各种插值法的对比研究样本
数值分析论文 ――几种插值方法的比较课程论文8(学院+专业+学号)
数值分析论文——几种插值方法的比较1.插值法概述插值法是函数逼近的重要方法之一,有着广泛的应用 。
在生产和实验中,函数或者其表达式不便于计算复杂或者无表达式而只有函数在给定点的函()x f 数值(或其导数值) ,此时我们希望建立一个简单的而便于计算的函数,使()x ϕ其近似的代替,有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿()x f (Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermite 插值,分段插值和样条插值.这里主要介绍拉格朗日(Lagrange)插值和牛顿(Newton)插值和埃尔米特插值(Hermite 插值)。
2.插值方法的比较2.1拉格朗日插值2.1.1基本原理构造次多项式,这是n ()()()()()x l y x l y x l y x l y x P n n k nk k n +⋅⋅⋅++==∑=11000不超过次的多项式,其中基函数:n()x l k =)...()()...()(()...()()...()(()1110)1110n k k k k k k k n k k x x x x x x x x x x x x x x x x x x x x ----------+-+-显然满足 =()x l k ()i k x l ⎩⎨⎧≠=)(0)(1k i k i 此时,误差()()x f x P n ≈()()()=-=x P x f x R n n (x))!1()(1)1(+++n n n f ωξ其中∈且依赖于,.ξ()b a ,x ()()()()n n x x x x x x x -⋅⋅⋅--=+101ω很显然,当,插值节点只有两个,时1=n k x 1+k x ()()()x l y x l y x P k k k k i 11+++=其中基函数 = , =()x l k 11++--k k k x x x x ()x l k 1+kk kx x x x --+12.1.2优缺点可对插值函数选择多种不同的函数类型,由于代数多项式具有简单和一些良好的特性,故常选用代数多项式作为插值函数。
几种插值法的对比研究1
几种插值法的对比研究1插值法是一种常用的数据处理方法,特别在数字信号处理和数值计算中广泛应用。
在实际应用中,选择合适的插值方法对数据的良好处理有着重要的作用。
本文将对几种常用的插值方法进行对比研究。
1. 线性插值法线性插值法是最简单也是最常用的插值方法。
它假设函数在两个已知点之间是一条直线,根据该直线与自变量的位置,即可得到插值的函数值。
线性插值法的计算简便,适用于各种连续变化的函数,但是对曲率较大的函数,有时可能会出现较大的误差。
2. 多项式插值法多项式插值法是一种高效的插值方法。
它通过已知的数据点和插值点,构造一个多项式函数。
这个多项式函数与所需求函数一样,在插值点处取相同的函数值。
多项式插值法插值精度较高,但对于高次多项式的构造和计算,不仅容易出现数值不稳定的问题,而且计算量也比较大,往往在实际应用中给计算机带来较大的负担。
样条插值法是一种优秀的插值方法。
样条插值法将整个插值区间划分为若干小区间,每个小区间内部通过一个样条函数连接在一起。
样条函数既可以满足插值的要求,又可以保持函数在区间内的连续性。
这样可以产生较好的插值效果。
相对于线性插值和多项式插值,样条插值法的误差一般较小,满足一定的平滑性要求,而且计算相对简单。
在实际应用中广泛使用。
4. 径向基函数插值法径向基函数插值法是一种数值稳定性较高的方法。
它利用径向基函数的性质,即可以逼近各种连续的函数,将一个函数表示为各个径向基函数的线性组合,建立待插值函数与径向基函数之间的关系。
当插值点趋近于数据点时,径向基函数插值法可以达到较高的精度。
径向基函数插值法的计算方法较为复杂,需要选取合适的径向基函数和其它参数,定位问题更加困难,但是计算结果却更为准确。
综合各种插值方法的优缺点,我们可以根据不同的实际需求选择不同的插值方法。
在插值研究中,需要注意插值方法的数值稳定性、计算效率、精度和平滑性等各个方面的综合考虑,以达到最优的插值效果。
各种插值法的对比研究
各种插值法的对比研究插值法是指通过已知数据点来估计两个数据点之间的未知数值。
在实际生活和科学研究中,经常会遇到需要插值的情况,例如气象预测、金融分析、图像处理等。
本文将对比介绍几种常见的插值方法,包括线性插值、多项式插值、样条插值和逆距离加权插值。
1.线性插值:线性插值是最简单的插值方法,假设两个数据点之间的值变化是线性的。
根据已知数据点的坐标和对应的值,通过线性方程推断两个数据点之间的值。
优点是计算简单快速,但缺点是对数据变化较快的情况下估计效果较差。
2.多项式插值:多项式插值假设两个数据点之间的值变化是一个多项式函数。
通过已知数据点的坐标和对应的值,使用多项式拟合方法求解多项式函数的系数,再根据该多项式求解两个数据点之间的值。
多项式插值可以准确拟合已知数据点,但在插值点较多时容易出现振荡现象,且对数据点分布敏感。
3.样条插值:样条插值是一种平滑的插值方法,通过构建分段连续的多项式函数来逼近整个数据集。
根据已知数据点的坐标和对应的值,通过求解一组多项式函数的系数,使得在相邻区间之间函数值连续,导数连续。
样条插值可以减少振荡现象,对于插值点密集的情况能更好地逼近原始数据。
4.逆距离加权插值:逆距离加权插值是一种基于距离的加权插值方法,根据已知数据点与插值点之间的距离,对每个已知数据点进行加权平均得到插值点的值。
该方法认为距离较近的数据点对插值结果的影响更大。
逆距离加权插值简单易用,对数据点的分布不敏感,但对于距离较远的数据点容易受到较大的干扰。
在实际应用中,选择合适的插值方法需要根据数据的特点和要求来决定。
若数据变化较简单、平滑,可以选择线性插值或多项式插值;若数据变化复杂,存在振荡现象,可以选择样条插值;若数据点分布较稀疏,可以选择逆距离加权插值。
此外,还有一些其他的插值方法,如Kriging插值、径向基函数插值等,它们根据不同的假设和模型进行插值,具有一定的特点和适用范围。
综上所述,对于选择合适的插值方法,需要根据具体问题和数据特点来综合考虑,结合不同方法的优缺点进行比较研究,以得到更准确和可靠的插值结果。
(完整版)几种插值法比较与应用
多种插值法比较与应用(一)Lagrange 插值 1. Lagrange 插值基函数 n+1个n 次多项式∏≠=--=nkj j j kjk x xx x x l 0)( n k ,,1,0 =称为Lagrange 插值基函数 2. Lagrange 插值多项式设给定n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠,满足插值条件)()(k k n x f x L =,n k ,,1,0 =的n 次多项式∏∏∏=≠==--==nk nkj j jk j k k nk k n x x x x x f x l x f x L 000))(()()()(为Lagrange 插值多项式,称∏=+-+=-=nj j x n n x x n f x L x f x E 0)1()()!1()()()()(ξ 为插值余项,其中),()(b a x x ∈=ξξ (二)Newton 插值 1.差商的定义 )(x f 关于i x 的零阶差商)(][i i x f x f = )(x f 关于i x ,j x 的一阶差商ij i j j i x x x f x f x x f --=][][],[依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商ik i k i i k i i k i i i x x x x f x x f x x x f --=+-+++++],,[],,[],,,[1112. Newton 插值多项式设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠, 称满足条件)()(k k n x f x N =,n k ,,1,0 =的n 次多项式)()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N为Newton 插值多项式,称],[,)(],,,[)()()(010b a x x x x x x f x N x f x E nj j n n ∈-=-=∏=为插值余项。
插值方法比较范文
插值方法比较范文插值方法是数值计算中常用的一种数值逼近技术,用于通过已知数据点之间的关系来估计未知数据点的值。
在插值过程中,根据不同的插值方法,可以得到不同的近似函数,从而得到不同的结果。
常见的插值方法包括拉格朗日插值、牛顿插值、埃尔米特插值和样条插值等。
下面将对这些插值方法进行比较,包括优缺点。
首先是拉格朗日插值法,它是通过使用已知数据点的函数值来构建一个多项式,再利用这个多项式来估算未知数据点的函数值。
拉格朗日插值法的优点是简单易懂、计算简便,而且在已知数据点分布较为均匀的情况下效果较好。
然而,拉格朗日插值法的缺点是对于较多数据点的情况,构建的多项式会非常复杂,容易导致插值结果的振荡。
此外,拉格朗日插值法对于增加或减少一个数据点都需要重新计算,不够灵活。
其次是牛顿插值法,它也是通过已知数据点的函数值来构建一个多项式,但是与拉格朗日插值法不同,牛顿插值法利用差商的概念来简化多项式的计算。
牛顿插值法的优点是可以递推计算差商,避免了重复计算,因此对于增加或减少一个数据点时比较方便。
此外,牛顿插值法的插值多项式在已知数据点分布较为稀疏的情况下效果较好。
缺点是对于较多数据点的情况,插值多项式同样会变得复杂,容易导致插值结果的振荡。
再者是埃尔米特插值法,它是拉格朗日插值法的一种改进方法。
埃尔米特插值法不仅利用已知数据点的函数值,还利用已知数据点的导数值来构建插值函数,从而提高了插值的精度。
埃尔米特插值法的优点是可以通过已知数据点的导数值来更好地拟合函数的特点,从而得到更准确的插值结果。
缺点是在计算过程中需要求解一系列线性方程组,计算量较大。
最后是样条插值法,它是常用的插值方法之一、样条插值法通过将插值区间划分为若干小区间,在每个小区间上构建一个低次多项式,通过满足一定的光滑性条件来保证插值函数的平滑性。
