第四节 混合水平的正交试验设计

第四节   混合水平的正交试验设计
第四节   混合水平的正交试验设计

第四节混合水平的正交试验设计

为了使试验设计简化和数据处理的方便,前面所介绍的正交试验设计问题,其各因素都取相同的水平数,但在实际问题中,有些因素会受到某些条件的限制,其水平数不能选取太多,而有些因素则是准备在试验中着重考察的,为了更好的了解这些因素与试验指标之间的关系,需要多取几个水平。因此,在试验设计中常常要考虑所谓混合水平的正交试验设计问题。

一、直接套用混合水平正交表

下面通过例子说明:

例4.1 为了探索某胶压板的制造工艺,考虑的因素和水平如下表

根据所给因素和水平,此问题的试验方案可以直接套用混合水平正交表L8(41×24)来安排试验。试验的结果见表4 -1

1.极差分析法

表4-1 试验方案及计算结果表

当因素水平完全相同时,因素的主次关系完全由极差R 的大小来决定。当水平数不完全一样时,无法进行直接的比较,这是因为当因素对指标有同等影响时,水平多的因素极差应大一些。因此需要利用折算系数对极差进行折算。

折算系数表

折算后,则可借助于R ′的大小来衡量因素的主次顺序。

R ′的计算公式为:

由上计算可知因素主次顺序为:

????→A;C,B

主次 相应地胶压板的制造工艺条件为

A 1

B 2

C 1

'

'''(41)

2.70.45

3.40.90.71 2.61.10.71 3.1

A

B C R R R R R =-=??==??==??=所以:

2.方差分析法 平方和的计算:

已知: n =8, s =4, r 1=4, r 2= r 3=2, m 1=2,

m 2= m 3=4, T=Σy i =113 , C=T 2

/32=399.03

(1)2(1)2(1)2(1)2

1234122221(K )(K )(K )+(K )1(41)(24)(19)+(27)399.0324

3347399.0319.35

8A S C m s ??=++-????=++-???=-=

(2)2(2)2

122221(K )(K )1(48)(63)399.0344

6273399.03 6.96816B S C m s ??=+-????=+-???=-=-

二并列法

混合水平正交试验设计,除了直接应用混合水平的正交表处理外,还可以通过改造正交表L n(r m)方法,形成新的混合水平正交表L n(r1s×r2t)。

在二水平的正交表中,如果要安排若干个4水平因素,或8水平因素;或者在三水平的正交表中,如果要安排9水平因素等,均可采用并列法来改造正交表。

例如: L8(41×24)表就是由L8(27)改造而来。

具体的改造方法如下:

L8(27) 正交表

(1)首先从L8(27) 中随便选两列,比如正交1、2列,由于这两列同横行组成的8个数对,恰好有4种不同搭配,且各出现两次,我们把每种搭配用一个数字来表示:

规则

→(1,1)→1

→(1,2)→2

→(2,1)→3

→(2,2)→4

(2)将1、2列合起来形成一个具有4水平的新列,再将1、2列的交互作用列第3列从正交表中去除,因为它已不能再安排任何因素,这样就等于将1、2、3列合并成新的一个4水平列,记为1′,从而它可以安排一个4水平因素。从自由度的角度来看,四水平因素的自由度为3,而二水平正交表每一列的自由度为1,四水平因素在二水平上应占三列,因此在新的一列1′上安排一个四水平因素是合适的。

由L8(27)改造的L8(4×24)正交表

显然,这样得到的新表L 8(41

×24)仍然是一张正交表,不难验证,它仍然具有正交表均衡分散、整齐可比的性质。 (i )任一列中各水平出现的次数相同(四水平列中,各水平出现二次,二水平列各出现八次)。

(ii )任意两列中各横行的有序数对出现的次数相同(对于两个二水平列,显然满足;对一列四水平,一列二水平,它们各横行的八种不同搭配

(1,1) 、(1,2) 、(2,1) 、(2,2) 、(3,1) 、(3,2) 、(4,1) 、(4,2) 各出现一次。 (3)选择改造正交表的原则

一般是根据所考虑问题的总的自由度与正交表的自由度的关系f f <总表来确定如何选择。

例如:考察的因素为A 、B 、C 、D ,其中A 取4个水平,B 、C 、D 各取2个水平,同时还需考虑交互A ×B 、A ×C,显然这是一个41

×23

的试验设计问题。

由于3,1,3A B C D A B A C A B A C f f f f f f f f f f ??======?=?= 且12A B C D A B A C f f f f f f f ??=+++++=总,而L 16(2

16

)表的

总的自由度116115f n =-=-=表,故有f f <总表,所以可选择 正交表L 16(2

15

)通过并列法将其改造成L 16(41

×212) 正

交表来解决我们所面临的试验设计问题。

例4.2 聚氨酯合成橡胶的试验中,要考察A、B、C、D对抗张强度的影响,其中因素A取4各水平,因素B、C、D均取二水平,还需要考察交互作用A×B、A×C。

解:显然这是一个41×23因素的正交试验设计问题。

自由度计算如下:

f A=4-1=3

f B =f C =f D =2-1=1

f A×B =f A×C =(4-1)×(2-1)=3

f总=3+3×1+2×3=12

故可以选用L16 (215)改造得到的L16 (41 ×212)混和正交表安排试验

混凝土配合比试验设计方案

混凝土配合比试验设计方案

混凝土配合比设计试验报告 一、配合比设计理论依据 1、《民航机场场道工程施工技术要求》1996—10 2、《广州白云国际机场迁建工程——场道道面工程补充施工技术要求》 3、《水泥胶砂强度检测方法(ISO)法》GBT17671—1999 4、《公路集料试验规程》JTJ058—2000 5、《水泥混凝土路面施工及验收规范》GB97—87 6、《公路工程水泥混凝土试验规程》JTJ053—94 7、《普通混凝土配合比设计规程》JGJ55—2000 J64—2000 8、《硅酸盐水泥、普通硅酸盐水泥》GB175 9、《混凝土外加剂一等品规定指标》(GB8076-1997) 10、《混凝土外加剂应用技术规范》(GBJ119-88) 二、道面混凝土设计要求如下: 2.1、强度:28天抗折强度5.0Mpa; 2.2、和易性要求:维勃稠度20-40s,或塌落度小于10mm; 2.3、耐久性要求:水泥用量不少于300Kg/m3,也不宜大于330Kg/m3; 水灰比不宜大于0.44; 2.4、水泥混凝土所用原材料应符合《民航机场场道工程施工技术要求》1996—10中的有关要求外,尚应符合以下规定: 2.4.1水泥道面及道肩面层混凝土可采用标号为525的硅酸盐水泥。水泥中氧化镁含量不宜大于3%,碱含量不大于0.6%。水泥的其他质量应符合《硅酸盐水泥、普通硅酸盐水泥》GB175的有关规定。

