第21讲 几何概型及随机模拟(1)
几何概型
几何概型1.几何概型向平面上有限区域(集合)G 内随机地投掷点M ,若点M 落在子区域G 1G 的概率与G 1的面积成正比,而与G 的形状、位置无关,即P (点M 落在G 1)=G 1的面积G 的面积,则称这种模型为几何概型.2.几何概型中的G 也可以是空间中或直线上的有限区域,相应的概率是体积之比或长度之比.3.借助模拟方法可以估计随机事件发生的概率. 概念方法微思考1.古典概型与几何概型有什么区别?提示 古典概型与几何概型中基本事件发生的可能性都是相等的,但古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个.2.几何概型中线段的端点、图形的边框是否包含在内影响概率值吗? 提示 几何概型中线段的端点,图形的边框是否包含在内不会影响概率值.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)在一个正方形区域内任取一点的概率是零.( √ )(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( √ )(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( √ ) (4)随机模拟方法是以事件发生的频率估计概率.( √ ) (5)与面积有关的几何概型的概率与几何图形的形状有关.( × ) (6)从区间[1,10]内任取一个数,取到1的概率是P =19.( × )题组二 教材改编2.在线段[0,3]上任投一点,则此点坐标小于1的概率为( ) A.12 B.13 C.14 D.1 答案 B解析 坐标小于1的区间为[0,1),长度为1,[0,3]的区间长度为3,故所求概率为13.3.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )答案 A解析 ∵P (A )=38,P (B )=28,P (C )=26,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).4.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A.π4 B.π-22C.π6D.4-π4答案 D解析 如图所示,正方形OABC 及其内部为不等式组表示的平面区域D ,且区域D 的面积为4,而阴影部分(不包括AC )表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4,故选D.题组三 易错自纠5.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.答案 3解析 由|x |≤m ,得-m ≤x ≤m .当0<m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去.当2<m <4时,由题意得m -(-2)6=56,解得m =3.故m =3.6.在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为________. 答案 23解析 设AC =x cm(0<x <12),则CB =(12-x )cm ,则矩形的面积S =x (12-x )=12x -x 2(cm 2).由12x -x 2<32,即(x -8)(x -4)>0,解得0<x <4或8<x <12. 在数轴上表示,如图所示.由几何概型概率计算公式,得所求概率为812=23.题型一 与长度、角度有关的几何概型例1 在等腰Rt △ABC 中,直角顶点为C . (1)在斜边AB 上任取一点M ,求|AM |<|AC |的概率;(2)在∠ACB 的内部,以C 为端点任作一条射线CM ,与线段AB 交于点M ,求|AM |<|AC |的概率.解 (1)如图所示,在AB 上取一点C ′,使|AC ′|=|AC |,连接CC ′.由题意,知|AB |=2|AC |.由于点M 是在斜边AB 上任取的,所以点M 等可能分布在线段AB 上,因此基本事件的区域应是线段AB . 所以P (|AM |<|AC |)=|AC ′||AB |=|AC |2|AC |=22. (2)由于在∠ACB 内以C 为端点任作射线CM ,所以CM 等可能分布在∠ACB 内的任一位置(如图所示),因此基本事件的区域应是∠ACB ,所以P (|AM |<|AC |)=∠ACC ′∠ACB=π-π42π2=34.思维升华 求解与长度、角度有关的几何概型的概率的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同,解题的关键是构建事件的区域(长度或角度).跟踪训练1 (1)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为____________. 答案 23解析 方程x 2+2px +3p -2=0有两个负根, 则有⎩⎪⎨⎪⎧Δ≥0,x 1+x 2<0,x 1x 2>0,即⎩⎪⎨⎪⎧4p 2-4(3p -2)≥0,-2p <0,3p -2>0,解得p ≥2或23<p ≤1,又p ∈[0,5],则所求概率为P =3+135=1035=23.(2)如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧DE ,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.答案 13解析 因为在∠DAB 内任作射线AP ,所以它的所有等可能事件所在的区域是∠DAB ,当射线AP 与线段BC 有公共点时,射线AP 落在∠CAB 内,则区域为∠CAB ,所以射线AP 与线段BC 有公共点的概率为∠CAB ∠DAB =30°90°=13.题型二 与面积有关的几何概型命题点1 与面积有关的几何概型的计算例2 (1)(2017·全国Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π4 答案 B解析 不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4. 由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知,所求概率P =S 黑S 正方形=π24=π8.(2)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f (x )=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率为________.答案512解析 由题意知,阴影部分的面积S =ʃ21(4-x 2)d x =⎝⎛⎭⎫4x -13x 3|21=53, 所以所求概率P =S S 矩形ABCD =531×4=512.命题点2 随机模拟例3 (1)如图所示,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆为96颗,以此试验数据为依据估计椭圆的面积为()A.7.68B.8.68C.16.32D.17.32答案 C解析 由随机模拟的思想方法,可得黄豆落在椭圆内的概率为300-96300=0.68.由几何概型的概率计算公式,可得S 椭圆S 矩形=0.68,而S 矩形=6×4=24,则S 椭圆=0.68×24=16.32.(2)若采用随机模拟的方法估计某运动员射击击中目标的概率.先由计算器给出0到9之间取整数的随机数,指定0,1,2,3表示没有击中目标,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组如下的随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该运动员射击4次至少击中3次的概率为________. 答案 0.4解析 根据数据得该运动员射击4次至少击中3次的数据分别为7527 9857 8636 6947 4698 8045 9597 7424,共8个,所以该运动员射击4次至少击中3次的概率为820=0.4.