完整版电源滤波器基本知识

合集下载

电源滤波方案

电源滤波方案

电源滤波方案在电子设备中,电源滤波是非常重要的一项技术,在保证电源供电稳定性和保护设备的正常工作方面起到了重要的作用。

本文将介绍电源滤波方案的原理、常见的滤波器类型以及如何选择合适的滤波器。

1. 电源滤波的原理电源滤波的目的是通过滤除电源中的噪声和干扰,提供一个干净、稳定的电源。

噪声和干扰可以来自电网的电磁干扰、电源本身的开关瞬态以及其他外部干扰源。

电源滤波器通过在电源输入端或输出端添加滤波电路来滤除这些噪声,并确保电源供电的稳定性和可靠性。

2. 常见的滤波器类型2.1 RC滤波器RC滤波器是一种简单的滤波器,通常由一个电阻和一个电容组成。

它主要通过电容来滤波,将高频的噪声和干扰分流到接地,实现滤波作用。

RC滤波器适用于对频率要求不高的电源滤波,例如对于直流电源的简单滤波。

2.2 LC滤波器LC滤波器是一种由电感和电容组成的滤波器。

它主要利用电感的低通滤波特性和电容的高通滤波特性来实现滤波作用。

LC滤波器在直流电源的滤波中应用广泛,能够有效滤除高频噪声和干扰。

2.3 筛波电容器筛波电容器是一种直流电源滤波中常用的元件。

它能够平滑直流电源的输出,同时对高频噪声和交流杂波有较好的滤波效果。

筛波电容器一般安装在电源电路的输出端,以减小输出端的纹波电压。

2.4 铁氧体滤波器铁氧体滤波器是一种利用铁氧体材料的磁性来对电源进行滤波的器件。

铁氧体滤波器在高频干扰抑制和脉冲功率衰减方面具有较好的表现,在电源滤波中应用广泛。

3. 如何选择合适的滤波器在选择适合的滤波器时,需要考虑以下几个因素:3.1 频率范围:根据实际需求选择合适的滤波器频率范围。

不同的滤波器适用于不同频率范围的滤波。

3.2 电流容量:根据实际需要选择滤波器的电流容量,确保其能够满足电源的功率需求。

3.3 尺寸和重量:考虑滤波器的尺寸和重量,确保其能够适应安装环境和空间要求。

综上所述,电源滤波方案对于保证电子设备的稳定工作具有重要作用。

在选择滤波器时,需要根据实际需求考虑频率范围、电流容量以及尺寸和重量等因素,以找到合适的滤波器。

直流电源滤波器原理

直流电源滤波器原理

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载直流电源滤波器原理地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容1、直流电源滤波器特点1)主要用于直流电源线的电磁干扰;2)在很宽的频带(10KHZ—30MHZ)范围内具有优良的共模和差模插入损耗;3)高性能,低温升,低价格;4)可协助使用直流电源的各类电子设备达到VDE和FCC等标准。

2、电源滤波器工作原理电源滤波器常用的滤波电路有无源滤波和有源滤波两大类。

无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。

有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。

直流电中的脉动成分的大小用脉动系数S来表示,此值越大,则滤波器的滤波效果越差。

脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量电源滤波器的原理就是一种阻抗适配网络:电源滤波器输入、输出侧与电源和负载侧的阻抗适配越大,对电磁干扰的衰减就越有效。

具体工作原理如下:交流电经过二极管整流之后,方向单一了,但是大小(电流强度)还是处在不断地变化之中。

这种脉动直流一般是不能直接用来给无线电装供电的。

要把脉动直流变成波形平滑的直流,还需要再做一番“填平取齐”的工作,这便是滤波。

换句话说,滤波的任务,就是把整流器输出电压中的波动成分尽可能地减小,改造成接近恒稳的直流电。

根据电源端口的电磁骚扰特点,电源EMI噪声滤波器是一种无源低通滤波器,它无衰减地将交流电传输到电源,而大大衰减随交流电传入的EMI噪声,同时又能有效地抑制电源设备产生的EMI噪声,阻止它们进入交流电网干扰其它电子设备。

3、电源滤波器结构电源滤波器的典型结构如下图所示,这是一种无源网络结构,对交流和直流电源都适用,具有双向抑制性能。

滤波器基础知识

滤波器基础知识

滤波器基础知识一、滤波器概述滤波器是一种二端口网络(各类电子系统中用于检测、传输、处理信息或能量的微波电路为微波网络),它允许输入信号中特定的频率成分通过,同时抑制或极大的衰减其它频率成分,还可用来分开或组合不同的频率段。

目前由于在雷达、微波、无线通信,特别是移动通信,多频率工作越来越普遍,还需要在有限的频谱范围内划分出更多的频段给不同的运营商,以满足多种通信业务的需求,各频道间的间隔规定非常的小。

为避免信道间相互干扰,需要在所有系统内配置高性能的滤波器。

滤波器既可用来限定大功率发射机在规定频带内辐射,反过来又可用来防止接收机受到工作频带以外的干扰。

总之,从超长波经微波到光波以上的所有电磁波段都需要用到滤波器。

二、滤波器的主要分类:(按应用分)⑴低通滤波器通频带为0-fC2, fC2-∞为阻带。

⑵高通滤波器与低通滤波器相反,通频带为 fC1-∞,f0-fC1为阻带。

⑶带通滤波器通频带为fC1-fC2,其它频率为阻带。

⑷带阻滤波器与带通滤波器相反,阻带为fC1-fC2,其它频率为通带。

除腔体滤波器外,还有:微带电路滤波器、晶体滤波器、声表面滤波器、介质滤波器等等,按不同的作用或功能等有不同的分类。

现在公司生产的一般都是带通腔体滤波器和双工器,因此我们主要以腔体滤波器进行分析和讲解,腔体滤波器的谐振器全部都由机械结构组成,本身有相当高的Q 值(数千甚至上万),非常适合于低插入损耗(<1dB)、窄带(1%-5%)、大功率(可达300W或更高)传输等应用场合,工作性能较为稳定。

