使用金属氧化物避雷器要注意的问题

合集下载

交流电力系统金属氧化物避雷器使用导则

交流电力系统金属氧化物避雷器使用导则

3~500kV交流电力系统金属氧化物避雷器使用导则SD 177-86中华人民共和国水利电力部关于颁发《3~500kV交流电力系统金属氧化物避雷器技术条件》和《3~500kV交流电力系统金属氧化物避雷器使用导则》的通知(86)水电技字第55号现颁发《3~500kV交流电力系统金属氧化物避雷器技术条件》(SD176— 86)和《3~500kV交流电力系统金属氧化物避雷器使用导则》(SD177—86),自 1986年12月1日起施行。

该《技术条件》和《使用导则》,系参照国际电工委员会(IEC)有关标准文件并按我国目前金属氧化物避雷器制造和电网情况所制订,是选用和鉴定国产避雷器的技术依据,也是选用进口避雷器的参照文件。

施行中的问题和意见,请告北京清河电力科学研究院高压所水利电力部避雷器标准化技术委员会秘书处。

1985年8月25日1 引言金属氧化物避雷器是用以保护电气设备免受各种过电压危害的保护设备。

与过去常规使用的普通和磁吹阀式避雷器(电阻片的主要原料为碳化硅)相比,由于以金属氧化物为主要原料的电阻片具有优异的非线性伏安特性,可以不需要串联间隙。

因此,保护特性仅有冲击电流通过时的残压,没有因间隙击穿特性变化所造成的复杂影响。

这种电阻片因冲击电流波头时间减小而导致残压增加的特性,也比碳化硅阀片平稳,陡波响应特性很好。

金属氧化物避雷器没有工频续流,因而也没有灭弧问题。

它的电阻片单位体积吸收能量大,还可以并联使用,使能量吸收能力成倍提高,在保护超高压长距离输电系统和大容量的电容器组时特别有利。

另一方面,由于金属氧化物避雷器没有串联间隙,电阻片不仅要承受雷电过电压和操作过电压,还要耐受正常的持续相电压和暂时过电压,因而存在着在这些电压作用下的老化、寿命和热稳定问题。

此外,在某些情况下,如避雷器和邻近物体间的杂散电容,以及污秽等因素引起电压沿避雷器分布不均匀时,将造成避雷器的局部过热。

因此,在使用中考虑的问题与常规的以碳化硅为主要原料的避雷器有所不同,需要加以注意。

金属氧化物避雷器故障检测技术及事故分析

金属氧化物避雷器故障检测技术及事故分析
creased and seriously heated. By studying mechanism causing the arrester degradationꎬput forward quality manage ̄
ment measures.
Key words:metal ̄exide arresterꎻaccident checkꎻinternal ponding
被限制在允许的范围内ꎬ有效保护电力设备的稳定
运行ꎮ 常见的瓷外套金属氧化物避雷器如图 1 所
示 [5] ꎮ
C:等效线性电容 R:等效非线性电阻



I C :容性电流分量 I R :阻性电流分量 I X :总泄露电流
图 2 MOA 等效电路图
12:电容器 13:电阻片 14:绝缘筒 44:绝缘杆 49:吸湿袋
电流基波有明显增大ꎬ阻性电流的高次谐波也有增
定ꎬ因此ꎬ一般情况下总泄露电流的变化可以体现为
加ꎬ但将较于基波增加量较小ꎮ 而老化通常表现为
阻性泄露电流分量的变化ꎮ 由于阻性电流只占总泄
在工作电压下ꎬ阻性电流三次谐波有明显增大ꎬ阻性
露电流的很小部分ꎬ只有当出现 MOA 出现较严重
的故障时ꎬ总泄露电流才会有明显变化ꎮ
( Jiaxing Power Supply CompanyꎬJiaxing 314000ꎬChina)
Abstract:The arrester is a kind of protective device. Its normal operation is of importance to power equipment and
合判断该组避雷器 B 相上节存在严重内部缺陷ꎮ
已知 该 组 避 雷 器 采 用 瓷 质 外 套ꎬ 出 厂 日 期 为

氧化锌避雷器损坏的原因及预防措施

氧化锌避雷器损坏的原因及预防措施

氧化锌避雷器损坏的原因及预防措施氧化锌避雷器是一种非常有效的电网系统防御雷电过电压保护装置,它的特性可以保证其长期稳定运行。

本文对氧化锌避雷器的损坏原因进行了分析,并提出具体的预防措施,为电力系统氧化锌避雷器的可靠运行提供了技术参考。

标签:氧化锌避雷器接地电阻过电压阀片预防措施氧化锌避雷器具有无间隙、无续流、残压低等优点,是一种具有良好保护性能的避雷器。

装设氧化锌避雷器是保护电气设备免遭大气过电压损坏的主要手段,也是防护某些内部过电压的重要措施,因此在电网配电系统中广泛使用。

氧化锌避雷器在正常运行情况下,避雷器是不导通的,当配网线路遭受雷击过电压或系统过电压,作用在避雷器上的电压达到避雷器的动作电压时,避雷器就会导通,通过大电流,释放过电压能量并将过电压抑制在一定水平,减少了对电力设备的冲击,保护了电力设备的绝缘。