思维升华 求解与面积有关的几何概型的注意点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.跟踪训练2 (1)(2016·全国Ⅱ)从区间[0,1]内随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A.4n m B.2n m C.4m n D.2m n答案 C解析 由题意得(x i ,y i )(i =1,2,…,n )在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41=mn,∴π=4mn,故选C.(2)如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.答案2e 2解析 由题意知,所给图中两阴影部分面积相等,故阴影部分面积为S =2ʃ10(e -e x )d x =2(e x -e x )|10=2[e -e -(0-1)]=2.又该正方形的面积为e 2,故由几何概型的概率公式可得所求概率为2e 2.题型三 与体积有关的几何概型例4 已知在四棱锥P -ABCD 中,P A ⊥底面ABCD ,底面ABCD 是正方形,P A =AB =2,现在该四棱锥内部或表面任取一点O ,则四棱锥O -ABCD 的体积不小于23的概率为________.答案2764解析 当四棱锥O -ABCD 的体积为23时,设O 到平面ABCD 的距离为h ,则13×22×h =23,解得h =12.如图所示,在四棱锥P -ABCD 内作平面EFGH 平行于底面ABCD ,且平面EFGH 与底面ABCD 的距离为12.因为P A ⊥底面ABCD ,且P A =2, 所以PE P A =34,所以四棱锥O -ABCD 的体积不小于23的概率P =V 四棱锥P -EFGH V 四棱锥P -ABCD =⎝⎛⎭⎫PE P A 3=⎝⎛⎭⎫343=2764.思维升华 求解与体积有关的几何概型的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.跟踪训练3 在一个球内有一棱长为1的内接正方体,一动点在球内运动,则此点落在正方体内部的概率为( ) A.6π B.32π C.3π D.233π 答案 D解析 由题意可知这是一个几何概型,棱长为1的正方体的体积V 1=1,球的直径是正方体的体对角线长,故球的半径R =32,球的体积V 2=43π×⎝⎛⎭⎫323=32π, 则此点落在正方体内部的概率P =V 1V 2=233π.1.已知函数f (x )=x 2-x -2,x ∈[-3,3],在定义域内任取一点x 0,使f (x 0)≤0的概率是( ) A.13 B.23 C.12 D.16 答案 C解析 由f (x 0)≤0,可得-1≤x 0≤2,所以D =3-(-3)=6,d =2-(-1)=3,故由几何概型的概率计算公式可得所求概率为P =d D =12,故选C.2.在区间[-1,3]上随机取一个数x ,若x 满足|x |≤m 的概率为12,则实数m 为( )A.0B.1C.2D.3 答案 B解析 区间[-1,3]的区间长度为4. 不等式|x |≤m 的解集为[-m ,m ],当1<m ≤3时,由题意得m +14=12,解得m =1(舍),当0<m ≤1时,由2m 4=12,则m =1.故m =1.3.若正方形ABCD 的边长为4,E 为四边上任意一点,则AE 的长度大于5的概率等于( ) A.132 B.78 C.38 D.18 答案 D解析 设M ,N 分别为BC ,CD 靠近点C 的四等分点,则当E 在线段CM ,CN (不包括M ,N )上时,AE 的长度大于5,因为正方形的周长为16,CM +CN =2,所以AE 的长度大于5的概率为216=18,故选D.4.在如图所示的圆形图案中有12片树叶,构成树叶的圆弧均相同且所对的圆心角为π3,若在圆内随机取一点,则此点取自树叶(即图中阴影部分)的概率是( )A.2-33πB.4-63πC.-13-32πD.23答案 B解析 设圆的半径为r ,根据扇形面积公式和三角形面积公式得阴影部分的面积S =24⎝⎛⎭⎫16πr 2-34r 2=4πr 2-63r 2,圆的面积S ′=πr 2,所以此点取自树叶(即图中阴影部分)的概率为S S ′=4-63π,故选B.5.如图,矩形ABCD 的四个顶点的坐标分别为A (0,-1),B (π,-1),C (π,1),D (0,1),正弦曲线f (x )=sin x 和余弦曲线g (x )=cos x 在矩形ABCD 内交于点F ,向矩形ABCD 区域内随机投掷一点,则该点落在阴影区域内的概率是( )A.1+2πB.1+22πC.1πD.12π答案 B解析 根据题意,可得曲线y =sin x 与y =cos x 围成的区域的面积为ππππ44(sin cos )d (cos sin )|x x x x x ⎰-=--=1-⎝⎛⎭⎫-22-22=1+ 2.又矩形ABCD 的面积为2π,由几何概型概率计算公式得该点落在阴影区域内的概率是1+22π.故选B.6.(2018·郑州模拟)我国古代数学家赵爽在《周髀算经》一书中给出了勾股定理的绝妙证明.如图所示是赵爽的弦图.弦图是一个勾股形(即直角三角形)之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱(红)色及黄色,其面积称为朱实、黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实=弦2,化简得:勾2+股2=弦2.设勾股形中勾股比为1∶3,若向弦图内随机抛掷1 000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为()A.866B.500C.300D.134答案 D解析 设勾为a ,则股为3a ,所以弦为2a ,小正方形的边长为3a -a ,所以题图中大正方形的面积为4a 2,小正方形的面积为(3-1)2a 2,所以小正方形与大正方形的面积比为(3-1)24=1-32,所以落在黄色图形(小正方形)内的图钉数大约为⎝⎛⎭⎫1-32×1 000≈134. 7.记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________. 答案 59解析 设事件“在区间[-4,5]上随机取一个数x ,则x ∈D ”为事件A , 由6+x -x 2≥0,解得-2≤x ≤3, ∴D =[-2,3].如图,区间[-4,5]的长度为9,定义域D 的长度为5,∴P (A )=59.8.在等腰直角三角形ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________. 答案33解析 因为点M 在直角边BC 上是等可能出现的,所以“区域”是长度.设BC =a ,则所求概率P =33a a =33.9.如图,在长方体ABCD —A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A —A 1BD 内的概率为______.答案 16解析 因为11A A BD A ABD V V =--=13AA 1×S △ABD=16×AA 1×S 矩形ABCD =16V 长方体, 故所求概率为11.6A A BD V V =-长方体10.正方形的四个顶点A (-1,-1),B (1,-1),C (1,1),D (-1,1)分别在抛物线y =-x 2和y =x 2上,如图所示.若将一个质点随机投入到正方形ABCD 中,则质点落在图中阴影区域的概率是______.答案 23解析 正方形内空白部分面积为ʃ1-1[x 2-(-x 2)]d x=ʃ1-12x 2d x =23·x 3|1-1=23-⎝⎛⎭⎫-23=43, 阴影部分面积为2×2-43=83,所以所求概率为834=23.11.已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率; (2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36, 由a ·b =-1,得-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5),共3个. 