但该类滤波器具有较大体积且有寄生通带,加工成本相对较高,但特别适合应用于现代移动通信基站或直放站中使用。

三、公司滤波器的发展公司成立至今无源产品的发展情况:无线信息传输技术是正在蓬勃发展的重要领域。

滤波器是一个常用的、必备的、广泛使用的部件。

自公司发展以来,无源类产品在公司领导的重视下,不断进行改进和创新,从波导滤波器、结构腔等到现在的一体腔,从以前的仿制到现在自主知识产权的发明专利。

电源滤波器基本知识

电源滤波器基本知识

L3、C2、C3可除去共模干扰。这种滤波器L1、L2多选用不易饱和的磁路呈开放 可除去共模干扰。这种滤波器L 的高µ棒状线芯 共模扼流圈L 选用高µ磁芯 棒状线芯, 磁芯, 的高 棒状线芯,共模扼流圈L3选用高 磁芯,以在用很少匝数的线圈能产生大 的电感阻抗,由于电源工作频率为50Hz很低 二种扼流圈对50Hz信号几乎不产 50Hz很低, 50Hz 的电感阻抗,由于电源工作频率为50Hz很低,二种扼流圈对50Hz信号几乎不产 生压降。此种滤波器两种线圈设计方法如下: 生压降。此种滤波器两种线圈设计方法如下:
PE1部培训教材
电源滤波器基本知识
(图一)是一个共模扼流圈在共模干扰下的效果图。两线圈的磁通是相同方 图一)是一个共模扼流圈在共模干扰下的效果图。 互相加强,每个线圈的电感值是单独线圈的两倍, 向、互相加强,每个线圈的电感值是单独线圈的两倍,这种绕法的电磁线圈对 共模干扰有强的抑制作用。 共模干扰有强的抑制作用。 图二)是一个共模扼流圈在常模干扰下的效果图。 (图二)是一个共模扼流圈在常模干扰下的效果图。两线圈的磁通是相反方 因大小相等,磁通互相抵销为零,因此不能扼制常模干扰信号。 向,因大小相等,磁通互相抵销为零,因此不能扼制常模干扰信号。为了抑制 常模干扰,可在进线初端各串一个独立的磁芯线圈, 常模干扰,可在进线初端各串一个独立的磁芯线圈,用其本身的自谐振频率附 近产生高阻抗对干扰信号产生抑制。 近产生高阻抗对干扰信号产生抑制。OΒιβλιοθήκη fPE1部培训教材
电源滤波器基本知识
由于实际电感圈存在直流电阻(DCR)和分布电容(Co) 如图5 由于实际电感圈存在直流电阻(DCR)和分布电容(Co),如图5: (DCR)和分布电容(Co), 其阻抗频度关系曲线如图6 其阻抗频度关系曲线如图6:

EMI电源滤波器基本知识介绍

EMI电源滤波器基本知识介绍

EMI电源滤波器基本知识介绍电磁干扰:因电磁骚扰引起设备、装置或系统性能下降的都是电磁干扰。

随着电子技术的迅速发展,电子设备得到广泛的应用,电磁环境污染日趋严重,已成为当今主要公害之一,越来越引起世界各国各行各业的广泛关注。

在许多领域,电磁兼容性已成为电气和电子产品必须有的技术指标或性能评价的依据,甚至关系到一个企业或一种产品的生死存亡。

EMI电源滤波器:电磁干扰(EMI)电源滤波器(以下简称滤波器)是由电感、电容等构成的无源双向多端口网络。

实际上它起两个低通滤波器的作用,一个衰减共模干扰,另一个衰减差模干扰。

它能在阻带(通常大于10KHz)范围内衰减射频能量而让工频无衰减或很少衰减地通过。

EMI电源滤波器是电子设备设计工程师控制传导电磁干扰和辐射电磁干扰的首选工具。

插入损耗:滤波器的插入损耗是不用滤波器时从噪声源传递到负载的噪声电压与插入滤波器时负载上的噪声电压之比。

插入损耗是在空载、50Ω系统条件下测试的,结果通常表示为在所关心频段内的衰减曲线(单位为分贝)。

插入损耗的计算可由下式求得:式中:V1 ─ 没有滤波器时负载上的噪声电压;V2 ─ 插入滤波器时负载上的噪声电压。

滤波器插入损耗测量结果通常表示为两种形式:一是插入损耗对频率的曲线,二是数据表。

共模和差模插入损耗的测试电路原理图如下所示:额定电流:额定电流是滤波器在额定频率、额定温度下允许通过的最大连续工作电流。

当环境温度不为额定温度时,滤波器允许通过的电流(Iop)可按下式计算,式中IN 为标称额定电流、θ为实际工作环境温度,泄漏电流:滤波器的泄漏电流是指在250VAC/50Hz的情况下,相线和中线与外壳(地)之间流过的电流。