样条插值法的优点是插值函数的平滑性较好,能够解决拉格朗日插值法和牛顿插值法的振荡问题。
缺点是在计算过程中需要求解大规模的线性方程组,计算量较大。
不同插值方法的数值比较
for (int i = 0; i < 2; i++)
{
Y[i] = 3 * X[i] * Math.Exp(X[i]) - Math.Exp(2);
M[i] = 3 * Math.Exp(X[i]) + 3 * X[i] * Math.Exp(X[i]);
}
}
}
}
四、算例、应用实例
牛顿插值法适用于多个节点,而三次埃尔米特插值只适用于两个节点,但是精度比较高,一般用于求解不容易求到的函数值,如以下这一例题:
设 ,利用三次埃尔米特插值多项式和牛顿插值多项式计算f(0.33)并和真值比较。
使用mathematica,我们得到
,下面我们分别使用牛顿插值和三次埃尔米特插值来求f(0.33)
}
AFa[0] = (1 + 2 * (Q - X[0]) / (X[1] - X[0])) * Math.Pow((Q - X[1]) / (X[0] - X[1]), 2);
AFa[1] = (1 + 2 * (Q - X[1]) / (X[0] - X[1])) * Math.Pow((Q - X[0]) / (X[1] - X[0]), 2);
{
case "a": jisuan.ChaZhi();
break;
}
}
}
public class ChaZhiJiSuan
{
public void ChaZhi()
{
double[] X = { 1, 1.05 }, Y = { 0, 0 }, M = { 0, 0 }, AFa = { 0, 0 }, BeiTa = { 0, 0 };
各种插值法的对比研究
各种插值法的对比研究插值法是一种利用已知数据点推算缺失数据点的方法,常用于信号处理、图像处理和数据分析等领域。
在实际应用中,选择合适的插值方法非常重要,因为它直接影响到结果的准确性和可靠性。
本文将对常见的插值方法进行对比研究。
线性插值是最简单和最常用的插值方法之一、它假设数据点之间的变化是线性的,根据已知数据点之间的斜率和距离,可以推算出缺失数据点的值。
线性插值的优点是计算简单,适用于等间距的数据点。
然而,线性插值可能会导致插值曲线不光滑,并且在非等间距数据点或缺失数据点较多的情况下效果不佳。
拉格朗日插值是一种基于多项式插值的方法。
它通过构造一个满足已知数据点的多项式函数,然后根据该函数求解出缺失数据点的值。
拉格朗日插值的优点是可以精确地通过所有已知数据点,适用于非等间距和较稀疏的数据。
然而,拉格朗日插值存在“龙格现象”,即在数据点较多或高次插值时,插值函数会出现大幅度振荡。
牛顿插值与拉格朗日插值相似,也是基于多项式插值的方法。
不同之处在于,牛顿插值使用被称为“差商”的系数来构建插值多项式。
牛顿插值的优点是计算简单,可以实时更新插值多项式以适应新的数据点。
然而,牛顿插值也存在“龙格现象”。
样条插值是通过连接已知数据点来构建平滑的插值曲线的方法。
它通过选择适当的插值函数和控制点,保持插值曲线在已知数据点间的连续、光滑性。
样条插值的优点是可以抑制龙格现象,产生更平滑的插值曲线,并且适用于非线性变化的数据。
然而,样条插值的缺点是计算复杂度较高,可能导致过度拟合和过度平滑的问题。
Kriging 插值是一种基于地理空间的插值方法,它利用已知数据点的空间关联性来推算未知数据点的值。
Kriging 插值的优点是可以利用数据点之间的空间自相关性,适用于地理信息系统和地质学等领域的数据插值。
然而,Kriging 插值的缺点是计算复杂度高,并且对数据点的空间分布和空间自相关性的假设要求较高。
总的来说,选择合适的插值方法需要综合考虑数据的特点、插值精度和计算复杂度等因素。
五种插值法的对比研究毕业论文
五种插值法的对⽐研究毕业论⽂题⽬:五种插值法的对⽐研究xxx⼤学本科⽣毕业论⽂开题报告表论⽂(设计)类型:A—理论研究;B—应⽤研究;C—软件设计等;五种插值法的对⽐研究 (3)⼀插值法的历史背景 (5)⼆五种插值法的基本思想 (5)(⼀)拉格朗⽇插值 (5)(⼆)⽜顿插值 (6)(三)埃尔⽶特插值 (7)(四)分段线性插值 (7)(五)样条插值 (8)三五种插值法的对⽐研究 (9)四插值法在matlab中的应⽤ (15)五参考⽂献 (17)五种插值法的对⽐研究摘要:插值法是数值分析中最基本的⽅法之⼀。
在实际问题中碰到的函数是各种各样的,有的甚⾄给不出表达式,只提供了⼀些离散数据,例如,在查对数表时,要查的数据在表中找不到,就先找出它相邻的数,再从旁边找出它的修正值,按⼀定关系把相邻的数加以修正,从⽽找出要找的数,这种修正关系实际上就是⼀种插值。
在实际应⽤中选⽤不同类型的插值函数,逼近的效果也不同。
本⽂详细介绍了拉格朗⽇插值、⽜顿插值、分段插值、埃尔⽶特插值、样条插值法,并从五种插值法的基本思想和具体实例⼊⼿,探讨了五种插值法的优缺点和适⽤范围。
.通过对五种插值法的对⽐研究及实际应⽤的总结,从⽽使我们在以后的应⽤中能够更好、更快的解决问题。
关键词:插值法对⽐实际应⽤Abstract: interpolation numerical analysis of one of the most basic method. Function is a wide variety of practical problems encountered, and some even not give expression provides only a number of discrete data, e.g., in the the checker number table, to check the data is not found in the table , first find out the number next to it, from the side to find the correction value, a certain relationship between the adjacent number to be amended, and to find to find the number, this correction relationship is actually an interpolation . Selection of different types of interpolation functions in practical applications, the approximation of the effect is different. This paper describes the Lagrange interpolation, Newton interpolation, piecewise interpolation, Hermite interpolation, spline interpolation, and start from the basic idea of the five interpolation and specific examples to explore the advantages of the five interpolation shortcomings and the scope of application. The comparative study and practical application of the summary by the the five interpolation method of application so that we can better and faster to solve the problem.引⾔在许多实际问题中,常常需要根据⼀张函数表推算该函数在某些点上的函数值,或要求解决与该函数有关的⼀些问题,例如分析函数的性态,求导数、积分、零点与极值点等。
几种插值法的对比研究1
目录一、引言………………………………………………………………………1二、插值问题的提出、发展史及简单应用……………………1(一)插值问题的提出 (1)(二)插值法的发展史 (1)(三)插值法的简单应用 (1)三、几种插值法的定义…………………………………………………2(一)Lagrange插值 (2)1. Lagrange插值基函数 (2)2. Lagrange插值多项式 (2)(二) Newton插值 (2)1. 差商的定义 (2)2. Newton插值多项式 (3)(三)Hermite插值 (3)(四)分段插值 (3)(五)样条插值 (4)四、通过举例进行分析比较 (4)(一)例题 (4)(二)分析结果 (8)五、几种插值法在MATLAB的实现 (8)1分段插值的MATLAB实现 (9)2 Hermite插值的MATLAB实现 (9)3 拉格朗日插值的MATLAB实现 (11)4牛顿插值法的MATLAB 实现 (12)六、结束语 (13)参考文献 (13)一、引言近半世纪由于计算机的广泛使用和造船、航空、精密机械加工等世纪问题的需要,使插值法在理论上和实践上得到进一步发展,尤其是20世纪40年代后期发展起来的样条插值等,更获得广泛应用,称为计算机图形学的基础.二、插值问题的提出、发展史及简单应用(一)插值问题的提出许多实际问题都用函数来表示某种内在规律的数量关系,其中相当一部分函数是通过实验或观测得到的.虽然()x f 在某个区间[]b a ,上是存在的,有的还是连续的,但却只能给出[]b a ,上一系列点i x 的函数值()() 2,1,0==i x f y i i ,这只是一张函数表.有的函数虽有解析表达式,但由于计算复杂,使用不方便,通常也造一个函数表,如大家熟悉的三角函数表、对数表、平方根和立方根表.为了研究函数的变化规律,往往需要求出不在表中的函数值.因此,我们希望根据给定的函数表做一个既能反映函数()x f 的特性,又便于计算简单函数()x p ,用()x p 近似()x f .通常选一类较简单的函数(如代数多项式或分段代数多项式)作为()x f ,并使()()i i x f x p =对() 2,1,0=i 成立.这样确定的()x p 就是我们希望得到的插值函数.