2,则有S1=(√2+1)S2=(√2+1)L.故答案为:(√2+1)L.以队伍为参照物,可求传令兵从队尾往队头的速度,从队头往队尾的速度,利用速度公式求传令兵从队尾到队头的时间t1,传令兵从队头到队尾的时间为t2,队伍前进100用的时间t,而t=t1+t2,据此列方程求出V1、V2的关系,进而求出在t时间内通讯员行走的路程.本题考查路程的计算,关键是计算向前的距离和向后的距离,难点是知道向前的时候人和队伍前进方向相同,向后的时候人和队伍前进方向相反,解决此类问题常常用到相对运动的知识.16.【答案】27【解析】解:因为集合A中有三个元素,当A1=⌀时,必须A2=A,分拆种数为1;当A1有一个元素时,分拆种数为C31⋅2=6;当A1有2个元素时,分拆种数为C32⋅22=12;当A1=A时,分拆种数为C33⋅23=8.所以总的不同分拆种数为1+6+12+8=27种.故答案为:27.由题意中的定义,分A1=⌀,A1有一个元素,A1有2个元素,A1=A四种情况,分别求出分拆种数,即可得到答案.本题考查了新定义问题,解决此类问题,关键是读懂题意,理解新定义的本质,把新情境下的概念、法则、运算化归到常规的数学背景中,运用相关的数学公式、定理、性质进行解答即可,属于中档题.17.【答案】解:(1)集合A={x|y=log2(4−2x)+1}={x|4−2x>0}={x|x<2},B={y|y=x+1x+1+a,x>−1}={x|x+1+1x+1+a−1≥2√(x+1)⋅1x+1+a−1=a+1}={x|x≥a+1}.(2)∵集合A={x|x<2},B={x|x≥a+1}.∴∁U B={x|x<a+1},∵“x∈∁R B”是“x∈A“的必要不充分条件,∴x<2⇒x<a+1,∴a+1>2,解得a>1.∴a的取值范围是(1,+∞).【解析】(1)利用对数函数的定义域能求出集合A,利用均值定理能求出集合B.(2)推导出x<2⇒x<a+1,由此能求出a的取值范围.本题考查集合、实数的取值范围的求法,对数函数的定义域、均值定理、必要不充分条件等基础知识,考查运算求解能力,是基础题.18.【答案】解:(1)当m =0时,f(x)=2x 2−1,可知函数f(x)图象在[−3,0]上单调递减,∴f(x)min =f(0)=−1,f(x)max =f(−3)=17;(2)由f(0)=0得m =12.由f(1)=0得m =−18≠12,∴m =12或−18成立; 由f(0)f(1)<0得(2m −1)(8m +1)<0,解得:−18<m <12; 综上:满足条件的m 的取值范围是:[−18,12].【解析】(1)结合函数f(x)图象可求f(x)在[−3,0]上的最大值和最小值; (2)根据f(0)f(1)<0,再验证f(0)=0及f(1)=0,可求得m 范围. 本题考查二次函数图象性质,考查数学运算能力,属于中档题.19.【答案】解:(1)根据题意,设x <0,则−x >0,则有f(−x)=x 2−4x ,又由f(x)为偶函数,则f(x)=f(−x)=x 2−4x , 则f(x)={x 2+4x,x ≥0x 2−4x,x <0;(2)由函数f(x)为偶函数可知f(2a)<f(1−a)⇔f(|2a|)<f(|1−a|),由(1)知函数f(x)在[0,+∞)上是增函数,∴|2a|<|1−a|,得(2a)2<(1−a)2,解得:a ∈(−1,13).【解析】(1)令x >0,则−x <0,再根据函数为偶函数可求得解析式;(2)由函数f(x)为偶函数可知f(2a)<f(1−a)⇔f(|2a|)<f(|1−a|),可求得a 的取值范围.本题考查函数奇偶性的性质以及应用、函数解析式求法、考查数学运算能力及数学抽象能力,属于中档题.20.【答案】解:(1)y =x +80t −(20+9x +50t)=30t −20−8x =30k ⋅(6−12x+4)−20−8x =180k −360k x+4−8x −20,x ∈[0,10];(2)y=180k−360kx+4−8x−20=180k+12−8[(x+4)+45kx+4],因为x∈[0,10],所以4≤x+4≤14,则(x+4)+45kx+4≥6√5√k,当且仅当x+4=45kx+4,即x=3√5√k−4时取“=”,因为k∈[0.5,1],则3√102−4≤3√5√k−4≤3√5−4,即有3√5√k−4∈[0,10],所以y≤180k+12−48√5√k,即当政府补贴为3√5√k−4万元才能使A公司的防护服利润达到最大,最大为180k+ 12−48√5√k;(3)若对任意的x∈[0,10],公司都不产生亏损,则180k−360kx+4−8x−20≥0在x∈[0,10]恒成立,即180k≥(8x+20)(x+4)x+2,记m=x+2,则m∈[2,12],此时(8x+20)(x+4)x+2=(8m+4)(m+2)m=8m2+20m+8m=8m+8m+20,由于函数f(m)=8m+8m+20在[2,12]单调递增,所以当m∈[2,12]时,f max(m)=f(12)=11623,∴k≥1162 3180≈0.65即k≥0.65,即当工厂工人的复工率达到0.65时,对任意的x∈[0,10],公司都不产生亏损.【解析】(1)利用已知条件列出函数的解析式,写出定义域即可.(2)由y的解析式得到y=180k+12−8[(x+4)+45kx+4],根据x的范围得到(x+4)+45k x+4≥6√5√k,结合k的范围可得3√102−4≤3√5√k−4≤3√5−4,即可求得答案(3)若对任意的x∈[0,10],公司都不产生亏损,得到180k−360kx+4−8x−20≥0在x∈[0,10]恒成立,利用换元法,结合函数的单调性求解函数的最值即可得到结果.本题考查实际问题的处理方法,函数的单调性以及函数的解析式的求法,考查转化思想以及计算能力,是中档题.21.【答案】解:(1)当a=1时,令−x|x−2|+1=0.当x≥2时,−x(x−2)+1=0,解得:x=1+√2;当x<2时,−x(x−2)+1=0,解得:x=1.故函数零点为:1+√2和1;(2)f(x)={−x 2+2ax +1,x ≥2ax 2−2ax +!,x <2a ,其中f(0)=f(2a)=1,于是最大值在f(1),f(2),f(2a)中取.得0<2a ≤1,即0<a ≤12时,f(x)在[1,2]上单调递减.∴f(x)max =f(1)=2a ; 当a <1<2a <2,即12<a <1时,f(x)在[1,2a]上单调递增,在[2a,2]上单调递减,故f(x)max =f(2a)=1;当1≤a <2<2a ,即1≤a <2时,f(x)在[1,a]上单调递减,在[a,2]上单调递增,故f(x)max =max{f(1),f(2)},∵f(1)−f(2)2a −3<0,故f(x)max =f(2)=5−4a .综上:f(x)max={2a,0<a ≤12,1,12<a <1,5−4a,1≤a <32..【解析】(1)求函数零点转化为解方程可解决此问题; (2)根据a 讨论函数图象,根据图象特点可求函数最大值. 本题考查函数零点与最值,考查数学运算能力,属于难题.22.【答案】解:(1)f(x)=log 2x 的定义域为(0,+∞),令x 1=12,x 2=14,则f(12)−f(14)=log 212−log 214=−1−(−2)=1, 而2|x 1−x 2|=12,∴f(x 1)−f(x 2)>2|x 1−x 2|,∴函数f(x)=log 2x 不是“2−利普希兹条件函数”;(2)若函数f(x)=√x(1≤x ≤4)是“k −利普希兹条件函数”,则对于定义域[1,4]上任意两个x 1,x 2(x 1≠x 2),均有|f(x 1)−f(x 2)|≤k|x 1−x 2|成立,不妨设x 1>x 2,则k ≥√x 1−√x 2x 1−x2=√x +√x 恒成立,∵1≤x 2<x 1≤4, ∴14<√x +√x <12,∴k 的最小值为12;(3)∵|f(x 1)−f(x 2)|>k|x 1−x 2|,f(x)=log 2(2x −a)为[1,2]上的“非1−利普希兹条件函数”,∴设x 1>x 2,则|log 2(2x 1−a)−log 2(2x 2−a)|>|x 1−x 2|,∵2x1−a>0,2x2−a>0,且2x1−a2x2−a>1,∴2x1−a2x2−a >2x1−x2=2x12x2,∴2x1+x2−a⋅2x2>2x1+x2−a⋅2x1,∴a⋅2x1>a⋅2x2,∵x1>x2,∴a>0,∵2x−a>0,∴a<2x,∵x∈[1,2],∴a<2,综上,实数a的取值范围为(0,2).【解析】(1)令x1=12,x2=14,即可说明f(x)=log2x不是“2−利普希兹条件函数”;(2)依题意,k≥√x1−√x2x1−x2=√x+√x恒成立,而14<√x+√x<12,由此可得k的最小值;(3)由题意可得,a⋅2x1>a⋅2x2,结合x1>x2,可得a>0,由2x−a>0,x∈[1,2],可得a<2,综合即得答案.本题以新定义为背景,考查函数性质的运用,考查不等式的恒成立问题,考查分离变量法以及运算求解能力,属于中档题.。