故满足a ·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为 Ω={(x ,y )|1≤x ≤6,1≤y ≤6}.满足a ·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6且-2x +y <0}. 画出图像如图所示,矩形的面积为S 矩形=25, 阴影部分的面积为S 阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.12.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率.解 设甲、乙两艘船到达码头的时刻分别为x 与y ,记事件A 为“两船都不需要等待码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要等待码头空出, 当且仅当甲比乙早到达1 h 以上或乙比甲早到达2 h 以上, 即y -x ≥1或x -y ≥2.故所求事件构成集合A ={(x ,y )|y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 为图中阴影部分,全部结果构成的集合Ω为边长是24的正方形及其内部. 所求概率为P (A )=A 的面积Ω的面积=(24-1)2×12+(24-2)2×12242=506.5576=1 0131 152.13.在长为1的线段上任取两点,则这两点之间的距离小于12的概率为________.答案 34解析 设任取两点所表示的数分别为x ,y ,则0≤x ≤1,且0≤y ≤1,如图所示,则总事件所占的面积为 1.记这两点之间的距离小于12为事件A ,则A ={(x ,y )||x -y |<12,0≤x ≤1,0≤y ≤1},如图中阴影部分所示,空白部分所占的面积为2×12×12×12=14,所以所求两点之间的距离小于12的概率P (A )=1-141=34.14.向圆C :(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率为________. 答案 16-34π解析 如图所示,连接CA ,CB ,依题意,圆心C 到x 轴的距离为3,所以弦AB 的长为2.又圆的半径为2,所以∠ACB =60°,所以S 圆C =π×22=4π,所以S 弓形ADB =60°×π×22360°-12×2×3=2π3-3,所以向圆C 内随机投掷一点,则该点落在x 轴下方的概率P =2π3-34π=16-34π.15.在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≥13”的概率,p 2为事件“|x -y |≤13”的概率,p 3为事件“xy ≤13”的概率,则( )A.p 1<p 2<p 3B.p 2<p 3<p 1C.p 3<p 1<p 2D.p 3<p 2<p 1答案 B解析 因为x ,y ∈[0,1],所以事件“x +y ≥13”表示的平面区域如图(1)阴影部分(含边界)S 1,事件“|x -y |≤13”表示的平面区域如图(2)阴影部分(含边界)S 2,事件“xy ≤13”表示的平面区域如图(3)阴影部分(含边界)S 3,由图知,阴影部分的面积满足S 2<S 3<S 1,正方形的面积为1×1=1,根据几何概型概率计算公式可得p 2<p 3<p 1.16.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,求此点取自空白部分的概率.解 设分别以OA ,OB 为直径的两个半圆交于点C ,OA 的中点为D ,如图,连接OC ,DC .不妨令OA =OB =2, 则OD =DA =DC =1.在以OA 为直径的半圆中,空白部分面积S 1=π4+12×1×1-⎝⎛⎭⎫π4-12×1×1=1, 所以整个图形中空白部分面积S 2=2. 又因为S 扇形OAB =14×π×22=π,所以P =2π.。
数学建模之随机性模型与模拟方法
三、随机数的生成
我们知道对于丢硬币的随机结果可以用以下的离散 随机变量的改里函数来描述
X P(x) 0 0.5 1 0.5
如果我们需要模拟随机变量的以个值或一个集合, 可以用丢硬币然后记录其其结果的方法来得到,然 而这具又相当的局限性,这里我们用数学程序来产 生拟随机变量。即看上去是随机出现的,但并非真 正的随家便朗,它们产生于一个梯推公式。不过这 些拟随机数并没有明显的规律,当给于适当的伸缩 之后,它们非常接近于在 0,1 区间的均匀分布。
600
1030 3408 2520
382.5
489 1808 859
3.137
3.1595 3.141592 3.1795
由此可以看出蒙特卡罗方法的基本步骤:首先,建立 一个概率模型,使它的某个参数等于问题的解。然后按 照假设的分布,对随机变量选出具体的值(这一过程又 叫着抽样),从而构造出一个确定性的模型,计算出结 果。再通过几次抽样实验的结果,的到参数的统计特性, 最终算出解的近似值。 蒙特卡罗方法主要用再难以定量分析的概率模型,这 种模型一般的不到解析的结果,或虽然又解析结果,但 计算代价太大以至不可用。也可以用在算不出解析结果 的定性模型中。 用蒙特卡罗方法解题,需要根据随机变量遵循的分布 规律选出具体的至,即抽样。随机变量的抽样方法很多, 不同的分布采用的方法不尽相同。在计算机上的各种分 布的随机数事实上都是按照一定的确定性方法产生的伪 随机数。
X 1 [2 ln( RND1 )]1/ 2 cos(2 RND2 )
和
X 2 [2 ln( RND1 )]1/ 2 cos(2 RND2 )
来给出 X 的两个值,令X X 2 或 X X1 可以生成 ( , ) 型的正态分布。
几何概型1
解:甲顾客购物的钱数在100元到 200元之间,可以获得一次转动转 盘的机会,转盘一共等分了20份, 其中1份红色、2份黄色、4份绿色, 因此对于顾客来说:
P(获得购物券)= 1 2 4 7 . 20 20
P(获得100元购物券)=
1 .
20
P(获得50元购物券)=
2 20
1 10
.
P(获得20元购物券)=
4 20
1 .
5
绿
黄
黄
绿
绿 绿红
ห้องสมุดไป่ตู้
课堂小结
1.古典概型与几何概型的区别. 相同:两者基本事件的发生都是等可能的; 不同:古典概型要求基本事件有有限个, 几何概型要求基本事件有无限多个.
2.几何概型的概率公式.
P( A)
构成事件A的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积)
圆的面积 πa2 正方形面积 4a2
π 4
答 豆子落入圆内的概率为π4 .
数学拓展:模拟撒豆子试验估计圆周率
如果向正方形内撒 n 颗豆子,其中落在圆内的
豆子数为 m ,那么当 n很大时,比值 m ,
n
即频率应接近于 P( A) ,于是有
P( A) m . n
由此可得 4m
n
例3、某商场为了吸引顾客,设立了
6
在本例中,打开收音机的时刻X是随机的,可以是0~60之 间的任何一刻,并且是等可能的.我们称X服从[0,60]上的均匀分 布,X为[0,60]上的均匀随机数.
例2、取一个边长为2a的正方形及其内切圆,随机向正方 形内丢一粒豆子,求豆子落入圆内的概率.
2a
解: 记“豆子落在圆内”为事件A,
P(A)
几何概型 课件
.
(2)求解与体积有关的几何概型问题,关键是准确计算
出所求事件构成的区域体积,确定出所有基本事件构成的
区域体积,利用公式计算即可.
题型四 与角度有关的几何概型的求法
例4. 如图,在平面直角坐标系中,射线OT为
60°角的终边,在任意角集合中任取一个角,
则该角终边落在∠xOT内的概率是 ( )
A. 1
构成事件A 的区域角度
P(A)= 试验的全部结果所构成的区域角度 . 生活中的几何概型度量区域的构造方法 (1)审题:通过阅读题目,获取相关信息.(2)建模:利用相 关信息的特征,建立概率模型.(3)解模:求解建立的数学模型. (4)结论:将解出的数学模型的解转化为题目要求的结论.