(二)插值法的发展史插值法是一种古老的数学方法,它来自生产实践.早在一千多年前的隋唐时期制定历法时就应用了二次插值,隋唐刘焯将等距点二次插值应用于天文计算.但插值理论都是在17世纪微积分产生以后才逐渐发展的,牛顿的等距节点插值公式及均差插值公式都是当时的重要成果.(三)插值法的简单应用在现代机械工业中用计算机程序控制加工机械零件,根据设计可给出零件外形曲线的某些型值点()()n i y x i i ,2,1,0==,加工时为控制每步走刀方向及步数,就要算出零件外形曲线其他店的函数值,才能加工出外表光滑的零件.三、几种插值法的定义设函数()x f y =在区间[]b a ,上有定义,且已知在点b x x x a n ≤<<<≤ 10上的值,,,10n y y y 若存在一简单函数()x p ,使()n i y x p i i ,1,0,==成立,就称()x p 为()x f 的插值函数,点n x x x ,,,10 称为插值节点.(一)Lagrange 插值1. Lagrange 插值基函数 1+n 个n 次多项式()n k x x x x x l jk j nj k ,,1,0,0 =--==∏=称为Lagrange 插值基函数.2. Lagrange 插值多项式设给定1+n 个互异点()(),,,,,2,1,0,,j i x x n k x f x j i k k ≠≠= 满足插值条件()()n k x f x L k k n ,2,1,0,==的n 次多项式()()()()⎪⎪⎭⎫⎝⎛--∏∏=∏====j k jn j k nk n k nk n x x x x x f x l x f x L 000 为Lagrange 插值多项式.设()x f n 在[]b a ,上连续,()x f n 1+在[]b a ,内存在,节点b x x x a n ≤<<<≤ 10, 称()()()()()()j n j x n n x x x n f x L x f E -∏+=-=-+01!1ξ为插值余项,其中()()b a x x ,∈=ξξ(二)Newton 插值1. 差商的定义()x f 关于i x 的零阶差商[]()i i x f x f = ()x f 关于j i x x ,的一阶差商 [][][]ij i j j i x x x f x f x x f --=,以此类推,()x f 关于k i i i x x x ++ ,,1的k 阶差商 [][][]ik i k i i k i i k i i i x x x x f x x f x x x f --=+-+++++111,,,,2. Newton 插值多项式设给定的1+n 个互异点()(),,,,1,0,j i x x n k x f x j i k k ≠≠== 得()()[]()[][][]()[][][]().,,,,,,,,,,,,,,,010101110100n n n n x x x x x f x x x f x x x f x x x x x f x x f x x f x x x x f x f x f -+=-+=-+=-推导得()()[]()[]()()[]()()()()(),,,,,,,100102100100x E x N x x x x x x x x x f x x x x x x x f x x x x f x f x f n n n +=---++--+-+= 其中()()[]()[]()()10100100,,,---++-+=n n n x x x x x x x f x x x x f x f x N 为Newton 插值多项式,()()()[]()[]b a x x x x x x f x N x f x E j nj n o n ,,,01∈-∏=-==为插值余项.(三)Hermite 插值设()[],,'b a C x f ∈已知互异点[]b a x x x n ,,,10∈ 及对应的函数值为,,,10n f f f 导数值为,,,,''1'0n f f f 存在函数()x H 满足条件:(1)()x H 是一个次数不超过3的多项式 (2)()()()()()n i x f x H x f x H i i i i ,,2,1,0,'' === 则称()x H 为Hermite 插值多项式. 三次Hermite 插值多项式()x H 3:()()()20101'11010'0201001112101100032121⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=x x x x x x y x x x x x x y x x x x x x x x y x x x x x x x x y x H余项为:()()()()212043!4x x x x f x R --=ξ 1+n 个12+n 次Hermite 插值多项式()x H n 12+及其余项()x R n 分别为: ()()()()()()'2020'1221k k nk k kk nk k k kn f x l x x f l x x x l x H ∑∑==+-+--= 其中()x l k 是Lagrange 插值基函数,()()()()()()⎪⎭⎫⎝⎛-∏+=-==+++j n j n n n x x n f x H x f x R 0221212!22ξ,其中()b a ,∈ξ且ξ与x有关.(四)分段插值设在区间[]b a ,上给定1+n 个插值节点b x x x a n =<<= 10和相应的函数值,,,10n y y y 记,max ,1k kk k k x x ϕϕϕ=-=+求做一个插值函数()x ϕ,具有性质:(1)()[]b a C x ,∈ϕ;(2)()()n i y x i i ,,2,1,0 ==ϕ;(3)()x ϕ在每个区间内[]()n i x x i i ,,2,1,0,1 =+上是线性函数.则称()x ϕ为分段线性插值函数.(五)样条插值设在区间[]b a ,上取1+n 个节点b x x x a n =<<<= 10 给定这些点函数值().i i x f y = 若函数()x S 满足条件: ①();,2,1,0,n i y x S i i ==②在每个区间[]()n i x x i i ,,2,1,0,1 =+上是3次多项式; ③()[]b a C x S i ,2∈;○④取下列边界条件之一: (ⅰ)第一边界条件 :()()()()n n x f x S x f x S ''0'0',==;(ⅱ)第二边界条件:()()()()n n x f x S x f x S ''0'0',==或()()0'0'==n x S x S ; (ⅲ)周期边界条件:()() ,2,1,0==k x S x S n k k 称()x S 为3次样条插值函数.cccc五、几种插值法在MATLAB 的实现1分段插值的MATLAB 实现在MATLAB 编辑窗口中输入 x=0:10; y=1./(1+x.^2); xi=0:1:10;yi=interp1(x,y,xi,'linear'); t=0:0.1:10; z=1./(1+t.^2);plot(x,y,'p',xi,yi,t,z)0123456789100.10.20.30.40.50.60.70.80.912 Hermite 插值的MATLAB 实现在MATLAB 编辑窗口中输入x=[1,2];y=[2,3];y1=[0,-1];f=Hermite(x,y,y1,1.5)f=2.625运行程序时调用的Hermite函数如下:function f=Hermite(x,y,y_1,x0)syms t;f=0.0;if(length(x)==length(y))if(length(y)==length(y_1))n=length(x);elsedisp('y和y的导数的维数不相等!');return;endendelsedisp('x和y的维数不相等!);return;endfor i=1:nh=1.0;a=0.0;for j=1:nif(j~=i)h=h*(t-x(j))^2/((x(i)-x(j))^2);a=a+1/(x(i)-x(j));endendf=f+h*((x(i)-t)*(2*a*y(i)-y(i)-y_1(i))+y(i));if(i==n)if(nargin==4)f=subs(f,'t',x0);elsef=vpa(f,6);endendEnd3 拉格朗日插值的MATLAB实现在MATLAB编辑窗口中输入x=[-2,0,4,5];y=[5,1,-3,1];f=Language(x,y,-1)f=3.4286运行程序时调用的Language函数如下: function f=Language(x,y,x0)syms t;if(length(x)==length(y))n=length(x);elsedisp('x和y的维数不相等!');return;endf=0.0;for(i=1:n)l=y(i);for(j=1:i-1)if(j~=i)l=l*(t-x(j))/((x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/((x(i)-x(j));endf=f+1;simplify(f);if(i==n)if(nargin==3)f=subs(f,'t',x0);elsef=vpa(f,6);endendEnd4 牛顿插值法的MATLAB实现在MATLAB编辑窗口中输入x=[1 1.2 1.8 2.5 4];y=[1 1.44 3.24 6.25 16];f=Newton(x,y,2.0)f=4运行程序时调用的Newton函数如下:function f=Newton(x,y,x0)syms t;f=0.0;if(length(x)==length(y))n=length(x);c(1:n)=0.0;elsedisp('x和y的维数不相等!');return;endf=y(1);y1=0;l=1;for(i=1:n-1)for(j=i+1:n)y1(j)=(y(j)-y(i))/(x(j)-x(i));endc(i)=y1(i+1);l=l*(t-x(i));f=f+cc(i)*l;simplify(f);y=y1;if(i==n-1)if(nargin==3)f=subs(f,'t',x0);elsef=collect(f);f=vpa(f,6);endendend六、结束语总结:在条件有限情况下,构造固定的阶数的插值多项式可能会是一种简单的方案,当要反复计算逼近值时,最好用牛顿插值多项式;对于表格数据的常规插值,最好使用分段线性插值;如果插值总体平滑很重要,应该考虑运用三次样条插值或三次Hermite插值,同时表格数据构成函数的导数不存在时,最好使用三次样条插值.参考文献[ 1 ]李庆扬,王能超,易大义. 数值分析[M] . 武汉:华中科技大学出版社,1982.[ 2 ]吴才斌. 插值方法[ J ] . 湖北大学成人教育学院学报, 1999 .[ 3 ]徐萃薇,孙绳武. 计算方法引论[M] . 北京:高等教育出版社,2002.[ 4 ]张德丰.MATLAB数值计算方法[M]. 北京:机械工业出版社,2010.1.。