广东电网清远阳山供电局地处粤北山区,春夏两季雷电多发,电网设备易受雷击过电压冲击,所以配网线路、台变都基本上安装了氧化锌避雷器。

从这几年的运行经验来看,因氧化锌避雷器损坏造成线路跳闸、接地事故的情况时有发生,对我局的供电可靠性提高带来了比较大的影响。

现结合我局这些年氧化锌避雷器的运行情况,探讨氧化锌避雷器损坏的原因及预防措施。

1 氧化锌避雷器损坏的主要原因1.1 接地装置的接地电阻过大,造成对氧化锌避雷器反击反击现象是指接地导体由于地电位升高可以反过来向带电体放电。

当雷电击到氧化锌避雷器时,雷电流经过避雷器的接地体泄放到大地。

如果接地装置的接地电阻过大,它通过雷电流时电位将升得很高,不能放电,部分雷电流向避雷器或配变等设备反向冲击,造成反击使避雷器损坏,有时甚至击毁配电变压器。

粤北山区属于石灰岩地区,土壤的电阻率较大,要将接地装置的接地电阻做到很小在技术经济上不合算,因此接地电阻允许值相对较大。

而且我局一些地区的配电网由于运行时间久,缺乏资金整改,接地体存在腐蚀、损伤等情况。

从发生氧化锌避雷器的损坏的情况来分析,这些地区发生的事故数要比其他地区多得多。

线路用金属氧化物避雷器防雷效果分析及安装注意事项

线路用金属氧化物避雷器防雷效果分析及安装注意事项

② 全 密封 、防潮 、防爆 炸 、产 品 免 维护 。 ③ 耐 污性 能好 、耐 电蚀 、抗 老 化 。 ④ 机 械强 度 高 、耐 碰撞 、运 输 无 破 损 。 2 3 避 雷 器 正 常使 用条 件 .
环 境 温度
电源频 率
寻求 新 的方 法 、 新 的技 术来 提 高线 路 的 防雷 能力 。 复合 外 套 技术 的发 展 ,使输 电线路 使 用避 雷 器 作 为 防雷 技 术 手段 成 为 可 能 。 9 6年肇 庆 电力 工 业 19 局与 清华 大 学 合作 开 展 对架 空送 电线路 使 用复 合 外 套 带 间 隙金 属 氧化 物 避 雷器 ,以提 高线 路 防雷 能 力
的研 究 ,于 1 9 9 7年 4月 首 先 在 1 0 V 珠 西 线 3基 1k
土4 ℃ 。 0
4 Hz 6 Hz 0 ~ 2 。
地 震烈 度 里 氏 7级及 以下 。
最 大 风速 工 作 电压 不 超 过 3 m/ 。 5 s 不超 过产 品 的持 续 运 行 电压 。
杆 塔 挂 网运 行 9只线 路 型复 合外 套 金属 氧 化物 避 雷
中 图 分 类 号 :TM 8 2 6 文 献 标 识 码 :B
1 前 言
随 着 电力 系 统 的发 展 ,由于 雷击 输 电线 路 而引
起 的 事 故 日益 增 多 。 肇 庆 市 地 处 广 东 西 部 , 雷 电 活 动 强 烈 ,按 原 有 统 计 ,年 平 均 雷 曝 日 为 9 4个 。近 年 据 气 象 部 门 统 计 ,年 平 均 雷 曝 日为 1 8 ,1 9 3个 9 7年





( 第 1 9期 ) 总 8

无间隙金属氧化物避雷器说明书

无间隙金属氧化物避雷器说明书

无间隙金属氧化物避雷器说明书一、产品概述无间隙金属氧化物避雷器是一种用于保护电力系统设备免受雷击影响的重要装置。

它采用金属氧化物电阻材料制成,具有快速响应、高能力吸收和长寿命等优点。

二、产品结构无间隙金属氧化物避雷器由外壳、中心引线、金属氧化物电阻体和压盖等主要部件组成。

外壳采用高强度绝缘材料制成,能够有效地隔离外界环境。

中心引线连接避雷器与电力系统设备,起到引导雷电电流的作用。

金属氧化物电阻体是避雷器的核心部分,能够在雷电冲击下迅速吸收电能,并将其导向地面。

压盖用于固定金属氧化物电阻体和保护避雷器内部结构。

三、产品特点1. 快速响应:无间隙金属氧化物避雷器能够在微秒级别内响应雷电冲击,快速导向雷电电流,避免电力系统设备受到损害。

2. 高能力吸收:金属氧化物电阻体具有高能量吸收能力,能够有效地吸收雷电冲击产生的能量,保护电力系统设备免受损害。

3. 长寿命:无间隙金属氧化物避雷器采用优质材料制成,具有良好的耐久性和稳定性,能够长时间稳定工作。

4. 安全可靠:避雷器内部采用多重保护措施,能够有效地防止火灾和爆炸等安全事故发生。

四、产品安装与使用1. 安装位置:无间隙金属氧化物避雷器应安装在电力系统设备的进线侧,以确保能够及时吸收雷电冲击。

2. 安装要求:安装时应保持避雷器与设备之间的连接导线短而粗,以减小电流通过的电阻,提高避雷器的响应能力。

3. 使用注意事项:使用过程中应定期检查避雷器的运行状态,如发现异常应及时更换。

同时,避雷器应避免受到过大的机械冲击,以免影响其正常工作。

五、产品维护与检修1. 维护要求:无间隙金属氧化物避雷器无需常规维护,但应定期进行检查,确保其外壳完好无损,内部结构正常。

2. 检修方法:如遇到避雷器损坏或失效,应及时更换。

更换时应按照相关规定进行操作,并确保新避雷器符合要求。

3. 检修周期:无间隙金属氧化物避雷器一般建议每年进行一次检修,以确保其正常工作状态。

六、产品注意事项1. 请勿在避雷器表面涂抹任何物质,以免影响其正常工作。

金属氧化物避雷器常见的故障类型和预控措施

金属氧化物避雷器常见的故障类型和预控措施

科学技术创新2019.26物质按照一定比例混合成为有机肥。

在此同时,还要保证对污水污泥的杀菌杀虫效果。

当前,我国的污泥无害化技术已经研发出了土壤改良剂和颗粒复合肥等的有机肥料,努力给农业的生产提供肥力的保障,在绿化和林区建设等方面,污泥的混合堆肥可以帮助草坪和树苗的吸热和保水,以此来保障草料和树苗的存活率,对城市的绿化提供了肥力的保障。

3.2城市污水处理中污泥在能源转化当中的利用城市污水污泥当中包含的组成成分较多,各种元素可以利用转化技术重新以能源的形式在不同的领域当中应用。

首先,在城市污水污泥处理期间,可以将污泥放置到无氧的环境当中去,污泥长期在无氧环境当中,内部的有机物成分就会逐渐的发生分解反应,将污泥中的有机物转化成具有稳定特性的物质,在转化的过程中,污泥当中的病菌、病毒微生物就会脱离污泥结构。

在无氧转化之后,会生成具有可燃性的气体,可以作为燃料资源应用于城市生产活动当中去。

其次,热能利用技术的应用,热能利用技术是将城市污水污泥利用技术手段转化成油资源,污泥在低温环境当中,会产生热分解反应,利用这一特性与污水处理技术融合应用,就能够完成污泥的转化。