辽宁省锦州市高三上学期数学10月月考试卷

辽宁省锦州市高三上学期数学10月月考试卷

辽宁省锦州市高三上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共4题;共8分)1. (2分) (2019高一下·上海期末) “ ”是“ ”()A . 充要条件B . 充分不必要条件C . 必要不充分条件D . 既不充分也不必要条件2. (2分)已知是三个不同的平面,命题“,且是真命题,如果把中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有()A . 0个B . 1个C . 2个D . 3个3. (2分) (2019高二上·南宁月考) 设与是定义在同一区间上的两个函数,若函数在上有两个不同的零点,则称和在上是关联函数,称为关联区间,若与在上是关联函数,则的取值范围是()A .B .C .D .4. (2分) (2019高一上·安平月考) 已知函数,则使得的的范围是()A .B .C .D .二、填空题 (共12题;共12分)5. (1分) (2019高三上·浙江月考) 若 ( 为虚数单位),则 ________,的实部________6. (1分) (2016高一上·虹口期中) 若集合M={x|y=2x+1},N={(x,y)|y=﹣x2},则M∩N=________.7. (1分)对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“同域函数”,区间A为函数f(x)的一个“同城区间”.给出下列四个函数:①f(x)=cos x;②f(x)=x2﹣1;③f(x)=|x2﹣1|;④f(x)=log2(x﹣1).存在“同域区间”的“同域函数”的序号是________ (请写出所有正确的序号)8. (1分) (2019高一下·上海月考) 已知,则的值为________.9. (1分)(2016·安庆模拟) 计算Cn1+2Cn2+3Cn3+…+nCnn ,可以采用以下方法:构造等式:Cn0+Cn1x+Cn2x2+…+Cnnxn=(1+x)n ,两边对x求导,得Cn1+2Cn2x+3Cn3x2+…+nCnnxn﹣1=n(1+x)n﹣1 ,在上式中令x=1,得Cn1+2Cn2+3Cn3+…+nCnn=n•2n﹣ 1 .类比上述计算方法,计算Cn1+22Cn2+32Cn3+…+n2Cnn=________.10. (1分) (2018高一下·抚顺期末) 若向量,向量,则在上的正射影的数量为________11. (1分)(2018·南充模拟) 已知函数则 ________.12. (1分) A={x|x2﹣5x+6=0},B={x|mx=1},若B⊆A,则实数m=________.13. (1分) (2019高三上·北京月考) 设函数,,若函数恰有三个零点,则的取值范围是________.14. (1分) (2018高一上·凯里月考) 设函数,若对于定义域内的任意,总存在使得,则满足条件的实数的取值范围是________.15. (1分) (2018高一上·西宁期末) 已知函数的定义域是,且满足,.如果对于,都有,则不等式的解集为________(表示成集合).16. (1分) (2018高二下·台州期中) 已知单位向量满足,向量使得,则的最小值为________,的最大值为________.三、解答题 (共5题;共55分)17. (10分)在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点;求异面直线A1B,AC1所成角的余弦值18. (10分) (2019高二下·上海月考) 已知椭圆的左、右两个顶点分别为、,曲线是以、两点为顶点,焦距为的双曲线,设点在第一象限且在曲线上,直线与椭圆相交于另一点 .(1)求曲线的方程;(2)设、两点的横坐标分别为、,求证为一定值;(3)设△ 与△ (其中为坐标原点)的面积分别为与,且,求的取值范围.19. (10分) (2015高一下·金华期中) 已知函数f(x)=x2﹣2ax+5(a>1).(1)若f(x)的定义域和值域均是[1,a],求实数a的值;(2)若对任意的x1,x2∈[1,a+1],总有|f(x1)﹣f(x2)|≤4,求实数a的取值范围.20. (15分) (2016高一上·宁波期中) 已知函数f(x)=x|x﹣a|(1)若函数y=f(x)+x在R上是增函数,求实数a的取值范围;(2)若对任意x∈[1,2]时,函数f(x)的图像恒在y=1图像的下方,求实数a的取值范围;(3)设a≥2时,求f(x)在区间[2,4]内的值域.21. (10分)(2020·兴平模拟) 已知函数; .(1)判断在上的单调性,并说明理由;(2)求的极值;(3)当时,,求实数的取值范围.参考答案一、单选题 (共4题;共8分)1-1、2-1、3-1、4、答案:略二、填空题 (共12题;共12分)5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共5题;共55分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、20-3、21-1、21-2、21-3、。

辽宁省 高三数学 上 期10月月考 文

辽宁省   高三数学 上 期10月月考 文

上学期10月月考高三(12届)文科数学试题说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题卡上,主观题答在答题纸上第Ⅰ卷(共60分)一、选择题:本大题共l2小题.每小题5分,共60分在每小题给出的四个选项中,只有一项是满足题目要求的.1. 已知I为实数集,2{|20},{|M x x x N x y =-<=,则=⋂)(N C M I ( ) A . {|01}x x << B .{|02}x x << C . {|1}x x < D .∅2.已知数列{}n a 为等差数列,且17134a a a π++=,则7tan a = ( )A .B.D.3-3.设集合101x A xx -⎧⎫=<⎨⎬+⎩⎭,{}1B x x a =-<,则“1a =”是“A B φ⋂≠”的( ) A .充分不必要条件 B.必要不充分条件 C.充要条件 D. 既不充分又不必要条件 4.等比数列{n a }的前n 项和为n S ,若2132112364(...),27,n n S a a a a a a a -=+++==则( )A 27B 81C 243D 7295.若正实数,a b 满足1a b +=,则( )A .11a b+有最大值4 B .ab 有最小值14CD .22a b +6.已知1tan()42πα+=,且02πα-<<,则22sin sin 2cos()4ααπα+=-( )AB.C.7. 已知y x ,满足约束条件⎩⎨⎧≤-+≥01||2y x x y ,若函数ax y z -=(0>a )的最大值为3,则实数a 的值为( )A 2B 4C 1D 38. 如图,圆弧型声波DFE 从坐标原点O 向外传播. 若D 是DFE 弧与x 轴的交点,设OD = x a x ≤≤0(),圆弧型声波DFE 在传播过程中扫过平行四边形OABC (非菱形)的面积为y (图中阴影部分),则函数)(x f y =的图象大致是( ).9.已知定义在R 上的函数()f x 为奇函数,且函数(21)f x +的周期为5,若()15f =,则(2009)(2010)f f +的值为 A .5B .1C .0D .5-10. 设函数()|1||21|.f x x x =++-对任意(],0,()x f x ax b ∈-∞≤+ 恒成立,则a-b 的最大值_____. A .5B .-1C .-2D .5-11.不等式)10(2sin log ≠>>a a x x a 且对任意)4,0(π∈x 都成立,则a 的取值范围为( )A 、)4,0(π B 、⎪⎭⎫⎢⎣⎡1,4π C 、)2,1()1,4(ππ⋃ D 、)1,0( 12.已知曲线(-20)C y x =≤≤:与函数()l o g (a f x x =-及函数()(1)x g x a a -=>其中 的图像分别交于1122(,),(,)A x y B x y ,则2212x x +的值为 A .16 B .8 C .4 D .2二、填空题:本大题共4小题,每小题5分,共20分.13.设数列{a n }满足a 1=1,3(a 1+a 2+…+a n )=(n +2)a n ,通项a n =________.14.已知命题:p “存在[]0,1,x ∈使得1426(5)0x x k k k +⋅-⋅+⋅-=”,若命题p 是假命题,则实数k 的取值范围是 _________. 15.设定义在R 上的函数()f x 满足对,x t R ∀∈,且0t ≠,都有(()())0t f x t f x +->,则{}{}(,)|()(,)|x y y f x x y y a ==的元素个数为 .16.设函数c bx ax x x g +++=232131)(),(R b a ∈的图象经过原点,在其图象上一点P ),(y x 处的切线斜率记为x f ().若方程x f ()=0有两个实根分别为 -2和4,)(x g第6题图在区间[]3,1-上是单调递减函数,则22b a +的最小值为________.三、解答题:本大题共6小题,共70分.17.(本小题满分10分)已知函数()4sin cos()16f x x x π=++。

2024-2025学年辽宁省实验中学高三上学期10月月考数学试题及答案

2024-2025学年辽宁省实验中学高三上学期10月月考数学试题及答案

辽宁省实验中学高三年级10月份月考数学试卷满分:150分时间:120分钟一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 若,则是的()条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要2. 若,则()A. B. C. D.3. 已知函数在上单调递增,则的取值范围是()A. B. C. D.4. 在中,角,,的对边分别为,,,若为非零实数),则下列结论错误的是()A. 当时,是直角三角形B. 当时,是锐角三角形C. 当时,是钝角三角形D. 当时,是钝角三角形5. 耳机的降噪效果成为衡量一个耳机好坏的标准之一,降噪的工作原理就是通过麦克风采集周围环境的噪音,通过数字化分析,以反向声波进行处理,实现声波间的抵消,使噪音降为0,完成降噪(如图所示),已知噪音的声波曲线是,通过主动降噪芯片生成的反向声波曲线是(其中,,),则().A. B. C. π D.6. 已知函数是定义在上的偶函数,且在区间单调递减,若,且满足,则的取值范围是()A. B. C. D.7. 已知正数,满足,则下列说法不正确的是()A. B.C D.8. 设函数在上至少有两个不同零点,则实数取值范围是()A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求。