几种插值法的对比研究1
几种插值法的对比研究1插值法是一种在数据缺失、信号平滑和曲线拟合等方面广泛应用的技术。
在实际应用中,人们常常需要对不连续或缺失的数据进行插值处理,以获得连续的数据序列。
常见的插值方法包括多项式插值、样条插值和径向基函数插值等。
本文将对这些方法的原理和优缺点进行介绍和分析。
1.多项式插值多项式插值是最早被使用的一种插值方法。
可以通过已有数据点之间的连续函数来计算其它位置的值。
多项式插值的主要优点是计算简单,直观易懂。
但是,当插值多项式的次数过高时,会出现插值误差增大和震荡等问题。
2.样条插值样条插值是一种较为高级的插值方法,其不同于多项式插值将整个区间看作一个整体来进行插值,而是将区间划分为多个小区间,对每个小区间进行插值。
每个小区间内的插值函数为一次或二次多项式,这些小区间的多项式函数共同构成了一个光滑的曲线。
样条插值方法的缺点是计算复杂性高,同时需要确定分段函数的节点和边界条件,且容易产生超调(overshoot)现象等问题。
3.径向基函数插值径向基函数插值(Radial Basis Function Interpolation)是一种较为新的插值方法,利用径向基函数对数据进行拟合。
径向基函数具有高精度、自适应性和较强的通用性,可以在低次次数的情况下进行快速拟合,且可以适用于大多数类型的数据。
径向基函数插值的缺点是对噪声和异常值较为敏感,同时需要确定径向基函数的数量和类型。
综上所述,多项式插值、样条插值和径向基函数插值各有优缺点,应根据实际应用的需求和数据特点选择合适的插值方法。
在选用插值方法时,应考虑插值精度、计算复杂度、对噪声的稳健性等问题,以获得最可靠的插值结果。
几种插值法的应用和比较论文(数学类)
几种插值法的应用与比较作者:*** 指导老师:***摘要本文主要介绍了几种常用插值法的应用和比较,针对每个插值法,经过详细的论证和讨论,给出了每个插值法的优点和缺点.通过对数学插值法的研究、比较及应用的讨论及总结,从而得出所讨论插值方法的各自优势,以方便用户选择合适的插值法.关键词拉格朗日插值重心拉格朗日插值分段线性插值1 引言在许多实际问题及科学研究中,因素之间往往存在着函数关系,但是这些关系的显示表达式不一定都知道,通常只是由观察或测试得到一些离散数值,所以只能从这些数据构造函数的近似表达式,有时虽然给出了解析表达式,但由于解析表达式过于复杂,计算起来十分麻烦.这就需要建立函数的某种近似表达,而插值法就是构造函数的近似表达式的方法.由于代数多项式是最简单而又便于计算的函数,所以经常采用多项式作为插值函数,称为多项式插值.多项式插值法有拉格朗日插值法,牛顿插值法、埃尔米特插值法,分段插值法和样条插值法等.其基本思想都是用高次代数多项式或分段的低次多项式作为被插值函数的近似解析表达式.2拉格朗日插值法在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法.许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解.如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值.这样的多项式称为拉格朗日(插值)多项式.数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数.拉格朗日插值法最早被英国数学家爱德华·华林于1779年发现,不久后由莱昂哈德·欧拉再次发现.1795年,拉格朗日在其著作《师范学校数学基础教程》中发表了这个插值方法,从此他的名字就和这个方法联系在一起.2.1 拉格朗日插值多项式图1已知平面上四个点:(−9, 5), (−4, 2), (−1, −2), (7, 9),拉格朗日多项式:)(x L (黑色)穿过所有点.而每个基本多项式:)(00x l y ,)(11x l y , )(22x l y 以及)(x l y ςς各穿过对应的一点,并在其它的三个点的x 值上取零.对于给定的若1+n 个点),(00y x ,),(11y x ,………),(n n y x ,对应于它们的次数不超过n 的拉格朗日多项式L 只有一个.如果计入次数更高的多项式,则有无穷个,因为所有与L 相差))((10x x x x --λ……)(n x x -的多项式都满足条件.对某个多项式函数,已知有给定的1+k 个取值点:),(00y x ,……,),(k k y x ,其中i x 对应着自变量的位置,而i y 对应着函数在这个位置的取值.假设任意两个不同的i x 都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为:)()(0x l y x L j kj j ∑==,其中每个)(x l j 为拉格朗日基本多项式(或称插值基函数),其表达式为:)()()()()()()()()(111100,0kj k j j j j j j j kj i i i j i j x x x x x x x x x x x x x x x x x x x x x l --------=--=++--≠=∏, 拉格朗日基本多项式()x l i 的特点是在j x 上取值为1,在其它的点i x ,j i ≠ 上取值为0. 例2.1.1假设有某个多项式函数f ,已知它在三个点上的取值为:•10)4(=f ,• 25.5)5(=f , •1)6(=f ,要求)18(f 的值.首先写出每个拉格朗日基本多项式:())64)(54()6)(5(0----=x x x l ;())65)(45()6)(4(1----=x x x l ;())56)(46()5)(4(2----=x x x l ;然后应用拉格朗日插值法,就可以得到p 的表达式(p 为函数f 的插值函数):)()6()()5()()4()(210x l f x l f x l f x p ++=)56)(46()5)(4(1)65)(45()6)(4(25.5)64)(54()6)(5(10----⨯+----⨯+----⨯=x x x x x x)13628(412+-=x x , 此时数值18就可以求出所需之值:11)18()18(-==p f .2.2 插值多项式的存在性与唯一性存在性对于给定的1+k 个点:),(),,(00k k y x y x 拉格朗日插值法的思路是找到一个在一点j x 取值为1,而在其他点取值都是0的多项式)(x l j .这样,多项式)(x l y j j 在点j x 取值为j y , 而在其他点取值都是0.而多项式()∑==kj jj x ly x L 0)(就可以满足∑==++++==ki j j j i y y x l y x L 0000)()( ,在其它点取值为0的多项式容易找到,例如:)())(()(110k j j x x x x x x x x ----+- ,它在点j x 取值为:)()()(10k j j j i x x x x x x ---+ .由于已经假定i x 两两互不相同,因此上面的取值不等于0.于是,将多项式除以这个取值,就得到一个满足“在j x 取值为1,而在其他点取值都是0的多项式”:)()()()()()()()(111100k j k j j j j j j j ij j x x x x x x x x x x x x x x x x x x x x l --------=--=++--∏, 这就是拉格朗日基本多项式. 唯一性次数不超过k 的拉格朗日多项式至多只有一个,因为对任意两个次数不超过k 的拉格朗日多项式:1p 和2p ,它们的差21p p -在所有1+k 个点上取值都是0,因此必然是多项式)())((10k x x x x x x --- 的倍数.因此,如果这个差21p p -不等于0,次数就一定不小于1+k .但是21p p -是两个次数不超过k 的多项式之差,它的次数也不超过k ,所以021=-p p 也就是说21p p =.这样就证明了唯一性.2.3 几何性质拉格朗日插值法中用到的拉格朗日基本多项式n l l l ,,,10 (由某一组n x x x <<< 10 确定)可以看做是由次数不超过n 的多项式所组成的线性空间:[]X n K 的一组基底.首先,如果存在一组系数:n λλλ,,,10 使得,01100=+++=n n l l l P λλλ ,那么,一方面多项式p 是满足n n x P x P x P λλλ===)(,,)(,)(1100 的拉格朗日插值多项式,另一方面p 是零多项式,所以取值永远是0.所以010====n λλλ ,这证明了n l l l ,,,10 是线性无关的.同时它一共包含1+n 个多项式,恰好等于[]X n K 的维数.所以n l l l ,,,10 构成了[]X n K 的一组基底.拉格朗日基本多项式作为基底的好处是所有的多项式都是齐次的(都是n 次多项式).2.4 优点与缺点拉格朗日插值法的公式结构整齐紧凑,在理论分析中十分方便,然而在计算中,当插值点增加或减少一个时,所对应的基本多项式就需要全部重新计算,于是整个公式都会变化,非常繁琐.这时可以用重心拉格朗日插值法或牛顿插值法来代替.此外,当插值点比较多的时候,拉格朗日插值多项式的次数可能会很高,因此具有数值不稳定的特点,也就是说尽管在已知的几个点取到给定的数值,但在附近却会和“实际上”的值之间有很大的偏差.这类现象也被称为龙格现象,解决的办法是分段用较低次数的插值多项式.3 重心拉格朗日插值法重心拉格朗日插值法是拉格朗日插值法的一种改进.