2.4.2砂宜采用细度模数为2.65~ 3.20的中粗河砂。砂的含泥量不得大于3%,含泥量超过规定时应冲洗。应委托有资格的试验单位,按《公路集料试验规程》JTJ058—2000中的岩相法对每种料源测定其碱活性,有碱活性的砂不得使用。 2.4.3碎石圆孔筛最大粒径为40mm。应委托有资格的试验单位,按《公路集料试验规程》JTJ058—2000中的岩相法对每种料源测定其碱活性,有碱活性的碎石不得使用。碎石应按圆孔筛5~20mm、20~40mm两级级配分别备料,两种碎石混合后的颗粒级配应符合下表要求: 项目技术要求 颗粒尺寸筛孔尺寸mm(圆孔筛)40 20 10 5 累积筛余(%)0~5 50~70 70~90 90~100 2.4.4水冲洗集料、拌和混凝土及混凝土养生可采用一般饮用水。使用河水、池水或其他水应符合下列要求:①水中不得含有影响水泥正常凝结和硬化的有害杂质,如油、糖、酸、碱、盐等;②硫酸盐含量(按SO2-1计)不超过2.7mg/cm3;③pH值大于4;含盐总量不得超过5mg/cm3。 2.4.5外加剂水泥混凝土中需要掺用外加剂时,必须根据工程要求,通过试验选定外加剂的种类和用量。外加剂的质量应符合《混凝土外加剂一等品规定指标》(GB8076-1997)的规定要求,其使用应符合《混凝土外加剂应用技术规范》(GBJ119-88)的规定要求。不得使用pH值大于8的碱性外加剂。施工过程中应严格控制外加剂剂量,现场有专人配制。 三、确定原材料 我们根据招标文件、投标书、与业主签订的施工合同及施工图纸的要求确定使用下列材料:

碾压混凝土配合比设计试验

碾压混凝土实验室配合比设计试验 1 试验目的 测定碾压混凝土配合比设计试验所用原材料的物理力学性能指标,然后进行碾压混凝土实验室的配合比设计。 2 试验方案 本试验根据配合比设计所需的技术资料,首先对选定的材料进行物理力学性能指标的测定试验,再依据配合比设计规程及原则来进行配合比的设计,对于碾压混凝土,设计时主要考虑其三大参数的要求。本试验流程图如图2.1所示。

图2.1 试验流程图 3 试验方法 3.1 原材料的物理力学性能试验 本试验配合比设计所用的原材料主要有:水泥、粉煤灰、石灰、粗细集料、

水及外加剂等。 3.1.1水泥试验 水泥试验主要包括:水泥细度试验、水泥标准稠度用水量试验、水泥凝结时间试验、水泥体积安定性试验、水泥胶砂强度试验等。 水泥细度试验采用手工干筛法来检验水泥细度;水泥标准稠度用水量试验、水泥凝结时间试验及水泥体积安定性试验(雷氏夹法)按GB/T 1346-1989《水泥标准稠度用水量、凝结时间、安定性检验方法》,用沸煮法,对该水泥进行了安定性试验;水泥胶砂强度试验通过ISO法来测定水泥的强度等级。 通过试验,得到本试验所用水泥的物理性能见表1.1。 表1.1 水泥的物理性能表 水泥品种 初凝 (h:min) 终凝 (h:min) 安定性 (mm) 筛余量 (%) 标准稠 度(%) 抗压 (Mpa) 抗折 (Mpa) 3d 28d 3d 28d P.C32.5R 2.1 3.1.2 粉煤灰试验 根据《用于水泥和混凝土中的粉煤灰》GB1596—91以及国家标准GB175—1999,GB1344—1999,GB12958—1999中的规定,需对粉煤灰的细度、密度、凝结时间、体积安定性和强度及强度等级等主要技术性质经行测定。 通过试验,该粉煤灰的物理性能见表1.2。 表1.2 粉煤灰的物理性能表 粉煤灰等级 密度 (g/cm3) 堆积密度 (g/cm3) 细度 (%) 比表面积 (g/cm2) 需水量 (%) 28d抗压 强度比 (%) Ⅱ级 2.302 26 3.1.3集料试验 集料试验主要包括测定砂、石的近似密度试验、砂、石的堆积密度试验、砂、石的空隙率计算和砂、石的筛分析试验等。 通过试验,测得所用砂子、石子的物理性能见表1.3、表1.4。 表1.3 砂子的物理性能表

正交试验设计及其方差分析

第三节正交试验设计及其方差分析 在工农业生产和科学实验中,为改革旧工艺,寻求最优生产条件等,经常要做许多试验,而影响这些试验结果的因素很多,我们把含有两个以上因素的试验称为多因素试验.前两节讨论的单因素试验和双因素试验均属于全面试验(即每一个因素的各种水平的相互搭配都要进行试验),多因素试验由于要考虑的因素较多,当每个因素的水平数较大时,若进行全面试验,则试验次数将会更大.因此,对于多因素试验,存在一个如何安排好试验的问题.正交试验设计是研究和处理多因素试验的一种科学方法,它利用一套现存规格化的表——正交表,来安排试验,通过少量的试验,获得满意的试验结果. 1.正交试验设计的基本方法 正交试验设计包含两个内容:(1)怎样安排试验方案;(2)如何分析试验结果.先介绍正交表. 正交表是预先编制好的一种表格.比如表9-17即为正交表L4(23),其中字母L表示正交,它的3个数字有3种不同的含义: (1) L4(23)表的结构:有4行、3列,表中出现2个反映水平的数码1,2. 列数 ↓ L4 (23) ↑↑ 行数水平数 (2)L4(23)表的用法:做4次试验,最多可安排2水平的因素3个. 最多能安排的因素数 ↓ L4 (23) ↑↑ 试验次数水平数 (3) L4(23)表的效率:3个2水平的因素.它的全面试验数为23=8次,使用正交表只需从8次试验中选出4次来做试验,效率是高的. L4 (23) ↑↑ 实际试验数理论上的试验数 正交表的特点: (1)表中任一列,不同数字出现的次数相同.如正交表L4(23)中,数字1,2在每列中均出现2次. (2)表中任两列,其横向形成的有序数对出现的次数相同.如表L4(23)中任意两列,数字1,2间的搭配是均衡的.