题型五 用随机模拟法估计几何概型
几何概型
一 几何概型的定义
如果每个事件发生的概率只与构成该事件区域的长度 (面积或体积)成比例,则称这样的概率模型为几何概 率模型(geometric models of probability),简 称为几何概型.
二 几何概型的概率计算公式
在几何概型中,事件A的概率的计算公式如下:
构成事件A的区域长度(面积或体积)
各面的距离均大于1,则满足题意的点的区域为位于该正方体中心
的一个棱长为1的小正方体.由几何概型的概率公式,可得蜜蜂
13
1
“安全飞行”的概率为P= 33 = 27 .
与体积有关的几何概型问题的解决思路
(1)如果试验的全部结果所构成的区域可用体积来度量,
则其概率的计算公式为
P(A)=
构成事件A 的体积 试验的全部结果构成的体积
P(A)= 试验的全部结果所构成的区域长度(面积或体积)
三 均匀随机数的产生
高中数学3.3应用随机模拟法解决几何概型问题论文新人教A版必修
应用随机模拟法解决几何概型问题在新课标教材中我们学习了几何概型, 用随机模拟法可以对几何概型类问题进行估计.其应用比较广泛.下面举例说明.一、用随机模拟法估计与长度有关的几何概型例1 在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形.试求这个正方形的面积介于36 cm 2与81 cm 2之间的概率.分析:正方形的面积只与边长有关,此题可以转化为12 cm 长的线段上取一点M ,求使得AM 的长度介于6 cm 与9 cm 之间的概率.解:(1)用计算机产生一组[0,1]内均匀随机数a 1=RAND. (2)经过伸缩变换,a=a 1*12得到[0,12]内均匀随机数.(3)统计试验总数N 和[6,9]内随机数个数N 1.(4)计算频率N N 1.记事件A={面积介于36 cm 2与81 cm 2之间}={边长介于6 cm 与9 cm 之间},则P(A)的近似值为NN 1. 点评:用随机模拟的方法解决与长度有关的几何概型关键在于将对应的区域长度转化为随机数的范围[a,b],进行在[a,b]上产生随机数.二、用随机模拟法估计与面积有关的几何概型例2 利用随机模拟方法计算图中阴影部分(曲线y=2x 与x 轴、x=±1和y=2围成的部分)的面积.分析:用随机模拟的方法可以求出阴影部分与正方形面积之比,从而求得阴影部分面积的近似值.解:(1) 利用计算机产生两组[0, 1]上的均匀随机数,a 1=RAND, b 1=RAND. (2)进行平移和伸缩变换,a =(a 10.5)*2,b=b l *2得到一组[1,1]上的均匀随机数和一组[0,2]上的均匀随机数.(3)统计试验总次数N 和落在阴影内的点数N 1(满足条件b< 2a 的点(a, b)数).(4)计算频率N N 14S P =,所以41S N N ≈.所以NN S 14≈即为阴影部分面积的近似值. 点评:解决本题的关键是利用随机模拟法和几何概型的概率公式分别求的几何概率,然后通过解方程求得阴影部分面积的近似值.三、用随机模拟法估计图形的面积例3 利用随机模拟的方法近似计算如图所示阴影部分(函数y=22xx 2与x 轴围成的图形)的面积.分析:先计算与之相应的规则多边形的面积,然后由几何概率进行面积估计. 解:(1)利用计算机产生两组[0,1]上的均匀随机数,a 1=RAND,b 1=RAND. (2)经过平移和伸缩变换a =a 1*43,b=b l *3得到一组[3,1]和一组[0,3]上的均匀随机数.(3)统计试验总数N 和落在阴影部分的点数N 1(满足条件b< 2-2aa 2的点(a, b)数).(4)计算频率N N 112S ,所以≈12S N N 1.所以NN S 112=即为阴影部分面积的近似值. 点评:利用随机模拟实验估计图形的面积时,一要选取合适的对应图形,二要由几何概型正确计算概率.四、随机模拟法的应用例4(探究题)如图所示,利用随机模拟的方法近似计算长为2的正方形内切圆面积,并估计π的近似值.分析:用随机模拟的方法可以估算点落在圈内的概率,由几何概型的概率公式可得点落在圆内的概率为4圆S .这样就可以计算圆的面积,应用圆面积公式可得ππ==2r S 圆.所以上面求得的圆S 的近似值即为π的近似值.解:(1)利用计算机产生两组[0,1]上的均匀随机数,a 1=RAND, b 1= RAND.(2)经过平移和伸缩变换,a =(a 10.5)*2,b= (b 10.5)*2,得到两组[1,1]上的均匀随机数.(3)统计试验总次数N 和点落在圆内的次数N 1(满足a 2+b 2≤1的点(a,b)数). (4) 计算频率NN 1即为点落在圆内的概率. (5)设圆面积为S,则由几何概型的概率公式得4S P =.所以NN S 14≈,即N N S 14=即为圆面积的近似值.又因为ππ==2r S 圆,所以N N S 14==π即为圆周率π的近似值.点评:如果我们能设计一个圆形使其面积与某个常数有关,我们就以设计一个概率模型,然后设计适当的试验,并通过这个结果来确定该量的近似值.。
几何概型 课件
③P(B)=1⇐B 为必然事
件
因此判断一个概率模型属于古典概型还是属于几何概型的步骤
是:
(1)确定一次试验中每个结果(基本事件)的可能性(概率)是否相
等,如果不相等,那么既不属于古典概型也不属于几何概型;
(2)如果试验中每个结果出现的可能性是相等的,再判断试验结果
的有限性.当试验结果有有限个时,这个概率模型属于古典概型;当
4
4
设“△PBC 的面积小于 ”为事件M,则 M 表示的范围是 0,
所以由几何概型求概率的公式得P(M)=
1
4
4
所以△PBC 的面积小于 的概率是 .
4
1
= .
4
,
错因分析:如图②,P 为矩形 ABCD 内的任意一点,△PBC 的边 BC
上的高 PF 为矩形 ABCD 内的任意线段,但应满足△PBC 的面积小
4
的面积小于 ”的点P 应落在矩形区域 GBCH 内,设“△PBC 的面积小
4
于 ”为事件M,则 M 表示的范围是 0,
4
公式,得 P(M)=
2
1
= .
2
2
. 所以由几何概型求概率的
+ + 3 + 2 + 1 1
顶点的距离均超过1为事件H,则P(H) = + + = 12 = 2.