在拉格朗日插值法中,运用多项式)())(()(10k x x x x x x x l ---= ,图(2)拉格朗日插值法的数值稳定性:如图(2),用于模拟一个十分平稳的函数时,插值多项式的取值可能会突然出现一个大的偏差(图中的14至15中间) 可以将拉格朗日基本多项式重新写为:∏≠=--=kji i i j jj x x x x x l x l ,0)(1)()(,定义重心权∏≠=-=k ji i i j j x x ,0)(1ω,上面的表达式可以简化为:jjj x x x l x l -=ω)()(,于是拉格朗日插值多项式变为:j kj jjy xx x l x L ∑=-=0)()(ω , (1)即所谓的重心拉格朗日插值公式(第一型)或改进拉格朗日插值公式.它的优点是当插值点的个数增加一个时,将每个j ω都除以)(1+-k j x x ,就可以得到新的重心权1+k ω,计算复杂度为)(n O ,比重新计算每个基本多项式所需要的复杂度)(2n O 降了一个量级.将以上的拉格朗日插值多项式用来对函数1)(≡x g 插值,可以得到:∑=-=∀kj jjx x x l x g x 0)()(,ω,因为1)(≡x g 是一个多项式. 因此,将)(x L 除以)(x g 后可得到:∑∑==--=k j jjk j jjx x x x x L 00)(ωω, (2)这个公式被称为重心拉格朗日插值公式(第二型)或真正的重心拉格朗日插值公式.它继承了(1)式容易计算的特点,并且在代入x 值计算)(x L 的时候不必计算多项式)(x l 它的另一个优点是,结合切比雪夫节点进行插值的话,可以很好地模拟给定的函数,使得插值点个数趋于无穷时,最大偏差趋于零.同时,重心拉格朗日插值结合切比雪夫节点进行插值可以达到极佳的数值稳定性.第一型拉格朗日插值是向后稳定的,而第二型拉格朗日插值是向前稳定的,并且勒贝格常数很小.4 分段线性插值对于分段线性插值,我们看一下下面的情况.4.1 问题的重述已知211)(x x g +=,66≤≤-x 用分段线性插值法求插值,绘出插值结果图形,并观察插值误差.1.在[-6,6]中平均选取5个点作插值;2.在[-6,6]中平均选取11个点作插值;3.在[-6,6]中平均选取21个点作插值;4.在[-6,6]中平均选取41个点作插值.4.2 问题的分析在数值计算中,已知数据通常是离散的,如果要得到这些离散点以外的其他点的函数值,就需要根据这些已知数据进行插值.而本题只提供了取样点和原函数)(x g .分析问题求解方法如下:(1)利用已知函数式211)(x x g +=计算取样点X 对应的函数值Y ;将Y X ,作为两个等长的已知向量,分别描述采样点和样本值.因此被插值函数是一个单变量函数,可利用一维插值处理该数据插值问题.一维插值采用的方法通常有拉格朗日多项式插值(本题采用3次多项式插值),3次样条插值法和分段线性插值.(2)分别利用以上插值方法求插值.以0.5个单位为步长划分区间[-6,6],并将每一点作为插值函数的取样点.再根据插值函数计算所选取样点的函数值.最后再利用所得函数值画出相应的函数图象,并与原函数)(x g 的图象进行对比.4.3 问题的假设为了解决上述分析所提到的问题,本题可以作出如下假设:(1)假设原函数)(x g 仅作为求解取样点对应的样点值的函数关系式.而其他各点的函数值都是未知量,叙用插值函数计算.(2)为了得到理想的对比函数图象,假设)(x g 为已知的标准函数.可以选取0.5个单位为步长划分区间[-6,6],分别计算插值函数和标准函数)(x g 在该区间的取样点的函数值.画出函数图象进行对比.4.4 分段线性插值原理给定区间[]b a ,, 将其分割成b x x x a n =<<<= 10,已知函数)(x f y =在这些插值结点的函数值为),1,0)((n k x f y k k ==;求一个分段函数)(x I k ,使其满足:(1) k k h y x I =)(,),1,0(n k =;(2) 在每个区间[]1,+k k x x 上, )(x I h 是个一次函数.易知,)(x I h 是个折线函数, 在每个区间[]1,+k k x x 上,),1,0(n k =1111)(++++--+--=k kk kk k k k k h y x x x x y x x x x x I ,于是, )(x I h 在[]b a ,上是连续的,但其一阶导数是不连续的. 于是即可得到如下分段线性插值函数:)()(0x l y x I ni i i n ∑==,其中⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤--=≤≤--=+++---.,0;,;0,111111其他时舍去时,且当时舍去时,且当n i x x x x x x x i x x x xx x x l i i i i i i i i ii i4.5 问题的求解在MATLAB 中实现分段线性插值,最近点插值,3次多项式插值,3次样条插值的命令为interp 1,其调用格式为: Y 1=interp 1(X ,Y ,X 1,’method ’)函数根据X ,Y 的值,计算函数在X 1处的值.X ,Y 是两个等长的已知向量,分别描述采样点和样本值,X 1是一个向量或标量,描述欲插值点,Y 1是一个与X 1等长的插值结果.method 是插值方法,包括:linear :分段线性插值.它是把与插值点靠近的两个数据点用直线连接,然后在直线让选取对应插值点的数.nearest :近点插值法.根据已知两点间的插值点与这两点间的位置远近插值.当插值点距离前点远时,取前点的值,否则取后点的值.cubic :3次多项式插值.根据已知数据求出一个3次多项式,然后根据多项式进行插值. spline :3次样条插值.在每个分段(子区间)内构造一个3次多项式,使其插值函数除满足插值条件外,还要求个节点处具有光滑条件.再根据已知数据求出样条函数后,按照样条函数插值.运用Matlab 工具软件编写代码,并分别画出图形如下: (一)在[-6,6]中平均选取5个点作插值:-10-5051000.20.40.60.81分段线性插值-10-50510-0.500.513次样条插值-10-5051000.20.40.60.81最近点插值-10-5051000.20.40.60.813次多项式插值(二)在[-6,6]中平均选取11个点作插值:-10-5051000.20.40.60.81分段线性插值-10-5051000.20.40.60.813次样条插值-10-5051000.20.40.60.81-10-5051000.20.40.60.81(三)在[-6,6]中平均选取21个点作插值:-10-5051000.20.40.60.81分段线性插值-10-551000.20.40.60.813次样条插值-10-551000.20.40.60.81-10-551000.20.40.60.813次多项式插值(四)在[-6,6]中平均选取41个点作插值********数学与计算科学学院2012届毕业论文第11页 共11页-10-5051000.20.40.60.81分段线性插值-10-5051000.20.40.60.813次样条插值00.20.40.60.8100.20.40.60.813次多项式插值4.6 插值方法的优劣性分析从以上对比函数图象可以看出,分段线性插值其总体光滑程度不够.在数学上,光滑程度的定量描述是函数(曲线) 的k 阶导数存在且连续,则称该曲线具有k 阶光滑性.一般情况下,阶数越高光滑程度越好.分段线性插值具有零阶光滑性,也就是不光滑.3次样条插值就是较低次数的多项式而达到较高阶光滑性的方法.总体上分段线性插值具有以下特点:优点: 1.分段线性插值在计算上具有简洁方便的特点.2.分段线性插值与3次多项式插值函数在每个小区间上相对于原函数都有很强的收敛性,(舍入误差影响不大),数值稳定性好且容易在计算机上编程实现等优点缺点: 分段线性插值在节点处具有不光滑性的缺点(不能保证节点处插值函数的导数连续),从而不能满足某些工程技术上的要求.而3次样条插值却具有在节点处光滑的特点.结束语插值法是函数逼近的一种重要方法,它是数值微分、微分方程数值解等数值的基础与工具.由于多项式具有形式简单,计算方便等许多优点,故本文主要介绍多项式插值,它是插值法中常用和最基本的方法.拉格朗日插值多项式的优点是表达式简单明确,形式对称,便于记忆.它的缺点是如果要想增加插值节点,公式必须整个改变,这就增加了计算工作量.由于高次插值多项式具有数值不稳定的缺点(龙格插值),高次插值多项式的效果并非一定比低次插值好,所以当区间较大、节点较多时,常用分段低次插值,如分段线性插值和分段二次插值.由于分段插值是局部化的,即每个节点只影响附近少数几个间距,从而带来了计算上的方便,可以步进地进行插值计算.同时也带来了内在的高度稳定性和较好的收敛性,因此它是计算机上常用的一种算法.分段插值的缺点是不能保证曲线在连接点处的光滑性.。
五种插值法的对比研究
1.研究现实状况:
多项式插值Lagrange公式, Newton(包含等距基点情况)和Hermite公式,形式不一样,可用于不一样场所,通常来说,前两种形式适适用于理论应用,后两种形式适于计算,带导数插值使插值函数与被插值函数更为密贴,优点是显著。
毕业论文开题汇报
题目五种插值法对比研究
学生姓名陈飞学号
所在院(系)数学与计算机科学学院
专业班级信计081班
指导老师权双燕
3月7日
题目
五种插值法对比研究
一、选题目及研究意义全文用五号宋体
在数值计算方法中,插值法是计算方法基础,数值微分、数值积分和微分方程数值解都建立在此基础上。插值法有大量实际应用。我们学习过五种基础插值方法,即插值、值、分段线性插值、分段三次插值、样条插值函数。不过这五种插值方法与被插函数迫近程度在现有文件中没有给出清楚描述,为此,可依据已学知识对这五种插值方法与被插函数迫近程度进行对比研究。
黄友谦,李岳生.(第二版).北京:高等教育出版社, 1987
蒋尔雄,赵凤光.数值迫近.上海:复旦大学出版社, 1996
五、毕业论文进程安排
3月4日-----3月8日查阅资料,列出提要,完成开题汇报;
3月8日-----4月10日查阅材料;
4月10日----5月5日阅读资料,撰写论文,完成论文初稿;
5月5日-----5月27日指导老师审阅,定稿后打印。
[2]韩中庚.数学建模方法及其应用[M].北京:高等教育出版社, .