先将污泥放在无氧环境中加热处理,当加热温度达到污泥热分解范围时,污泥就会在无氧环境下自动热分解,分解后污泥有机物会反应生成碳氢化合物,碳氢化合物与油、碳进行混合,就会生成具有可燃性的物质。

这一技术操作所需要消耗的成本并不多,因而在我国城市污水污泥资源化处理利用当中的应用已经逐渐广泛起来。

另外,城市污水污泥还可以通过其他的技术转化成其他的能源资料,如絮凝剂、粘合剂等。

3.3城市污水处理中污泥在建材领域的资源化利用城市污水污泥的组成物质当中,有很多物质与建筑领域应用的水泥材料相同,将城市污水污泥当中这些成分进行资源化利用,也可以用于建筑水泥制作。

利用废物资源制作建筑材料已经是常见的现象了,这种技术属于绿色环保技术的一种,利用污泥资源制作的水泥称之为生态水泥。

金属氧化物避雷器的正确使用

金属氧化物避雷器的正确使用

金属氧化物避雷器的正确使用当雷击现象发生时,对于电力设备和建筑物来说,如果没有有效的保护措施,就会造成严重的危害。

金属氧化物避雷器(Metal oxide surge arrester)是一种保护电力设备和建筑物的电气性能的重要设备,它利用金属氧化物等材料的高电导率和非线性电阻特性,对雷电高电压进行损耗,并将其导向大地,从而有效地保护电力设备和建筑物免受雷击伤害。

在本文中,我们将介绍金属氧化物避雷器的正确使用方法,以及几个需要注意的问题。

金属氧化物避雷器的正确使用方法1. 选型金属氧化物避雷器的选型要根据电力设备或建筑物的额定电压和额定电流来选择。

一般来说,避雷器的直流击穿电压应该比设备的额定电压要高一些,不能低于设备额定电压的1.2倍,同时还要考虑设备的运行电压和运行电流。

2. 安装1.避雷器的选用应与保护接地体相匹配,以便建立可靠的雷电保护系统。

2.避雷器的安装应尽量在设备的终端电缆或设备箱内部。

3.避雷器应安装在保护接地线路或接地体与设备间电缆末端,并应采取必要的防护措施,如罩盖或隔离装置等。

4.避雷器应水平放置,以避免过大倾斜造成局部放电,特别是铸造避雷器的情况更为严重。

3. 检查1.避雷器应由技术人员按一定周期进行定期的检查。

2.检查避雷器绝缘状态,应用500V兆欧表测量两端之间绝缘电阻值,超出规定值应及时更换。

3.如检查到避雷器或连接线条有损坏不能继续使用,应及时更换。

4. 注意事项1.由于避雷器是工作在高电压、大电流状态下,因此其使用寿命一般为5~10年,应定期检查、维护和更换。

2.避雷器不能进行修理,如遇到避雷器发生瞬间过电压和高电流冲击时,应及时更换避雷器。

3.在安装和维护过程中,必须切断与避雷器同在回路内其他电缆的电源或信号引线,确保安全可靠。

4.避雷器所处的回路不可开路或动态操作,否则避雷器将变为普通的电容器或电感器,产生错觉和误解,虚大其实。

结论金属氧化物避雷器作为一种重要的雷电保护设备,其正确使用能够有效地避免雷电对电力设备和建筑物带来的危害。

金属氧化物避雷器的特点和试验方法

金属氧化物避雷器的特点和试验方法

金属氧化物避雷器的特点和试验方法(最新版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的安全管理制度,如通用安全、交通运输、矿山安全、石油化工、建筑安全、机械安全、电力安全、其他安全等等制度,想了解不同制度格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of safety management systems, such as general safety, transportation, mine safety, petrochemical, construction safety, machinery safety, electrical safety, other safety, etc. systems, I want to know the format and writing of different systems ,stay tuned!金属氧化物避雷器的特点和试验方法1概述有机复合绝缘交流无间隙金属氧化物避雷器(以下简称MOA)是近时期发展迅猛的一种新型MOA。

金属氧化物避雷器损坏原因与预防措施

金属氧化物避雷器损坏原因与预防措施

金属氧化物避雷器损坏原因与防备措施有关金属氧化物避雷器的损坏原因,包括受潮、额定电压和持续运行电压取值偏低、电网电压波动、接地电阻不合格造成反击等,并介绍了防止金属氧化物避雷器损坏的措施,供大家参考。

金属氧化物避雷器损坏为保护电力设施免受雷电过电压和系统过电压的冲击,普遍安装使用了金属氧化物避雷器。

特别是在10kV配电网中普遍采纳了无间隙金属氧化物避雷器,随着运行时间的推移,在10kV配电网中因金属氧化物避雷器损坏引起的线路跳闸、接地事故常常发生,严重影响了10kV配电网的安全运行。

一、金属氧化物避雷器的损坏原因综合无间隙金属氧化物避雷器的损坏情况看,质量好的损坏较少,而质量差的损坏较多;在晴天损坏较少,在雷雨天损坏较多;在无操作时损坏较少,在有操作时损坏较多;在正常运行中损坏较少,在异常运行时损坏较多。

1.1受潮金属氧化物避雷器是由硅橡胶作为避雷器的封壳,硅橡胶套封壳质量低劣,重要是小厂假冒伪劣产品,生产厂采纳的技术不完善,或采纳的密封材料抗老化性能不稳定,在温差变化较大或运行时间接近产品寿命后期,造成其密封不良。