全部选对得6分,选对但不全的得部分分,有选错的得0分。

9. 下列函数在其定义域上既是奇函数又是增函数的是()A. B.C. D.10. 函数,(,)部分图象如图所示,下列说法正确的是()A. 函数解析式为B. 函数的单调增区间为C. 函数的图象关于点对称D. 为了得到函数的图象,只需将函数向右平移个单位长度11. 已知函数,若有6个不同的零点分别为,且,则下列说法正确的是()A. 当时,B. 的取值范围为C. 当时,取值范围为D. 当时,的取值范围为三、填空题:本大题共3小题,每小题5分,共15分.12. 已知,则用表示为______.13. 已知,则的最小值为______.14. 在锐角中,角的对边分别为,的面积为,满足,若,则的最小值为______.四、解答题:本大题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15. 为了研究学生的性别和是否喜欢跳绳的关联性,随机调查了某中学的100名学生,整理得到如下列联表:男学生女学生合计喜欢跳绳353570不喜欢跳绳102030合计4555100(1)依据的独立性检验,能否认为学生的性别和是否喜欢跳绳有关联?(2)已知该校学生每分钟的跳绳个数,该校学生经过训练后,跳绳个数都有明显进步.假设经过训练后每人每分钟的跳绳个数都增加10,该校有1000名学生,预估经过训练后该校每分钟的跳绳个数在内的人数(结果精确到整数).附:,其中.0.10.050.012.7063.841 6.635若,则,16. 已知函数.(1)若在R上单调递减,求a的取值范围;(2)若,判断是否有最大值,若有,求出最大值;若没有,请说明理由.17. 已知数列的前n项和为,数列满足,.(1)证明等差数列;(2)是否存在常数a、b,使得对一切正整数n都有成立.若存在,求出a、b的值;若不存在,说明理由.18. 在中,设角A,B,C所对的边分别是a,b,c,且满足.(1)求角B;(2)若,求面积的最大值;(3)求的取值范围.19. 已知集合是具有下列性质的函数的全体,存在有序实数对,使对定义域内任意实数都成立.(1)判断函数,是否属于集合,并说明理由;(2)若函数(,、为常数)具有反函数,且存在实数对使,求实数、满足的关系式;(3)若定义域为的函数,存在满足条件的实数对和,当时,值域为,求当时函数的值域.辽宁省实验中学高三年级10月份月考数学试卷满分:150分时间:120分钟一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 若,则是的()条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要【答案】A【解析】【分析】根据指、对数函数单调性解不等式,再根据包含关系分析充分、必要条件.【详解】对于,则,解得;对于,则,解得;因为是的真子集,所以是的充分不必要条件.故选:A.2. 若,则()A. B. C. D.【答案】C【解析】【分析】先由条件得到,化弦为切,代入求出答案.【详解】因为,所以,所以.故选:C3. 已知函数在上单调递增,则的取值范围是()A. B. C. D.【答案】B【解析】【分析】根据在上恒大于0,且单调递增,可求的取值范围.【详解】因为函数在上单调递增,所以在上单调递增,所以.且在恒大于0,所以或.综上可知:.故选:B4. 在中,角,,的对边分别为,,,若为非零实数),则下列结论错误的是()A. 当时,是直角三角形B. 当时,是锐角三角形C. 当时,是钝角三角形D. 当时,是钝角三角形【答案】D【解析】【分析】由正弦定理化简已知可得,利用余弦定理,勾股定理,三角形两边之和大于第三边等知识逐一分析各个选项即可得解.【详解】对于选项,当时,,根据正弦定理不妨设,,,显然是直角三角形,故命题正确;对于选项,当时,,根据正弦定理不妨设,,,显然是等腰三角形,,说明为锐角,故是锐角三角形,故命题正确;对于选项,当时,,根据正弦定理不妨设,,,可得,说明为钝角,故是钝角三角形,故命题正确;对于选项,当时,,根据正弦定理不妨设,,,此时,不等构成三角形,故命题错误.故选:D.5. 耳机的降噪效果成为衡量一个耳机好坏的标准之一,降噪的工作原理就是通过麦克风采集周围环境的噪音,通过数字化分析,以反向声波进行处理,实现声波间的抵消,使噪音降为0,完成降噪(如图所示),已知噪音的声波曲线是,通过主动降噪芯片生成的反向声波曲线是(其中,,),则().A. B. C. π D.【答案】D【解析】【分析】根据题意,结合余弦型函数的性质进行求解即可.【详解】由于抵消噪音,所以振幅没有改变,即,所以,要想抵消噪音,需要主动降噪芯片生成的声波曲线是,即,因为,所以令,即,故选:D.6. 已知函数是定义在上的偶函数,且在区间单调递减,若,且满足,则的取值范围是()A. B. C. D.【答案】D【解析】【分析】根据函数的奇偶性、单调性、对数运算等知识列不等式,由此求得的取值范围.【详解】依题意,是偶函数,且在区间单调递减,公众号:高中试卷君由得,所以,所以或,所以或,所以的取值范围是.故选:D7. 已知正数,满足,则下列说法不正确的是()A. B.C. D.【答案】C【解析】【分析】令,则,对于A,直接代入利用对数的运算性质计算判断,对于B,结合对数函数的单调性分析判断,对于C,利用作差法分析判断,对于D,对化简变形,结合幂的运算性质及不等式的性质分析判断.【详解】令,则,对于A,,所以A正确,对于B,因为在上递增,且,所以,即,即,所以,所以B正确,对于C,因为,所以,所以C错误,对于D,,因为,所以,所以,所以,因为,所以,所以,所以,所以,所以D正确,故选:C8. 设函数在上至少有两个不同零点,则实数取值范围是()A. B. C. D.【答案】A【解析】【分析】先令得,并得到,从小到大将的正根写出,因为,所以,从而分情况,得到不等式,求出答案.【详解】令得,因为,所以,令,解得或,从小到大将的正根写出如下:,,,,,……,因为,所以,当,即时,,解得,此时无解,当,即时,,解得,此时无解,当,即时,,解得,故,当,即时,,解得,故,当时,,此时在上至少有两个不同零点,综上,的取值范围是.故选:A【点睛】方法点睛:在三角函数图象与性质中,对整个图象性质影响最大,因为可改变函数的单调区间,极值个数和零点个数,求解的取值范围是经常考察的内容,综合性较强,除掌握三角函数图象和性质,还要准确发掘题干中的隐含条件,找到切入点,数形结合求出相关性质,如最小正周期,零点个数,极值点个数等,此部分题目还常常和导函数,去绝对值等相结合考查综合能力.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求。

辽宁省沈文新高考研究联盟2025届高三上学期10月月考数学试题(解析版)

辽宁省沈文新高考研究联盟2025届高三上学期10月月考数学试题(解析版)

