编译原理之有限自动机解析
【编译原理】词法分析:正则表达式与有限自动机基础
【编译原理】词法分析:正则表达式与有限⾃动机基础引⾔: 编译语⾔设计的精髓在于⾃动化过程,即如果要设计⼀门编程语⾔,那么⼀定要设计⼀个⾃动化系统,能够⾃⾏读⼊分析程序员写⼊的程序,将其翻译为机器能够识别的指令等信息。
当然⾼级语⾔的编译不是⼀蹴⽽就的,⽽是通过若⼲步的分解、规约、转换、优化,最后得到⽬标程序。
具体的编译步骤如下: 源程序就是我们写⼊的⾼级语⾔,编译的第⼀步叫做“词法分析”。
词法分析的本质,就是要拆解出语句的每⼀个单词,然后对这个单词的类型进⾏辨识。
⾸先拿中⽂来举例。
⽐如有⼀句话是“我喜欢你”,那么⾸先我们要把这句话拆成“我”、“喜欢”、“你”,然后再逐个分析他们的类型,得到“我”->主语;“喜欢”->谓语;“你”->宾语。
这样我们就把这句话每个单词都分析出来了,也就完成了中⽂的“词法分析”。
那么回到编程语⾔,它的词法分析就是将字符序列转换为单词(Token)序列的过程。
翻译成俗话,就是把我们写的⼤⽚语⾔⽂本分解为⼀个⼀个单词,再输出每个单词的类型。
举⼀个例⼦:int p = 3 + a; 这个语句⾮常简单,即定义⼀个变量p,它的初值为变量a与3的加和。
那么接下来我们要对这个语句进⾏词法分析,⾸先我们要把这段⽂本拆解成单词,拆出来就是'int'、'p'、'='、'3'、'+'、'a'、';'。
对这些单词再进⾏类型的辨识,那么就得到以下结果:语素语⾔类型int关键字p标识符=运算符3数字+运算符a标识符 这样我们就把这段⽂本中的每个单词的类型都分析出来了。
乍⼀看⾮常简单对不对,对于⼈类⽽⾔你只需要⽤⾁眼就可以轻松观察出来每个单词的类型,但对于计算机⽽⾔,它可没有⼈类那样的智能。
如果想要计算机能够识别并分析语素的类型,那就需要我们⼈类来为它构造⼀个⾃动化输⼊和分析的系统。
编译原理与技术 词法分析 (2)(2)
2024/7/1
《编译原理与技术》讲义
20
正规式与有限自动机
✓ R= R1 | R2
Si
S0 Sj
(3)
fi
f0
fj
引入新的终态f0和 (fi,)=f0和(fj,)=f0
2024/7/1
《编译原理与技术》讲义
21
正规式与有限自动机
✓ R= R1 ·R2
(1)
Si
fi
Sj
fj
R1对应的 NFA,Si为初 态,fi为终态
…
2024/7/1
《编译原理与技术》讲义
5
有限自动机的表示
e.g.7 NFA Mn =(, S, S0,F,),其中:
= { 0,1 } , S = {S0, S1 , S2 , S3 , S4 },F={S2 , S4}
(S0,0)= {S0, S3 } (S0,1)= {S0, S1 }
(S1,0)= ∅
有限自动机
有限自动机(Finite Automata-FA)是种更 一般化的状态转换图。分为NFA和DFA。
词法分析器自动生成:
正规式
NFA
DFA
词法程序
非确定有限 自动机
确定的有限 自动机
2024/7/1
《编译原理与技术》讲义
1
非确定有限自动机-NFA
NFA Mn 是一个五元组 Mn =(, S, S0,F,), 其中:
2024/7/1
《编译原理与技术》讲义
15
比较 DFA 和 NFA(2)
DFA
NFA
容易实现-当输入串结束 由于面临同样输入符号存 时(或不存在相应状态转 在多重状态转换或存在转 换)时,若当前状态为终 换的选择,实现较为复杂。 态即为接受“已读入”的串, 一般地,NFA接受串如果
编译原理第三章 自动机基础(1)
接受空串的 FA的典型特征!
Ⅱ.第二条通路:FA2
+ ① => ①
∴ L(FA1)={ abnc| n≥0 }
b + ① => ④
bb + ① => ④ => ④
…
因而
∴ L(FA2)={ bn| n≥0 }
∴ L(FA)={abnc, bn| n≥0}
3.2.3 有限自动机的两种表现形式
【例3.6】有限自动机 :FA=( Q,∑,S,F, ) 其中: Q={1,2,3,4},∑={a,b,c}, S={1,2}, F={3,4}
9.