答案:
1
2
面积型的几何概型
【例2】 取一个边长为4a的正方形及其内切圆,如图,随机向正方
形内丢一粒因此可认为豆子落入正方形内的
几何概型
几何概型
几何概型课件
角度型的几何概型的概率计算
总结词:基于角度
详细描述:角度型的几何概型是以角度作为概率测度的概率 模型。例如,在等可能的角度分布情况下,某事件发生的角 度越大,其发生的概率就越大。
03
几何概型的应用
在日常生活中的应用
交通信号灯
天气预报
几何概型可以用于计算不同方向的车 流等待时间。
几何概型可以用于预测降雨、降雪等 天气事件。
随机过程
几何概型可以用于研究随 机过程的变化和趋势。
统计学
几何概型可以用于统计分 析,如回归分析和方差分 析等。
04
几何概型的实际案例
掷骰子问题
总结词
等可能性和有限性
详细描述
掷一颗骰子,观察出现的点数,因为骰子有六个面,每个面上的点数都是等可 能的,所以这是一个几何概型问题。
转盘游戏问题
总结词
详细描述
数形结合思想在几何概型中主要体现在将概 率问题转化为几何图形问题,通过图形的性 质和变化来研究概率的变化规律。例如,在 几何概型中,等可能事件可以通过几何图形 来表示,概率的大小可以通过图形的面积或
体积来度量。
等可能性的思想方法
总结词
等可能性是几何概型中的一个基本思想,它认为在相 同的条件下,各个事件发生的可能性是相等的。
总结词:基于Байду номын сангаас积
详细描述:面积型的几何概型是以面积作为概率测度的概率模型。例如,在等可能的点分布情况下,某事件发生的区域面积 越大,其发生的概率就越大。
体积型的几何概型的概率计算
总结词:基于体积
详细描述:体积型的几何概型是以空间体积作为概率测度的概率模型。例如,在等可能的点分布情况 下,某事件发生的空间体积越大,其发生的概率就越大。
随机模拟
随机模拟随机模拟又称为Monte Carlo 方法,是一种采用统计抽样理论近似地求解数学问题或物理问题的方法。
它既可以用来研究概率问题,也可以用来研究非概率问题。
基本想法: 首先建立与描述该问题有相似性的概率模型。
利用这种相似性把概率模型的某些特征(如随机事件的概率或随机变量的平均值等)与数学分析问题的解答(如积分值,微分方程的解等)联系起来,然后对模型进行随机模拟统计抽样,再利用所得的结果求出这些特征的统计估计值作为原来的分析问题的近似解。
基本理论依据:大数定律。
一 引入随机模拟方法用于近似数值计算领域已有近百年的历史。
可追溯到历史上著名的蒲丰(Buffon )投针问题。
(1) 蒲丰(Buffon )投针问题平面上,画有等距离的平行线,平行线之间的距离为a ,(a>0),向平面上任意投一枚长为l (a l <)的针,试求针与平行线之间相交的概率。
又以φ表示针与此直线的夹角。
则:πφ≤≤≤≤02/0a x令A :“针与平行线相交”,显然有“针与平行线相交”⇔“φsin 2lx ≤”。
则由几何概型有al d lS SA P a A ππϕϕπ2sin 2)(20=⋅==⎰Ω(*)若在(*)中以Nn 替代(估计))(A P ,⇒an lN2=π。
历史上有几位科学家做过此实验。
下表列出了其中的一部分实验结果: 人名 年份 N n 针长πWolf 1850 5000 2532 0.8 3.1596 Smith 1855 3204 1218 0.6 3.1514 Laggerini 1901 3408 1808 0.83 3.1415929 (2) 用Monte Carlo 方法计算面积考虑积分dx x f I ⎰=1)(,设],1,0[∈x 1)(0≤≤x f 。
这时积分I 等于由曲线)(x f y =,ox 轴和oy 轴以及x =1所围成的区域G 的面积。
现在向单位正方形区域(010,1≤≤≤≤y x )中,随机地投掷一点,即它的两个坐标),(y x d i i ..~]1,0[U 。
几何概型 课件
(2)解:设上一辆车于时刻 T1 到达,而下一辆车于时 刻 T2 到达,则线段 T1T2 的长度为 15,设 T 是线段 T1T2 上的点,且 T1T=5,T2T=10,如图所示.
记“等车时间超过 10 min”为事件 A,则当乘客到 达车站的时刻 t 落在线段 T1T 上(不含端点)时,事件 A 发 生.
类型 1 与长度有关的几何概型 [典例❶] (1)在区间[-1,2]上随机取一个数 x,则 |x|≤1 的概率为________. (2)某汽车站每隔 15 min 有一辆汽车到达,乘客到达 车站的时刻是任意的,求一位乘客到达车站后等车时间超 过 10 min 的概率.
(1)解析:因为区间[-1,2]的长度为 3,由|x|≤1 得 x∈[-1,1],而区间[-1,1]的长度为 2,x 取每个值为 随机的,所以在[-1,2]上取一个数 x,|x|≤1 的概率 P =23.
类型 4 用随机模拟法近似计算不规则图形的面积 [典例 4] 利用随机模拟方法计算图中阴影部分(曲 线 y=2x 与 x 轴、x=±1 围成的部分)的面积.
解:(1)利用计算机产生两组[0,1] 上的均匀随机数,a1=RAND, b1=RAND.
(2)进行平移和伸缩变换,a=a1[N1,N),即为点落在 阴影部分的概率的近似值.
(3)统计试验总次数 N 和落在阴影内的次数 N1[满足 条件 b<2a 的点(a,b)].
(4)计算频率NN1,即为点落在阴影部分的概率的近似 值.
(5)用几何概率公式求得点落在阴影部分的概率为 P =S4.所以NN1≈S4.
所以 S=4NN1即为阴影部分面积的近似值.