2024-2025(上)10月月度质量监测高三数学一、单选题(本大题共8小题,每小题5分,共40分,在每小题所给的四个选项中,有且只第Ⅰ卷选择题(共58分)有一项是符合题目要求的)1. 已知集合{}2A x x =∈Z,{}ln(1)B x y x ==−,则A B ∩中的元素个数为( )A. 3B. 4C. 5D. 6【答案】A 【解析】【分析】先求集合A 、B ,再根据交集的定义求出A B ∩即可求解.【详解】解:因为集合{}{}22,1,0,1,2A x x =∈=−−Z ,{}1B x x =<,所以{}2,1,0A B =−− , 故选:A .2. 已知12i +是方程250()x mx m ++=∈R 的一个根,则m =( ) A. -2 B. 2C. iD. -1【答案】A 【解析】【分析】法一:将复数代入二次方程,利用复数相等求解;法二:利韦达定理求解.【详解】方法1:由题意知2(12i)(12i)50m ++++=,即2(42)i 0m m +++=,解得2m =−. 方法2:根据虚根成对知1-2i 也是方程的根,由韦达定理得(12i)(12i)m ++−=−,所以2m =−. 故选:A.3. 不等式2320x x ++>成立的一个充分不必要条件是( ) A. (1,)−+∞B. [1−,)∞+C. (−∞,2][1−∪−,)∞+D. (1−,)(+∞−∞∪,2)−【解析】【分析】解不等式,根据集合的包含关系求出答案即可. 【详解】2320x x ++> ,(1)(2)0x x ∴++>,解得:1x >−或2x <−,故不等式2320x x ++>成立的一个充分不必要条件是(1,)−+∞, 故选:A .【点睛】本题考查了充分必要条件,考查不等式问题,是一道基础题.4. 已知π0,2θ ∈,且cos 2πsin 4θθ=−tan 2θ=( ). A.724B.247C. 724±D. 247±【答案】D 【解析】【分析】由余弦的二倍角公式和两角差正弦公式可得7cos sin 5θθ+=, 结合22cos sin 1θθ+=求出tan θ的值,再根据正切的二倍角公式即可.【详解】)cos2cos sin s in 4θθθπθ+ − 故7cos sin 5θθ+=, 又因为π0,2θ∈,且22cos sin 1θθ+=.故3cos 5θ=,4sin 5θ=或4cos 5θ=,3sin 5θ=,则4tan 3θ=或34,故22tan 24tan21tan 7θθθ==±−,5. 若a ,b是两个单位向量,则下列结论中正确的是( ) A. a b =B. a b∥C. 1a b ⋅=D. 22a b =【答案】D 【解析】【分析】a ,b是两个单位向量,则1ab == ,但a ,b 方向不能确定,即可判断AB ;利用数量积的定义与性质可判断CD .【详解】a ,b是两个单位向量,则1ab == ,但a ,b 方向不能确定,故选项AB 错误; cos co ,,s a b a b b a b a ⋅== ,只有a ,b同向共线时,才有cos ,1a b = ,故选项C 错误;221a a == ,221b b == ,22a b ∴= ,选项D 正确.故选:D.6. 如图,在直角梯形ABCD 中,AD ,AB BC ⊥,222BC AD AB ===,将直角梯形ABCD 沿对角线折起,使平面ABD ⊥平面BCD ,则异面直线AC 与BD 所成角的余弦值为( )A. 0B.C.D.【答案】B 【解析】【分析】取BD 的中点F ,连接AF ,则AF BD ⊥,通过面面垂直的性质定理可得到AF ⊥平面BCD . 过C 作CE ,且使12CE BD =,连接AE ,EF ,BE ,FC 则ACE ∠为所求的角, 在AEC △分别求出CE AC ,的大小,即可求出答案.【详解】在直角梯形ABCD 中,因为222BC AD AB ===,AD ,AB BC ⊥,所以,BD CD ==BD 的中点F ,连接AF ,则AF BD ⊥.又因为平面ABD ⊥平面BCD 且交于BD ,所以AF ⊥平面BCD .过C 作CE ,且使12CE BD =,连接AE ,EF ,BE ,FC 则ACE ∠为所求的角.在Rt AFC △中,AC =Rt AFE 中,AE =.因为CE =AEC △为直角三角形.所以cos CEACE AC∠=AC 与BD故选:B.7. 设正实数,x y 满足23x y +=,则下列说法错误的是( ) A.3y x y+的最小值为4 B. xy 的最大值为98C. +的最大值为2D. 224x y +的最小值为92【答案】C 【解析】【分析】根据基本不等式以及“1”的妙用判断各选项.【详解】对于A ,32224y y x y y x x y x y x y ++=+=++≥+=,当且仅当1xy ==时取等号,故A 正确;对于B ,21121992222248x y xy x y + =⋅⋅≤×=×= ,当且仅当2x y =,即33,24x y ==时取等号,故B 正确;对于C ,223336x y +=++≤+=+=,≤,当且仅当2x y =,即33,24x y ==时,故C 错误;对于D ,222994(2)49482x y x y xy +=+−≥−×=,当且仅当33,24x y ==时取等号,故D 正确. 故选:C.8. 定义在()0,∞+上的单调函数()f x ,对任意的()0,x ∈+∞有()ln 1f f x x −=恒成立,若方程()()f x f x m ⋅′=有两个不同的实数根,则实数m 的取值范围为( )A. (),1−∞B. ()0,1C. (]0,1D. (],1−∞【答案】B 【解析】【分析】由条件单调函数()f x ,对任意的()0,x ∈+∞都有()ln 1f f x x −=,故必有 ()ln f x x t −=,且()1=f t ,即可求得()f x ,再根据导数研究函数的性质,求得方程()()f x f x m ⋅′=有两个不同的实根满足的条件,求得m 的取值范围. 【详解】由于函数()f x 为单调函数,则不妨设()ln f x x t −=,则()1=f t , 且()ln 1ln f t t t t −=−=,解得1t =,所以()()1ln 1,f x x f x x′=+=. 设()()()ln 1x g x f x f x x=′+=⋅, 则方程()()f x f x m ⋅′=有两个不同的实数根等价于函数()ln 1x g x x+=与y m=有两个不同的交点. ()222ln 11ln 1ln x x x g x xx x x x ′−′=+=−=−, 易得当(0,1)x ∈时,()0g x ′>;当(1,)x ∈+∞时,()0g x ′<, 所以函数()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,所以max()(1)0g x g ==. 又10g e=,且当x →+∞时,()0g x →. 故函数()ln 1x g x x+=与y m=有两个不同的交点则()0,1m ∈.故选:B二、多选题(本大题共3小题,每小题6分,共18分,在每小题所给的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9. 以下是真命题的是( )A. 已知a ,b为非零向量,若a b a b +>− ,则a 与b 的夹角为锐角 B. 已知a ,b ,c为两两非共线向量,若a b a c ⋅=⋅ ,则()a cb ⊥−C. 在三角形ABC 中,若cos cos a A b B ⋅=⋅,则三角形ABC 是等腰三角形D. 若三棱锥的三条侧棱与底面所成的角相等,则顶点在底面的射影是底面三角形的外心 【答案】BD 【解析】【分析】A :将已知条件两边同时平方,整理得到0a b ⋅>,结合平面向量的数量积的定义得到cos ,0a b >,由平面向量的夹角范围可得,0,2a b π ∈,进而可以判断选项;B :将已知条件变形为()0a b c ⋅−=,结合平面向量数量积即可判断选项;C :结合正弦定理化简整理即可判断三角形的形状;D :作出图形,证得PAO PBO PCO ≅≅ ,即可得到AO BO CO ==,结合三角形外心的性质即可判断.【详解】A :因为a b a b +>− ,两边同时平方,得()()22a ba b +>− ,即222222a b a b a b a b ++⋅>+−⋅,所以0a b ⋅> ,因此cos ,0a b > ,因为[],0,a b π∈ ,所以,0,2a b π ∈,因此a 与b的夹角为锐角或零角,故A 错误;B :因为a b a c ⋅=⋅ ,所以()0a b c ⋅−= ,又因为a ,b ,c 为两两非共线向量,则0,0a b c ≠−≠ ,所以()a cb ⊥−,故B 正确;C :因为cos cos a A b B ⋅=⋅,结合余弦定理得sin cos sin cos A A B B ⋅=⋅,所以sin 2sin 2A B =,所以22A B =或22A B π+=,即A B =或2A B π+=,所以角形ABC 是等腰三角形或直角三角形,故C 错误; D :设三棱锥P ABC −的顶点P 在底面ABC 的射影为O ,所以⊥PO 底面ABC ,又因为AO ⊂底面ABC ,BO ⊂底面ABC ,CO ⊂底面ABC ,所以,,PO AO PO BO PO CO ⊥⊥⊥,又因为三棱锥的三条侧棱与底面所成的角相等,所以PAO PBO PCO ∠=∠=∠,所以PAO PBO PCO ≅≅ ,所以AO BO CO ==,所以点O 是ABC 的外心,故D 正确;故选:BD.10. 八一广场位置处于解放碑繁华地段,紧挨着得意世界、大融城、八一好吃街等.重庆解放碑是抗战胜利纪功碑暨人民解放纪念碑,是抗战胜利的精神象征,是中国唯一一座纪念中华民族抗日战争胜利的纪念碑.现某兴趣小组准备在八一广场上对解放碑的高度进行测量,并绘制出测量方案示意图,A 为解放碑的最顶端,B 为解放碑的基座(即B 在A 的正下方),在广场内(与B 在同一水平面内)选取C ,D 两点,则根据下列各组中的测量数据,能计算出解放碑高度AB 的是( )A. CD ,ACB ∠,BCD ∠,BDC ∠B. CD ,ACB ∠,BCD ∠,ADC ∠C. CD ,ACB ∠,BCD ∠,ACD ∠D. BC ,BD ,2ACB ADB π∠+∠=【答案】ABD 【解析】【分析】A 、B 、C 根据正弦定理、余弦定理和直角三角形性质判断所给条件是否构成解三角形条件;D 选项根据相似三角形性质判断.【详解】由题意可知AB ⊥平面BCD ,由此进行下列判断:A 选项,在BCD △中,根据CD ,BCD ∠,BDC ∠,可利用正弦定理求得BC ,再根据tan ACB ∠求得AB ,故A 正确;B 选项,由ACB ∠,BCD ∠借助直角三角形和余弦定理,用AB 和CD 表示出BC ,BD ,AC ,AD ,然后结合ADC ∠在ACD 中利用余弦定理列方程,解方程求得AB ,故B 正确;C 选项,CD ,ACB ∠,BCD ∠,ACD ∠四个条件,无法通过解三角形求得AB ,故C 错误; D 选项,根据π2ACB ADB ∠+∠=,可得ABC 与DBA 相似,根据相似比AB BDBC AB =可解方程求得AB ,故D 正确, 故选:ABD .11. 设定义在R 上的函数()f x 与()g x 的导函数分别为()f x ′和()g x ′.若()()42f x g x −−=,()()2g x f x ′′=−,且()2f x +为奇函数,则( ). A. R x ∀∈,()()40f x f x ++−=B. ()()354g g +=C.()202310k f k ==∑D.()202310k g k ==∑【答案】AC 【解析】【分析】由()2f x +为奇函数,结合奇函数的性质判断A ,由条件证明()f x 为周期为4的函数,利用组合求和法求()20231k f k =∑判断C ,根据条件证明()()22g x f x =−−,由此判断BD.【详解】对A ,又∵()2f x +奇函数,则()y f x =图像关于()2,0对称,且()()220f x f x ++−=, 为所以()()40f x f x ++−=,A 正确; 对于C ,∵()(2)g x f x ′′=−,则()()2g x f x a =−+,则()()42g x f x a −=−+,又()()42f x g x −−=, 所以()()22f x f x a =−++,令1x =,可得20a +=,即2a =−.所以()(2)f x f x =−,又()()40f x f x ++−=所以()()()22f x f x f x +=−−+=−, 所以()()()24f x f x f x =−+=+, ∴()y f x =的周期4T =,所以()()04f f =,由()()220f x f x ++−=可得, ()()130f f +=,()()400f f +=,()20f =,所以()00f =,()40f =,∴[]20231()505(1)(2)(3)(4)(1)(2)(3)0k f k f f f f f f f ==++++++=∑,C 正确;对B ,()()22g x f x =−−,则()g x 是周期4T =的函数,()()()()3512324g g f f +=−+−=−,B错误; 对D ,()()()1120242023f f f −=−+=,()()()()022********f f f f ==+=,所以2023202311()(1)2(0)2(1)2(2021)2()22023k k g k f f f f f k ==−−+−+−+…+−=−×∑∑,所以20231()4046k g k ==−∑,D 错误.故选:AC.