避雷器的两端加工粗糙、使潮气或水分浸入,造成内部绝缘损坏,加速了电阻片的劣化而引起损坏。

从事故后避雷器残骸可以看出,阀片没有通流痕迹,阀片两端喷铝面没有发觉大电流通过后的放电斑痕。

而在硅橡胶套内壁或阀片侧面却有明显的闪络痕迹,在金属附件上有锈斑或锌白,这就是金属氧化物避雷器受潮的影响。

1.2额定电压和持续运行电压取值偏低金属氧化物避雷器的额定电压是表明其运行特性的一个紧要参数,也是一种耐受工频电压的本领指标。

金属氧化物避雷器的阀片耐受工频电压的本领是与运行电压的持续时间紧密相关。

(电工天下.)持续运行电压也是金属氧化物避雷器的紧要特性参数,该参数的选择,对金属氧化物避雷器的牢靠性有很大影响。

在运行中允许长期地施加在避雷器端子上的工频电压有效值,它覆盖电力系统运行中可能持续地施加在金属氧化物避雷器上的工频电压最高值。

避雷器常见缺陷分析及预防技术

避雷器常见缺陷分析及预防技术

避雷器常见缺陷分析及预防技术摘要:目前电力系统所使用的避雷器主要为金属氧化物避雷器(简称避雷器),其运行的可靠性对保证电力系统安全运行起着非常重要的作用。

避雷器能释放雷电或操作过电压能量,保护电气设备免受瞬时过电压危害,又能截断续流,不致引起系统接地短路故障。

当过电压值达到规定的动作电压时,避雷器立即动作,流过电荷,限制过电压幅值,保护设备绝缘免遭击穿破坏;电压值正常后,避雷器又迅速恢复原状,以保证系统正常供电。

关键词:避雷器;缺陷;预防技术一、避雷器故障分析(一)底部密封不良导致内部受潮该避雷器型号为HY5WZ—51/134,2005年10月出厂,2007年2月投运。

2015年3月22日,对某110kV变电站进行红外精确测温时,发现410B相避雷器异常,红外测温图谱如图1所示。

图1410避雷器红外测温图谱如图1所示,B相避雷器最高温度为26.0℃,A、C相温度约为16.7℃,温差达9.3K;B相本体上下温差达8.6K。

B相上部发热,上下之间具有较为明显的分界面。

同时对该避雷器进行运行电压下持续电流检测,其检测数据见表1。

表1避雷器运行中持续电流检测数据注:环境温度13℃,相对湿度71%。

对表1数据进行横向分析,发现B相避雷器全电流是A、C相电流的3倍多,阻性电流分别超出A、C相的30倍和10倍,阻性电流占全电流88.7%,初步判断避雷器内部存在受潮。

停电后对410避雷器进行诊断性试验,试验数据见表2。

表2410避雷器停电试验数据注:(1)交接试验时间为2007年1月14日,上次例试时间为2013年9月18日;(2)因避雷器例行试验时不测量避雷器本体绝缘电阻,故上表中将本体绝缘电阻与交接值对比;(3)环境温度16℃,相对湿度62%。

由表2可知,410B相避雷器本体绝缘明显下降;U1mA远小于规定值73kV,其初值差为-57.2%;I0.75U1mA大于规定的50μA,超过初值30倍,A、C相各项数据正常。

金属氧化物避雷器的特点和试验方法范本(2篇)

金属氧化物避雷器的特点和试验方法范本(2篇)

金属氧化物避雷器的特点和试验方法范本金属氧化物避雷器是一种常用的电力设备,它可以在电力系统中对过电压进行保护。

它的特点和试验方法是电力工程师和技术人员关注的重要内容。

本文将介绍金属氧化物避雷器的特点和试验方法,以帮助读者更好地了解和使用这种电力设备。

金属氧化物避雷器的特点:1. 高电气性能:金属氧化物避雷器具有良好的电气性能,可以有效地限制和消除过电压,保护电力系统设备不被过高的电压损害。

2. 高击穿电压:金属氧化物避雷器的击穿电压较高,在正常运行状态下,其击穿电压远大于系统的工作电压,可以提供可靠的过电压保护。

3. 快速响应:金属氧化物避雷器的响应速度非常快,可以在过电压出现时迅速稳定电压,避免电力设备受到损害。

4. 高能量吸收能力:金属氧化物避雷器可以吸收大量的过电压能量,将其分散和释放,避免能量导致设备的烧毁或其他损坏。

5. 耐久性强:金属氧化物避雷器可以在不同的环境条件下正常运行,具有较长的使用寿命。

金属氧化物避雷器的试验方法范本:1. 绝缘电阻试验:根据国家标准,应使用交流电源和万用表对金属氧化物避雷器的绝缘电阻进行试验。

首先,将试验电源连接到避雷器的电极上,然后测量其绝缘电阻值。

设备的绝缘电阻应满足国家标准的要求。

2. 放电电压试验:放电电压试验是对金属氧化物避雷器的击穿电压进行测试。

测试时,将试验电压逐渐增加,直至击穿,记录下此时的电压值。

击穿电压应与国家标准规定的要求相符。

3. 充电特性试验:充电特性试验是对金属氧化物避雷器的充电过程进行测试。

试验时,将恒定电流通过避雷器进行充电,然后记录下充电过程中的电压和时间数据,根据数据绘制充电曲线。

充电特性应符合国家标准的要求。

4. 放电特性试验:放电特性试验是对金属氧化物避雷器的放电过程进行测试。

试验时,将预充电的避雷器与高压脉冲电源连接,记录下放电过程中的电压和时间数据,根据数据绘制放电曲线。

放电特性应符合国家标准的要求。

5. 温度特性试验:温度特性试验是对金属氧化物避雷器在不同温度条件下的工作情况进行测试。

金属氧化物避雷器爆炸原因及应对措施

金属氧化物避雷器爆炸原因及应对措施

金属氧化物避雷器爆炸原因及应对措施摘要:由于金属氧化物避雷器具有通流容量大、稳定性好等优点,从而取代传统碳化硅避雷器,但由于中性点不接地系统内过电压持续时间长、倍数高,同样对金属氧化物避雷器有较大的威胁。

在运行中,金属氧化物避雷器的爆炸事故时有发生,大部分是在雷雨天气损坏,也有个别在正常运行情况下损坏的。

关键词:金属氧化物;避雷器;爆炸原因;对策;分析引言:从避雷器的结构设计、原理、长持续时间电流脉冲、热稳定性以及长期稳定性方面,设计了两种避雷器:有空气间隙避雷器和无空气间隙避雷器。