归纳升华 利用随机模拟法估计图形面积的步骤
A.π2
B.π4
高考数学一轮复习 第21讲 几何概型和随机模拟精品学案
2013年普通高考数学科一轮复习精品学案第21讲 几何概型和随机模拟一.课标要求:1.了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义;2.通过阅读材料,了解人类认识随机现象的过程。
二.命题走向本讲内容在高考中所占比较轻,纵贯近几年的高考对概率要求降低,但本讲内容使新加内容,考试涉及的可能性较大。
预测2013年高考:(1)题目类型多以选择题、填空题形式出现,;(2)本建考试的重点内容几何概型的求值问题,我们要善于将实际问题转化为概率模型处理。
三.要点精讲1.随机数的概念随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的。
2.随机数的产生方法(1)利用函数计算器可以得到0~1之间的随机数;(2)在Scilab 语言中,应用不同的函数可产生0~1或a~b 之间的随机数。
3.几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;4.几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A 。
5.几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点.若落在线段l 上的点数与线段L 的长度成正比,而与线段l 在线段l 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积(3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点.若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域v 上的相对位置无关,则点落在区域V 上的概率为:P=v 的体积/V 的体积四.典例解析题型1:线长问题例1.一个实验是这样做的,将一条5米长的绳子随机地切断成两条,事件T 表示所切两段绳子都不短于1米的事件,考虑事件T 发生的概率。
2010高三数学高考复习必备精品教案:几何概型及随机模拟
几何概型及随机模拟一.【课标要求】1.了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义;2.通过阅读材料,了解人类认识随机现象的过程二.【命题走向】本讲内容在高考中所占比较轻,纵贯近几年的高考对概率要求降低,但本讲内容使新加内容,考试涉及的可能性较大预测2010年高考:(1)题目类型多以选择题、填空题形式出现,;(2)本建考试的重点内容几何概型的求值问题,我们要善于将实际问题转化为概率模型处理。
三.【要点精讲】1.随机数的概念随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的。
2.随机数的产生方法(1)利用函数计算器可以得到0~1之间的随机数;(2)在Scilab 语言中,应用不同的函数可产生0~1或a~b 之间的随机数。
3.几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;4.几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A 。
5.几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点.若落在线段l 上的点数与线段L 的长度成正比,而与线段l 在线段l 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积(3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点.若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域v 上的相对位置无关,则点落在区域V 上的概率为:P=v 的体积/V 的体积四.【典例解析】题型1:线长问题例1. (09山东11)在区间[]1,1-上随机取一个数x ,cos 2xπ的值介于0到12之间的概率为 ( )A .13 B .2π C . 12 D . 23【解析】在区间[-1,1]上随机取一个数x,即[1,1]x ∈-时,要使cos 2xπ的值介于0到21之间,需使223xπππ-≤≤-或322xπππ≤≤∴213x -≤≤-或213x ≤≤,区间长度为32,由几何概型知cos 2x π的值介于0到21之间的概率为31232=.故选A.答案 A例2.(2009辽宁卷文)ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A .4πB .14π-C .8π D .18π-【解析】长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为2π 因此取到的点到O 的距离小于1的概率为2π÷2=4π 取到的点到O 的距离大于1的概率为14π- 答案 B例3.假设车站每隔 10 分钟发一班车,随机到达车站,问等车时间不超过 3 分钟的概率 ? 解:以两班车出发间隔 ( 0,10 ) 区间作为样本空间 S ,乘客随机地到达,即在这个长度是 10 的区间里任何一个点都是等可能地发生,因此是几何概率问题。
几何概型和随机模拟方法
几何概型与随机模拟方法孙老师目录1几何概型2 2随机模拟方法31几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.在几何概型中,事件A的概率的计算公式如下:P(A)=S AS,其中S A=构成事件A的区域长度(面积或体积),S=试验的全部结果所构成的区域长度(面积或体积).例1.1在区间[−1,1]上任取一个数x,则cosπ2x的值在区间[0,12]的概率为.解.这是一个典型的几何概型.0≤cos π2x≤12⇒−23≤x≤23所以S A=43,显然S=2.P=S AS=23.练习:假如你买了一件东西,快递员可能在早上6:30−−7: 30之间把快递送到你家,你离开家出去的时间在早上7:00−−8:00之间,那么你在离开家前能拿到快递(称为事件A)的概率是多少?2随机模拟方法随机模拟方法,也称为Monte Carlo方法,是一种基于“随机数”的计算方法。
这一方法源于美国在第二次世界大战期间进行的研制原子弹的“曼哈顿计划”。
该计划的主持人之一数学家冯·诺依曼用驰名世界的赌城–摩纳哥的Monte Carlo 来命名这种方法,为它蒙上了一层神秘色彩。
冯·诺依曼是公理化方法和计算机体系的领袖人物,MonteCarlo方法也是他的重要贡献。
事实上,Monte Carlo方法的基本思想很早以前就被人们所发现和利用。
早在17世纪,人们就知道用事件发生的“频率”来近似事件的“概率”。
18世纪下半叶,法国学者Buffon (蒲丰)提出用投针试验的方法来确定圆周率π的值。
这个著名的Buffon试验是Montc Carlo方法的最早尝试。
例2.1如图,正方形的边长为2,在正方形中随机撒一把豆子,用随机模拟的方法估计圆周率的值.图1解.随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积成正比.因此这是一个典型的几何概型.豆子落在圆内的概率P=S1S,其中S1是圆的面积,S是正方形的面积.而豆子落在圆内的概率可以由豆子落在圆内的频率来近似.所以P=S1S=π4≈落在圆中的豆子数/落在正方形中的豆子数.这样就得到了π的近似值.我们用计算机模拟上述过程,步骤如下:(1)用Excel的RAND函数产生两组[0,1]之间的均匀随机数a,b;(2)经平移和伸缩变换,x=2(a−0.5),y=2(b−0.5),此时x,y 是区间[−1,1]之间的随机数;(3)计算出落在圆内(x2+y2<1)的点(x,y)的个数N1,计算π≈4N1N(N代表试验次数).如下表,可以发现,随着试验次数的增加,得到的π的近似值的精度会越来越高.图2例2.2利用随机模拟方法计算图2中阴影部分(x ∈[0,π],y =sin x 和x 轴所围成的部分)的面积.图3解.在坐标系中画出矩形(x =0,x =π,y =0,y =1所围成的部分),用随机模拟的方法可以得到它的面积的近似值.具体步骤如下:(1)用Excel 的RAND 函数产生两组[0,1]之间的均匀随机数a ,b ;(2)经平移和伸缩变换,x =π·a ,y =b ,此时(x ,y )是矩形区域上的一个随机点;(3)计算出落在阴影内(y <sin x )的点(x ,y )的个数N 1,计算S ≈N 1N·π(其中N 是落在矩形区域的点的个数).如下表,可以发现,随着试验次数的增加,得到的S 的近似值的精度会越来越高(由定积分理论可以准确计算出S =2).图4练习:利用随机模拟方法近似计算图形的面积:y=x2+1和y=6所围区域的面积.图5。
随机模拟方法
小结
了解随机数和均匀随机数的产生,体会用 随机模拟方法近似计算概率及不规则图形的 面积.
2、区域是平面图形的几何概型问题
设有一个正方形网格,其中每个最小正方形的 4 边长都是6.现用直径为2的硬币投掷到此网格 上,求硬币落下后与格线没有公共点的概率. 9 变形1:求硬币落下后与格线有公共点的概率. 变形2: 设有一个正方形网格,现用直径为2的 硬币投掷到此网格上,方格边长要多少才能 使硬币与格线没有公共点的概率大于0.04. 提示: 边长大于2.5
(2)每10个数作为一组,数出其中至少有2个数 相同的组数m及试验总次数n; (3)求得概率的近似值m/n.