它主要取决于连接在相线与地和中线与地间的共模电容(亦称为“Y”电容)。

泄漏电流是滤波器的一个重要参数。

Y电容的容量越大,共模阻抗越小,共模噪声抑制效果越好。

可以说泄漏电流是滤波器的一项性能指标, 泄漏电流越大,滤波器性能越好。

滤波器基本知识介绍课件

滤波器基本知识介绍课件
应。
二维信号滤波器原理
图像处理
二维信号滤波器主要用于图像处 理,以改善图像的质量或提取图
像中的特定信息。
卷积与滤波
二维信号滤波器通过与图像进行卷 积来处理图像,以实现图性, 对图像中的特定方向进行增强或抑 制。此外,它们也可以在空间域内 对图像进行处理。
滤波器的主要功能是提取感兴趣的频率成分,同时抑制不需要的频率成分。它广 泛应用于通信、音频处理、图像处理、电力等领域。
滤波器的分类
根据不同的分类方法,滤波器可以分为 多种类型。常见的分类包括
4. 带阻滤波器(Notch Filter):允许 特定频率范围以外的信号通过,抑制特 定频率范围内的信号。
滤波器的优化设计
最优准则的选择
01
最小均方误差准则( MMSE)
该准则以最小化输出信号的均方误差 为目标,通过优化滤波器参数,使得 输出信号与期望信号之间的误差最小 。
02
最大信噪比准则( MSNR)
该准则以最大化滤波器输出信号的信 噪比为目标,通过优化滤波器参数, 使得输出信号的信噪比最大化。
03
号处理和控制系统等领域。
基于变换域的滤波器
频域
频域滤波器是基于傅里叶变换的,它可以将时域信号转换到频域,从而更容易 地去除噪声和干扰。
小波变换域
小波变换域滤波器是基于小波变换的,它可以将信号分解成不同的频率分量, 并对每个分量进行独立的滤波处理。这种方法在信号处理中得到了广泛应用。
05
CATALOGUE
在保证滤波器稳定性的前提下,尽量减小滤波器 的参数数量。
设计过程的优化算法
梯度下降法
该算法通过计算目标函数对优化变量的梯度,并按照负梯度方向 更新优化变量的值,从而逐渐逼近最优解。

直流电源滤波器原理及应用

直流电源滤波器原理及应用

直流电源滤波器原理及应用直流电源滤波器是一种用来将电源阻抗中的交流成分降低的电路。

它通过对电源输出进行滤波,消除或减小电源中的纹波,以获得更为稳定的直流电源。

直流电源滤波器主要由电容滤波器和电感滤波器两种基本类型构成。

电容滤波器是利用电容器的电流、电压特性来对交流信号进行滤波的,通过将电流的交流成分流入电容器,使得交流信号被短路,从而达到滤波的目的。

而电感滤波器则是利用电感的电流、电压特性来对交流信号进行滤波的,通过将电流的直流成分流入电感器,使得直流信号被通路,从而达到滤波的效果。

在实际应用中,直流电源滤波器有着广泛的应用。

主要用于电子设备、通信设备、工控设备、仪器仪表等领域,用来滤除直流电源中的纹波干扰,提供稳定的直流电源。

直流电源滤波器还常常用于直流电源的输出端,以降低直流输出电压的纹波,提高电源的质量。

直流电源滤波器的工作原理是在直流电源输出端串联一个电容和/或电感。

电容作为滤波器的核心元件,能够将交流成分通过,从而实现对直流信号的滤波。

电容大小决定了滤波效果的好坏,一般电容越大,滤波效果越好。

电感则是将交流成分短路,使其无法进入负载。

通过在电容、电感和负载之间的组合,可以实现不同程度的滤波效果。

直流电源滤波器的应用可以分为两个方面:1. 电子设备领域:直流电源滤波器通常用于电子设备的电源输入端,以消除或减小电源的纹波干扰。

这对于电子设备的正常工作非常重要,可以提供更为稳定的电源供电。

2. 仪器仪表领域:仪器仪表在测量和检测过程中对电源的要求非常高,需要尽可能纯净的直流电源。

直流电源滤波器可以在仪器仪表的电源输入端进行滤波处理,消除电源中的交流成分,提供更为稳定和可靠的电源供应。

综上所述,直流电源滤波器通过对电源输出进行滤波,消除或减小电源中的纹波干扰,以获得更为稳定的直流电源。

在电子设备和仪器仪表等领域中有着广泛的应用,可以提供稳定和可靠的电源供应。

电源滤波器知识

电源滤波器知识

开关电源产生的噪声有两类:第一类:由于非线性产生的,为电源基频的奇次谐波。

电磁兼容标准对这种谐波发射的都有限制。

(GJB 151A中的CE101)第二类:开关工作模式产生的,频率较低的成分以差模形式出现在电源输入线上,频率较高的成分以共模形式出现。

共模噪声是由于高频成份辐射产生的:三极管与散热片之间的寄生电容,将三极管的开关噪声耦合导地线上,脉冲回路产生的辐射感应导所有导线上负载电流越大,或输入电压越低,则差模干扰越强共模干扰当输入电压最高时,最大,与负载无关。

干扰滤波器的种类根据要滤除的干扰信号的频率与工作频率的相对关系,干扰滤波器有低通滤波器、高通滤波器、带通滤波器、带阻滤波器等种类。

电磁兼容设计中,低通滤波器用得最多,因为:电磁干扰大多频率较高的信号,因为频率越高的信号越容易辐射和耦合数字电路中许多高次谐波是电路工作所不需要的,必须滤除,防止对其它电路产生干扰。