={abn|n≥0}
10.7. L((a|b)*)= (L(a|b))*={a,b}*
11. 即:由a,b组成的所有符号串(包括空串)集合。
➢基本图形库
=+>
.=+>
=.+ℓ>
=+ℓ>
A
P: E T
F
T | E +T | E -T F | T *F | T /F i|( E )
=>*, =>+ , =>.* , =>.+ , =>l* , =>l+ , =>.l+ ,=>.l*
如 右图有限自动机:
则 L(FA)的 识别过程如下所
+- ①
a b
b ②
c
b
③-
示:
④-
※ L(FA)的生成(或识别)过程示例:
Ⅰ.第一条通路:FA1 ac
+ ① => ② => ③
+- ①
编译原理之有限自动机
b
4
5
2.3 有 限 自 动 机
A = {0, 1, 2, 4, 7} B = {1, 2, 3, 4, 6, 7, 8}
状态 A
输入符号 ab B
a
2
3
开始
0
1
a
b
6
7
8
9
b
4
5
2.3 有 限 自 动 机
A = {0, 1, 2, 4, 7} B = {1, 2, 3, 4, 6, 7, 8}
识别器:是一个程序,取串x作为输入,当 x是语言的句子时,它回答“是”,否则回 答“不是”。 状态转换图(有限自动机)识别器 确定/不确定有限自动机——时空权衡问题
确定有限自动机:快,空间大
2.3 有 限 自 动 机
2.3.1 不确定的有限自动机(简称NFA)
一个数学模型,它包括: 状态集合S;
缺点:1、输入字 符包括
NFA能到达的所有状态:s1, s2, …, sk,则 DFA到达状态{s1, s2, …, sk}
2.3 有 限 自 动 机
输入符号
状态 a
b
a
2
3
开始
0
1
a
b
6
7
8
9
b
4
5
2.3 有 限 自 动 机
A = {0, 1, 2, 4, 7}
状态 A
输入符号 ab
a
2
3
开始
0
1
a
b
6
7
8
9
输入符号 ab BC BD
a
2
3
开始
2.2 词法记号的描述与识别
有限自动机算法
有限自动机算法
有限自动机算法是一种常见的计算机科学算法,也称为状态机算法或有限状态自动机算法。
它是一种用来识别字符串的算法,通常被用于文本处理、编译器设计、自然语言处理等领域。
有限自动机算法基于有限状态自动机的理论,将一个字符串视为一个字符序列,通过状态转移来确定字符串是否符合特定的语法规则。
有限自动机算法通常分为两种类型:确定有限自动机(DFA)和非确
定有限自动机(NFA)。
DFA是一种状态转移图,其中每个状态都有一个唯一的出边,对于一个输入字符,只有一种可能的转移路径。
NFA则允许一个状态拥有多个出边,每一条出边代表一个可能的转移路径,同时,NFA还可以在不确定的情况下选择一条转移路径。
有限自动机算法的核心思想是将一个字符串逐个字符地输入到
状态机中,根据状态转移的规则,判断当前字符是否满足预定的语法规则。
如果符合规则,状态机将进入下一个状态,直到整个字符串被处理完毕。
如果最终状态符合预定要求,那么这个字符串将被认为是合法的。
总的来说,有限自动机算法是一种高效的字符串处理算法,它可以用来判断字符串是否符合特定的语法规则。
在文本处理、编译器设计、自然语言处理等领域中有广泛的应用。
- 1 -。
编译原理--有限自动机
(4)S∈K,是唯一的初态;
(5)Z是K的子集,是一个终态集,终态也称为可接收状态或 结束状态。
12
确定的有穷自动机DFA的表示
3.2.1 状态转换图
设DFA有m个状态,n个输入字符,那么这个图含有m 个状态结,每个结点最多有n条箭弧射出和别的结点相连接, 每条弧用Σ中的一个不同输入符号作记号。整个图含有唯一 的一个初态和若干个(可以0个)终态结。
10
3.2 有穷自动机的形式定义
DFA: Deterministic Finite Automata NFA: Nondeterministic Finite Automata
DFA的定义
定义3.1 一个确定的有穷自动机(DFA) M是一个五元组: M = ( K, Σ, f, S, Z )
(1)K是一个非空有穷集合,它的每一个元素称为一个状态;
解:该DFA M的状态图:
0
a
b b
1
a 2
a
3 b
a, b
14
确定的有穷自动机DFA的表示(续)
3.2.2 状态转换矩阵
矩阵的行表示状态,列表示输入字符,矩 阵元素表示相应的状态行在输入字符列下的新 的状态,即f(k,a)的值。
15
例2(题同1)
解:该DFA M的矩阵表示
状态 0 1 2 3 字符 a 1 3 1 3 b 2 2 3 3
例1:(1)到此为止是偶数个a和偶数个b; (2)到此为止是奇数个a和偶数个b; (3)到此为止是偶数个a和奇数个b; (4)到此为止是奇数个a和奇数个b。 根据每种可能性设计一个状态,并根据可能的输入 符号来设计状态之间的转移条件。 a a 2 b b b 3 a a b
1
编译原理 第三章 有限自动机与词法分析器
第三章有限自动机与词法分析器3.1词法分析3.1.1词法分析器的功能在第二章里我们已介绍了词法分析的基本问题。
计算机存储是二进制式的,因此,任何一种程序和数据在计算机内部均被表示为二进制表示。
实际上,当程序员每按键盘中的一个键时,自动往计算机里输入一个相应的八位二进制码,称这种码为ASCII码。
当程序员敲完程序时将它保存到自己事先起好名的文件中,因此,程序在计算机文件中的表示是ASCII码序列(末尾有文件结束码)。