正交实验设计与结果分析

正交试验设计 对于单因素或两因素试验,因其因素少,试验的设计、实施与分析都比较简单。但在实际工作中,常常需要同时考察3个或3个以上的试验因素,若进行全面试验,则试验的规模将很大,往往因试验条件的限制而难于实施。正交试验设计就是安排多因素试验、寻求最优水平组合的一种高效率试验设计方法。 1 正交试验设计的概念及原理 1.1 正交试验设计的基本概念 正交试验设计是利用正交表来安排与分析多因素试验的一种设计方法。它是由试验因素的全部水平组合中,挑选部分有代表性的水平组合进行试验的,通过对这部分试验结果的分析了解全面试验的情况,找出最优的水平组合。 例如:设计一个三因素、3水平的试验 A因素,设A1、A2、A33个水平;B因素,设B1、B2、B33个水平;C因素,设C1、C2、C3 3个水平,各因素的水平之间全部可能组合有27种。 全面试验:可以分析各因素的效应,交互作用,也可选出最优水平组合。但全面试验包含的水平组合数较多(图示的27个节点),工作量大,在有些情况下无法完成。 若试验的主要目的是寻求最优水平组合,则可利用正交表来设计安排试验。 全面试验法示意图

三因素、三水平全面试验方案 正交试验设计的基本特点是:用部分试验来代替全面试验,通过对部分试验结果的分析,了解全面试验的情况。 正因为正交试验是用部分试验来代替全面试验的,它不可能像全面试验那样对各因素效应、交互作用一一分析;当交互作用存在时,有可能出现交互作用的混杂。虽然正交试验设计有上述不足,但它能通过部分试验找到最优水平组合,因而很受实际工作者青睐。 如对于上述3因素3水平试验,若不考虑交互作用,可利用正交表L9(34)安排,试验方案仅包含9个水平组合,就能反映试验方案包

基于正交设计法的混凝土配合比试验研究

基于正交设计法的混凝土配合比试验研究 摘要:混凝土配合比设计直接决定混凝土的质量与强度,利用正交试验法对配合比进行设计,对各因素水平进行极差分析、方差分析。结果表明:正交表安排试验能够筛选出代表性较强的少数试验,进而来得出最优或较优的试验条件,正交试验与分析是实现混凝土最优配合比设计的重要方法。 关键词:配合比;正交试验;极差;方差 1 引言 混凝土配合比设计是混凝土领域的一个重要的研究课题。随着高强、高性能混凝土的推广应用,影响混凝土性能的因素越来越多,因素之间的关系更加复杂,单凭经验判断很难达到预期要求,必须通过试验设计及分析来选择各个因素的最佳试验状态。试验设计的种类很多,包括正交试验、均匀试验等。其中正交试验设计是研究与处理多因素试验的一种方法,它是在实际经验与理论认识的基础上,利用一种排列整齐规格化表来安排试验,这种正交表具有“均匀分散,齐整可比”的特点。利用正交表安排试验,能够筛选出代表性较强的少数试验来得出最优或较优的试验条件。 2 混凝土强度正交试验 在混凝土配合比中,水胶比、胶凝材料用量、砂率、外加剂掺量等多种因素均对混凝土强度和质量有影响。本试验研究水胶比、胶凝材料用量、砂率、粉煤灰掺量这四个因素及每个因素的数量水平对混凝土强度的影响。即:水胶比以A 表示,选取0.42、0.44、0.46、0.48这4个变化水平作为试验条件;胶凝材料用量以B表示,选取330kg、360kg、390kg、420kg这四个变化水平作为试验条件;砂率以C表示,选取38%、40%、42%、44%这四个变化水平作为试验条件;粉煤灰掺量以D表示,选取10%、15%、20%、25%这四个变化水平作为试验条件。其中粉煤以超量取代系数1.5来取代水泥。具体见表1所示。 表1正交水平与因素安排 上述的4因素4水平正交表,如果按照全面试验的方法,需要做4×4×4×4=256次试验,才能覆盖全部的组合条件,而选用正交试验设计,在条件考察范围内,选择代表性强的少数试验,仅做16次试验,就能找到最优或较优的方案。 以上述试验为例,论述正交试验法的计算方法。正交试验的正交表表达式为

实践技术|正交法设计 C60 混凝土配合比的案例!

实践技术|正交法设计C60 混凝土配合比的案例! [摘要]JGJ 55—2011 标准中提出≥C60 强度值的混凝土为高强混凝土,而在实际生产中,C60 段以上混凝土设计多采用预估水胶比,往往缺乏实际的可操作性,并且没有指出高强混凝土的设计过程中明确影响混凝土强度各种原因及因素。本文采用正交设计试验方法,通过正确选择影响因素,统计实验数据,从中找出关键条件,使高强混凝土的设计少走弯路,达到满足设计强度的要求,也满足工作性的要求,并在生产中通过掌握关键因素的各项指标,可更好的控制混凝土质量,使建筑物的安全耐久性得以保证。[关键词]正交试验设计;影响因素;水平;混凝土配合比0 前言混凝土配合比是指水泥混凝土中胶凝材料、水、砂及骨料之间的比例关系,有时还应注明外加剂的使用量。混凝土配合比设计的基本要求是满足结构设计的强度等级要求,满足混凝土施工所需要的和易性,满足工程所在环境对混凝土耐久性的要求并达到符合经济性的原则。1 设计原则因素分析混凝土配合比首先要满足设计的强度要求,而影响强度的因素很多,其中包括:(1)原材料因素的影响;(2)配合比的因素;(3)成型及养护条件的影响。因此,混凝土配合比设计受材料内因及环境外因的共同作用。其难点在于将其各方面因素协调好、控制好。另外,材料因素是可控因素,