从避雷器的密封性能方面分析了引起避雷器爆炸的原因:潮气进入避雷器内部,引起内部闪络,导致电阻片老化,电阻片温度升高在正常电压下失效,引起避雷器爆炸或发生热崩溃。

通过分析得知,为了保证避雷器的防爆性能,避雷器应密封性能好、方波通流能力高、稳定性好、内部无空气间隙,且避雷器最好为硅橡胶直接注塑到金属氧化物电阻片上的结构。

1.避雷器爆炸主要原因1.1受潮密封不良或漏气,使潮气或水分侵入。

密封不良的主要原因为金属氧化物避雷器的密封胶圈永久性压缩变形的指标达不到设计要求,装入金属氧化物避雷器后,易造成密封失效,使潮气或水分侵入。

金属氧化物避雷器的两端盖板加工粗糙、有毛刺,将防爆板刺破导致潮气或水分侵入。

有的金属氧化物避雷器的端盖板采用铸铁件,但铸造质量极差,砂眼多,加工时密封槽因此而出现缺口,使密封胶圈装上后不起作用,潮气或水分由缺口侵入。

组装时漏装密封胶圈或将干燥剂袋压在密封圈上,或是密封胶圈位移,或是没有将充氮气的孔封死等。

装氮气的钢瓶未经干燥处理,就灌入干燥的氮气,致使氮气受潮,在充氮时将潮气带人避雷器中。

瓷套质量低劣,在运输过程中受损,出现不易观察的贯穿性裂纹,致使潮气侵入。

总装车间环境不良,或是经长途运输后,未经干燥处理而附着有潮气的阀片和绝缘件装入瓷套内,使潮气被封在瓷套内。

上述密封不好会使绝缘拉杆等受潮,是后天的原因,但密封好的金属氧化物避雷器,也会因绝缘拉杆等受潮发生爆炸,这就有先天的原因,即总装车间环境不良等造成的。

110kV金属氧化物避雷器

110kV金属氧化物避雷器

武汉华能阳光电气有限公司金属氧化物避雷器说明书说明:1)上述泄漏比距均以最高电压计算;2)Y10W1-108/281、Y1.5W-72/186 、Y5W1-51/134、需附放电计数器, 及在线监测仪;3)Y5WZ-17/45需附放电计数器。

第一章:总则1.本技术条件的使用范围为110kV金银湖变电站110kV金属氧化物避雷器。

它包括110kV金属氧化物避雷器本体及辅助设备的功能设计、结构、性能、安装等方面的技术要求。

2.本技术条件书提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规范的条文。

承包方应提供符合本技术条件书和国家标准及行业标准的产品。

3.本技术条件书为订货合同的附件,与合同正文具有同等效力。

4.投标者应生产过三套或以上同类产品,并已成功运行3年及以上;应通过ISO9000认证。

5.本技术条件书以外的未尽事宜,应由采购方与承包方共同解决。

第二章:标准卖方供货设备应遵照适用的最新版国家标准:GB311.1 高压输变电设备的绝缘配合武汉华能阳光电气有限公司GB11032 交流无间隙金属氧化物避雷器DL/T620-1997 交流电气装置的过电压保护和绝缘配合GB5582 高压电力设备外绝缘污秽等级投标书中应提供的资料投标商应在投标书中提供下列技术文件资料:·产品两部鉴定文件。

·设备外形尺寸图、组装图。

·型式试验报告。

·同类设备的成功供货记录(具有设备简要参数、安装地点名称、投运时间、运行情况的记录)。

·与评标有关的其它技术文件资料。

2.1备品备件、专用工器具和仪表·技术数据表和有关技术资料,详见附录3。

投标商应提供随设备配备的备品备件、专用工器具和仪表,并列入附录1和附录2。

2.2 技术文件为满足施工图设计需要,中标商在签订合同后必须向买方和设计单位提供下列技术文件资料。

2.3图纸2.4 组装图及有关说明应表示设备总的装配情况,包括外形尺寸,设备的重心位置与总重量;瓷套的爬电距离、干弧距离;受风面积、固有频率、主接线端子板位置、武汉华能阳光电气有限公司大小尺寸、材料及允许的作用力(三个方向);运输尺寸和重量。

交流电力系统金属氧化物避雷器使用导则

交流电力系统金属氧化物避雷器使用导则

交流电力系统金属氧化物避雷器使用导则-----------------------作者:-----------------------日期:3~500kV交流电力系统金属氧化物避雷器使用导则SD 177-86中华人民共和国水利电力部关于颁发《3~500kV交流电力系统金属氧化物避雷器技术条件》和《3~500kV交流电力系统金属氧化物避雷器使用导则》的通知(86)水电技字第55号现颁发《3~500kV交流电力系统金属氧化物避雷器技术条件》(SD176—86)和《3~500kV交流电力系统金属氧化物避雷器使用导则》(SD177—86),自1986年12月1日起施行。

该《技术条件》和《使用导则》,系参照国际电工委员会(IEC)有关标准文件并按我国目前金属氧化物避雷器制造和电网情况所制订,是选用和鉴定国产避雷器的技术依据,也是选用进口避雷器的参照文件。

施行中的问题和意见,请告北京清河电力科学研究院高压所水利电力部避雷器标准化技术委员会秘书处。

1985年8月25日1 引言金属氧化物避雷器是用以保护电气设备免受各种过电压危害的保护设备。

与过去常规使用的普通和磁吹阀式避雷器(电阻片的主要原料为碳化硅)相比,由于以金属氧化物为主要原料的电阻片具有优异的非线性伏安特性,可以不需要串联间隙。

因此,保护特性仅有冲击电流通过时的残压,没有因间隙击穿特性变化所造成的复杂影响。

这种电阻片因冲击电流波头时间减小而导致残压增加的特性,也比碳化硅阀片平稳,陡波响应特性很好。

金属氧化物避雷器没有工频续流,因而也没有灭弧问题。

它的电阻片单位体积吸收能量大,还可以并联使用,使能量吸收能力成倍提高,在保护超高压长距离输电系统和大容量的电容器组时特别有利。

另一方面,由于金属氧化物避雷器没有串联间隙,电阻片不仅要承受雷电过电压和操作过电压,还要耐受正常的持续相电压和暂时过电压,因而存在着在这些电压作用下的老化、寿命和热稳定问题。

此外,在某些情况下,如避雷器和邻近物体间的杂散电容,以及污秽等因素引起电压沿避雷器分布不均匀时,将造成避雷器的局部过热。

金属氧化物避雷器的正确使用(正式版)

金属氧化物避雷器的正确使用(正式版)

文件编号:TP-AR-L6295In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives.(示范文本)编订:_______________审核:_______________单位:_______________金属氧化物避雷器的正确使用(正式版)金属氧化物避雷器的正确使用(正式版)使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。