编译器总是要用某种程序设计语言来写,而任何一种语言的程序其操作对象必须是该语言所规定的数据。
编译器的操作对象是程序中的各种语法单位,如<常量声明>,<类型声明>,<变量声明>,<过程声明>,<表达式>,<语句>,<变量>等等,因此,必须把它们都表示成某种数据结构形式,而它们的最小单位是所谓的单词,故首当其充的是要把每个单词转换成一种数据形式,通常称它们为TOKEN。
词法分析器的任务就是,从源程序的ASC码(用高级语言的术语来说是字符串)序列逐个地拼出单词,并将构造相应TOKEN数据表示。
词法分析器可有两种,一种是它作为语法分析的一个子程序,一种是它作为编译器的独立一遍。
前一种情形,词法分析器不断地被语法分析器所调用,每调用一次词法分析器将从源程序的字符序列拼出一个单词,并将其TOKEN值返回给语法分析器。
后一种情形则不同,即不是被别的部分不断地调用,而是完成编译器的独立一遍任务,具体说将整个源程序的字符序列转换成TOKEN序列,并将其交给语法/语义分析器。
实际的编译器一般都采用子程序方式,但是为了独立地介绍词法分析、语法分析和语义分析的概念和技术,我们将词法分析部分分离出来即作为独立一遍的词法处理器来介绍。
从实际的角度来说,这种方法有以下缺点:一是因为它要生成TOKEN列,自然多占用空间;二是因为要保存所有的TOKEN,需要耗费更多的时间。
编译原理及实现技术:3.词法分析__DFA——确定有限自动机
注意的问题
特殊的状态 “死状态”
缺省 状态
缺省 转换函数
确定有限自动机( DFA)的定义 DFA的表示
DFA接受的集合 应用实例
用DFA描述单词 自动机的实现 注意的问题
自自动动机机等等价价
自动机等价
对于两个DFA M1和M2 若有L(M1)=L(M2),则称M1和M2等 价
习题
aQ
b
V
b
确定有限自动机 (DFA)的定义
DFA的表示
DFA接受的集 DFA接受的集合合
DFA接受的集合
对于*中的任何字符串t, 若存在一条从初始
结点到某一终止结点的路径,且这条路上所
有弧的标记符连接成的字符串等于t,则称t可
为DFA M所接受(识别)
DFA M 所能接受的字符串的全体记为L(M)
S0=0, Z={2}
确定有限自动机 (DFA)的定义
DDFFAA的的表表示示
DFA的表示
状态转换矩阵
列标用 自动机的输入字符 表示 行标用 状态 来表示 矩阵元素 表示自动机的状态转换函数 标识初始状态和终止状态:一般约定,
第一行表示开始状态S0 ,或在右上角 标注“+”;右上角标有“*”或“-” 的状态为终止状态 ;
设计一个DFA 使其能接受被4整除的二进制数
DFA接受的集合 应用实例
用DFA描述单词
自自动动机机的的实实现现
自动机的实现
直接转换法
针对状态数不太多的情况,用双重switch 语句来实现。
状态转换矩阵
自动机存储在矩阵中,状态比较多,每次 都去查表,跳转。
确定有限自动机( DFA)的定义 DFA的表示
DFA接受的集合 应用实例
第二章 有限自动机的基本概念
FA的常见表示方法:状态图和状态表 。
如果 δ(qi ,a)=qj ,λ(qi ,a)=z,则在状态图中,从顶点 qi 到 qj 有一条有向边 <qi ,qj >, 并把 a/z 作为有向 边 <qi ,qj > 的权。
例如,上例 的FA M的状态图见书P418的图21.1,M 的状态表见表21.1
为了描述FA对于输入字符串的动作,我们对状态转 移函数δ和输出函数λ的定义进行推广。 定义函数 δ : Q×∑*→Q 如下: 对于 q∈Q, ω∈∑ 和 a∈∑, (1) δ (q,ε)=q (2) δ (q,ωa)= δ (δ (q,ω), a)
因为 δ (q,a) =δ(δ (q,ε),a)=δ(q,a) 所以,当有定义时,δ (q,a) = δ(q,a)。 因此,为了方便,我们以后用δ代替 δ
根据δ'和λ' 的定义, 有 δ'(< q i-1, z i-1 >, a i )= <δ(q i-1 , a i ), λ(q i-1 , a i )>
= <q i, z i >, λ'< q i, z i > =z i =λ(q i-1 , ai )。 因此, 对该α, Moore机M'的状态转移序列为 :
个1,则所得字符串的值为2i+1。若i/3的余数是p,则 2i/3的余数是2p(mod3); (2i+1)/3的余数是(2p+1)(mod3)。 若p=0,1,2,则相对应有:2p(mod3)=0,2,1;
(2p+1)(mod3)=1,0,2。二进制 数 值 余 数 例 例 例 表示数
根据上述分析, 得Moore机见书 图21.4所示。
编译原理2.2自动机理论
contents
目录
• 自动机概述 • 有限自动机 • 正则文法和正则表达式 • 确定有限自动机(DFA) • 非确定有限自动机(NFA)
01 自动机概述
定义与分类
定义
自动机是一个抽象的机器,用于模拟有限状态系统的行为。它由一组状态、一 组输入符号和一组转移函数组成,根据输入符号和当前状态来决定下一个状态。
正则文法与正则表达式的转换
正则文法转换为状态机
通过构造一个状态机来描述正则文法的语言,状态机中的每个状态对应一个产生式,状态之间的转移 对应于产生式的应用。
正则表达式转换为状态机
将正则表达式转换为状态机的方法包括确定化和非确定化两种。确定化是将一个不确定的状态机转换 为确定的状态机,非确定化是将一个确定的状态机转换为不确定的状态机。
工具辅助
使用自动机生成工具或编译器工具集中的工 具,如Lex或Yacc等,根据语言规范生成 DFA。