只要在选择上制定一个标准,严格执行,并且最大优选合格材料,可在一定范畴内选择。还有就是浇筑成型及养护条件,这些因素在相关的标准中有明确的规定,只要认真完善并执行也可以形成同一个设计平台,将误差限定在一个较小的范围内。因此,本文仅讨论配合比计算中各材料间的相互比例而产生的一些参数,对混凝土配合比设计的影响包括水胶比、掺合料、砂率、混凝土容重等因素,从中找到影响最大、组合最优的因素水平。2 正交试验设计2.1 原理正交试验设计是一种解决多因素、多水平对比试验的数学方法,它依据数学原理,根据正交性从大量的试验因素中挑选具有正交性质的因素和水平指标,通过均衡搭配组合,使用那些具有代表性、典型性的组合进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点。涵盖各个因素组合的情况,极大的减少了试验次数,用少而有代表性的试验反映出全面情况,提高了工作效率。2.2 特点(1)考察因素及水平合理,分布均匀。(2)不需要进行重复试验,误差便可估算出来,且计算精度高。(3)可找出主要因素,便于进一步试验。(4)因素越多,水平越多,因素之间交互作用越多,正交表的作用越大。在混凝土配合比设计影响因素试验中,可利用正交表的优点,大幅降低试验的数量并保证试验质量。2.3 应用步骤混凝土配合比设计优劣的影响因素较多,是许多影响因素共同作用的结果,如前所述,主要的影响因素可归

正交试验设计法[17]

正交试验设计法[17] 正交试验设计是利用“正交表”选择试验的条件,并利用正交表的特点进行数据分析,找出最好的或满意的试验条件,适用于多因素的设计问题。正交试验法的理论基础是正交拉丁方理论与群论。在工作中可用的多因素寻优工作方法,一类是从优选区某一点开始试验,一步一步到达较优点,这类实验方法叫序贯试验法,如因素轮换法、爬山法等;另一类是,在优选区内一次布置一批试验点,通过对这批试验结果的分析,逐步缩小优选范围从而达到较优点,如正交试验法等。科研中普遍采用正交试验法,因其具有如下优点: ①实用上按表格安排试验,使用方便; ②布点均衡、试验次数较少; ③在正交试验法中的最好点,虽然不一定是全面试验的最好点,但也往往是相当好的点。特别在只有一两个因素起主要作用时,正交试验法能保证主要因素的各种可能都不会漏掉。这点在探索性工作中很重要,其他试验方法难于作到; ④正交试验法提供一种分析结果(包括交互作用)的方法,结果直观易分析。且每个试验水平都重复相同次数,可以消除部分试验误差的干扰; ⑤因其具有正交性,易于分析出各因素的主效应。 名词解释: 1 试验因素:影响考核指标取值的量称为试验因素(因子),一般记为:A,B,C等。有定量的因素,可控因素,定性的因素,不可控因素等。 2 因素的位级(水平):指试验因素所处的状态。 4 考核指标:根据试验目的而选定的用来衡量试验效果的量值(指标)。 5 完全因素位级组合:指参与实验的全部因素与全部位级相互之间的全部组合次数,即全部的实验次数。

6 部分因素位级组合:⑴单因素转换法⑵正交试验法 7 正交表的符号:正交表是运用组合数学理论在正交拉丁名的基础上构造的一种规格化的表格。符号:Ln(ji) 其中: L--正交表的符号 n--正交表的行数(试验次数,试验方案数) j--正交表中的数码(因素的位级数) i--正交表的列数(试验因素的个数) N=ji--全部试验次数(完全因素位级组合数) 总之,利用正交试验法的设计方案,结合代数方法对数据进行分析,可达到使试验收敛速度加快、试验的效率非常高的效果。可利用试验结果获取更多信息,准确掌握效应的趋势规律,而且优选点可超越所选水平范围和精度,从而可大大减少试验次数。这种联用技术,对于可获得定量结果或结果容易定量化,以及试验代价高时,很有效。 正交实验设计 当析因设计要求的实验次数太多时,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验。因此就出现了分式析因设计(fractional factorial designs),但是对于试验设计知识较少的实际工作者来说,选择适当的分式析因设计还是比较困难的。 正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。是一种高效率、快速、经济的实验设计方法。日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。例如作一个三因素三水平的实验,按全面实验要求,须进行33=27种组合的实验,且尚未考虑每一组合的重复数。若按L9(3)3正交表按排实验,只需作9次,按L18(3)7正交表进行18次实验,显然大大减少了工作量。因而正交实验设计在很多领域的研究中已经得到广泛应用。 1.正交表

正交试验方差分析(通俗易懂)

第十一章正交设计试验资料的方差分析 在实际工作中,常常需要同时考察3个或3个以上的试验因素,若进行全面试验,则试验的规模将很大,往往因试验条件的限制而难于实施。 正交设计是安排多因素试验、寻求最优水平组合的一种高效率试验设计方法。 第一节、正交设计原理和方法 (一) 正交设计的基本概念 正交设计是利用正交表来安排多因素试验、分析试验结果的一种设计方法。它从多因素试验的全部水平组合中挑选部分有代表性的水平组合进行试验,通过对这部分试验结果的分析了解全面试验的情况,找出最优水平组合。 例如,研究氮、磷、钾肥施用量对某小麦品种产量的影响: A因素是氮肥施用量,设A1、A2、A3 3个水平; B因素是磷肥施用量,设B1、B2、B3 3个水平; C因素是钾肥施用量,设C1、C2、C3 3个水平。 这是一个3因素每个因素3水平的试验,各因素的水平之间全部可能的组合有27种。 如果进行全面试验,可以分析各因素的效应,交互作用,也可选出最优水平组合。 但全面试验包含的水平组合数较多,工作量大,由于受试验场地、经费等限制而难于实施。 如果试验的主要目的是寻求最优水平组合,则可利用正交设计来安排试验。 正交设计的基本特点是:用部分试验来代替全面试验,通过对部分试验结果的分析,了解全面试验的情况。 正交试验是用部分试验来代替全面试验,它不可能像全面试验那样对各因素效应、交互作用一一分析;当交互作用存在时,有可能出现交互作用的混杂。 如对于上述3因素每个因素3水平试验,若不考虑交互作用,可利用正交表L9(34)安排,试验方案仅包含9个水平组合,就能反映试验方案包含27个水平组合的全面试验的情况,找出最佳的生产条件。 一、正交设计的基本原理 表11-1 33试验的全面试验方案