【点睛】知识点点睛:本题考查导数的运算,奇函数的性质,抽象函数周期性的证明,分组求和法等知识点,属于综合题,考查逻辑推理和首项运算的核心素养.第Ⅱ卷 非选择题(共92分)三、填空题(本大题共3小题,每小题5分,共15分)12. 设函数()log a f x x =(0a >且1a ≠),若()1220211010f x x x ⋅⋅⋅=,则()()()222122021f x f x f x ++⋅⋅⋅+=______.【答案】2020 【解析】 【分析】根据对数的运算法则计算.【详解】∵()1220211010f x x x ⋅⋅⋅=,∴()122021log 1010a x x x ⋅⋅⋅=; ∴()()()()()()222222122021122021log log log a a a f x f x f x x x x =++⋅⋅⋅+++⋅⋅⋅+()()222212320211220212l 2020og a f x x x x x x x =+=⋅⋅⋅.故答案为:2020.13. 如图,在ABC 中,4AB =,3AC =,90A ∠=°,若PQ 为圆心为A 的单位圆的一条动直径,则BP CQ ⋅的取值范围是__.【答案】[6,4]− 【解析】【分析】利用平面向量的线性运算可得出,BP AP AB CQ AQ AC AP AC =−=−=−−,运用平面向量数量积的运算性质解决即可.【详解】由题知,ABC 中,4AB =,3AC =,90A ∠=°,若PQ 为圆心为A 的单位圆的一条动直径,所以A 为PQ 的中点,1,,5AP AP QA BC ===, 因为,BP AP AB CQ AQ AC AP AC =−=−=−−,所以()()()()BP CQ AP AB AP AC AB AP AC AP ⋅=−⋅−−=−+2()1AB AC AP AP AB AC AP CB =⋅−+⋅−=−+⋅ ,因为AP CB AP CB AP CB −⋅≤⋅≤⋅ ,即55AP CB −≤⋅≤所以614AP CB −≤−+⋅≤ ,当且仅当,AP CB同向时取最大值,反向时取最小值,所以BP CQ ⋅的取值范围是[6,4]−,故答案为:[6,4]−14. 已知棱长为2的正方体1111ABCD A B C D −中,M 为AB 的中点,P 是平面ABCD 内的动点,且满足条件13PD PM =,则动点P 在平面ABCD 内形成的轨迹是 . 【答案】圆 【解析】【分析】分别以1,,DA DC DD 为x 轴,y 轴,z 轴,利用空间两点距离的坐标表示求轨迹方程即可. 【详解】分别以1,,DA DC DD 为x 轴,y 轴,z 轴,则1(0,0,2),(2,1,0)D M ,设(,,0)P x y ,由题意可得22222(02)9[(2)(1)]x y x y ++−=−+−, 化简可得2299410248x y x y +−−+=,易知轨迹是圆. 故答案为:圆四、解答题(本大题共5小题,共77分.解答时应写出必要的文字说明、证明过程或演算步骤)15. 在①1n n a a +−=+;② 184n n a a n −−=−(2n ≥)两个条件中,任选一个,补充在下面问题中,并求解.问题:已知数列{}n a 中,13a =,__________ (1)求n a ;.(2)若数列1n a的前n 项和为n T ,证明:1132n T ≤<.【答案】条件选择见解析;(1)241=−n a n ;(2)证明见解析.【解析】 【分析】若选① :(1)由1n n a a +−=2=,根据是首项为2,公差为2的等差数列,可得结果;(2)由2111114122121n a n n n ==− −−+利用裂项求和方法求和得n T ,进一步可证1132n T ≤<. 若选② :(1)由184n n a a n −−=−(2n ≥)利用累加法可求得n a ;(2)由2111114122121n a n n n ==− −−+ 利用裂项求和方法求和得n T ,进一步可证1132nT ≤<. 【详解】若选① :(1)由1n n a a +−=,13a =2=,2=,2=,所以是首项为2,公差为2的等差数列,2n =,所以241=−n a n ; (2)证明:由(1)得2111114122121n a n n n ==− −−+, 所以1111111213352121nT n n =−+−++− −+111221n −+ 11242n =−+, 因为1042n >+,所以12n T <,又因为11242n T n =−+随着n 的增大而增大,所以113n T T ≥=, 综上1132n T ≤<.若选② :(1)由184n n a a n −−=−(2n ≥)可得:当2n ≥时,112211()()()n n n n n a a a a a a a a −−−=−+−++−+ (84)(812)123n n −+−+++ [(84)12](1)32n n −+−+241n −,当1n =时,13a =,符合241=−n a n , 所以当*n N ∈时,241=−n a n ; (2)证明:由(1)得2111114122121na n n n ==− −−+, 所以1111111213352121nT n n =−+−++− −+111221n −+ 11242n =−+, 因为1042n >+,所以12n T <,又因为11242n T n =−+随着n 的增大而增大,所以113n T T ≥=, 综上1132n T ≤<.【点睛】方法点睛:求数列通项公式常用的七种方法:一、公式法:根据等差或等比数列的通项公式1(1)n a a n d =+−或11n n a a q −=进行求解;二、前n 项和法:根据11,1,2n nS n a S S n −= = −≥ 进行求解;三、n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S −与1n a −的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项;四、累加法:当数列中有1()n n a a f n −−=,即第n 项与第1n −项的差是个有规律的数时,就可以用这种方法;五、累乘法:当数列{}n a 中有1()nn a f n a −=,即第n 项与第1n −项的积是个有规律的数时,就可以用这种方法;六、构造法:①一次函数法:在数列{}n a 中有1n n a ka b −=+(,k b 均为常数,且0k ≠), 一般化方法:设1()n n a m k a m −+=+,得到(1)b k m =−,1b m k =−,根据数列1{}1n ba k −+−是以k 为公比的等比数列,可求出n a ;②取倒数法:这种方法适用于11n n n ka a ma p−−=+(nn ≥2,nn ∈NN ∗)(,,k m p 均为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b −=+的式子; ③取对数法:一般情况下适用于1kln n a a −=(,k l 为非零常数)七、“1nn n a ba c +=+(,b c 为常数且不为0,*n N ∈)”型的数列求通项n a ,方法是等式的两边同除以1n c+,得到一个“1n n a ka b −=+”型的数列,再用上面的六种方法里的“一次函数法”便可求出nn a c的通项,从而求出n a .16. 已知函数()2cos 2cos 1f x x x x a =+−+(a 为常数). (1)求()f x 的单调递增区间; (2)若()f x 在0,2π上有最小值1,求a 的值. 【答案】(1)(),36k k k Z ππππ−+∈;(2)2. 【解析】【分析】(1)利用三角恒等变换思想化简函数()y f x =的解析式为()2sin 26f x x a π=++,然后解不等式()222262k x k k ππππ−≤+≤π+∈Z ,可得出函数()y f x =的单调递增区间; (2)由0,2x π∈计算出26x π+的取值范围,利用正弦函数的基本性质可求得函数()y f x =的最小值,进而可求得实数a 的值.【详解】(1)()2cos 2cos 12cos 2f x x x x a x x a=+−+=++122cos 22sin 226x x a x a π++=++, 令()222262k x k k ππππ−≤+≤π+∈Z ,解得()36k x k k Z ππππ−≤≤+∈所以,函数()y f x =的单调递增区间为(),36k k k Z ππππ−+∈; .(2)当02x π≤≤时,72666x πππ≤+≤,所以1sin 2126x π−≤+≤,所以()min 12112f x a a=×−+=−=,解得2a =. 【点睛】本题考查正弦型函数的单调区间和最值的求解,解答的关键就是利用三角恒等变换思想化简函数解析式,考查计算能力,属于中等题.17. 已知圆229x y +=,A (1,1)为圆内一点,P ,Q 为圆上的动点,且∠PAQ=90°,M 是PQ 的中点. (1)求点M 的轨迹曲线C 的方程;(2)设9111(,),(,)2222E D 对曲线C 上任意一点H ,在直线ED 上是否存在与点E 不重合的点F ,使HE HF 是常数,若存在,求出点F 的坐标,若不存在,说明理由【答案】(1)2211422x y −+−=;(2)见解析. 【解析】【分析】(1)利用直角三角形的中线定理及垂径定理,得到1||||||2AMPQ PM ===利用两点距离公式求出动点的轨迹方程.(2)先设出F 的坐标,将HE HF用点点距表示出,化简得到215(12)4248t x t x −++−,利用212815244t t −=−+解得t 的值即可.【详解】(1)设点(,)M x y ,由90PAQ ∠=°,得1||||||2AM PQ PM ===化简得22702x y x y +−−−=, 即2211422x y −+−=. (2)点91,22E,11,22D,直线ED 方程为12y =,假设存在点19,22F t t  ≠   ,满足条件,设,()H x y ,则有2211422x y −+−=,22291||22HE x y=−+− 2291424822x x x −+−−− ,2221||()2HF x t y=−+− 222115()4(12)24x t x t x t =−+−−=−++,当||||HE HF 是常数,2215(12)||4||248t x t HE HF x −++ =−是常数, ∴212815244t t −=−+,∴32t =或92t =(舍),∴32t =, ∴存在31,22F满足条件. 【点睛】本题考查了轨迹方程的求法,考查了分式型定值问题的求解,考查了运算能力,属于中档题. 18. 已知数列{}n a 与等比数列{}n b 满足3(N )n an b n ∗=∈. (1)试判断{}n a 是何种数列;(2)若813a a m +=,求1220b b b . 【答案】(1)数列{}n a 是等差数列; (2)103m 【解析】【分析】(1)由13log n n a a q +−=可知{}n a 为等差数列; (2)利用等差数列前n 项和以及指数运算的性质即可求解. 【小问1详解】设数列{}n b 的公比为q ,则0q >, 因为3nn a b =,所以113a b =,所以1133n a a n n b q −=⋅=. 方程两边取以3为底的对数, 得11313log (3)(1)log an n a qa n q −=⋅=+−,由于[]113133(log )(1)log log n n a a a n q a n q q +−=+−+−=, 所以数列{}n a 是以3log q 为公差的等差数列.的【小问2详解】因为120813a a a a m +=+=, 所以120122020()2a a a a a ++++==10m ,所以2012201210122033333aa a aaamb b b +++=== .19. 已知函数()ln f x x x =,()()1f x g x x+=.(1)求函数()f x 单调区间;(2)当12x x <,且()()12g x g x =时,证明:122x x +>. 【答案】(1)答案见解析 (2)证明见解析 【解析】【分析】(1)利用导函数的符号求单调区间; (2)分析法将问题化为证2121212ln 0x x xx x x −>>,再应用换元及导数研究恒成立,即可证. 【小问1详解】由题设,()f x 的定义域为()0,∞+()1ln 0f x x =+=′,得1ex =. 当1e x >时,()0f x ′>,()f x 在1,e +∞上单调递增;当10e x <<时,()0f x ′<,()f x 在10,e上单调递减. 所以()f x 单调递减区间为10,e,单调递增区间为1,e +∞. 【小问2详解】因为()ln f x x x =,故()()11ln f x g x x x x+==+,(xx >0). 由()()12g x g x =(12x x <),得121211ln ln x x x x +=+,即212121ln 0x x xx x x −=>. 要证122x x +>,需证()212121212ln x x xx x x x x −+⋅>,即证2121212ln x x x x x x −>.的设21x t x =(1t >),则要证12ln t t t−>(1t >). 令()12ln h t t t t=−−且1t >,则()22121110h t t t t′=+−=−> . 所以()h t 在()1,+∞上单调递增,则()()10h t h >=,即12ln t t t−>. 所以122x x +>,得证.。