DFA的应用实例
词法分析
01
DFA可以用于实现词法分析器,将输入的字符串分割成一个个
单词或符号。
正则表达式匹配
02
DFA可以用于实现正则表达式匹配算法,判断一个字符串是否
符合正则表达式的模式。
语法分析
正则表达式的应用实例
1 2
文本匹配
正则表达式可以用来匹配文本中的特定模式,例 如查找字符串中的数字、邮箱地址等。
文本替换
正则表达式可以用来替换文本中的特定模式,例 如将字符串中的所有数字替换为特定字符。
3
文本解析
正则表达式可以用来解析文本中的结构化数据, 例如从CSV文件中提取数据。
04 确定有限自动机(DFA)
正则文法的性质
编译原理第6讲 词法分析3--有限自动机等价性
{1,6,4,2,Y} {1,5,4,2,Y} {1,3,6,2,4,Y}
{1,5,4,2,Y} {1,3,5,2,4,Y} {1,6,4,2,Y}
DFA与NFA的等价性证明
把表看成状态转换矩阵,子 集视为状态
转换表唯一刻划了一个确定 的有限自动机M
初态是-closure({X})
M’ X
a
两个状态不等价,则称它们是可区别的
测试:状态的可区分性
两个状态s和t是可区分的,是指( )
A. 对于任意字,要么s读出停止于终态而t读出
停止于非终态,要么t读出停止于终态而s读
出停止于非终态
视频区域
B. 存在一个字,要么s读出停止于终态而t读出 停止于非终态,要么t读出停止于终态而s读 出停止于非终态
重复上述过程,直到所有第2, 3列子集全部出现在第一列为止
I
视I频a 区域 Ib
-Closure({X}) {...} {...}
{...}
{...} {...}
{...}
{...} {...}
DFA与NFA的等价性证明
M’
a
a5a
a
X 1 2
3 4 Y
b
b6 b
b
I -closure({X})={X,1,2}
DFA与NFA的等价性证明
确定化:不失一般性,设字母表只 包含两个 a 和b,我们构造一张计 算状态集的转换表:
首先,置第1行第1列为closure({X})求出这一列的Ia,Ib;
然后,检查这两个Ia,Ib,看它 们是否已在表中的第一列中出 现,把未曾出现的填入后面的 空行的第1列上,求出每行第2, 3列上的集合...
达的状态集合。
编译原理dfa
编译原理dfa编译原理DFA。
有限自动机(DFA)是编译原理中的重要概念,它在词法分析和语法分析中扮演着重要的角色。
在编译原理中,DFA用于识别和分析输入的字符序列,帮助编译器理解源代码的结构和含义。
本文将介绍DFA的基本概念、原理和应用,以及它在编译原理中的重要作用。
DFA的基本概念。
DFA是有限自动机(Deterministic Finite Automaton)的缩写,它是一种抽象的数学模型,用于描述有限个状态和在这些状态之间转移的输入字符序列。
DFA由五元组(Q, Σ, δ, q0, F)组成,其中:Q是有限状态集合;Σ是输入字符的有限集合;δ是状态转移函数,描述了状态之间的转移关系;q0是初始状态;F是接受状态集合。
DFA的原理。
DFA的工作原理是通过状态转移函数δ来识别和分析输入字符序列。
编译器将源代码转换为字符流,然后通过DFA进行词法分析,将字符流转换为标记流。
在词法分析过程中,DFA根据输入字符的转移关系,逐步从初始状态转移到接受状态,从而识别出源代码中的各种标记,如关键字、标识符、常量和运算符等。
DFA的应用。
DFA在编译原理中有着广泛的应用,它是词法分析器和语法分析器的核心组成部分。
在词法分析阶段,编译器利用DFA识别并提取源代码中的各种标记,为后续的语法分析和语义分析提供输入。
在语法分析阶段,DFA可以帮助编译器理解源代码的结构和语法,从而生成抽象语法树(AST)或中间代码。
此外,DFA还可以应用于模式匹配、文本搜索和自动机器人等领域。
在模式匹配和文本搜索中,DFA可以帮助我们快速地识别和匹配目标字符串;在自动机器人中,DFA可以帮助我们设计和实现自动化的决策系统。
DFA在编译原理中的重要作用。
在编译原理中,DFA是词法分析和语法分析的基础,它可以帮助编译器理解源代码的结构和含义。
通过DFA的识别和分析,编译器可以将源代码转换为抽象语法树(AST)或中间代码,为后续的优化和代码生成提供基础。
编译原理2.2 自动机理论
A=(aA|dA)|(a|d)
A=a|d
将它化为正规文法 变成A→
A=(a|d)A|(a|d)
A=(a|d)*(a|d)
(a|d)A|(a|d)
再根据上述 规则2转换 x=y= (a|d)
19
将A代入S=aA|a得到如下: S=a( (a|d)*(a|d)) |a =a(a|d)+|a
=a((a|d)+|)= a(a|d)+
含义:当前状态为 Ki,输入字符a, 转换为Kj状态
DFA映射的唯一性和初态的唯一性
22
DFA等价表示法:
DFA形式定义=状态转换图=状态矩阵
1、单词的构成规则用状态转换图表示
方法如下: 初始态用 “-”或“”表示;
终态点用 “+” 或“” 表示;
若f(Ki ,a)= Kj ,则从状态点Ki 到Kj画弧,标
“” 都是左结合的
9
讨论下面两个例子 例1 令={l,d},则上的正规式 r=l(ld)定义 的正规集为: {l,ll,ld,ldd,„„},其中l 代表字母,d代表数字,正规式 即是 字母 (字母|数字) ,它表示的正规集中的每个 元素的模式是“字母打头的字母数字串”, 就是Pascal和多数程序设计语言允许的标 识符的词法规则.