高性能混凝土配合比设计和选择

高性能混凝土配合比设计和选择 1、原材料选择 水泥:C30普通混凝土和水下混凝土采用宁夏赛马普通硅酸盐水泥P.O42.5R 密度3.0 g/cm3,氯离子含量0.015%,标准稠度用水量28.4%,比表面积333 m2/kg,水泥中粉煤灰掺量16.7%。 C50预应力混凝土采用宁夏赛马普通硅酸盐水泥P.O52.5R,标准稠度用水量25.8%,氯离子含量0.016%,,水泥中粉煤灰掺量7%,水泥密度3.1 g/cm3,比表面积410m2/kg。 粉煤灰采用宁夏大坝电厂生产的优质Ⅰ级粉煤灰,表观密度p f = 2.2g/cm3。 硅粉:采用宁夏大武口铁合金厂生产,松堆密度p b= 0.18~0.23 g/cm3、表观密度=2.0~2.2g/cm3比表面积:15~20m2/g、需水量比:≤125% 、SiO 2含量可达 85~90%。 石灰岩粉:采用柳木高玉明牌石灰岩粉表观密度=2.8g/cm3,比表面积=450 kg/m2,含泥量≤2%。 矿粉:采用青铜峡矿粉表观密度=2.8g/cm3,比表面积=600 kg/m 2。 减水剂采用山西黄恒HY-A聚羧酸高性能液体减水剂,减水率不小于25%,经正交设计减水剂C30优化为浇凝材料0.8%,C50优化为浇凝材料1.1%。 细集料:银川天昊水洗砂厂中砂:表观密度2687kg/m3、堆积密度1640kg/m3、空隙率39%、含泥量1.3%、云母含量1.3%、坚固性4.

3%、细度模数2.86;细度模数M k=2.6~3.2。要求M k浮动小,具有良好的级配Ⅱ区中粗砂,太细的砂配制不出高性能混凝土。细集料满足JTJ/T F50—2011《公路桥涵施工技术规范》6.3要求。 粗集料:套门沟碎石(5-31.5):表观密度2727 kg/m3、堆积密度1520 kg/m3、空隙率44%、含泥量0.7%、压碎值8.7%、针片状含量2. 5%、SO3含量0.02%; C30水下混凝土和普通混凝土:(20~31.5)mm:(10~20)mm:(5~10) mm=30%:50%:20%;C50预应力混凝土:(10~25)mm:(5~10)mm=70%:30%。JTJ/T F50—2011《公路桥涵施工技术规范》6.4要求。 粗、细集料的含泥量分别不大于1%和3%;泥快含量分别不大于0.5%和1%,这些指标满足JTJ/T F50—2011《公路桥涵施工技术规范》要求。 工地井水: PH6.4、不溶物含量18mg/L、碱含量1087 mg/L、氯化物含量109 mg/L、硫酸盐含量279 mg/L。满足JTJ/T F50—2011《公路桥涵施工技术规范》6.5.1要求。 2、确定混凝土配合比的原则 1)按具体工程提供的施工图纸,依据新桥规施工组织设计,选择原材料和胶凝材料。“具体问题,具体分析”,对不同部位采用不同混凝土配合比以保证混凝土工作性能满足施工需要。如高立柱和低立柱、天气热和天气冷、路途近路途远、混凝土出料口温度等因素综合考虑。虽然都为C30普通混凝土,它们工作性能不同,这就要求它们坍落度是不一样的。只有这样作才可以避免混凝土罐车二次加水。

正交实验设计方法--非常有用

L9(34) 序号 1 2 3 4 1 1 1 1 1 2 1 2 2 2 3 1 3 3 3 4 2 1 2 3 5 2 2 3 1 6 2 3 1 2 7 3 1 3 2 8 3 2 1 3 9 3 3 2 1 回首页 正交试验设计法 正交试验设计法的基本思想 正交表 正交表试验方案的设计 试验数据的直观分析 正交试验的方差分析 常用正交表 1.正交试验设计法的基本思想 正交试验设计法,就是使用已经造好了的表格--正交表--来安排试验并进行数据分析的一种方法。它简单易行,计算表格化,使用者能够迅速掌握。下边通过一个例子来说明正交试验设计法的基本想法。 [例1]为提高某化工产品的转化率,选择了三个有关因素进行条件试验,反应温度(A),反应时间(B),用碱量(C),并确定了它们的试验范围: A:80-90℃ B:90-150分钟 C:5-7% 试验目的是搞清楚因子A、B、C对转化率有什么影响,哪些是主要的,哪些是次要的,从而确定最适生产条件,即温度、时间及用碱量各为多少才能使转化率高。

试制定试验方案。 这里,对因子A,在试验范围内选了三个水平;因子B和C 也都取三个水平: A:Al=80℃,A2=85℃,A3=90℃ B:Bl=90分,B2=120分,B3=150分 C:Cl=5%,C2=6%,C3=7% 当然,在正交试验设计中,因子可以是定量的,也可以是定性的。而定量因子各水平间的距离可以相等,也可以不相等。 这个三因子三水平的条件试验,通常有两种试验进行方法: (Ⅰ)取三因子所有水平之间的组合,即AlBlC1,A1BlC2,A1B2C1,……,A3B3C3,共有 33=27次 试验。用图表示就是图1 立方体的27个节点。这种试验法叫做全面试验法。 全面试验对各因子与指标间的关系剖析得比较清楚。但试验次数太多。特别是当因子数目多,每个因子的水平数目也多时。试验量大得惊人。如选六个因子,每个因子取五个水平时,如欲做全面试验,则需56=15625次试验,这实际上是不可能实现的。如果应用正交实验法,只做25次试验就行了。而且在某种意义上讲,这25次试验代表了15625次试验。 图1 全面试验法取点.......... (Ⅱ)简单对比法,即变化一个因素而固定其他因素,如首先固定B、C于Bl、Cl,使A变化之: ↗A1 B1C1 →A2 ↘A3 (好结果) 如得出结果A3最好,则固定A于A3,C还是Cl,使B变化之: ↗B1 A3C1 →B2 (好结果) ↘B3 得出结果以B2为最好,则固定B于B2,A于A3,使C变化之: ↗C1 A3B2→C2 (好结果) ↘C3 试验结果以C2最好。于是就认为最好的工艺条件是A3B2C2。 这种方法一般也有一定的效果,但缺点很多。首先这种方法的选点代表性很差,如按上述方法进行试验,试验点完全分布在一个角上,而在一个很大的范围内没有选点。因此这种试验方法不全面,所选的工艺条件A3B2C2不一定是27个组合中最好的。其次,用这种方法比较条件好坏时,是把单个的试验数据拿来,进行数值上的简单比较,而试验数据中必然要包含着误差成分,所以单个数据的简单比较不能剔除误差的干扰,必然造成结论的不稳定。