材料内容可根据实际情况作相应修改,请在使用时认真阅读。

1. 应安装在靠近配电变压器侧金属氧化物避雷器(MOA)在正常工作时与配变并联,上端接线路,下端接地。

当线路出现过电压时,此时的配变将承受过电压通过避雷器、引线和接地装置时产生的三部分压降,称作残压。

在这三部分过电压中,避雷器上的残压与其自身性能有关,其残压值是一定的。

接地装置上的残压可以通过使接地引下线接至配变外壳,然后再和接地装置相连的方式加以消除。

对与如何减小引线上的残压就成为保护配变的关键所在。

引线的阻抗与通过的电流频率有关,频率越高,导线的电感越强,阻抗越大。

从U=IR可知,要减小引线上的残压,就得缩小引线阻抗,而减小引线阻抗的可行方法是缩短MOA距配变的距离,以减小引线阻抗,降低引线压降,所以避雷器应安装在距离配电变压器近点更合适。

2. 配变低压侧也应安装如果配变低压侧没有安装MOA,当高压侧避雷器向大地泄放雷电流时,在接地装置上就产生压降,该压降通过配变外壳同时作用在低压侧绕组的中性点处。

安装使用说明书

安装使用说明书

500kV交流无间隙金属氧化物避雷器安装使用说明书明电舍(郑州)电气工程有限公司1. 用途500kV电力系统用金属氧化物避雷器是用于保护500kV电力系统中电气设备免受大气过电压和操作过电压损害的电器。

产品执行标准:GB11032-2000《交流无间隙金属氧化物避雷器》。

2、使用条件1)适用于户内、户外;2)环境温度不高于+40℃,不低于-40℃;3)太阳光最大辐射强度为1.1kW/m2;4)海拔高度不超过2000m;5)交流电源的频率不小于48 Hz,不高于62 Hz;6)长期施加在避雷器端子间的工频电压不超过避雷器的持续运行电压;7)地震烈度8度及以下地区;8)最大风速不超过35m/s。

3. 型号说明Y 20 W 444 / 1063 W1W—防污型(III级污秽)W1—重防污型(IV级污秽)标称放电电流下的最大雷电残压峰值(kV)避雷器的额定电压有效值(kV)结构特性: W—无间隙C—串联间隙B—并联间隙标称放电电流(kA)产品型式代号:Y表示瓷绝缘外套金属氧化物避雷器4. 结构和优点500kV电力系统用金属氧化物避雷器由元件、绝缘底座及附件均压环构成,元件由芯体、瓷外套、端部密封结构及绝缘部件构成,芯体由非线性金属氧化物电阻片叠加组成。

避雷器具有良好的密封结构和可靠的压力释放装置。

金属氧化物避雷器电气、机械性能稳定,运行可靠。

具有保护特性好、无工频续流、陡波响应特性好、耐污性强、通流容量大、结构简单、便于维护等优点。

5. 工作原理避雷器的核心元件是金属氧化物电阻片,它具有优异的非线性电阻特性,在电力系统正常运行电压下呈现为高电阻,流过的电流很小,可视为绝缘体,而在过电压作用下,电阻片呈低电阻,使有害的过电压能量迅速通过避雷器泄放入大地,把过电压限制在与之并联的电气设备绝缘耐受水平以下,从而实现对电气设备的保护。

6. 主要性能注:防污型在型号后加注W、重防污型加注W1。

其他主要特性①持续电压下漏电流全电流(有效值) 2000μA以下阻性电流(峰值) 500μA以下②工频4mA参考电压不小于避雷器额定电压③ O.75倍直流参考电压下漏电流 50μA以下④ 1.O5倍持续运行电压下局部放电量 10pC以下无线电干扰电压 300μV以下⑤2ms方波通流容量 2000A 20次7. 验收、安装(1) 验收①安装产品前,打开包装箱,检查随机文件(安装使用说明书、装箱单、产品合格证)是否齐全、正确。

交流电力系统金属氧化物避雷器使用导则

交流电力系统金属氧化物避雷器使用导则

交流电力系统金属氧化物避雷器使用导则交流电力系统金属氧化物避雷器使用导则随着电力系统的不断发展,安全问题已经成为电力系统建设和运营中的一大难题。

其中,雷电对输电线路和电站设备的安全造成威胁,为此,金属氧化物避雷器出现了,顺应了市场的要求和技术的进步,解决了电能质量问题,减轻了雷电对设备的损害以及人员伤亡和设备损坏的风险。

本文将从以下几个方面来介绍交流电力系统金属氧化物避雷器的使用导则:一、金属氧化物避雷器的定义金属氧化物避雷器,是一种高压电力设备,用于保护输电线路及相关设备避免受到雷电冲击产生的过电压影响。

它由多个金属氧化物元件组成,可实现骑线和地之间的短路,使电路上的过电压得到短路和消解。

二、金属氧化物避雷器的分类主要有三种类型的金属氧化物避雷器:1.顶置避雷器:安装在电力系统中所遭受的雷暴环境下,以利于直接地连接到上方的重要设备或电缆。

2.侧置避雷器:适用于悬垂在空中的输电线路和鼠害室内的设备。

3.底部避雷器:安装在电力系统中所遭受的雷暴环境下,以利于直接地连接到地下电缆。

三、金属氧化物避雷器的使用1.在设备劳动过程中,应按照正常的运行指标来运行避雷器,提高其安全性和可靠性;2.在遇到雷暴时,避雷器的启动应该及时进行,并根据不同的运作条件和要求进行观察和分析,避免出现误判和误发3.在避雷器的日常维护中,应注意其检查频率和保养方式,如果检修不及时和不到位也会导致不必要的问题;4.在设备出现故障时,要及时进行维修和更新,及时更换不良的材料,以便保证设备的正常运行。

四、金属氧化物避雷器常见问题及处理方法1. 避雷器爆炸避雷器爆炸的原因主要是因为氧化锌元件老化导致避雷器失效,这种情况下,必须更换新的元件。

2. 避雷器的过压值超过额定值如果因为电力系统中出现了其他故障使得避雷器中的元件过载,则应更换新的避雷器。

3.避雷器烧毁如果是避雷器内部过载而导致烧毁,这种情况下应更换新的避雷器,并尽快排除内部故障。

浅谈金属氧化物避雷器的工作原理及试验相关内容

浅谈金属氧化物避雷器的工作原理及试验相关内容

浅谈金属氧化物避雷器的工作原理及试验相关内容氧化锌避雷器是电力系统中不可缺少的电气设备,所以为了保证避雷器正常工作和维护电网的安全稳定运行,必须对避雷器进行试验。