辽宁省盘锦市高三上学期数学10月月考试卷

辽宁省盘锦市高三上学期数学10月月考试卷

辽宁省盘锦市高三上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共4题;共8分)1. (2分)将函数y=cos(2x+)的图象向左平移单位后,得到的图象的函数解析式为()A . y=cos(2x+)B . y=﹣sin2xC . y=cos(2x+)D . y=sin2x2. (2分)如图所示的曲线是幂函数y=xn在第一象限内的图象.已知n分别取﹣1,1,, 2四个值,则与曲线C1 , C2 , C3 , C4相应的n依次为()A . 2,1,,﹣1B . 2,﹣1,1,C . , 1,2,﹣1D . ﹣1,1,2,3. (2分)设等差数列满足:,公差. 若当且仅当时,数列的前项和取得最大值,则首项的取值范围是()A .B .C .D .4. (2分)(2020·漳州模拟) 已知的内角A , B , C的对边分别为a , b , c ,,角A的平分线交BC于点D ,且,则的值为()A .B .C .D .二、填空题 (共12题;共12分)5. (1分) (2018高二下·溧水期末) 已知集合,则 ________.6. (1分) (2016高一下·河南期末) 已知t>0,则函数的最小值为________.7. (1分) (2018高二下·北京期末) 若 f(x)=xsin x+cos x ,则 f(-3),,f(2)的大小关系为________8. (1分)三阶行列式第2行第1列元素的代数余子式为10,则k=________ .9. (1分) (2017高一下·瓦房店期末) 三角形ABC中,,且,则三角形ABC 面积最大值为________.10. (1分) (2016高一上·成都期中) 函数y=log0.5(x2+ax+1)的值域是R,则a的取值范围是________.11. (1分) (2017高一下·南通期中) 在等比数列{an}中,已知a1=1,ak=243,q=3,则数列{an}的前k项的和Sk=________.12. (1分) (2019高一下·上海月考) 定义在上的连续函数满足,且在上是增函数,若成立,则实数的取值范围是________.13. (1分) (2019高二上·四川期中) 在下列四个命题中,正确的命题的有________.①已知直线ax+by+c-1=0(bc>0)经过圆x2+y2-2y-5=0的圆心,则的最小值是10;②若圆上有且只有两个点到直线的距离为1,则;③若实数满足的取值范围为;④点M在圆上运动,点为定点,则|MN|的最大值是7.14. (1分) (2016高一上·澄海期中) 函数f(x)=x2﹣2x+b的零点均是正数,则实数b的取值范围是________.15. (1分)(2017·山东) 若函数exf(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为________.①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.16. (1分)(2017·江西模拟) 数列{an}的前项和为Sn ,且,用[x]表示不超过x 的最大整数,如[﹣0.1]=﹣1,[1.6]=1,设bn=[an],则数列{bn}的前2n项和b1+b2+b3+b4++b2n﹣1+b2n=________.三、解答题 (共5题;共65分)17. (10分) (2019高一上·郑州期中) 已知集合 .(Ⅰ)用列举法表示集合A;(Ⅱ)若,求实数的取值范围.18. (10分)已知点A(0,﹣2),B(0,4),动点P(x,y)满足=y2﹣8.求动点P的轨迹方程19. (15分) (2019高二下·黑龙江月考) 近年来,网上购物已经成为人们消费的一种习惯.假设某淘宝店的一种装饰品每月的销售量 (单位:千件)与销售价格 (单位:元/件)之间满足如下的关系式:为常数.已知销售价格为元/件时,每月可售出千件.(1)求实数的值;(2)假设该淘宝店员工工资、办公等所有的成本折合为每件2元(只考虑销售出的装饰品件数),试确定销售价格的值,使该店每月销售装饰品所获得的利润最大.(结果保留一位小数)20. (15分) (2019高三上·上海月考) 已知数列的前项和为,且满足:(1)证明:是等比数列,并求数列的通项公式.(2)设,若数列是等差数列,求实数的值;(3)在(2)的条件下,设记数列的前项和为,若对任意的存在实数 ,使得 ,求实数的最大值.21. (15分)“a=2”是“直线ax+2y=0平行于直线x+y=1”的什么条件?参考答案一、单选题 (共4题;共8分)1-1、2-1、3-1、4-1、二、填空题 (共12题;共12分)5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共5题;共65分)17-1、18-1、19-1、19-2、20-1、20-2、20-3、21-1、。

辽宁省高三上学期数学10月月考试卷

辽宁省高三上学期数学10月月考试卷

辽宁省高三上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)已知全集U={-2,-1,0,1,2,3,4,5,6},集合M={大于且小于4的整数},则()A . fB . {-2,-1,5,6}C . {0,1,2,3,4}D . {-2,-1,4,5,6}2. (2分)“”是“”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件3. (2分) (2019高三上·霍邱月考) 已知,,,则()A .B .C .D .4. (2分) (2015高二上·抚顺期末) 设变量x,y满足,则2x+3y的最大值为()A . 20B . 35C . 45D . 555. (2分)(2018·邵东月考) 若函数在上的图象与直线恰有两个交点.则的取值范围是()A .B .C .D .6. (2分) (2018高二上·思南月考) 阅读如图所示的程序框图,运行相应的程序,若输入x的值为1,则输出S的值为()A . 64B . 73C . 512D . 5857. (2分) (2018高二下·河南期中) 已知为等差数列,, .若为等比数列,,则类似的结论是()A .B .C .D .8. (2分)设空间四点O,A,B,P满足 =m +n ,其中m+n=1,则()A . 点P一定在直线AB上B . 点P一定不在直线AB上C . 点P可能在直线AB上,也可能不在直线AB上D . 与的方向一定相同9. (2分) (2019高二上·哈尔滨月考) 如果表示焦点在轴上的椭圆,那么实数的取值范围是()A .B .C .D .10. (2分)(2017·襄阳模拟) 在△ABC中,a,b,c分别为内角A,B,C的对边,且a2=3b2+3c2﹣2 bcsinA,则C的值为()A .B .C .D .11. (2分)(2017·上饶模拟) 已知f(x)是定义域为(0,+∞)的单调函数,若对任意的x∈(0,+∞),都有,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在区间(0,3]上有两解,则实数a的取值范围是()A . 0<a≤5B . a<5C . 0<a<5D . a≥512. (2分)在平面直角坐标系中,横坐标和纵坐标均为整数的点称为格点,如果函数的图象恰好通过个格点,则称函数为k阶格点函数. 给出下列4个函数:①;②;③;④.其中是一阶格点函数的是()A . ①③B . ②③C . ③④D . ①④二、填空题 (共4题;共4分)13. (1分)(2016·普兰店模拟) 的展开式中的常数项为a,则直线y=ax与曲线y=x2围成图形的面积为________.14. (1分)(2012·江西理) 椭圆 + =1(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1 , F2 .若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为________.15. (1分) (2018高一上·荆州月考) 若函数的值域为R,则实数k的取值范围为________。