例3.在正方形内随机撒一把豆子,用随机模拟 方法估计圆周率的值. Y 分析:随机撒一把豆子,每个豆 子落在正方形内任一点是等可 能的,落在每个区域的豆子数 与这个区域的面积近似成正比,
-1 O 1 X
解 : (1)用计算机产生两组0 ~ 1之间的 均匀随机数,a1 RAND, b1 RAND; (2)进行平移和伸缩变换,a (a 1 0.5) 2, b (b1 0.5) 2; (3)数出落在圆内的样本点数m及试验的 总次数n; 4m (4)计算 . n
例4.用随机模拟方法近似计算图形: y x 1与y 6所围成区域的面积.
随机模拟方法
小知识
用计算机或计算器模拟试验的方法称为 随机模拟方法,也称为蒙特卡罗方法.该方法 是在第二次世界大战期间兴起和发展起来的, 它的奠基人是冯.诺伊曼.
例1.天气预报说,在今后的3天中,每一天下雨 的概率均为0.4.求这3天中恰有2天下雨的概率. 分析:试验的结果有有限个,但每个结果出现 的可能性不同,因此不能用古典概率计算.
2、区域是平面图形的几何概型问题
几何概型 (1)
黄
黄
绿 绿 绿 红
情景1:
情景2:
转盘游戏
(研究指针位置)
面积
一个路口的红绿灯,红灯亮的时间为 30秒,黄灯亮的时间为5秒,绿灯亮的 时间为40秒,当你到达路口时,遇到 红灯和绿灯的概率那个大?为什么?
长度
A
1、几何概型是怎样定义的? 事件A理解为区域Ω 的某一子区域A,A的概率只与子 区域A的几何度量(长度、面积、体积)成正比,而与A的 位置和形状无关. 满足以上条件的试验称为几何概型. 2、在几何概型中,事件A的概率是怎么定义的?
0
A ( x, y) | y x,6.5 x 7.5,7 y 8 1 1 1 7 即图中的阴影部分,面积为: S A 1 2 2 2 8
6.5
7.5
x(送报人到
这是个几何概型,所以
SA 7 P( A) S 8
课堂小结
1.几何概型的特点. 2.几何概型的概率公式.
几何概型可以看作是古典概型的推广
例 某公共汽车站每 隔15分钟有一辆汽 车到达,乘客到达 车站的时刻是任意 的,求一个乘客到 达车站后候车时间 大于10 分钟的概率?
例 某公共汽车站每隔15分钟有一辆汽车到达, 乘客到达车站的时刻是任意的,求一个乘客到达 车站后候车时间大于10 分钟的概率? 分析:把时刻抽象为点,时间抽象为线段,故可 以用几何概型求解。 T1 T T2 解:设上辆车于时刻T1到达,而下一辆车于时刻 T2到达,线段T1T2的长度为15,设T是T1T2上的点, 且T1T=5,T2T=10,如图所示:·
(2)每个基本事件出现 现的可能性相等.
同
两种概型、概率公式的联系 1.古典概型的概率公式:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通高中课程标准实验教科书—数学 [人教版]高三新数学第一轮复习教案(讲座21)—几何概型及随机模拟一.课标要求:1.了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义;2.通过阅读材料,了解人类认识随机现象的过程。
二.命题走向本讲内容在高考中所占比较轻,纵贯近几年的高考对概率要求降低,但本讲内容使新加内容,考试涉及的可能性较大。
预测07年高考:(1)题目类型多以选择题、填空题形式出现,;(2)本建考试的重点内容几何概型的求值问题,我们要善于将实际问题转化为概率模型处理。
三.要点精讲1.随机数的概念随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的。
2.随机数的产生方法(1)利用函数计算器可以得到0~1之间的随机数;(2)在Scilab 语言中,应用不同的函数可产生0~1或a~b 之间的随机数。
3.几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;4.几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A 。
5.几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点.若落在线段l 上的点数与线段L 的长度成正比,而与线段l 在线段l 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积(3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点.若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域v 上的相对位置无关,则点落在区域V 上的概率为:P=v 的体积/V 的体积四.典例解析题型1:线长问题例1.一个实验是这样做的,将一条5米长的绳子随机地切断成两条,事件T 表示所切两段绳子都不短于1米的事件,考虑事件T 发生的概率。
分析:类似于古典概型,我们希望先找到基本事件组,既找到其中每一个基本事件。
注意到每一个基本事件都与唯一一个断点一一对应,故引例中的实验所对应的基本事件组中的基本事件就与线段AB 上的点一一对应,若把离绳AB 首尾两端1的点记作M 、N ,则显然事件T 所对应的基本事件所对应的点在线段MN 上。
由于在古典概型中事件T 的概率为T 包含的基本事件个数/总的基本事件个数,但这两个数字(T 包含的基本事件个数、总的基本事件个数)在引例1中是无法找到的,不过用线段MN 的长除以线段AB 的长表示事件T 的概率似乎也是合理的。
解:P (T )=3/5。
例2.(磁带问题)乔和摩进行了一次关于他们前一天夜里进行的活动的谈话。
然而谈话却被监听录音机记录了下来,联邦调查局拿到磁带并发现其中有10秒钟长的一段内容包含有他们俩犯罪的信息 然而后来发现,这段谈话的一部分被联邦调查局的一名工作人员擦掉了,该工作人员声称她完全是无意中按错了键,并从即刻起往后的所有内容都被榛掉了试问如果这10秒钟长的谈话记录开始于磁带记录后的半分钟处,那么含有犯罪内容的谈话被部分或全部偶然擦掉的概率将是多大?解析:将3O 分钟的磁带表示为长度为3O的线段R ,则代表10秒钟与犯罪活动有关的谈话的区间为 r,如右图所示,10秒钟的谈话被偶然擦掉部分或全部的事件仅在擦掉开始的时间位于该区间内或始于该区间左边的任何点。
因此事件r 是始于R 线段的左端点且长度为326121=+的事件。
因此,02.09023032)(====的面积的面积R r r p 。