但由于现场运行状况、天气条件、试验接线等主客观条件的影响,试验数据有可能产生较大的偏差,甚至出现错误的数据,对避雷器状态可能会出现误判。

因此文章提出试验中的注意事项,将各种外在因素排除,得到较为精确的试验数据,做出正确判断。

标签:金属氧化物避雷器工作原理注意事项引言金属氧化物避雷器不仅可用来防护大气高电压,也可用来防护操作高电压。

如果出现雷雨天气,电闪雷鸣就会出现高电压,电力设备就有可能有危险,此时避雷器就会起作用,保护电力设备免受损害。

避雷器的最大作用也是最重要的作用就是限制过电压以保护电气设备。

因此我们要了解金属氧化物避雷器的工作原理及其特点。

它的运行状态直接影响电网的稳定性,因此要对氧化锌避雷器进行相关试验,为了对设备做出正确的评估,所以试验中要注意一些细节,以免造成测量数据不准确。

1、金属氧化物避雷器结构及工作原理1.1 复合外套金属氧化物避雷器结构由接线孔、上法兰、上电极、弹簧、环氧管、阀片、硅胶橡胶裙、填充胶、下电极、下法兰组成。

1.2 金属氧化物避雷器工作原理在正常工作电压下,具有极高的电阻,呈绝缘状态;当电压超过其启动值时(如过电压等),金属氧化物阀片电阻变为极小,呈“导通”状态,将雷电流畅通向大地释放。

待电压消失后,金属氧化物阀片电阻又呈现高电阻状态,使“导通”终止,恢复原始状态。

2、金属氧化物避雷器结构特点阀片是以氧化锌(ZnO)基压敏电阻(非线性)为基础,添加Bi2O3,CO2O3,MnO2,Sb2O3,Cr2O3等金属氧化物,经粉碎混合,高温烧结而成。

其非线性比SiC要好得多。

在残压相同的情况下流过的电流较小,所以不用串联火花间隙,由于没有间隙,可以避免有间隙所带来的一系列问题,并且有较平坦的保护特性。

3、金属氧化物避雷器的优点3.1 基本无续流,耐多重雷击或多次操作波的能力强。

使用金属氧化物避雷器要注意的问题

使用金属氧化物避雷器要注意的问题

1 × 2 1 . k 。 查金属氧化物避雷器产 . 1= 3 v 1 2
品说 明书 , 取 1.k 36 V。
3 金属氧化物避 雷器选用类型不正确
( 避 雷器 选 用类 别不 正确 ,会 对 电气 设 备 的 1 防雷 保 护 带来 一 定 的事故 隐 患 。避 雷器 根据 保护
电气 事故 的发 生 。
()金属 氧 化 物 避 雷器 替 代 阀 型避 雷器 已经 2 势在 必行 , 使用 中要注 意两 者试 验方 法 的区别 。 在
[]张利 生. 1 高压并联 电容器运行及维护技术 [ . :中国电力 出版社, 0 6 M] 北京 2 0 [】 . ' 4 2 0 ,交流 电力 系统 金属氧化物避雷器使用导则[】 2 DII 0 — 0 2 /8 s.
在中性点非直接接地系统 中,无间隙金属氧 化物避雷器的额定电压可按下式选择:
≥ () 1
式 中,
切 除单相故障时间系数 。1 0s以内切
除, 1 ; 1 以上切除, I 5 . = . 主 . 0 0 s k . ~1 - =2 3( 1 5 2
作者简介:刘增辉(94 ) 15一,男,电 气高级工程师,从事电气技术及节能监测管理工作。
器用的避雷器有的安装在 门型框架横档上 ,变压 器 安装 在地 上 , 变压 器 与避雷 器 间距离 大 约在 3 ~
4m 左右 ,甚 至有 的两 者 间距离 更 大 。这 样 的安
装 方 式不 正确 。应 该 是避 雷器 尽 量靠 近被 保 护设
对象不 同,可分为配 电型 、电站型、电容型等类 型 。 由于各 种 电气 设备 的绝缘 水平 不 一样 ,如 电
要 用于 保护 并联 补偿 电容 器及 其他 绝缘 较 弱设备
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机电技术 2011年8月
84
作者简介:刘增辉(1954-),男,电气高级工程师,从事电气技术及节能监测管理工作。

周均仁(1966-),男,电气工程师,从事电气技术及节能监测管理工作。

使用金属氧化物避雷器要注意的问题
刘增辉 周均仁
(云南锡业集团公司设备能源处,云南 个旧 661000)
摘 要:介绍了金属氧化物避雷器额定电压U r 、持续运行电压U C 的确定及型号的选择。

指出了使用金属氧化物避雷器存在的问题及解决的方法。

关键词:金属氧化物避雷器;电压;使用
中图分类号:TM862+.1 文献标识码:A 文章编号:1672-4801(2011)04-084-02
云南锡业集团公司供电系统最高电压等级35kV 并且中性点不接地。