辽宁省数学高三上学期理数10月月考试卷

辽宁省数学高三上学期理数10月月考试卷

辽宁省数学高三上学期理数 10 月月考试卷姓名:________班级:________成绩:________一、 单选题 (共 12 题;共 24 分)1. ( 2 分 )(2018· 河 北 模 拟 ) 已 知 全 集 为( ),集合A.B.C.D. 2. (2 分) (2019 高二下·潮州期末) 复数 A. B. C. D.( 为虚数单位)等于( )3. (2 分) 已知,,且, 则 在 方向上的投影是( )A. B . -11C. D . 11 4. (2 分) .若集合 A={1,m2},B={2,4},则“m=2”是“第 1 页 共 12 页”的A . 充分不必要条件 B . 必要不充分条件 C . 充要条件 D . 既不充分也不必要条件 5. (2 分) (2019 高二下·舒兰月考) 将正整数排列如下: 1 234 56789 10 11 12 13 14 15 16 …… 则图中数 2019 出现在( ) A . 第 44 行第 83 列 B . 第 44 行 84 列 C . 第 45 行 83 列 D . 第 45 行 84 列 6. (2 分) (2019 高二上·万载月考) 若关于 的不等式 的取值范围是( ). A.B.C.D.第 2 页 共 12 页在区间内有解,则实数7. (2 分) 已知 f(x)在 R 上是奇函数,且 f(x+2)=-f(x),当 A . -2 B.2 C . -98 D . 98时,f(x)=2x2,则 f(7)=( )8. (2 分) 如下图,在△ABC 中,设,若 =m +n , 则 m+n=(), AP 的中点为 Q,BQ 的中点为 R,CR 的中点为 P,A.B.C.D. 9.(2 分)(2016 高一下·长春期中) 若等比数列{an}的前 n 项和 Sn=2016n+t(t 为常数),则 a1 的值为( ) A . 2013 B . 2014 C . 2015 D . 2016 10. (2 分) (2019 高三上·宁德月考) 明朝数学家程大位著的《算法统宗》里有一道著名的题目:“一百馒 头一百僧,大僧三个更无争,小僧三人分一个,大、小和尚各几丁?”如图所示的程序框图反映了此题的一个算法,第 3 页 共 12 页执行图中的程序框图,则输出 ( )A . 20 B . 30 C . 75 D . 8011. (2 分) (2019·海南月考) 已知函数 值点和一个最小值点,则实数 的取值范围是( )在区间上恰有一个最大A.B.C.D. 12. (2 分) 蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组 蜂巢的截面图.其中第一个图有 1 个蜂巢,第二个图有 7 个蜂巢,第三个图有 19 个蜂巢,按此规律,第 6 幅图的 蜂巢总数为( )第 4 页 共 12 页A . 61 B . 90 C . 91 D . 127二、 填空题 (共 4 题;共 4 分)13. (1 分) (2018·石嘴山模拟) 若变量 x , y 满足约束条件 分别为 m 和 n , 则 m-n=________且 z=2x+y 的最大值和最小值14. (1 分) (2020 高一下·丽水期中) 已知点是角 终边上的一点,则=________,=________. 15. (1 分) (2019 高一上·静海月考) 若正数 x、y 满足,则的最小值等于________.16. (1 分) (2019 高一上·南充月考) 关于函数有以下四个命题:①对于任意的,都有; ②函数是偶函数;③若 为一个非零有理数,则对任意恒成立;④在图象上存在三个点 , , ,使得为等边三角形.其中正确命题的序号是________.三、 解答题 (共 7 题;共 70 分)17. (10 分) (2015 高三上·来宾期末) 在△ABC 中,角 A,B,C 的对边分别为 a,b,c,且满足 ccosB=(2a+b) cos(π﹣C).(1) 求角 C 的大小;第 5 页 共 12 页(2) 若 c=4,△ABC 的面积为 ,求 a+b 的值.18. (10 分) (2018·孝义模拟) 在 .中,内角 , , 的对边分别为 , , ,且(1) 求 ;(2) 若,, 为 边上一点,且,求 的长.19. (10 分) 已知数列{an}满足:a1=2,an+an﹣1=4n﹣2(n≥2),求数列{an}的通项公式.20. (10 分) (2018 高一上·旅顺口期中) 如图所示,定义域为 及抛物线的一部分组成.利用该图提供的信息解决下面几个问题.上的函数是由一条射线(1) 求的解析式;(2) 若 关于的方程有三个不同解,求 的取值范围;(3) 若,求 的取值集合.21. (10 分) (2018 高二下·长春期末) 已知函数.(1) 当时,若在(2) 当时,证明:上恒成立,求 的取值范围; .22. (10 分) (2019·十堰模拟) 在直角坐标系中,曲线 的参数方程为数).以坐标原点 为极点, 轴正半轴为极轴建立极坐标系,已知点 的极坐标为(1) 求曲线 的极坐标方程;第 6 页 共 12 页,( 为参 .(2) 过 作曲线 的切线,切点为 ,过 作曲线的 切线,切点为 ,求.23. (10 分) (2019 高一下·金华期末) 已知.(I)若函数有三个零点,求实数 a 的值;(II)若对任意,均有恒成立,求实数 k 的取值范围.第 7 页 共 12 页一、 单选题 (共 12 题;共 24 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、 12-1、二、 填空题 (共 4 题;共 4 分)13-1、参考答案14-1、 15-1、第 8 页 共 12 页16-1、三、 解答题 (共 7 题;共 70 分)17-1、 17-2、18-1、第 9 页 共 12 页18-2、19-1、20-1、20-2、20-3、第 10 页 共 12 页21-1、21-2、22-1、22-2、23-1、。

辽宁省辽阳市高三上学期数学10月月考试卷

辽宁省辽阳市高三上学期数学10月月考试卷

辽宁省辽阳市高三上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共4题;共8分)1. (2分)已知函数y=sin2x的图象为C,为了得到函数y=sin(2x+)的图象,只要把C上所有的点()A . 向左平行移动个单位长度B . 向右平行移动个单位长度C . 向左平行移动个单位长度D . 向右平行移动个单位长度2. (2分)如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=的图象是()A . ①B . ②C . ③D . ④3. (2分) (2019高三上·深州月考) 已知等差数列的前项和为,若,,则()A .B .C .D .4. (2分)在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=a,则()A . a>bB . a<bC . a=bD . a与b的大小关系不能确定二、填空题 (共12题;共12分)5. (1分) (2016高一上·徐州期末) 已知集合A={﹣1,0,1},B={0,1,2},则A∩B=________.6. (1分) (2018高一下·黑龙江期末) 已知正数x、y满足,则的最小值是________7. (1分)已知函数f(x)=ax2+bx+3a+b是定义在[a﹣1,2a]的偶函数,则a+b=________8. (1分) (2016高二上·上海期中) 某个线性方程组的增广矩阵是,此方程组的解记为(a,b),则行列式的值是________.9. (1分) (2016高一下·玉林期末) sin15°sin75°的值是________.10. (1分) (2016高一上·灌云期中) 函数f(x)=x2+2x﹣3,x∈[﹣2,1],函数f(x)的值域为________.11. (1分)(2017·江苏) 等比数列{an}的各项均为实数,其前n项为Sn ,已知S3= ,S6= ,则a8=________.12. (1分)(2017·南京模拟) 以知f(x)是定义在区间[﹣1,1]上的奇函数,当x<0时,f(x)=x(x﹣1),则关于m的不等式f(1﹣m)+f(1﹣m2)<0的解集为________.13. (1分)(2017·龙岩模拟) 若实数a,b,c,d满足 = =1,则(a﹣c)2+(b﹣d)2的最小值为________.14. (1分) (2019高一上·嘉善月考) 若关于的方程有实数解,则实数的取值范围是________15. (1分)已知奇函数f(x)是定义在(﹣3,3)上的减函数,且满足不等式f(x﹣3)+f(x2﹣3)<0,则不等式解集________.16. (1分) (2019高三上·葫芦岛月考) 已知数列满足,设数列的前n项和为,则 ________; ________.三、解答题 (共5题;共65分)17. (10分) (2019高三上·葫芦岛月考) 已知集合, .(1)当时,求;(2)若,求的取值范围.18. (10分) (2018高一下·珠海期末) 已知是坐标原点,向量,且(1)求实数的值;(2)求的面积.19. (15分) (2016高一上·无锡期末) 已知函数f(x)=x|x﹣a|+2x.(1)若函数f(x)在R上是增函数,求实数a的取值范围;(2)求所有的实数a,使得对任意x∈[1,2]时,函数f(x)的图象恒在函数g(x)=2x+1图象的下方;(3)若存在a∈[﹣4,4],使得关于x的方程f(x)=tf(a)有三个不相等的实数根,求实数t的取值范围.20. (15分) (2019高三上·上海月考) 已知数列的前项和为,且满足:(1)证明:是等比数列,并求数列的通项公式.(2)设,若数列是等差数列,求实数的值;(3)在(2)的条件下,设记数列的前项和为,若对任意的存在实数 ,使得 ,求实数的最大值.21. (15分)关于x的实系数一元二次方程有两个异号实根的充要条件是什么?为什么?参考答案一、单选题 (共4题;共8分)1-1、2-1、3-1、4-1、二、填空题 (共12题;共12分)5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共5题;共65分)17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、20-2、20-3、21-1、。