电源线上的滤波器都是低通滤波器。

高通滤波器用在干扰频率比信号频率低的场合,如在一些靠近电源线的敏感信号线上滤除电源谐波造成的干扰。

带通滤波器用在信号频率仅占较窄带宽的场合,如通信接收机的的天线端口上要安装带通滤波器,仅允许通信信号通过。

带阻滤波器用在干扰频率带宽较窄,而信号频率较宽的场合,如距离大功率电台很近的电缆端口处要安装阻带频率等于电台发射频率的带阻滤波器。

当信号频率与干扰频率考得很近时,需要滤波器的阶数较高。

考虑到器件的误差,有时过渡带的陡度不能达到理论值,因此要留有一定的富余量。

要注意的是,实际电路的阻抗很难估算,特别是在高频时(电磁干扰问题往往发生在高频),由于电路寄生参数的影响,电路的阻抗变化很大,而且电路的阻抗往往还与电路的工作状态有关,再加上电路阻抗不同的频率上也不一样。

因此,在实际中,哪一种滤波器有效主要靠试验的结果确定低通滤波器的过渡带低通滤波器的阶数(元件数)越高,其过渡带越短。

过渡带与器件数量的关系:当严格按照滤波器设计方法设计滤波电路时,每增加一个器件,过渡带的斜率增加20dB/十倍频程,或6dB/倍频程。

电源滤波器主要参数和组成电路

电源滤波器主要参数和组成电路

电源滤波器主要参数和组成电路电源滤波器主要参数①工作电压:滤波器能安全工作的稳定电压。

单相电的滤波器的工作电压一般为250V,而三相电的工作电压为420V;②插入损耗:由于电源滤波器串接电网和设备电源线之间,而电源滤波器作为一种无源网络,势必造成电压的跌落,这就导致由电源滤波器引起的插入损耗。

因此,滤波器的插入损耗A通常是在设备不工作时用50Ω的电阻为测量,然后作出衰减曲线,对于不同的干扰源和具体设备,实际的损耗曲线可能会存在较大的差异,因此,一个滤波器是否能有效地抑制具体电网上的干扰,要经过实际测量后才能断定。

,从而选择出适合自己的滤波器;③工作电流:允许的工作电流和工作温度有一定的关系,一般的滤波器只给出室温(20℃)下的值,有时也给出某个较高温度(40℃或45℃)下的值,参数可参照实际实物;④漏电流:由于在相线和零线之间有X2电容器存在,当电源接通时,电流就会通过电容器流入地端,这就导致漏电流的存在。

出于安全考虑和其它目的,漏电流必须降至安全值,详细可参看国标允许的最大漏电流;⑤工作温度:凡是设备都会有相应的环境工作温度,只有在规定的问答范围内使用才能发挥出它的良好的性能。

电源滤波器原理组成电路L1为共模电感,它的上下为一对共模电感线圈,这两个线圈绕在同一铁芯上,匝数和相位都相同(绕制反向)。

这样,当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。

Y电容是分别跨接在电力线两线和地之间(L-E,N-E)的电容,一般是成对出现,如图Y1和Y2,基于漏电流的限制,Y电容值不能太大,一般是nF级,Y电容抑制共模干扰。

-全文完-。

滤波器基本知识

滤波器基本知识

有源滤波器Active Filter(信号分离电路) 测量系统从传感器拾取的信号往往包含噪声和许多与被测量无关的信号,并且原始的测量信号经传输、放大、变换、运算及各种其它处理过程,也会混入各种不同形式的噪声,从面影响测量精度。

这些噪声一般随机性很强,很难从时域中直接分离,但限于其产生的机理,其噪声功率是有限的,并按一定规律分布于频率域中某一特定频带中。

滤波器(信号分离电路):从频域中实现对噪声的抑制,提取所需要的信号,是各种测控系统中必不可少的组成部分。

对滤波器的要求:(1)滤波特性好;(2)级联特性好(输入,输出);(3)滤波频率便于改变滤波器举例:心电信号的滤波:主要受到50Hz的工频干扰,采用50Hz陷波(带阻)滤波器。

一.滤波器的基本知识⒈按处理信号的形式分类:模拟:连续的模拟信号(又分为:无源和有源)数字:离散的数字信号。

⒉理想滤波器对不同频率的作用:通带内,使信号受到很小的衰减而通过。

阻带内,使信号受到很大的衰减而抑制,无过渡带。

⒊按频谱结构分为5种类型:滤波器对信号不予衰减或以很小衰减让其通过的频段称为通带;对信号的衰减超过某一规定值的频段称为阻带;位于通带和阻带之间的频段称为过渡带。

根据通带和阻带所处范围的不同,滤波器功能可分为以下几种:低通(Low Pass Filter)高通(High Pass Filter)带通(Band Pass Filter)带阻(Band Elimination Filter)全通(All Pass Filter)(理想)各种频率信号都能通过,但不同的频率信号的相位有不同的变化,一种移相器。