在防雷措施方面,发现使用金属氧化物避雷器不正确,不仅造成金属氧化物避雷器自身的损坏,同时造成了被保护设备的损坏,后果相当严重。

综合金属氧化物避雷器存在的问题,主要有几个方面。

1 无间隙金属氧化物避雷器额定电压U r 选择过低
(1) 对金属氧化物避雷器额定电压的概念解读有误,把电力系统的标称电压理解为金属氧化物避雷器的额定电压。

例如选择金属氧化物避雷器用来保护10 kV 级变压器时,误按系统最高电压来选择,即选择额定电压12.7 kV 金属氧化物避雷器。

这样选择的金属氧化物避雷器不能满足暂时过电压的要求,在中性点不接地系统中发生电弧接地时容易烧坏,不仅不能起到保护作用,还会引发事故。

金属氧化物避雷器额定电压指的是施加到避雷器端子间的最大允许工频电压的有效值。

避雷器一般安装在相对地之间,正常工作下承受的是相电压和暂时过电压。

避雷器因为自身的特点,因此其额定电压与电力系统的标称电压以及其它电器(变压器、断路器等)的额定电压有不同的含义。

金属氧化物避雷器额定电压的选择应以电网和被保护设备的暂时过电压为基础。

在中性点非直接接地系统中,无间隙金属氧化物避雷器的额定电压可按下式选择:
r t U kU ≥ (1)
式中,k —切除单相故障时间系数。

10 s 以内切除,k =1.0; 10 s 以上切除,k =1.25~1.3(k =1.25主要用于保护并联补偿电容器及其他绝缘较弱设备
的避雷器)。

U t —暂时过电压,
kV 。

在非直接接地系统中,系统标称电压为3~20 kV 时,U t 取1.1 U m ;系统标称电压为35~66 kV 时,U t 取U m (系统最高电压)。

例如:选用系统标称电压10 kV (系统最高电压为12 kV ),根据式(1),配电用金属氧化物避雷器额定电压
1.28 1.11216.89r U ≥××= kV
查金属氧化物避雷器产品说明书,U r 取17 kV 。

(2) 选用了GB11032-1989《交流无间隙金
属氧化物避雷器》标准参数。

在该标准中金属氧
化物避雷器额定电压U r 偏低,
不能满足暂时过电压的要求,在系统运行中容易损坏。

如在该标准中,配电用10 kV 金属氧化物避雷器额定电压仅为12.7 kV 。

2000年8月新颁布的GB11032-2000《交流电力系统统金属氧化物避雷器使用导则》代替了GB11032-1989标准,在新标准中修定了交流无间隙金属氧化物避雷器额定电压标准,如10 kV 配电用避雷器额定电压提高到17 kV 。

目前,有的厂家提供的产品说明书给出的技术参数,采用的还是老标准,在选用中要注意两者的区别。

2 无间隙金属氧化物避雷器持续运行电压Uc 选择过低
对无间隙金属氧化物避雷器持续运行电压U C 的选择过低,如配电用10 kV 金属氧化物避雷器持续运行电压U C 仅为6.6 kV 。

这样低的电压,不能满足中性点不接地系统发生单相接地时,作用在健全相避雷器上的暂时过电压要求,因而常发生避雷器损坏事故。

金属氧化物避雷器持续运
第4期刘增辉等:使用金属氧化物避雷器要注意的问题85
行电压U C一般可按避雷器额定电压U r的75%~80%选择。

对于中性点不接地系统,且发生单相接地故障在10 s以上切除时,也可按U C≥1.1U m(3~20 kV系统);U C≥U m(35~66 kV 系统)选择。

例如:选用系统标称电压10 kV,配电用金属氧化物避雷器持续运行电压
1.11213.2
C
U≥×= kV。

查金属氧化物避雷器产品说明书,U C取13.6 kV。

3 金属氧化物避雷器选用类型不正确
(1)避雷器选用类别不正确,会对电气设备的防雷保护带来一定的事故隐患。

避雷器根据保护对象不同,可分为配电型、电站型、电容型等类型。

由于各种电气设备的绝缘水平不一样,如电力变压器和电动机相比,电动机承受的冲击绝缘水平要比变压器低,选用避雷器时就要选用电机型,如果选用配电型,其冲击电压及残压都比电机型高,不能很好地起到保护作用。

电气工程技术人员在选用避雷器时应首先明确被保护的对象,然后正确选用类型。

(2) 金属氧化物避雷器分为有间隙和无间隙两类,使用者可以根据自己的认识及各自的特点选用。

需要指出的是,有关资料提及电力部门防事故措施规定:电容器用避雷器不得选用带间隙的氧化物避雷器用于电容器保护,也禁止使用四避雷器接线方式,即三支接星形,一支接中性点。

原因是:虽然使用此种接线不仅能限制电容器相对地过电压和极间过电压,即对开关两相重燃也可有效抑制,但对避雷器的技术要求,特别是方波通流能力的要求非常高,而在实际使用中常因无法选出合适的避雷器,而使得避雷器本身成为故障频发点。

在考虑电容器防雷保护时,应注意此问题。

4 金属氧化物避雷器产品质量存在差异
从源头上把好质量关。

生产避雷器的厂家较多,在产品质量上存在差异,使用伪劣的产品,无异给电气设备的安全埋下了一颗定时炸弹。

云南锡业集团公司一组带间隙的氧化物避雷器爆炸后,经现场解剖发现,就因为密封不好,进水导致了事故。

因此,使用单位或采购部门要注意对生产厂家有关资质进行评价,做到货比三家优质采购,使用合格的产品。

5 避雷器安装位置与被保护设备距离过远
避雷器安装在室外,常出现避雷器安装位置与被保护设备距离过远的现象。

例如,保护变压器用的避雷器有的安装在门型框架横档上,变压器安装在地上,变压器与避雷器间距离大约在3~4 m左右,甚至有的两者间距离更大。

这样的安装方式不正确。

应该是避雷器尽量靠近被保护设备安装,减小避雷器与被保护设备之间的联线,以降低雷电流在连线上的电压降,使避雷器与被保护设备之间不致产生很大的电位差,另外也方便了避雷器的维护。

6 避雷器的试验方法不正确
阀型避雷器主要进行工频放电试验,而金属氧化物避雷器分为有间隙和无间隙两类,它们的试验方法也不同,不能一概进行工频放电试验。

公司曾经出现过几起对无间隙金属氧化物避雷器进行工频放电试验,损坏避雷器的事例。

所以对金属氧化物避雷器进行试验时,要分清楚避雷器的规格型号。

对有间隙金属氧化物雷器主要做工频放电试验,而严禁做直流1 mA参考电压试验;对无间隙金属氧化物避雷器主要做直流1 mA参考电压试验,而严禁做工频放电试验。

7 结语
(1) 金属氧化物避雷器额定电压选择过低、持续运行电压U C选择过低以及类型选用不正确等,是目前使用金属氧化物避雷器存在的主要问题。

只有正确使用金属氧化物避雷器,才能减小电气事故的发生。

(2) 金属氧化物避雷器替代阀型避雷器已经势在必行,在使用中要注意两者试验方法的区别。

参考文献:
[1] 张利生.高压并联电容器运行及维护技术[M].北京:中国电力出版社, 2006.
[2] DL⁄T804-2002,交流电力系统金属氧化物避雷器使用导则[S].。

相关文档
最新文档