辽宁省辽阳市数学高三上学期理数10月月考试卷

辽宁省辽阳市数学高三上学期理数10月月考试卷

辽宁省辽阳市数学高三上学期理数 10 月月考试卷姓名:________班级:________成绩:________一、 单选题 (共 12 题;共 24 分)1. (2 分) (2016·新课标Ⅲ卷理) 设集合 S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则 S∩T=( )A . [2,3]B . (﹣∞,2]∪[3,+∞)C . [3,+∞)D . (0,2]∪[3,+∞)2. (2 分) (2020·湖南模拟) 已知复数,复数,给出下列命题:①;②中真命题的个数为(;③复数 )与其共轭复数在复平面内的点关于实轴对称;④复数的虚部为 0.其A.1B.2C.3D.43. (2 分) (2018 高二上·宾县期中) 已知一个样本数据 x,1,5, 其中点 的交点,则这个样本的标准差为( )A.5 B.2是直线和圆C.D.第 1 页 共 12 页4. (2 分) 在 A.的展开式中, 的系数为( )B.C.D.5. (2 分) (2018·中原模拟) 已知等比数列 公比为 ( )的前 项和为 ,且A.3,则数列 的B.C. D.2 6. (2 分) (2016 高二下·清流期中) 曲线 y=x3+x﹣2 在点 P0 处的切线平行于直线 y=4x,则点 P0 的坐标是 () A . (0,1) B . (1,0) C . (﹣1,﹣4)或(1,0) D . (﹣1,﹣4)7. (2 分) (2015 高一下·自贡开学考) 设 f(x)=lg A . f(x)与 g(x)都是奇函数 B . f(x)是奇函数,g(x)是偶函数,g(x)=ex+ ,则 ( )第 2 页 共 12 页C . f(x)与 g(x)都是偶函数 D . f(x)是偶函数,g(x)是奇函数 8. (2 分) (2018 高二上·临汾月考) 如图,在正方体 点,则下列结论不正确的是( )中,若 是线段上的动A . 三棱锥的正视图面积是定值B . 异面直线, 所成的角可为C . 异面直线, 所成的角为D . 直线与平面所成的角可为9. (2 分) (2017 高一下·庐江期末) 按下列程序框图运算,则输出的结果是( )A . 42 B . 128 C . 170 D . 68210. (2 分) (2017 高二下·资阳期末) 若双曲线 率 e=( )第 3 页 共 12 页的一条渐近线方程为 y=2x,则离心A. B.C. D. 11. (2 分) 已知集合A. B. C. D.12.(2 分)(2019 高一上·吉林月考) 已知函数 则 的最小值等于( )A. B. C. D.二、 填空题 (共 4 题;共 4 分),则 ( )在区间上的最小值是 ,13. (1 分) (2017·吉林模拟) 已知 O 是坐标原点,点 A(﹣1,1).若点 M(x,y)为平面区域上的一个动点,则的取值范围是________.14. (1 分) (2017 高二上·桂林月考) 在等差数列 中,若________.第 4 页 共 12 页15. (1 分) (2017 高二上·乐山期末) 椭圆 A、B 两点,则△ABF2 的周长为________的左右焦点为 F1 , F2 , 一直线过 F1 交椭圆于16. (1 分) 已知边长为 a 的菱形 ABCD 中,∠BAD=60°,将此菱形沿对角线 BD 折成 120°角,则 A,C 两点 间的距离是________.三、 解答题 (共 7 题;共 62 分)17. (10 分) 甲、乙两名射手各打了 10 发子弹,其中甲击中环数与次数如表:环数5678910次数111124乙击中环数的概率分布如下表:环数78910概率0.20.3P0.1(1) 若甲、乙各打一枪,球击中 18 环的概率及 p 的值;(2) 比较甲、乙射击水平的优劣.18. (10 分) (2018·榆社模拟) 如图,在直四棱柱,.中,,,(1) 证明:平面平面;(2) 比较四棱锥与四棱锥的体积的大小.19. ( 10 分 ) (2020 高 三 上 · 兴 宁 期 末 ) 已 知 曲 线 的 极 坐 标 方 程 为,直线,直线.以极点 为原点,极轴为第 5 页 共 12 页轴正半轴建立平面直角坐标系.(1) 求直线的直角坐标方程以及曲线 的参数方程;(2) 已知直线 与曲线 交于两点,直线 与曲线 交于两点,求的周长.20. (10 分) (2015 高二上·菏泽期末) 已知函数 f(x)= (p﹣2)x2+(2q﹣8)x+1(p>2,q>0). (1) 当 p=q=3 时,求使 f(x)≥1 的 x 的取值范围;(2) 若 f(x)在区间[ ,2]上单调递减,求 pq 的最大值.21. (10 分) (2019 高二上·雨城期中) 设抛物线 于不同的两点 、 ,线段 中点 的横坐标为 ,且的焦点为 ,直线 与抛物线 交 .(Ⅰ)求抛物线 的标准方程; (Ⅱ)若直线 (斜率存在)经过焦点 ,求直线 的方程.22. (10 分) (2017·南阳模拟) 在直角坐标系 xOy 中,直线 l 的参数方程为 若以 O 点为极点,x 轴正半轴为极轴建立极坐标系,则曲线 C 的极坐标方程为 ρ=4cos θ.(1) 求曲线 C 的直角坐标方程及直线 l 的普通方程;(t 为参数)(2) 将曲线 C 上各点的横坐标缩短为原来的 C1 上的点到直线 l 的距离的最小值.,再将所得曲线向左平移 1 个单位,得到曲线 C1,求曲线23.(2 分)(2019 高三上·上海月考) 某地要建造一个边长为 (2 单位: )的正方形市民休闲公园,将其中的区域开挖成一个池塘,如图建立平面直角坐标系后,点 的坐标为,曲线是函数图像的一部分,过边上一点 在区域内作一次函数( ) 的图像,与线段交于点 (点 不与点 重合),且线段与曲线有且只有一个公共点 ,四边形为绿化风景区.第 6 页 共 12 页(1) 求证:;(2) 设点 的横坐标为 , ①用 表示 、 两点的坐标;②将四边形的面积 表示成关于 的函数,并求 的最大值.第 7 页 共 12 页一、 单选题 (共 12 题;共 24 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、 12-1、二、 填空题 (共 4 题;共 4 分)13-1、 14-1、 15-1、参考答案第 8 页 共 12 页16-1、三、 解答题 (共 7 题;共 62 分)17-1、 17-2、18-1、18-2、第 9 页 共 12 页19-1、19-2、 20-1、 20-2、第 10 页 共 12 页21-1、22-1、22-2、23-1、23-2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辽宁省高三上学期数学十月月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分) (2020高三上·湘潭月考) 已知集合,则()
A .
B .
C .
D .
2. (2分) (2020高二上·新丰期末) 已知向量,,若,则实数的值为()
A . 1
B . -4
C . -1
D . 4
3. (2分)已知函数为奇函数,则的值为()
A .
B . -4
C .
D . 4
4. (2分)(2017·长宁模拟) 已知向量都是非零向量,“ ”是“ ”的()
A . 充分非必要条件
B . 必要非充分条件
C . 充分必要条件
D . 既非充分也非必要条件
5. (2分)(2017·石嘴山模拟) 如果函数y=2sin(2x﹣φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()
A .
B .
C .
D .
6. (2分)(2018·邢台模拟) 的内角,,的对边分别为,, .已知,,
成等比数列,,且,则()
A .
B .
C .
D .
7. (2分)(2018·宁德模拟) 设函数存在零点,且,则实数的取值范围是()
A .
B .
C .
D .
8. (2分) (2018高二下·葫芦岛期末) 已知函数,则函数
的零点个数是()
A . 4
B . 5
C . 6
D . 7
9. (2分) (2020高二上·开鲁月考) 已知为圆的一条直径,点的坐标满足不等式组则的取值范围为()
A .
B .
C .
D .
10. (2分)以实数x ,﹣x , |x|,,为元素所组成的集合最多含有()
A . 2个元素
B . 3个元素
C . 4个元素
D . 5个元素
二、填空题 (共3题;共4分)
11. (1分) (2019高二下·杭州期中) 设为虚数单位,则复数的虚部为________,模为________.
12. (2分)等差数列{an}中,已知S4=2,S8=7,则a17+a18+a19+a20 的值等于________.
13. (1分) (2020高二上·东莞开学考) 已知在中,,,,
,,则的值为________.
三、双空题 (共2题;共2分)
14. (1分) (2015高二下·张掖期中) 函数g(x)=ax3+2(1﹣a)x2﹣3ax在区间(﹣∞,)内单调递减,则a的取值范围是________.
15. (1分) (2016高二上·临泉期中) 已知,则a+b的最小值为________.
四、解答题 (共6题;共50分)
16. (10分) (2016高一下·舒城期中) 在数列{an}中,a1=2,an+1=4an﹣3n+1,n∈N*
(1)证明数列{an﹣n}为等比数列
(2)求数列{an}的前n项和Sn .
17. (10分) (2020高一下·嘉兴期中) 在中,内角所对的边分别为 .已知
,其中C为锐角.
(1)求角C的大小;
(2)若,求c的值.
18. (15分) (2019高二下·萨尔图期末) 在直角坐标系中,圆的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系.
(Ⅰ)求圆的极坐标方程;
(Ⅱ)设点为圆上一点,且点的极坐标为,射线绕点逆时针旋转后得射线,其中也在圆上,求的最大值.
19. (5分) (2018高二上·赤峰月考) 已知函数
(Ⅰ)若函数在上为增函数,求正实数的取值范围;
(Ⅱ)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.
20. (5分)已知函数f(x)=x2﹣(﹣1)k2alnx(k∈N,a∈R且a>0).
(1)求f(x)的极值;
(2)若k=2016,关x的方程f(x)=2ax有唯一解,求a的值.
(3) k=2015时,证明:对一切x>0都有f(x)﹣x2>2a(﹣)成立.
21. (5分) (2020高一下·九龙坡期末) 已知数列是首项为,公差为的等差数列,数列
满足 .
(1)若、、成等比数列,求数列的通项公式;
(2)数列满足,其中, .当时,求的最小值.
参考答案一、单选题 (共10题;共20分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、
考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、
考点:
解析:
二、填空题 (共3题;共4分)
答案:11-1、
考点:
解析:
答案:12-1、
考点:
解析:
答案:13-1、
考点:
解析:
三、双空题 (共2题;共2分)
答案:14-1、考点:
解析:
答案:15-1、考点:
解析:
四、解答题 (共6题;共50分)答案:16-1、
答案:16-2、
考点:
解析:
答案:17-1、
答案:17-2、考点:
解析:
答案:18-1、
考点:
解析:
答案:19-1、
考点:解析:
答案:20-1、答案:20-2、答案:20-3、
考点:
解析:
答案:21-1、
答案:21-2、考点:
解析:。

相关文档
最新文档