图2-2 按频谱结构分类的各种滤波器的衰减(1-幅频)特性几个定义:(1)通带的边界频率:一般来讲指下降—3dB即对应的频率。

(2)阻带的边界频率:由设计时,指定。

(3)中心频率:对于带通或带阻而言,用f0或ω0表示。

(4)通带宽度:用Δf0或Δω0表示。

(5)品质因数:衡量带通或带阻滤波器的选频特性。

电源滤波器原理

电源滤波器原理

电源滤波器原理电源滤波器是一种用于净化电源信号的电子设备,它可以有效地滤除电源中的杂波和干扰信号,保证电器设备正常运行。

电源滤波器的原理主要是利用电容、电感和电阻等元件对电源信号进行滤波处理,从而达到净化电源信号的目的。

首先,让我们来了解一下电源中存在的杂波和干扰信号。

在电源中,常常会受到来自电网的交流电干扰、开关电源等设备产生的高频噪声干扰以及其他电磁干扰信号的影响。

这些干扰信号会对电器设备的正常工作产生影响,甚至引起设备损坏。

因此,电源滤波器的作用就显得尤为重要。

电源滤波器的原理是利用电容器和电感器对电源信号进行滤波处理。

首先,电容器可以对高频噪声进行滤波,因为电容器对高频信号的阻抗比较低,可以将高频噪声短路到地,从而减小对设备的影响。

其次,电感器对低频信号的阻抗比较低,可以将低频的交流电干扰滤除,保证设备正常运行。

此外,电阻也可以在电路中起到限流和阻尼的作用,对电源信号进行稳压和滤波。

电源滤波器的工作原理可以用一个简单的模型来描述,电源信号首先经过电容器进行滤波处理,去除高频噪声;然后通过电感器进行进一步的滤波处理,去除低频干扰;最后通过电阻进行稳压和阻尼,保证电源信号的稳定性和纯净度。

在实际应用中,电源滤波器通常被应用在各种电子设备中,特别是对于对电源质量要求较高的设备,如音频设备、医疗设备、通信设备等。

通过加入电源滤波器,可以有效地提高设备的抗干扰能力,保证设备的正常运行。

总之,电源滤波器通过利用电容、电感和电阻等元件对电源信号进行滤波处理,可以有效地滤除电源中的杂波和干扰信号,保证电器设备的正常运行。

在实际应用中,电源滤波器发挥着重要的作用,对于提高设备的抗干扰能力和保证设备的正常运行具有重要意义。

电源滤波器基本知识

电源滤波器基本知识

一、术语定义1. 额定电压EMI滤波器用在指定电源频率的工作电压(中国:250V, 50Hz,欧洲: 230V,50Hz;美国:115V, 60Hz)2.额定电流在额定电压和指定温度条件下(常为环境温度40℃),EMI滤波器所允许的最大连续工作电流(Imax)。

在其他环境温度下的最大允许工作电流是环境温度的函数,可用如下公式得出:3.试验电压在EMI滤波器的指定端子之间和规定时间内施加的电压。

试验电压分为两种,一种是加载在电源(或负载)端子之间,称为线-线试验电压;另一种是加载在电源(或负载)任一端与接地端(或滤波器金属外壳)之间,称为线-地试验电压。

4.泄漏电流EMI滤波器加载额定电压后,断开滤波器的接地端与电源安全地线的条件下,测得接地端到电源(或负载)任一端间的电流,该值直接与接地电容的容量有关,可由如下公式得出:其中F为工作频率,C为接地电容的容量,V为线-地电压5.插入损耗是衡量滤波器效果的指标。

指的是在一定条件下,EMI滤波器对干扰信号的衰减能力。

它用滤波器插入前信号源直接传送给负载的功率和插入后传送给负载的功率的对数来描述。

在50Ω系统内测试时,可用下式来表示:IL=20Lg(E0/E1)其中,IL-插入损耗(单位:dB)EO-负载直接接到信号源上的电压E1-插入滤波器后负载上的电压6.气候等级指EMI滤波器的工作环境等级,按IEC规定应按以下方式标注:XX/XXX/XX前2位数字代表滤波器的最低工作温度中间数字代表滤波器的最高工作温度后2位数字代表质量认定时在规定稳态湿热条件下的试验天数7. 绝缘电阻绝缘电阻是指滤波器相线,中线对地之间的阻值。

通常用专用绝缘电阻表测试。

8. 电磁干扰(EMI)电磁干扰经常与无线电频率干扰(RFI)交替使用。

从技术上来说,EMI指的是能量形式(电磁),然而RFI指的是噪声频率的范围。

滤波器用以消除EMI和RFI中的多余电磁能。

9. 频率范围电磁能量的频率带宽常用赫兹(Hz,每秒循环次数),千赫(KHz, 每秒循环千次数)表示。

滤波器的基础知识2

滤波器的基础知识2

一.滤波器的基础知识1.滤波器的功能滤波器的功能就是允许某一部分频率的信号顺利的通过,而另外一部分频率的信号则受到较大的抑制,它实质上是一个选频电路。

滤波器中,把信号能够通过的频率范围,称为通频带或通带;反之,信号受到很大衰减或完全被抑制的频率范围称为阻带;通带和阻带之间的分界频率称为截止频率;理想滤波器在通带内的电压增益为常数,在阻带内的电压增益为零;实际滤波器的通带和阻带之间存在一定频率范围的过渡带。

2.滤波器的分类( 1)按所处理的信号分为模拟滤波器和数字滤波器两种。

( 2)按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。

低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。

高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。

带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。

带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。

( 3)按所采用的元器件分为无源和有源滤波器两种。

①.无源滤波器:仅由无源元件(R、L 和C)组成的滤波器,它是利用电容和电感元件的电抗随频率的变化而变化的原理构成的。

这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的体积和重量都比较大,在低频域不适用。

②.有源滤波器:由无源元件(一般用R和C)和有源器件(如集成运算放大器)组成。

这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件);缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在高压、高频、大功率的场合不适用。