对于Σ*中的任何字符串t,若存在一条初态到 某一终态的路,且这条路上所有弧的标记符连接成 的字符串等于t,则称t可为DFA M所接受。 若M的初态同时又是终态,则空字可为M所接 受。
33
4、接受(识别)的理解:
① 设QK,函数f(Q,)=Q,则输入字符串是 空串,并停留在原状态上。
② 输入字符串t(t表示成Tt1形式,TΣ,t1 Σ*),在DFA M上运行的定义为:f(Q,Tt1) =f(f(Q,T),t1),其中QK。
编译原理课程设计--有限自动机的运行
设计目的:1、 理解有限自动机的作用2、 利用转态图和状态表表示有限自动机3、 以程序实现有限自动机的运行过程设计内容:(注:题目详细要求)利用状态表和有限自动机的运行原理编制程序,使得程序能够识别一个输入串是否为一个有效的符号串,具体可以选择下面之一:无符号定点实数、自然数、整数、十六进制数或其它自己定义的符号串。
一、分析原理词法分析:就是从左至右逐个字符地对源程序进行扫描,产生单词序列,用以语法分析。
在这里,我们先把文法转换成有穷自动机,然后构造出状态表,再由状态表构造出程序。
二、分析的算法将G[<无符号数>]文法转换成有穷自动机:构造状态矩阵;将有穷自动机的状S 1 S 2 ……S n 及输入的字a 1 a 2 ……a m 构成一个n*m 的矩阵。
再写一个程序,把状态矩阵用二维数组表示。
程序通过输入的字符转换状态,从而可以识别出单词。
本程序的关键在状态表和缓冲区的运用。
首先定义了一个布尔型函数ReadALine把输入的字符串送到缓冲区中;然后定义了布尔型函数Run 和Getchar实现对输入字符串的正确性判断,更改Run函数可以改变程序功能:如可将状态表改变成识别“偶数”的有限自动机的状态表。
三、程序流程图四、课程设计出现的问题及解决的方法刚开始写该程序时,虽然感觉个人的编程能力不错,但由于对编译原理的自动机的实现掌握不足,难以入手。
但经过对问题的更深入了解和分析,再通过网上和书本的资料的细读,最后终于把程序编写出来了。
程序中,碰到的最大的问题就是状态表的构造和如何把它转变为一个程序的实现过程。
解决的方法当然是看书。
五、课程设计的体会首先,题目给出的文法是有小毛病的。
我个人认为<无符号数>不可能推出 . <十进制数> 或者e <指数部分>的。
在写这个程序是只要对编译原理书本词法分析分析很熟悉就可以比较容易地写出该程序。
通过这次课程设计,我对程序的编译和运行有了更进一步的了解,更好地掌握了编译原理的词法分析过程。
第2章程序语言基础知识(文法-正规式-有限自动机
第2章程序语⾔基础知识(⽂法-正规式-有限⾃动机第2章程序语⾔基础知识编译原理2-781.⽂法认识终结符(不可拆分,⼩写)和⾮终结符(可拆分,⼤写)终结符不可单独置前eg:有⽂法G2[S]为:S->ApS->BqA->aA->cAB->bB->dB则:S为开始符,S,A,B为⾮终结符,p,q,a,b,c,d为终结符⽂法的类型0型⽂法(限制最少的⼀个)设G=(V N,V T ,P,S),如果它的每个产⽣式α---→β是这样结构:α属于(V N并V T)*(闭包)且⾄少含有⼀个⾮终结符,⽽β属于(V N并V T)*,则G是⼀个0型⽂法。
0型⽂法也称短语⽂法。
⼀个⾮常重要的理论结果是:0型⽂法的能⼒相当于图灵机(Turing)。
或者说,任何0型语⾔都是递归可枚举的,反之,递归可枚举集必定是⼀个0型语⾔。
1型⽂法也叫上下⽂有关⽂法,此⽂发对应于线性有界⾃动机。
它是在0型⽂法的基础上每⼀个α---→β,都有|β|>=|α|。
这⾥的|α|表⽰的是α的长度。
注意:虽然要求|β|>=|α|,但有⼀特例:α---->空也满⾜1型⽂法。
如有A->Ba 则|β|=2,|α|=1 符合1型⽂法要求。
反之,如aA->a,则不符合1型⽂法要求。
2型⽂法也叫上下⽂⽆关⽂法,它对应于下推⾃动机。
2型⽂法是在1型⽂法的基础上,再满⾜每⼀个α-→β都有α是⾮终结符。
如A->Ba,符合2型⽂法要求。
如Ab->Bab虽然符合1型⽂法要求,但是不符合2型⽂法要求,其中α=Ab,Ab 不是⼀个⾮终结符。
3型⽂法也叫正规⽂法,它对应于有限状态⾃动机。
它是在2型⽂法满⾜的基础上满⾜:A->α|αB(右线性)或A->α|Bα(左线性)如:A->a,A->aB,B->a,B->cB,则符合3型⽂法的要求。
但如果推导为:A->ab,A->aB,B->a,B->cB或:A->a,A->Ba,B->a,B->cB则不符合3型⽂法的要求。
编译原理 3.3有限自动机
则有 f(S,aw)= f( f (S,a),w )
m
=
U
i 1
f(Ski,w)
2020/6/18
第13页/共42页
讨论问题3:
NFA M所能识别的语言:对于Σ*中的符号串x,
若集合 f(S0,x)中含有属于终态集Z中的状态 (即 至少存在一条从S0到某一终态的通路,把此通路中所 有矢线上的标记连接起来就是符号串x),我们就说x 为M所接受,所有这样的x所组成的集合称为NFA M 的接受集,记作 L(M)。
f’(q0,a) =q0 f’(q0,b) =q1
{q0, q1 , q2}
第二步
2020/6/18
{q0, q1 , q2}
对于c,T=f(q0,c)= f({S0, S1, S2,S3},ca) ,
ε_closure(T) = ε_closure({S2})= {S2,
S3} = q2
S0 ε
f’(bq0,c) =q2
且{R1,R2,…,Rj}∩Z≠Ø}
2020/6/18
第21页/共42页
例:NFA M =({S0,S1},{a,b},f,S0,{S1} )
a
b
a,b
S0
S1
b
a
b
S0 {S0,S1} {S1}
S1
Ø
{S0,S1}
DFA M ′ =(K′,{a,b},,f ′, S0 ′, Z′)
2020/6/18
第9页/共42页
正规文法 L(G)
必定存在 反之亦然
DFA M
=
L(M)
2020/6/18
有限自动机理论章有限状态自动机
将状态转换函数改造为产生式
等价思绪
状态转换函数和产生式旳等价作用
δ(q, a)=q′
A→aB
接受a
产生a
状态变化
非终止符号变化
结论:DFA状态等价于文法非终止符
状态转换函数等价于产生式
构造文法旳基本思绪:
将旳DFA旳状态看成是RLG旳非终止 符(开始状态就是开始符号)
对于某个句子: DFA经过状态旳变化,逐渐(自左向 右)接受句子旳每个字母; RLG经过非终止符号旳变化,逐渐 (自左向右)产生句子旳每个字母。
思索
DFA旳接受状态旳作用
证明
假设L是字母表∑上旳FSL,则 L=L(DFA)
DFA=(Q,∑,δ,q0,F) 构造右线性文法G=(∑,Q,q0,P) 其中P为:
两类有限状态自动机
接受器 判断是否接受输入串;
转换器 对给定输入串产生输出。
FA还能够分为
拟定旳FA----DFA Deterministic Finite state Automaton 非拟定FA---- NFA
Non-deterministic Finite state Automaton
其中δ:
δ旳表达:函数形式
δ(q0,0)=q1 δ(q0,1)=q1 δ(q1,0)= q1 δ(q1,1)= q0
δ旳表达:状态矩阵
Q∑ 0
1
q0 q1
q1
q1 q1
q0
δ旳表达:状态图形式
状态图是一种有向、有循环旳图 一种节点表达一种状态; 若有δ(q,x)= q′,则 状态q到状态q′有一条有向边,并 用字母x作标识。
第三章
有限状态自动机
编译原理DFA(有限确定自动机)的构造
编译原理DFA(有限确定⾃动机)的构造原题:1、⾃⼰定义⼀个简单语⾔或者⼀个右线性正规⽂法⽰例如(仅供参考) G[S]:S→aU|bV U→bV|aQV→aU|bQ Q→aQ|bQ|e2、构造其有穷确定⾃动机,如3、利⽤有穷确定⾃动机M=(K,Σ,f, S,Z)⾏为模拟程序算法,来对于任意给定的串,若属于该语⾔时,该过程经有限次计算后就会停⽌并回答“是”,若不属于,要么能停⽌并回答“不是”K:=S;c:=getchar;while c<>eof do{K:=f(K,c);c:=getchar; };if K is in Z then return (‘yes’)else return (‘no’)开始编程!1.状态转换式构造类:current——当前状态next——下⼀状态class TransTile{public:char current;char next;char input;TransTile(char C,char I,char Ne){current = C;next = Ne;input = I;}};2.DFA的构造类此处包括DFA的数据集,字母表,以及过程P的定义。
包括了初始化,遍历转换,以及最终的字符串识别。