[3]胡运权.运筹学教程第三版[M].清华大学出版社, .
[4]齐欢.数学模型方法[M].武汉:华中理工大学出版社, 1996.
几种常用插值方法对比分析
几种常用插值方法比较分析王玉坤1 彭湘晖1 (1.黑龙江省水文局)提要:水文工作实践中经常采用插值,而数学中插值的计算方法有多种,本文讨论了其中比较简单的线性插值、抛物线插值、拉格朗日插值和逐次线性插值等,并以实际水文应用实例对这几种方法进行了比较,提出了水文中适用插值方法及应用条件关键词:插值;计算方法;关系线1 概述水文工作是经验与理论的结合,生产实际中经常会遇到曲线插值的问题,如水位~流量关系曲线、库水位~蓄水量曲线、单位线中的S 曲线等等,初期的插值是通过量图完成的,随着资料的完善,曲线的节点被摘录出来,为采用数学方法计算插值奠定了基础,特别是计算机技术的普及,利用程序自动插值能够大大提高计算的速度、降低了出错率。
我们常用的插值方法有以下几种:线性插值、抛物线插值、拉格朗日插值、逐次线性插值。
下面对这几种插值方法进行逐一对比分析。
2 几种插值方法的原理 2.1 线性插值函数)(x f y =在两个节点0x 、1x 处的函数值分别为直线插值就是做通过两点(0x 、0y )、(1x 、1y )的直线)(x L y =,那么可知任意点x 所对应得函数值y 为:)(001010x x x x y y y y ---+= 可见,上式为满足插值条件的一次方程,故称之为线性插值。
见图1:图1 线性插值示意图2.2抛物线插值[1],[2]函数)(x f y =在三个节点0x 、1x 、2x 处的函数值分别为抛物线插值就是假设有一个不超过二次的函数)(x L y =,该函数满足以下条件:)(00x L y =,)(11x L y =,)(22x L y =,通过基函数构造求解,可得到函数)(x L 的公式:212021012101200201021))(())(())(())(())(())(()(y x x x x x x x x y x x x x x x x x y x x x x x x x x x L ----+----+----=显然这是一个二次多项式,因此称之为抛物线插值公式,该插值方法成为抛物线插值。
五种插值法的对比研究
• 它的优点就是公式紧凑,在理论分析中十分方便,但是 它不能随意的增加插值点。又如牛顿插值多项式的构造:
当前工作的进度
• 通过上网、图书馆及自己做的习题等方式 已经查找了一些关于数学期望在经济决策 中应用的一些文献,并初步阅读这些文献。 • 通过自己查阅的资料,对几种插值的有了 更充分的认识。 • 根据几种插值的解题思路,解决一些实际 问题。
目前已查阅文献出处
• 石东洋 数值计算方法 郑州大学出版社 • 陈传璋 数学分析(第二版上册)高等教育 出版社 • 数值计算方法 冯康等编 数值计算方法 国 防工业出版社
下一步进展计划
• 细致的研读已有的资料和文献,学习基本 的科研的思想和方法。 • 通过上网、在图书馆中查询、向老师请教 等方式,进一步丰富资料。 • 对已有的资料进行提炼、融合,并结合自 己的思考,在老师的指导下写出自己的论 文。
有关题目的一些想法
• 插值是数值计算中的重要一部分,而五种插值又是我们常常见到 的,本课题就是对他们之间的差异和关系通过举例或证明得到自 己对他们的认识。
• 通过自己的举例和证明从中找到它们的优点、不足. 例如朗格朗日它的构造公式: n
( x x )( x x ) ( x x )( x x ) 1 2 k 1 n g ( x ) ( x x )( x x ) ( x x )( x x ) k 1 k 2 k k 1 k n k 1
f ( x ) f [ x ] f [ x , x ]( x x ) f [ x , x x ]( x x )( x x ) ( x x ) R ( X ) 0 0 1 0 0 1 n 0 1 n 1 n
而它的优点就是可以随意的增加一个或多个插值你只需 在它后面增加相应的想就行了他克服了上式的缺点,也 加快了了你的计算速度。
插值算法(一):各种插值方法比较
插值算法(一):各种插值方法比较整体拟合利用现有的所有已知点来估算未知点的值。
局部插值使用已知点的样本来估算位置点的值。
确定性插值方法不提供预测值的误差检验。
随机性插值方法则用估计变异提供预测误差的评价。
对于某个数据已知的点,精确插值法在该点位置的估算值与该点已知值相同。
也就是,精确插值所生成的面通过所有控制点,而非精确插值或叫做近似插值,估算的点值与该点已知值不同。
1、反距离加权法(Inverse Distance Weighted)反距离加权法是一种常用而简单的空间插值方法,IDW是基于“地理第一定律”的基本假设:即两个物体相似性随他们见的距离增大而减少。
它以插值点与样本点间的距离为权重进行加权平均,离插值点越近的样本赋予的权重越大,此种方法简单易行,直观并且效率高,在已知点分布均匀的情况下插值效果好,插值结果在用于插值数据的最大值和最小值之间,但缺点是易受极值的影响。
2、样条插值法(Spline)样条插值是使用一种数学函数,对一些限定的点值,通过控制估计方差,利用一些特征节点,用多项式拟合的方法来产生平滑的插值曲线。
这种方法适用于逐渐变化的曲面,如温度、高程、地下水位高度或污染浓度等。
该方法优点是易操作,计算量不大,缺点是难以对误差进行估计,采样点稀少时效果不好。
样条插值法又分为•张力样条插值法(Spline with Tension)•规则样条插值法(Regularized Spline)•薄板样条插值法 (Thin-Plate Splin)3、克里金法(Kriging)克里金方法最早是由法国地理学家Matheron和南非矿山工程师Krige提出的,用于矿山勘探。
这种方法认为在空间连续变化的属性是非常不规则的,用简单的平滑函数进行模拟将出现误差,用随机表面函数给予描述会比较恰当。
(克里金中包括几个因子:变化图模型、漂移类型和矿块效应)克里金方法的关键在于权重系数的确定,该方法在插值过程中根据某种优化准则函数来动态地决定变量的数值,从而使内插函数处于最佳状态。
几种常用高程插值方法的比较 数学模型
几种常用高程插值方法的比较数学模型【最新版3篇】目录(篇1)1.引言2.常用高程插值方法介绍2.1 反距离权重法2.2 普通克里金插值法2.3 普通最小二乘法2.4 残差最小二乘法2.5 线性回归法2.6 多项式回归法3.各方法的优缺点比较4.结论正文(篇1)高程插值是在地理信息系统 (GIS) 和遥感技术中常用的数据处理方法,目的是根据已知的高程点数据,估算出其他地点的高程值。
高程插值的方法有很多种,下面将对几种常用的高程插值方法进行介绍和比较。
2.1 反距离权重法反距离权重法是一种基于距离的插值方法,其基本思想是根据距离衰减权重,对各个高程点进行加权平均。
该方法的优点是简单易行,计算速度快,但是缺点是插值结果受距离衰减系数的选择影响较大,且不能很好地处理数据中的噪声。
2.2 普通克里金插值法普通克里金插值法是一种基于网格的插值方法,其基本思想是利用周围的已知高程点,通过插值函数估算待求点的高程值。
该方法的优点是插值精度高,能够很好地处理数据中的噪声,但是缺点是计算量较大,需要进行多次迭代计算。
2.3 普通最小二乘法普通最小二乘法是一种基于最小二乘原理的插值方法,其基本思想是通过最小化误差的平方和来估算待求点的高程值。
该方法的优点是简单易行,插值精度较高,但是缺点是需要选择合适的基函数,且计算量较大。
2.4 残差最小二乘法残差最小二乘法是一种改进的普通最小二乘法,其基本思想是将待求点的残差作为基函数,通过最小化残差的平方和来估算待求点的高程值。
该方法的优点是插值精度更高,能够更好地处理数据中的噪声,但是缺点是计算量较大,需要进行多次迭代计算。
2.5 线性回归法线性回归法是一种基于线性回归模型的插值方法,其基本思想是通过线性回归模型估算待求点的高程值。
该方法的优点是简单易行,计算速度快,但是缺点是插值精度较低,不能很好地处理非线性关系。
2.6 多项式回归法多项式回归法是一种基于多项式回归模型的插值方法,其基本思想是通过多项式回归模型估算待求点的高程值。
五种插值法的对比研究