3. 滤波器的主要参数(1)通带增益A0:滤波器通带内的电压放大倍数。

电源滤波器的原理及应用

电源滤波器的原理及应用

电源滤波器的原理及应用一、电源滤波器的作用电源滤波器是一种被广泛应用于电子设备中的组件,其作用是通过滤波电源中的干扰信号,确保电子设备正常工作。

电源滤波器可以去除电源中的噪声、杂波、尖峰等非稳定信号,提供稳定的电源给电子设备使用,有助于提高设备的性能和可靠性。

二、电源滤波器的原理电源滤波器的工作原理基于信号滤波的概念,通过在电源输入端和输出端之间增加一个滤波电路,将干扰信号滤掉,使电源输出更加稳定。

1. 高频滤波电源中常常存在高频噪声信号,电源滤波器可以采用电容器、电感器等元件来滤除这些高频干扰信号。

电容器的高频特性可以阻止高频信号通过,而电感器则可以将高频信号引入地,从而实现高频滤波。

2. 低频滤波电源中也可能存在低频噪声信号,低频信号可能来自交流电或其他设备的干扰。

电源滤波器可以利用磁性元件如变压器、滤波电感等来降低低频信号的干扰。

这些磁性元件可以提供阻抗,从而使低频信号通过时受到阻滞。

三、电源滤波器的应用电源滤波器广泛应用于各种电子设备中,以下是几个典型的应用场景:1. 电脑和服务器电脑和服务器等设备对稳定的电源要求非常高,因为它们需要稳定的电压和电流才能正常运行。

电源滤波器可以去除电源中的干扰信号,确保电脑和服务器获得稳定的电源供应。

2. 通信设备通信设备如手机、无线路由器等也需要稳定的电源供应,以确保通信信号的稳定传输。

电源滤波器可以帮助去除电源中的杂波和尖峰,提供干净的电源给通信设备使用。

3. 消费电子产品消费电子产品如电视、音响等也需要稳定的电源供应,以确保音视频信号的清晰和稳定。

电源滤波器可以帮助去除电源中的噪声和杂波,提供干净的电源给消费电子产品使用。

4. 医疗设备医疗设备对电源的要求更高,因为它们关乎患者的生命安全。

电源滤波器可以去除电源中的各种干扰信号,确保医疗设备的正常运行。

5. 工业控制系统工业控制系统通常需要稳定的电源供应,以确保各种传感器和执行器的正常工作。

电源滤波器可以去除电源中的干扰信号,提供稳定的电源给工业控制系统使用。

电源滤波器的作用及使用注意事项

电源滤波器的作用及使用注意事项

电源滤波器的作用是减小电源中的噪声和干扰,使其不影响电子设备的正常工作。

电源滤波器可以看作是一个低通滤波器,允许直流或低频信号通过,但阻止高频噪声通过。

在操作电源滤波器时,需要先确定其截止频率,然后根据电子设备的性能要求和噪声源的频率特性,选择合适的滤波器类型和参数。

在安装滤波器时,需要将其尽可能靠近电源输入端,以减小干扰信号对电源的影响。

除此之外,还需要注意以下几点:
1.滤波器的接地电阻不能太大,否则会影响滤波效果。

2.滤波器的输入和输出线应该尽可能远离,以减小耦合效应。

3.对于多路电源供电的情况,需要分别对每路电源安装滤波器。

4.滤波器的外壳应该有良好的接地,以保证其屏蔽效果。

以上信息仅供参考,如需了解更多信息,建议咨询专业人士。

电源滤波详细解析

电源滤波详细解析

整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。

为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。

常用的滤波电路有无源滤波和有源滤波两大类。

无涯滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波等)。

有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。

直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。

脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量半波整流输出电压的脉动系数为S=1.57,全波整流桥式整流的输出电压的脉动系数S≈0.67。

对于全波和格式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。

(To整流输出的直流动电压的周期。

)电阻滤波电路RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。

如图1(B)RC 滤波电路。

若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S。

由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。

在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就好。

而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。

这种电路一般用于负载电流比较小的场合。

电感滤波电路根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。

因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。

电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。

并联的电容器C在输入电压升高时,给电容器充电,可把部分能量存储在电容器中。

而当输入电压降低时,电容两端电压以指数规律放电,就可以把存储的能量释放出来。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电源滤波器基本知识一、术语定义1. 额定电压EMI滤波器用在指定电源频率的工作电压(中国:250V, 50Hz,欧洲:230V, 50Hz;美国:115V, 60Hz)2. 额定电流在额定电压和指定温度条件下(常为环境温度40C), EMI滤波器所允许的最大连续工作电流(Imax)。

在其他环境温度下的最大允许工作电流是环境温度的函数,可用如下公式得出:|op=ln皿刁r鬲3. 试验电压在EMI滤波器的指定端子之间和规定时间内施加的电压。

试验电压分为两种,- 种是加载在电源(或负载)端子之间,称为线-线试验电压;另一种是加载在电源(或负载)任一端与接地端(或滤波器金属外壳)之间,称为线-地试验电压。

4. 泄漏电流EMI滤波器加载额定电压后,断开滤波器的接地端与电源安全地线的条件下,测得接地端到电源(或负载)任一端间的电流,该值直接与接地电容的容量有关,可由如下公式得出:l LC=2x^x FxCxV其中F为工作频率,C为接地电容的容量,V为线-地电压5. 插入损耗是衡量滤波器效果的指标。