class DFA{public://构造状态集各个元素string States;char startStates;string finalStates;string Alphabets;vector <TransTile> Tile;DFA(){init();}void init(){cout << "输⼊有限状态集S:" << endl;cin >> States;cout << "输⼊字符集A:" << endl;cin >> Alphabets;cout << "输⼊状态转换式(格式为:状态-输⼊字符-下⼀状态,输⼊#结束):" << endl;cout << "例如:1a1 \n 1a0 \n 2a1 \n #" << endl;int h = 0;//while (cin>>input){// TransTile transval(input[0], input[1], input[2]);// Tile.push_back(transval);//}while(true){char input[4];cin>>input;if(strcmp(input,"#")==0)break;TransTile transval(input[0],input[1],input[2]);Tile.push_back(transval);}cout << "输⼊初态:" << endl;cin >> startStates;cout << "输⼊终态:" << endl;cin >> finalStates;}//遍历转换表char move(char P,char I){for (int i = 0; i < Tile.size(); i++){if (Tile[i].current == P&&Tile[i].input == I){return Tile[i].next;}}return'E';}//识别字符串函数void recognition(){string str;cout << "输⼊需要识别的字符串:" << endl;cin >> str;int i = 0;char current = startStates;while (i < str.length()){current = move(current, str[i]);if (current == 'E'){break;}i++;}if (finalStates.find(current) != finalStates.npos){cout << "该⾃动机识别该字符串!" << endl;}else{cout << "该⾃动机不能识别该字符串!" << endl;}}};3.测试Main函数int main(){DFA dfa;bool tag;while(1){cout<<"你想要继续吗?是请输⼊1,否输⼊0:"<<endl; cin>>tag;if(tag){dfa.recognition();}elsebreak;}return0;}。
《编译原理》.第二章形式语言与自动机理论基础(PDF)
正规表达式表达的语言 {}, {} {a} L( r ) , L(s) L( r ) L(s) L( r ) L(s) ( L( r ))* L( r )
9
2、有关正规式及正规集的说明
注意:
定义中的括号主要用于规定运算顺序。
一般规定优先级从高到低依次为 *, • , |, 可省略某些括号
A→x A→y 21
例子: 求正规式(a|b)(a|b|0|1)*对应的正规文法 G[S]:
S→aA|bA A→aA|bA|0A|1A|ε
22
练习: 求正规式a(a|d)*对应的正规文法
G[S]:
S→aA A→aA|dA|ε
23
正规式与有限自动机
ƒ定理2.4
⑪ 字母表∑上的确定的有限自动机M所接受的语言 L(M)是∑上的一个正规集;
正规文法转换成正规式
对于G = (VT,VN,S,P),存在一个Σ=VT上的正规 式r:L(G)=L(r)
步骤:
利用转换规则将每条产生式改写成正规式 用代入法解正规式方程组,最后剩下一个开始符号定义的正
规式,其中不含非终结符
文法产生式 正规式
规则1 规则2
A→xB B→y
A→xA|y
A=xy A=x*y
G[S]:
S→aA|a A→aA|dA|a|d
对应的正规式:
a(a|d)*
20
正规式转换成正规文法
步骤:
构造产生式S →r,并将S定义为G的开始符号
不断利用如下规则做变换,直到每个产生是最多含 有一个终结符为止
规则1
规则2 规则3
正规式 A=xy
A=x*y A=x|y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单的正则式d->a
a
0
1
正则式d->ab
a
b
0
1
2
正则式d->a|b
a
0
1
b
正规式d->a*
a 0
自动机的定义
正规式d->a?
字符a出现一次或者0次
a
0
1
练习
正规式d->a(a|b)*
请画出它的状态转换图
a
a
0
1
b
2.2 词法记号的描述与识别
2.2.4 转换图 relop < | < = | = | < > | > | > =
温故知新
源程序 字符流
集 Байду номын сангаас母合
顺 序 词法 模 组 单元 式 合
词法 记号
状态 转换 图
非形式 形式化
化描述 描述 名
字
?