正交设计助手II 3.1 软件介绍及使用实例说明

正交设计助手II 3.1 软件介绍及使用实例说明 一、软件各模块介绍 1.软件简介 正交设计助手II 3.1 是一款针对正交实验设计及结果分析而制作的专业软件。正交设计方法是我们常用的实验设计方法,它让我们以较少的实验次数得到科学的实验结论。但是我们经常不得不重复一些机械的工作,比如填实验安排表,计算各个水平的均值等等。正交设计助手可以帮助您完成这些繁琐的工作。此款软件支持混合水平实验,支持结果输出到RTF、CVS、HTML页面和直接打印。 2.创建与管理工程 打开软件后,在文件菜单项下可以“新建工程”或“打开工程”,工程文件以lat作为扩展名。如下图所示 注意:在"实验项目树"区域,右键点击当前的工程名,可修改工程名称。 3.设计实验 新建实验:在当前工程文件中新增一个实验项目,一个工程可包含多个实验项目。 每个实验项目包括有 (1)实验名称、实验描述(实验编号及简要说明)、选用的正交表类型(是标准正交表还是混合水平表) (2)选用的正交表(如L27_3_13或x_L2-3_8等) (3)表头设计结果(每个实验因素的名称、所在列及各水平的描述)。 单击实验—新建实验,如下图所示

该软件支持混合水平实验设计,你将可以选择一个更为合适您的实验的混合水平表(使用工具blend.exe - 混合水平表编辑器 - 改造系统提供的标准正交表)。如果是混合水平实验,要注意每列所能支持的最大水平数。 注意:右键点击当前的实验名称,可以修改实验信息或删除当前实验。 4.分析实验结果 (1)直观分析:根据所选用的正交表对当前实验数据作出基本的直观分析表。 (2)因素指标:以直观分析表的结果,作出当前的因素指标图(即效应曲线图)。 (3)交互作用:选择两个因素进行交互作用分析,作出交互作用表。 (4)方差分析:设定数据中的误差所在列,并选择所要采用的F检验临界值表。计算出偏差平方和(S值)和F比。并给出显著性指标。 注意:如果实验数据未正确输入,系统不能进行分析操作。

第四节 混合水平的正交试验设计

第四节混合水平的正交试验设计 为了使试验设计简化和数据处理的方便,前面所介绍的正交试验设计问题,其各因素都取相同的水平数,但在实际问题中,有些因素会受到某些条件的限制,其水平数不能选取太多,而有些因素则是准备在试验中着重考察的,为了更好的了解这些因素与试验指标之间的关系,需要多取几个水平。因此,在试验设计中常常要考虑所谓混合水平的正交试验设计问题。 一、直接套用混合水平正交表 下面通过例子说明: 例4.1 为了探索某胶压板的制造工艺,考虑的因素和水平如下表 根据所给因素和水平,此问题的试验方案可以直接套用混合水平正交表L8(41×24)来安排试验。试验的结果见表4 -1 1.极差分析法

表4-1 试验方案及计算结果表

当因素水平完全相同时,因素的主次关系完全由极差R 的大小来决定。当水平数不完全一样时,无法进行直接的比较,这是因为当因素对指标有同等影响时,水平多的因素极差应大一些。因此需要利用折算系数对极差进行折算。 折算系数表 折算后,则可借助于R ′的大小来衡量因素的主次顺序。 R ′的计算公式为: 由上计算可知因素主次顺序为: ????→A;C,B 主次 相应地胶压板的制造工艺条件为 A 1 B 2 C 1 ' '''(41) 2.70.45 3.40.90.71 2.61.10.71 3.1 A B C R R R R R =-=??==??==??=所以:

2.方差分析法 平方和的计算: 已知: n =8, s =4, r 1=4, r 2= r 3=2, m 1=2, m 2= m 3=4, T=Σy i =113 , C=T 2 /32=399.03 (1)2(1)2(1)2(1)2 1234122221(K )(K )(K )+(K )1(41)(24)(19)+(27)399.0324 3347399.0319.35 8A S C m s ??=++-????=++-???=-= (2)2(2)2 122221(K )(K )1(48)(63)399.0344 6273399.03 6.96816B S C m s ??=+-????=+-???=-=-