学号:20138大学毕业论文五种插值法的对比研究A Comparative Study of Five Interpolation Methods学院:理学院教学系:数学系专业班级:信息与计算科学专业1301学生姓名:指导教师:讲师2017年6月7日目录内容摘要...............................................................I Abstract.................................................................II 1 导言.................................................................11.1 选题背景.................................................11.2 研究的目的和意义.................................................2 2 五种插值法.................................................32.1 拉格朗日插值.................................................32.2 牛顿插值.................................................42.3 分段线性插值.................................................42.4 分段三次Hermite 插值.................................................52.5 样条插值.................................................5 3 五种插值法的对比研究.................................................63.1 五种插值法的解题分析比较.............................................63.2 五种插值法的实际应用.................................................15 4 结语.................................................20 参考文献...............................................................21 致谢...................................................................22内容摘要:插值法是数值分析中最基本的方法之一。
几种插值方法比较与应用2资料
几种插值方法的比较与应用摘要:本文是对学过的插值方法进行了总结、比较,使我们在进行工程计算的过程中更清楚的知道哪一种方法适合哪一种类型,了解哪种方法在已知条件下可以得到更优的结果以满足计算要求。
关键词:数值分析,插值,多项式 1 前言在许多实际问题及科学研究中,因素之间往往存在着函数关系,然而,这种关系经常很难有明显的解析表达,通常只是由观察与测试得到一些离散数值。
有时,即使给出了解析表达式,但却由于表达式过于复杂,不仅使用不方便,而且不易于进行计算与理论分析。
解决这类问题的方法有两种:一种是插值法,另一种是拟合法。
插值法是一种古老的数学方法,它来自生产实践。
早在一千多年前,我国科学家在研究历法上就应用了线性插值与二次插值,但它的基本理论确实在微积分产生之后才逐渐完善的,其应用也日益增多,特别是在计算机软件中,许多库函数,如sin ,cos ,x x x e 等的计算实际上归结于它的逼近函数的计算。
逼近函数一般为只含有算术运算的简单函数,如多项式、有理分式(即多项式的商)。
在工程实际问题当中,我们也经常会碰到诸如此类的函数值计算问题。
被计算的函数有时不容易直接计算,如表达式过于复杂或者只能通过某种手段获得该函数在某些点处的函数值信息或者导数值信息等。
因此,我们希望能用一个“简单函数”逼近被计算函数,然后用该简单函数的函数值近似替代被计算函数的函数值。
这种方法就叫插值逼近或者插值法。
插值法要求给出函数()f x 的一个函数表,然后选定一种简单的函数形式,比如多项式、分段线性函数及三角多项式等,通过已知的函数表来确定一个简单的函数()x ϕ作为()f x 的近似,概括地说,就是用简单函数为离散数组建立连续模型。
2 插值法的基本概念 2.1 插值法的定义设函数()y f x =在区间[],a b 上有定义,且已知在点0n a x x b ≤≤≤≤上得值()(0,1,,)i i f x y i n ==,若存在一个简单函数()x ϕ,使得()(0,1,,)i i x y i n ϕ==成立,就称()x ϕ为()f x 的插值函数,点(0,1,,)i x i n =为插值节点,包括插值节点的区间[],a b 成为插值区间,求插值函数()x ϕ的方法成为插值法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各种插值法对比研究目录1.引言 (1)2.插值法的历史背景 (1)3.五种插值法的基本思想 (2)3.1拉格朗日插值 (2)3.2牛顿插值 (3)3.3埃尔米特插值 (4)3.4分段线性插值 (5)3.5三次样条插值 (6)4.五种插值法的对比研究 (6)4.1拉格朗日插值与牛顿插值的比较 (6)4.2多项式插值法与埃尔米特插值的比较 (7)4.3多项式插值法与分段线性插值的比较 (7)4.4 分段线性插值与样条插值的比较 (7)5.插值法在实际生活中的应用 (7)6.结束语 (8)致谢 (8)参考文献 (8)各种插值法对比研究摘要:插值法是一种古老数学办法,也是数值计算中一种算法.插值法不但是微分方程、数值积分、数值微分等计算办法基本,并且在医学、通讯、精密机械加工等领域都涉及到了它.本文一方面简介了插值背景以及惯用五种插值法基本思想,然后通过拉格朗日插值与牛顿插值、多项式插值与埃尔米特插值、多项式插值与分段线性插值、分段线性插值和样条函数插值给出相应算法与MATLAB 程序,依照已学知识对五种插值办法与被插函数逼近限度进行对比研究,找出不同办法间联系与区别,分析出它们优缺陷,最后在此基本上进一步研究插值法实际应用,以提高插值法实用性,从而能让咱们在后来应用中看到一种问题,就懂得哪种办法更适合于它,然后大大地迅速提高效率.核心词:多项式插值;样条函数插值;MATLAB 程序;应用1.引言在诸多解题以及应用生活中,经常需要用数量关系来反映问题,但是有时没有办法通过数学语言精确地表达出来.已知有些变量之间存在一种函数关系,但没法用函数表达式表达出来.例如,)(x f 在某个区间上[]b a ,是存在某种数量关系,但是依照观测和测量或者实验只能得到有限个函数值,咱们可以运用这几点来拟定函数表达式.或者有某些函数表达式是已经懂得,但是它们计算是十分繁琐复杂,不容易发现它本质,并且它用法也比较局限.函数是表达数与数之间联系,为了能较好地用数学语言表达出函数关系,普通通过给定数据构造一种函数)(x P ,这样既能反映函数)(x f 特点,又以便计算,用)(x P 近似)(x f .普通选一种简朴函数)(x P ,并且=)(i x P )(i x f ()n i ,...,2,1,0=成立,这个时候)(x P ,从要表达函数规律来看,就是咱们需要插值函数[1].所用办法就是插值法,由于所选用)(x P 多样化,得到不同插值法.2.插值法历史背景插值法历史源远流长,在很早时候就涉及到了它.它是数值计算中一种古老分支,它来源于生产实践.由于牛顿力学物理理论知识在一千年前没有浮现,因此咱们祖先没有办法用很精确数学解析式来表达日月五星运营规律.日后,古代人们有着聪明头脑,想出了插值办法,然后发现了日月五星运营规律.例如唐朝数学家张遂提出了插值法概念以及不等距节点插值,并将其应用在天文历法观测中.当代工业革命后来欧洲知名数学家拉格朗日给出了拉格朗日插值法概念以及应用.微积分产生后,插值法基本理论和成果进一步得到改进.3.五种插值法基本思想如果一种函数)(x f y =在区间[]b a ,上有定义,且已知在点b x x x a n ≤<<<≤...10上值0y ,1y ,2y , ,n y ,若存在一简朴函数)(x P ,使得成立,)(x P 为插值函数,点0x ,1x ,2x , ,n x 称为插值节点,插值节点区间[]b a ,称为插值区间,求插值函数)(x P 办法称为插值法.若)(x P 多项式次数不超过n ,即有)(x P n n x a x a x a a ++++= (2210)3.1拉格朗日插值拉格朗日插值是n 次多项式插值,它是用构造插值基函数办法来解决n 次多项式插值问题.拉格朗日插值多项式可以表达为=)(x L n ∑=n k k k x ly 0)(,)(x l k 为插值基函数,表达式为=)(x l k ))...()()...(())...()()...((110110n k k k k k k n k k x x x x x x x x x x x x x x x x --------+-+-,n k ,,1,0 =截断误差为)()()(x L x f x R n n -=,也是插值余项.