正规式
字母表
和
计算机 实现
LUM
组 合
串
集 合
连接 指数
语言
连接 LM 闭包 L* 正闭包 L+
词法记号的识别
词法记号的识别
等同于对字符串的匹配过程
这个匹配过程可以基于有限状态机来完成
• 关系算符的转换图
=
2 return(relop, LE)
1
>
3 return(relop, NE)
<
开始 0
=
other
* return(relop, LT) 4
5 return(relop, EQ)
>
=
7 return(relop, GE)
6
other 8 * return(relop, GT)
状态
A B C
输入符号 ab BC B
a
2
3
开始
0
1
a
b
6
7
8
9
b
4
5
2.3 有 限 自 动 机
A = {0, 1, 2, 4, 7} B = {1, 2, 3, 4, 6, 7, 8} C = {1, 2, 4, 5, 6, 7} D = {1, 2, 4, 5, 6, 7, 9}
状态
A B C
状态
A B
输入符号 ab B
a
2
3
开始
0
1
a
b
6
7
8
9
b
4
5
2.3 有 限 自 动 机
A = {0, 1, 2, 4, 7} B = {1, 2, 3, 4, 6, 7, 8} C = {1, 2, 4, 5, 6, 7}
状态
A B
输入符号 ab BC
a
2
3
开始
0
1
a
b
6
7
8
9
b
4
5
2.3 有 限 自 动 机
NFA能到达的所有状态:s1, s2, …, sk,则 DFA到达状态{s1, s2, …, sk}
2.3 有 限 自 动 机
输入符号
状态 a
b
a
2
3
开始
0
1
a
b
6
7
8
9
b
4
5
2.3 有 限 自 动 机
A = {0, 1, 2, 4, 7}
状态 A
输入符号 ab
a
2
3
开始
0
1
a
b
6
7
8
9
b
4
5
2.3 有 限 自 动 机
A = {0, 1, 2, 4, 7} B = {1, 2, 3, 4, 6, 7, 8}
状态 A
输入符号 ab B
a
2
3
开始
0
1
a
b
6
7
8
9
b
4
5
2.3 有 限 自 动 机
A = {0, 1, 2, 4, 7} B = {1, 2, 3, 4, 6, 7, 8}
2.2 词法记号的描述与识别
空白的转换图
delim blank | tab | newline ws delim+
开始
delim
delim
other
*
20
21
22
2.3 有 限 自 动 机
? 正规式
状态转换图
有限自动机
计算机 实现
等价
不确定有 限自动机
确定有限 自动机
2.3 有 限 自 动 机
• 唯一的初态 s S;
• 终态集合F S;
b
优点:1、输入字 符不包括
2、一个状态对于 某个字符,只可能 存在唯一条输出边
b
识别语言
(a|b)*ab 的DFA
开始
a
0
b
1
2
a a
2.3 有 限 自 动 机
2.3.3 NFA到DFA的变换
子集构造法 DFA的一个状态是NFA的一个状态集合 读了输入a1 a2 … an后,
2.2 词法记号的描述与识别
标识符和保留字的转换图
id letter (letter | digit )* letter或digit
开始
9
letter
10
other
*
11 return(install_id( ))
1、检查保留字表,如果在表中发现该词法单元则返回 相应的记号并退出,否则转向2 2、该词法单元是标识符,在符号表中查找,若找到该 词法单元则返回该条目的指针并退出,否则执行3 3、在符号表中建立一个新的条目,把该词法单元填入, 并返回此新条目的指针
输入符号集合;
2、一个状态对于 某个字符,可能有
转换函数move : S ({}) P(S); 多条输出边
状态s0是开始状态;
F S是接受状态集合。
a
识别语言 (a|b)*ab
开始 0
a
1b
2
的NFA
b
2.3
• NFA的转换表
状态
有限自动机 优点:快速定位 缺点:字母表过大 或大部分转换状态 为空集时浪费空间 输入符号
A = {0, 1, 2, 4, 7} B = {1, 2, 3, 4, 6, 7, 8} C = {1, 2, 4, 5, 6, 7}
状态
A B C
输入符号 ab BC
a
2
3
开始
0
1
a
b
6
7
8
9
b
4
5
2.3 有 限 自 动 机
A = {0, 1, 2, 4, 7} B = {1, 2, 3, 4, 6, 7, 8} C = {1, 2, 4, 5, 6, 7}
a
b
0
{0, 1}
{0}
1
{2}
2
识别语言
(a|b)*ab 的NFA
a
开始
a
0
1b
2
b
2.3 有 限 自 动 机
例 识别aa*|bb*的NFA
a
a
1
2
开始
0
b
b
3
4
2.3 有 限 自 动 机
2.3.2 确定的有限自动机(简称DFA)
一个数学模型,包括:
• 状态集合S;
• 输入字母表;
• 转换函数move : S S;
输入符号 ab BC BD
a
2
3
开始
识别器:是一个程序,取串x作为输入,当 x是语言的句子时,它回答“是”,否则回 答“不是”。 状态转换图(有限自动机)识别器 确定/不确定有限自动机——时空权衡问题
确定有限自动机:快,空间大
2.3 有 限 自 动 机
2.3.1 不确定的有限自动机(简称NFA)
一个数学模型,它包括: 状态集合S;
缺点:1、输入字 符包括
2.2 词法记号的描述与识别
无符号数的转换图
num digit+ (.digit+)? (E (+ | )? digit+)?
E
digit
digit
digit digit
开始
12
digit
13
.
digit
14
15
E
+/ digit
16
17
18
other
other
other
*
19
return( install_num( ) )