例3.假设车站每隔 10 分钟发一班车,随机到达车站,问等车时间不超过 3 分钟的概率 ?解:以两班车出发间隔 ( 0,10 ) 区间作为样本空间 S ,乘客随机地到达,即在这个长度是 10 的区间里任何一个点都是等可能地发生,因此是几何概率问题。
0← S →10要使得等车的时间不超过 3 分钟,即到达的时刻应该是图中 A 包含的样本点, p=的长度的长度S a =103= 0.3 。
题型2:面积问题例4.投镖游戏中的靶子由边长为1米的四方板构成,并将此板分成四个边长为1/2米的小方块。
实验是向板中投镖,事件A表示投中阴影部分为成功,考虑事件A 发生的概率。
分析与解答:类似于引例1的解释,完全可以把此引例中的实验所对应的基本事件组与大的正方形区域联系在一起,既事件组中的每一个基本事件与大正方形区域中的每一个点一一对应,则事件A 所包含的基本事件就与阴影正方形中的点一一对应,这样我们用阴影正方形的面积除以大正方形的面积表示事件A 的概率是合理的。
这一点我们完全可以用引例1的方法验证其正确性。
解析:P (A )=(1/2)2/12=1/4。
例5.(CB 对讲机问题)(CB 即CitizenBand 市民波段的英文缩写)两个CB 对讲机持有者,莉莉和霍伊都为卡尔货运公司工作,他们的对讲机的接收范围为25公里,在下午3:0O 时莉莉正在基地正东距基地30公里以内的某处向基地行驶,而霍伊在下午3:00时正在基地正北距基地40公里以内的某地向基地行驶,试问在下午3:0O 时他们能够通过对讲机交谈的概率有多大?解:设x 和y 分别代表莉莉和霍伊距某地的距离,于是400,300≤≤≤≤y x则他俩所有可能的距离的数据构成有序点对(x,y),这里x ,y 都在它们各自的限制范围内,则所有这样的有序数对构成的集合即为基本事件组对应的几何区域,每一个几何区域中的点都代表莉莉和霍伊的一个特定的位置,他们可以通过对讲机交谈的事件仅当他们之间的距离不超过25公里时发生(如右图)因此构成该事件的点由满足不等式2522≤+y x的数对组成,此不等式等价于62522≤+y x右图中的方形区域代表基本事件组,阴影部分代表所求事件,方形区域的面积为1200平方米公里,而事件的面积为()462525412ππ=⎪⎭⎫ ⎝⎛, 于是有41.0902480062512004/625====ππp 。
例6.(意大利馅饼问题)山姆的意大利馅饼屋中设有一个投镖靶 该靶为正方形板.边长为18厘米,挂于前门附近的墙上,顾客花两角伍分的硬币便可投一镖并可有机会赢得一种意大利馅饼中的一个,投镖靶中画有三个同心圆,圆心在靶的中心,当投镖击中半径为1厘米的最内层圆域时.可得到一个大馅饼;当击中半径为1厘米到2厘米之间的环域时,可得到一个中馅饼;如果击中半径为2厘米到3厘米之间的环域时,可得到一个小馅饼,如果击中靶上的其他部分,则得不到谄饼,我们假设每一个顾客都能投镖中靶,并假设每个圆的周边线没有宽度,即每个投镖不会击中线上,试求一顾客将嬴得: (a )一张大馅饼,(b )一张中馅饼,(c )一张小馅饼,(d )没得到馅饼的概率解析:我们实验的样本空间可由一个边长为18的正方形表示。
右图表明R 和子区域r 1、r 2、r 3和r,它们分别表示得大馅饼、中馅饼、小馅饼或没得到馅饼的事件。
01.032418)1()()(2211====ππ的面积的面积R r r p a ; 03.0324318)1()2()()(22222==-==πππ的面积的面积R r r p b ; 05.0324518)2()3()()(22233==-==πππ的面积的面积R r r p c ; 91.0324318)3(324)()(2244==-==ππ的面积的面积R r r p d 。
题型3:体积问题例7.(1)在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,求发现大肠杆菌的概率。
解析:由于取水样的随机性,所求事件的概率等于水样的体积与总体积之比,即2/400=0.005。
(2)如果在一个5万平方公里的海域里有表面积达40平方公里的大陆架贮藏着石油,假如在这海领域里随意选定一点钻探,问钻到石油的概率是多少?解析:由于选点的随机性,可以认为该海域中各点被选中的可能性是一样的,因而所求概率自然认为等于贮油海域的面积与整个海域面积之比,即等于40/50000=0.0008。
例8.在线段[0,1]上任意投三个点,问由0至三点的三线段,能构成三角形与不能构成三角形这两个事件中哪一个事件的概率大。
解析:设0到三点的三线段长分别为x,y,z右端点坐标为x,y,z ,显然1,,0≤≤z y x。
段构成三角形的充要条件是: x z y y z x z y x >+>+>+,,。
在线段[0,1]上任意投三点x,y,z 。
与立方体10≤≤x ,10≤≤y ,10≤≤z 中的点),,(z y x 边长为1的立方体T 中均匀地掷点,而点落在x z y y z x z y x >+>+>+,,区域中的概率;这也就是落在图中由ΔADC ,ΔADB ,ΔBDC ,ΔAOC ,ΔAOB ,ΔBOC 所围成的区域G 中的概率。
由于,1)(=T V211213131)(33=⨯⨯⨯-=G V , 21)(/)(==∴T V G V p 由此得,能与不能构成三角形两事件的概率一样大。
题型4:随机模拟例9.随机地向半圆0y <<(a 为正常数)内掷一点,点落在园内任何区域的概率与区域的面积成正比,求原点与该点的连线与x 轴的夹角小于/4π的概率. 解析:半圆域如图设A =‘原点与该点连线与x 轴夹角小于/4π’ 由几何概率的定义2221142()12a a A P A a ππ+==的面积半园的面积112π=+。
例10.随机地取两个正数x 和y ,这两个数中的每一个都不超过1,试求x 与y 之和不超过1,积不小于0.09的概率.解析:01,01x y ≤≤≤≤,不等式确定平面域S 。
A =‘1,0.09x y xy +≤≥’则A 发生的充要条件为01,10.09x y xy ≤+≤≥≥不等式确定了S 的子域A , 故:0.90.10.9()(1)A P A x dx x==--⎰的面积S 的面积 0.40.18ln30.2=-=例11. 曲线y=-x 2+1与x 轴、y 轴围成一个区域A ,直线x=1、直线y=1、x 轴围成一个正方形,向正方形中随机地撒一把芝麻,利用计算机来模拟这个试验,并统计出落在区域A 内的芝麻数与落在正方形中的芝麻数。
答案:如下表,由计算机产生两例0~1之间的随机数,它们分别表示随机点(x,y )的坐标。
如果一个点(x,y )满足y ≤-x 2+1,就表示这个点落在区域A 内,在下表中最后一列相应地就填上1,否则填0。