指的是在一定条件下,EMI滤波器对干扰信号的衰减能力。

它用滤波器插入前信号源直接传送给负载的功率和插入后传送给负载的功率的对数来描述。

在50Q系统内测试时,可用下式来表示:IL=20Lg(E0/E1)其中,IL-插入损耗(单位:dB)EO-负载直接接到信号源上的电压E1-插入滤波器后负载上的电压6. 气候等级指EMI滤波器的工作环境等级,按IEC规定应按以下方式标注:XX/XXX/XX 前2位数字代表滤波器的最低工作温度中间数字代表滤波器的最高工作温度后2位数字代表质量认定时在规定稳态湿热条件下的试验天数7. 绝缘电阻绝缘电阻是指滤波器相线,中线对地之间的阻值。

通常用专用绝缘电阻表测试。

8. 电磁干扰(EMI)电磁干扰经常与无线电频率干扰(RFI )交替使用。

从技术上来说,EMI指的是能量形式(电磁),然而RFI指的是噪声频率的范围。

滤波器用以消除EMI和RFI中的多余电磁能。

9. 频率范围电磁能量的频率带宽常用赫兹(Hz,每秒循环次数),千赫(KHz,每秒循环千次数)表示。

电源滤波器的典型频率范围在150kHz to 30MHz (超过30MHz即为辐射)10. 阻抗失配为了达到更好的滤波效果,要使滤波器与它的源阻抗和负载阻抗失配。

如图所示。

11.工作频率电源滤波器的工作频率标称值为50/60Hz(中国、欧洲等为50Hz;北美为60Hz)然而,电源滤波器在直流或400Hz的情况下工作,并不会损害其效力。

二、滤波器的作用1. 什么是射频干扰(RFI)?RFI 是指产生在无线电通讯时,所用频率范围内的一种多余的电磁能。

传导现象的频率范围介于10kHz到30MHZ间;辐射现象的频率范围介于30MHz到1GHz间。

2. 为何要关注RFI?之所以必须考虑RFI,基于两点原因:(1)他们的产品必须在其工作环境下正常运行,然而该工作环境常常伴随有严重的RFI。

(2)他们的产品不能辐射RFI,以确保不干扰对健康及安全都至关重要的射频(RF)通讯。

法律已对可靠的RF 通讯做出了规定,以确保电子设备的RFI 控制。

3. 什么是RFI 的传播模式?RFI是通过辐射(电磁波在自由空间里)进行传播的,并经信号线及AC电源系统进行传导。

辐射一将RFI从电子设备辐射出去的一种最主要的媒介是AC电源线。

由于AC 电源线的长度达到了数字设备中及开关电源的频率对应波长的1/4,这正好构成了一支有效的天线。

传导一RFI在AC电源系统上是以两种模式进行传导的。

共膜(不对称)RFI是在线-地(L-G)及中性线-地(N-G)两种路径中出现,而差模(对称)RFI则以电压形式出现在线-中性线(L-N)上。

4. 什么是电源线干扰滤波器?随着当今世界的迅速发展,越来越多的高功率电能产生了,与此同时越来越多的低功率电能被用于数据的传输与处理,以致于产生了更多的影响,甚至破坏电子设备的噪声干扰。

电源线干扰滤波器是一种主要的滤波手段,用以控制从电子设备进入(潜在的设备误动作)和出来(对其他系统或RF通讯潜在的干扰)的RFI。

通过控制RFI 导入电源插头,电源线滤波器还大大抑制了RFI 的辐射。

电源线滤波器是一种以双低通道滤波结构排列的、多通道网络无源元件。

一种网络用于共模衰减,另一种用于差模衰减。

网络在滤波器的“止频带”(通常在10kHz以上)内提供RF能量衰减,而对通过的电流(50-60HZ)基本上不进行衰减。

5. 电源线干扰滤波器是如何进行工作的?作为无源、双边的网络,电源线干扰滤波器具有复合的转换特性,这种特性极大地取决于源及负载阻抗。

转换特性的量值说明了滤波器的衰减性能。

然而,在电源线环境中,源和负载阻抗是不确定的。

因此工业上已有了验证滤波器一致性的标准做法:用50 欧姆的阻性源及负载端测量衰减程度。

该测量值定义为滤波器的插入损耗(I.L )I..L. = 10 log * (P(l)(Ref)/P(l))这里P(l)(Ref)是从源转化到负载的功率(不带滤波器);P(l)是在源与负载间插入一个滤波器后的转换功率。

插入损耗还可用如下电压或电流比的形式表示:I. L. = 20 log *(V(l)(Ref)/V(l)) I.L. = 20 log *(l(l)(Ref)/l(l)) 这里V(l)(Ref)及I(l)(Ref) 是无滤波器时的测得值,V(l)及l(l)是带滤波器时的测得值。