_正交试验设计_在混凝土配合比设计中的运用_鹿永久

云南水力发电 22 YUNNAN WATER POWER 第 32 卷第1 期 “正交试验设计”在混凝土配合比设计中的运用 鹿永久 (中国长江三峡集团公司试验中心乌东德工程分中心,云南禄劝 651500) 摘要:通过乌东德工程河床围堰防渗墙塑性混凝土配合比设计及其性能试验研究,详细说明“正交试验设计”在混凝土配合比设计 与试验研究中的运用,充分体现“正交试验设计”在混凝土配合比设计与试验研究中发挥的重要作用及特点。关键词:乌东德水电站;河床围堰防渗墙;正交试验设计;配合比;运用 中图分类号:TV41 文献标识码:B 文章编号:1006-3951(2016)01-0022-04 DOI:10.3969/j.issn.1006-3951.2016.01.008 1 概述 乌东德水电站是金沙江下游河段(攀枝花市至宜宾市)4 个水电梯级—乌东德、白鹤滩、溪洛渡、向家坝中的最上游梯级,坝址所处河段的左岸隶属四川省会东县,右岸隶属云南省昆明市禄劝县。乌东德水电站的开发任务以发电为主,兼顾防洪,水库总库容74.08×108m3,电站装机容量 10 200MW,多年平均年发电量389.3×108kW·h。 大坝为混凝土双曲拱坝。河床建基面高程的信息。 2 河床围堰防渗墙塑性混凝土配合比设计与研究 2.1 塑性混凝土技术要求 依据长乌设施(技一)通字 [2014] 第 19 号《乌东德水电站河床围堰塑性混凝土防渗墙施工技术要求》,防渗墙塑性混凝土设计技术指标见表 1。 表 1 塑性混凝土墙体材料设计技术指标表 723m,坝顶高程988m,最大坝高265m,拱冠梁 顶厚9.95m,底厚45.45m,厚高比0.172,坝顶上游面弧长 325.67m,弧高比 1.23。坝体设横缝 强度 R28 /MPa 初始切 线模量 /MPa 700 ~ 渗透系数K /(cm/s) 允许 渗透 比降 J 设计坍落度凝结时间 初始 20 ~ 24cm,初凝≥ 6h, 不设纵缝,共分 15 个坝段,横缝设接缝灌浆,陡坡坝段岸坡设接触灌浆,坝体混凝土方量约4~5 1500 <1×10-7 >100 保持 15cm 以上的 时间不小于 1.5h 终凝≤24h 273×104m3。 大坝上、下游围堰采用防渗墙平台顶部设置防护结构,汛期过流,汛后再加高围堰的方案度汛。按照施工进度计划安排,防渗墙混凝土配合比设计与试验研究工作显得至关重要,面对目前防渗墙混凝土配合比设计要求及多种材料品种、厂家的特性,经过多方面的技术方案比较,最终选用“正交试验设计”进行防渗墙混凝土配合比设计。 正交试验设计是利用“正交表”进行科学地安排与分析多因素试验的方法。其主要优点是能在很多试验方案中挑选出代表性强的少数几个试验方案,并且通过少数试验方案的试验结果的分析,推断出最优方案,同时还可以作进一步的分析,得到比试验结果本身给出的还要多的有关各因素注:塑性混凝土强度保证率不低于 80%。 2.2 塑性混凝土原材料检测试验结果 2.2.1 水泥 河床围堰防渗墙塑性混凝土配合比设计与研究采用以四川会东利森P·O42.5水泥为主开展试验,选用云南昆明富民P·O42.5水泥对拟定塑性混凝土配合比进行水泥互换复核性试验。其水泥的物理力学性能指标、化学指标检测结果均符合GB175-2007《通用硅酸盐水泥》的相应技术要求。 2.2.2 粉煤灰 河床围堰防渗墙塑性混凝土配合比设计与研究以曲靖F 类Ⅰ级粉煤灰为主,采用宣威F 类Ⅰ级粉煤灰对拟定塑性混凝土配合比进行粉煤灰互换复核性试验。粉煤灰品质指标检测结果均符合 * 收稿日期:2015-07-24作者简介:鹿永久(1973),男,云南大姚人,高级工程师,主要从事工程建筑材料试验工作。

正交试验设计

实验一正交实验设计 1为了提高某种产品的质量,研究A(温度,℃),B(压力,kg),C(配比,%),D(时间,h)四个因素对质量指标的影响。每个因素各取3个水平(见表1.1)进行实验。请根据实验方案选择合适的正交表安排实验,并用直观分析方法寻找最优实验方案。 9 实验数据分析表:

效应曲线图: 结果分析:极差越大,影响越大;虚拟值越大,条件越优 对质量指标的影响:温度>压力>时间>配比 极值最大为:A3,B2 ,C2 ,D3 选取最优方案为:温度470℃,压力20 kg ,配比5% ,时间3h 2为了提高铸件的精铸性能指标,确定最优的工艺条件,研究以下5个具有2水平的因素。见表1.2,且A与B、B与C之间存在交互作用,见表1.3,试用L8(27)设计实验,并做直观分析。

表1.2 实验数据分析表: 结果分析:极差越大,影响越大;虚拟值越大,条件越优 对性能指标的影响:A(硬化剂相对密度)>A×B>E(脱蜡条件)>B(硬化时间)=D(晾干时间)>B×C>C(硬化剂温度) 所以,最优工艺条件为:硬化剂密度1.48, 硬化时间2min, 硬化剂温度(根据BC交互判定)25℃,晾干时间15h,脱蜡条件HCl

3、试用正交表方差分析方法,确定T8钢的最优热处理工艺方案,因素与水平见表1.4。 表1.4 注,其中A与B有交互作用,测试淬火后钢的硬度,硬度越大越好。选L8(27)设计,实验结果如下: 方差分析表

1.对T8钢的影响因素大小如下:A×B(或者C)>A>B(或者D)>E>e 2.由于测试淬火后钢的硬度,硬度越大越好。则由实验结果可知:实验2的结果最优!即在淬火温度为800℃,淬火时间为15 min,A×B为1,冷却液为水,e为2,E为2,操作方法为D2时得到的钢是最硬的!

混凝土配合比试验设计方案

混凝土配合比设计试验报告 一、配合比设计理论依据 1、《民航机场场道工程施工技术要求》1996—10 2、《广州白云国际机场迁建工程——场道道面工程补充施工技术要求》 3、《水泥胶砂强度检测方法(ISO)法》GBT17671—1999 4、《公路集料试验规程》JTJ058—2000 5、《水泥混凝土路面施工及验收规范》GB97—87 6、《公路工程水泥混凝土试验规程》JTJ053—94 7、《普通混凝土配合比设计规程》JGJ55—2000 J64—2000 8、《硅酸盐水泥、普通硅酸盐水泥》GB175 9、《混凝土外加剂一等品规定指标》(GB8076-1997) 10、《混凝土外加剂应用技术规范》(GBJ119-88) 二、道面混凝土设计要求如下: 2.1、强度:28天抗折强度5.0Mpa; 2.2、和易性要求:维勃稠度20-40s,或塌落度小于10mm; 2.3、耐久性要求:水泥用量不少于300Kg/m3,也不宜大于330Kg/m3; 水灰比不宜大于0.44; 2.4、水泥混凝土所用原材料应符合《民航机场场道工程施工技术要求》1996—10中的有关要求外,尚应符合以下规定: 2.4.1水泥道面及道肩面层混凝土可采用标号为525的硅酸盐水泥。水泥中氧化镁含量不宜大于3%,碱含量不大于0.6%。水泥的其他质量应符合