关于插值余项,预计有如下定理[2]: 设)(x f n 在[]b a ,上持续,)(1x f n +在()b a ,内存在,节点b x x x x a n ≤<<<<≤ 210,)(x L n 是满足条件(1.4)插值多项式,则对任何[]b a x ,∈,插值余项)()!1()()()()(1)1(x n f x L x f x R n n n n +++=-=ωξ 余项表达式应用有它局限性,普通只适合于)(x f 高阶导数存在状况下.若设1)1()(max ++≤≤=n n b x a M x f ,则误差为)()!1()(11x w n M x R n n n +++≤. 3.2牛顿插值牛顿插值基本思想是对n 次插值多项式)(x P n 进行逐次生成,然后用插值条件求出)(x P n 系数[3].因而,提出了均差(即差商)概念.设 称有函数)(x f ,1x ,2x ,3x , ,n x 是一系列不相等点,则[]=k x x f ,000)()(x x x f x f k k --为函数)(x f 关于点0x ,2x 一阶均差; []=k x x x f ,,10[]1100],[,x x x x f x x f k k -- 称为)(x f 二阶均差; []=k x x x f ,...,,10[][]1110210,...,,,,...,,-----k k k k k x x x x x f x x x x f 为)(x f )k 阶均差. 咱们先求出1次多项式,2次多项式,然后类推出n 次多项式,构造出n 次代数插值多项式此外一种表达形式—牛顿插值多项式=)(x P n +)(0x f []10,x x f +-)(0x x []210,,x x x f )(0x x -+-)(1x x … []n x x x x f ,...,,,210+)(0x x -))...((11---n x x x x , =)(x R n []n x x x x x f ,...,,,,210)(0x x -))...((1n x x x x --,=)(x f +)(x P n )(x R n . )(x P n 为牛顿插值多项式,)(x R n 为余项.3.3埃尔米特插值有时候解决函数)(x f 问题,不但要在某些点上懂得函数值,并且已知在某些点上导数值.那么这时插值函数)(x P ,它在某些点处导数值和函数值与原表达式值相等.那么咱们从几何这个方面来思考这个问题,求出插值多项式曲线,不但通过已知点组,并且在这些点处与原曲线"相切"[4].(一)、泰勒插值定义 [][])(,lim ,0'0000x f x x f x x f x x ==→为一阶重节点均差; [][])(21,,lim ,,0''2100000201x f x x x f x x x f x x x x ==→→为二阶重节点均差; 则n 阶重节点均差为[][])(!1,,,lim ,,,0100000x f n x x x f x x x f n n x x i ==→ . 当0x x i →时,牛顿插值公式极限为=)(x P n +)(0x f )(0'x f +-)(0x x ...!n x f n )(0)(nx x )(0-. 称为泰勒插值多项式.它满足条件=)(0)(x P k n )(0)(x f k ,),...,2,1,0(n k =(二)、两点三次埃尔米特插值若)(x f 在k x ,1+k x 函数值为k y ,1+k y ,k k m x f =)(',11')(++=k k m x f ,咱们可以构造出一种次数不超过3多项式,)(3x H 为插值函数.设=)(3x H +k k y x a )(+++11)(k k y x a +k k m x )(β11)(++k k m x β,k a ,1+k a ,k β,1+k β为插值基函数.可得成果 =)(3x H 2111))(21(+++----+k k k k k k x x x x x x x x k y 2111))(21(kk k k k k x x x x x x x x ----+++++++1k y )(k x x -+--++k k k k m x x x x 211)(121)(++--k k k k m x x x x, =)(3x R 2124)())((41+--k k x x x x f ξ!,),(1+∈k k x x ξ. 3.4分段线性插值分段线性插值:普通描述,如给定[]上b a ,1+n 个节点b x x x x a n =<<<<= 210和相应函数值)(i f f i =),...,2,1,0(n i =,记k k k x x h -=+1,k kh h max =. 构造)(x I h 满足:(1)[]b a C x I h ,)(∈;(2)k k h f x I =)(),,2,1,0(n k =;(3))(x I h 在每个社区间[]1,+k k x x 上是线性函数.由以上条件直接可得)(x I h 在社区间[]1,+k k x x 上表达式为=)(x I h +--++k k k k f x x x x 1111++--k kk k f x x x x , )1,,2,1,0(-=n k 误差预计-)(x f =)(x I h ))((!2)(1)(''+--k k k x x x x x f ξ))((max 2121+≤≤--≤+k k x x x x x x x M k k . 当∞→h 时,0)()()(→-=x I x f x R h ,)(x I h 在[]b a ,上一致收敛到)(x f .3.5三次样条插值三次样条插值(Spline 插值)详细规定是:函数[]b a C x S ,)(2∈,并在每个社区间[]1,+j j x x 上是一种三次多项式,其中b x x x x a n =<<<<=...210是给定节点,如果对给定节点函数值有j y )(j x f =),...,2,1,0(n j =,并且=)(j x S j y ,),...,2,1,0(n j =成立,这时咱们就把)(x S 称为三次样条插值函数.4.五种插值法对比研究通过讨论插值法有关内容,可以让咱们更好理解插值法.当前咱们先从插值多项式形式上、用途上、计算办法上、精准度上等进行对比研究,比较各自优缺陷,然后再通过实例验证之.4.1拉格朗日插值与牛顿插值比较(一)拉格朗日插值多项式环节衔接紧密,条理清晰,在理论中十分重要.但是计算比较复杂,由于每添加一种点,因此公式都要重新计算,这样计算环节较多会导致计算量变大,反而会导致浮现误差与本来目背道而驰.(二)牛顿插值多项式计算量小,环节简洁.当添加一种节点时,它依然可以使用,即具备“承袭性”也叫“继承”,因此此类办法应用灵活.但是咱们依照正常想象和观测插值余项,咱们普通局部地总是以为当原函数给出点是越来越多时,咱们借助辅助函多次数越高,它就和原函数越来越近,误差越来越小.然而事实并非如此,当遇到插值节点等距分布状况时,只规定函数点值相等不可以充分反映插值函数性质[5].4.2多项式插值法与埃尔米特插值比较多项式插值规定在插值节点上函数值相等,计算简朴,条件不怎么苛刻.但是如果有时候一方面要在节点处函数值相等,另一方面要导数值相等,这时多项式插值否则不满足此类状况.埃尔米特插值不但算法简朴并且它具备强烈收敛性.但是它光滑度不高,并且它使用条件,也有局限性.在某些特定限制条件下,有时函数导数值在这点是完全没有必要懂得.因而,懂得节点处导数插值函数成为能否运用Hermite插值一种重要因素[6].4.3多项式插值法与分段线性插值比较多项式插计算简朴,比较以便,但是节点增长同步就会浮现龙格现象,图形波动较大[7].分段线性插值可以克服龙格现象,有收敛性,但是在区间内有转折点,光滑性不好.4.4 分段线性插值与样条插值比较样条插值插值函数算法稳定,并且插值函数光滑,收敛性强,误差小.但是它不能局部拟定,经常需要解线性方程组.5.插值法在实际生活中应用插值法是数值逼近中一种非常重要某些,另一方面它在实际生活中起着不容小觑作用,例如天文学以及数学.6.结束语插值法在解决实际问题中有很大应用.插值办法是各种各样,它包括拉格朗日插值法、牛顿插值法、Hermite插值法、分段线性插值法以及三次样条插值法等.咱们无论使用哪个插值法,它原理都是同样.本课题一方面简介了插值背景以及各类办法基本思想;然后通过解题、画图、一道题用几种不同办法来解答,让咱们哪种办法适合解答哪种类型题,再然后进行对比,探讨出它们优缺陷,最后文章举个例子来阐明插值法有很大作用,它和咱们是相连,同步运用MATLAB给出了模仿图,通过这种数与形结合,更好地理解各类插值法应用于特性.道谢本论文在苏晓琴教师悉心指引下完毕,同样也是我第一次写这样文章。