值得引起重视的插入损耗并不代表在电源线环境中,由滤波器提供的RFI衰减性能。

在电源线环境中,源及负载阻抗的相对量值必须进行估计,并选择适当的滤波结构,使在每个终端出现最大可能的阻抗不匹配。

滤波器取决于终端阻抗的这种性能,是“不匹配网络”概念的基础。

6. 如何进行传导试验?传导试验需要一个安静的RF环境--一个屏蔽罩壳-一个线阻抗稳定网络,和一个RF 电压仪器(如调频接收器或频谱分析仪)。

试验的RF环境应至少低于所需规范限制的20dB,以便得出精确试验结果。

需要线阻抗稳定网络(LISN)来为电源线输入建立一个所要的源阻抗,由于该阻抗直接影响到测得的辐射等级,因此是试验程序的一个非常重要的部分。

此外,测量接收器正确的宽带也是试验的一个关键参数。

三、滤波器参数和测试方法1. 什么是电源滤波器的重要规格参数?对供方或客户来讲,为了保证合格元件的使用不受干扰,采用同样的技术来验证电气参数是相当重要的。

必须清楚理解的三种参数是:高压测试、泄漏电流和插入损耗。

2. 如何测量插入损耗?最常见的设置是使电源和阻性负载阻抗均为50Q。

插入损耗的测量最重要的一点是一致性,具体测试方法如下:使用频谱分析仪,或调频接收器或跟踪发生器,在不带滤波器时建立一个零dB 参考点。

然后插入滤波器,记录在所需频率范围内提供的衰减。

对于电源线滤波器,我们感兴趣的是两种不同模式的衰减:共模(CM干扰信号--相线(L)与地(E)和中线(N)与地(E)间的信号。

即图5中的U1和U2差模(DM干扰信号--相线(L)与中线(N)间的信号。

即图5中的U3,由于电源滤波器既能抑制共模EMI信号,又能抑制差模EMI信号,所以插入损耗也应有共模插入损耗和差模插入损耗。

在测量共模插入损耗时,将滤波器电源端的L和N并在一起,信号源接在电源端和接地端之间。

同时滤波器负载端的L和N也并在一起,接收机接在电源端和接地端之间,如图6所示。

在测量差摸插入损耗时,要分别在信号源和接收机端接入不平衡-平衡变换器和平衡-不平衡变换器,如图7所示。

本手册给出的共模和差模插入损耗是按上述规定测得的。

还有其他插入损耗的测量方法,请参见相关资料。

需要说明的是,本手册提供的EMI滤波器的插入损耗与实际使用的滤波器的对干扰信号的衰减不会等同,有时还会相差甚远。

这是因为本手册给出的插入损耗是在50Q系统内测得的,而实际应用时EMI滤波器端接的阻抗不是50Q,这是产生差别的根本原因。

3. 插入损耗有何作用?标准插入损耗数据不能精确地得出滤波器在设备中的性能,但是可以作为进料检验时验证产品吻合性的重要手段。

判断标准为:以标准方式所测得的插入损耗必须满足或超过样本上的数据。

也就是说,“典型”插入损耗数据是无意义的。

您所测得的数据应为最小值。

样本上的大多数插入损耗数据是其能保证的最小值,可以测试此值,以说明元件的符合性。

4. 什么是高压测试高压测试针对的是滤波器的电容组件及绝缘部分,它通过施加一个比正常运行电压高许多的电压来测试。

高压测试的目的在于确保该滤波器的安全及可靠性。

所有主要的安全机构都需要对电源线滤波器进行高压测试,另外还要求每个产品在生产时要进行高压测试,以验证线对地元件及绝缘体的整体性。

每个滤波器都经过两次高压测试:一次是在组装过程中,一次是在装成成品后。

将高压测试作为一种进料检验程序,需要全面地了解其使用及限制。

高压测试时电压施加于每根线(对VDE两根线绑到一起)到地和线到线、线到地电压通常要高些。

试验电压可以为AC或DC DC电压至少是AC电压的1.414 倍。

对进料检验试验,我们建议使用每种滤波器说明页上的“试验电压” 一栏所规定的值。

根据国际安全标准的规定,试验电压的测试步骤为 1 )EMI滤波器的负载端不接负载2)施加到滤波器规定端子之间的试验电压应按一定的速率,逐步升高并达到规定幅值3 )在规定时间内保持该电压不变。

在此过程中,滤波器不应该被击穿。

需要提请用户注意的是:1 )这些电压可能是致命的,请采用最安全的措施来保护试验作业者。

2)不能在滤波器上重复多次施加试验电压,否则要损坏滤波器。

本公司生产的EMI滤波器在出厂时已全部进行了2次试验电压的加载测试;3 )试验电压必须按一定的速率逐步升高,最终达到规定幅值。

不能用直接加试电压的方法来进行测试,即在很短的时间内把试验电压从零增加到规定幅值,会损坏滤波器。

4 )EMI滤波器在质量鉴定时,施加的试验电压时间为1分钟,而在生产检测时,施加的试验电压5)对线到线高压测试:大多数滤波器具有一个泄漏电阻(典型值为100K Q到10MQ)来对线到线电容放电。

要保证高压测试仪跳闸点的设置高于泄漏电阻上流过的电流:10mA通常是一个安全值。

6 )三相EMI滤波器的试验电压的试验方法同单相EMI滤波器。

5. 什么是泄漏电流泄漏电流是电源线滤波器的一个重要参数。

它虽不是产品品质的一个函数,但却是线对地电容值的一个直接函数。

电容值越大,对共模电流的阻抗越小,共模干扰抑制越大。

因此,泄漏电流是滤波器性能的一种指标,越高越好。

安全机构要指定最大允许泄漏电流是为了限制预期的接地返回电流值。

线对地电容对50Hz/60Hz电流提供了流向机壳的通道。

只要设备接地,这些电流将在接地回路中流动,并不会造成危险。

相关文档
最新文档