《硅酸盐水泥、普通硅酸盐水泥》GB175的有关规定。 2.4.2砂宜采用细度模数为2.65~ 3.20的中粗河砂。砂的含泥量不得大于3%,含泥量超过规定时应冲洗。应委托有资格的试验单位,按《公路集料试验规程》JTJ058—2000中的岩相法对每种料源测定其碱活性,有碱活性的砂不得使用。 2.4.3碎石圆孔筛最大粒径为40mm。应委托有资格的试验单位,按《公路集料试验规程》JTJ058—2000中的岩相法对每种料源测定其碱活性,有碱活性的碎石不得使用。碎石应按圆孔筛5~20mm、20~40mm两级级配分别备料,两种碎石混合后的颗粒级配应符合下表要求: 2.4.4水冲洗集料、拌和混凝土及混凝土养生可采用一般饮用水。使用河水、池水或其他水应符合下列要求:①水中不得含有影响水泥正常凝结和硬化的有害杂质,如油、糖、酸、碱、盐等;②硫酸盐含量(按SO2-1计)不超过2.7mg/cm3;③pH值大于4;含盐总量不得超过5mg/cm3。 2.4.5外加剂水泥混凝土中需要掺用外加剂时,必须根据工程要求,通过试验选定外加剂的种类和用量。外加剂的质量应符合《混凝土外加剂一等品规定指标》(GB8076-1997)的规定要求,其使用应符合《混凝土外加剂应用技术规范》(GBJ119-88)的规定要求。不得使用pH值大于8的碱性外加剂。施工过程中应严格控制外加剂剂量,现场有专人配制。 三、确定原材料 我们根据招标文件、投标书、与业主签订的施工合同及施工图纸的要

全面试验和正交试验方案的优缺点

本体是一个三因素三水平的实验,按全面实验要求,须进行3^3=27种组合的实验,且尚未考虑每一组合的重复数。若按L9(3^3)正交表安排实验,只需作9次,按L18(3)^7正交表进行18次实验,显然大大减少了工作量。因而正交实验设计在很多领域的研究中已经得到广泛应用。 全面试验的最大优点是所获得的信息量很多,可以准确地估计各实验因素的主效应的大小,还可估计因素之间各级交互作用效应的大小;其最大缺点是所需要的实验次数最多,因此耗费的人力、物力和时间也较多,当所考察的实验因素和水平较多时,研究者很难承受.此设计还有3个明显的特点:其一,它要求实验时全部因素同时施加,即每次做实验都将涉及到每个因素的一个特定水平(注:若实验因素施加时有"先后顺序"之分,一般被称为"分割或裂区设计");其二,因素对定量观测结果的影响是地位平等的,即在专业上没有充分的证据认为哪些因素对定量观测结果的影响大、而另一些影响小(注:若实验因素对观测结果的影响在专业上能排出主、次顺序,一般就被称为"系统分组或嵌套设计");其三,可以准确地估计各因素及其各级交互作用的效应大小(注:若某些交互作用的效应不能准确估计,就属于非正规的析因设计了,如分式析因设计、正交设计、均匀设计,等等). 正交试验设计是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是是一种高效率、快速、经济的实验设计方法.

正交试验还具有如下优点: ①实用上按表格安排试验,使用方便; ②布点均衡、试验次数较少; ③在正交试验法中的最好点,虽然不一定是全面试验的最好点,但也往往是相当好的点。特别在只有一两个因素起主要作用时,正交试验法能保证主要因素的各种可能都不会漏掉。这点在探索性工作中很重要,其他试验方法难于作到; ④正交试验法提供一种分析结果(包括交互作用)的方法,结果直观易分析。且每个试验水平都重复相同次数,可以消除部分试验误差的干扰; ⑤因其具有正交性,易于分析出各因素的主效应。 但其也有一些缺点:它提供的数据分析方法所获得的优选值,只能是试验所用水平的某种组合,优选结果不会超越所取水平的范围;另外,也不能给进一步的试验提供明确的指向性,使试验仍然带很强的摸索性色彩,不很精确。这样,正交试验法用在初步筛选时显得收敛速度缓慢、难于确定数据变化规律,增加试验次数。尤其在试验工作烦琐、费用昂贵的情况更显突出。

重磅正交试验设计典型案例

正交实验设计案例分析 45120611戴杰 摘要:正交实验设计法在工业生产中具有广阔的应用领域,但由 于推广不够,在实践少有应用,除了观念上的影响外,对操作方 法的疑惑和不熟悉,也是重要因素。我们小组选取了两个典型案 例,对正交实验设计法的操作方法和步骤进行了介绍。 正交实验设计法在工业生产中具有广阔的应用领域。作为一种科学的实验方法,它以投资少、易操作见效快的特点而为人们所关注,在已经试点过的单位都不同程度地取得了明显效果,受到企业的普遍欢迎。正交实验设计法虽然已经取得了骄人的业绩,但它的推广并不普遍。原因主要是许多企业科学意识差,对正交法缺乏正确认识,不懂操作程序,甚至怕麻烦。鉴于此,我们选择了两个典型案例,对正交法的应用程序和方法做出了说明。 一、双氰胺生产工艺的优化研究 1.1 立项背景 山西省双氰胺厂。1989年引进技术,设计能力为年产双氰胺500t,1990年投产,1991年全年生产双氰胺300t。虽然当时双氰胺出厂价为15000元/t,市场供不应求,但由于该企业产量达不到设计能力,成本很高,年亏损30多万元,企业处于非常困难的境地。 1.2 经诊断发现的问题 (1)双氰胺的主要原材料质量差,有效含氮量低。调查结果:石灰氮最好是一级品占一半,其余为二级品以下。石灰氮产品的行业标准(有效含氮量)是:优级品>=20%,一级品>18%,二级品>17%,次品<17%。经过对比,该厂石灰氮有效含氮量低,是双氰胺消耗高、成本高、产量低的主要原因。 (2)石灰窑CO2气体浓度太低且很不稳定,是制约双氰胺生产的关键因素。经调查发现,CO2气体浓度一般在17%以下,有时12%左右,致使双氰胺车间第一道工序(即水解工序)脱钙速度慢、时间长,是制约双氰胺产量的关键。 (3)双氰胺的生产工艺影响因素多,优化潜力大。经分析认为:水解投料量、水解pH 值、聚合工序的聚合温度、聚合pH值、结晶温度等因素,均对产品质量和消耗有影响。多因素影响正好适用正交法。 1.3 正交法在各生产车间的应用及效果 (1)提高白灰窑CO2气体浓度的正交实验。经调查,投入的煤和石头的比例是由人工估计的,并不计量,每天加料总量和分配的层次随意性很大。由于没有固定的工艺标准,CO2气体浓度既不可能稳定,生产效果也不可能提高。故采取了以下措施:一是安装地磅,投入的煤和石头要求过磅计量;二是实施正交优化。 经计算,石灰窑优化方案的因素水平及实验结果(选用L9(3^4)正交表安排实验)分别如表1、表2所示。 表1 因素水平表

相关文档
最新文档