油砂
油砂矿用途
油砂矿用途油砂矿,又称油砂、沙油或沥青沙,是一种含有油质的沉积物,在地下深处形成了亿万年的沉积。
它主要由岩矿物、砂粒和含油结合物组成,通常以天然沥青和油砂的形式存在。
油砂矿具有许多用途,下面将详细介绍其中的一些重要用途。
1. 燃料:油砂矿中的沥青可以提炼出燃料油。
经过加工和升级,沥青可以变成各种产品,如汽油、柴油和喷气燃料等。
这些燃料可以广泛用于交通、工业和航空等领域,是目前全球石油需求的重要来源之一。
2. 石化产品:除了燃料油之外,油砂矿中的沥青还可以用于生产石化产品。
通过裂化和加氢等过程,沥青可以转化成各种化学品,如塑料、橡胶、涂料和溶剂等。
这些化学品在建材、日用品、医药和农药等领域广泛应用,对现代工业生产起着重要作用。
3. 焦油砖:油砂矿中的沥青可以用于制造焦油砖。
焦油砖是一种常用的建筑材料,广泛应用于路面铺装、人行道、停车场和机场跑道等场所。
焦油砖具有较好的耐候性和耐磨性,能够有效地减少路面的磨损和污染,提高道路的使用寿命。
4. 沥青混凝土:油砂矿中的沥青可以用于生产沥青混凝土。
沥青混凝土是一种结构强度高、耐久性好的路面材料。
它广泛应用于公路、机场和停车场等场所,可以提供良好的行车平顺性、降低交通噪音以及防止水泥路面开裂和松动。
5. 润滑剂:油砂矿中的沥青还可以用于制造润滑剂。
润滑剂在机械工业中起到润滑减摩、保护和防锈的作用,广泛应用于发动机、齿轮、轴承和润滑系统等设备中,是确保机械正常运行和延长使用寿命的关键因素。
此外,油砂矿在采矿过程中产生的矿渣和尾矿也可以进行资源化利用。
矿渣可以用于建材生产,例如生产水泥和砖瓦等。
尾矿可以进行尾砂回收和沉积物处理,以最大程度地减少环境污染。
需要注意的是,油砂矿的开采和利用也存在一些环境和社会问题。
由于油砂矿开采需要大量的水和能源消耗,产生的温室气体和废水排放会对环境造成影响。
此外,油砂开采还可能导致土地和水资源的竞争,对当地社区和原住民造成不利影响。
油砂的传统开采方法及新技术展望
(一)、油砂的开采方法最近几年, 油砂开发技术的进步不断推进着油砂工业的发展, 并已经取得了巨大的进步。
主要有以下几方面: 用巨型卡车和铲车开采油砂, 增加了开采的灵活性, 同时降低了成本; 用水力运输管道系统代替了传送带系统, 使油砂达到管输要求, 并简化了把沥青和砂分离开来的萃取过程; 在萃取阶段, 降低了加工的温度; 采用固化或合成残渣的技术, 加快了大面积残渣池的治理, 并在努力研究一种覆盖技术来处理残渣。
目前,油砂开采方式有两种,一类是露天开采,适用于埋深小于75m,厚度大于3m,另一类是井下开采,适用于埋深大于75m的矿层。
针对莫尔图克矿一层埋深较浅(0-46m),因此采用露天开采。
露天开采程序上分为采矿和萃取两个部分,主要用于开采埋藏较浅的近地表油砂,具有回收率高、效率高、安全的特点。
露天开采所需的设备及费用、油砂油采收率较其他方法好,技术上较为成熟,在加拿大及委内瑞拉等都已形成大规模工业开采。
多年来,油砂的露天开采技术已经取得的重要进步如下:采矿过程主要分为以下几个部分:✓用卡车和铲车除去盖层;✓用电动或水力铲车挖出油砂;✓把油砂从矿场运送到压碎机;✓把油砂加工碾碎;✓将油砂混合成砂浆;✓用离心泵和管线(常称为水力输送)把油砂从矿区运送到萃取区域。
图1-1 采矿过程示意图(二)、油砂的萃取分离1、油砂的分离工艺步骤采矿设备和某些采矿操作是油砂工业所独有的, 现在这一操作主要受到下一分离过程的限制;而萃取过程也是沥青损失最大的过程, 因此, 必须综合考虑采矿和萃取两个步骤。
在过去的15 年里, 水力传输已经代替了其他的设备。
从矿石浆中萃取沥青由两个步骤组成:步骤一: 分离初级分离器( primary separat io nvessel) 中的沥青泡沫, 其中含60% 沥青, 30%水, 10% 微固体。
步骤二: 稀释发泡处理(见图2-1) : 提取沥青, 尽可能排除水和固体。
如今, 实现此过程主要有两种方法: 最初的石脑油溶剂处理过程需要斜板分离器( inclined plate separators) 和离心分离机除去残余固体和水; 新的石蜡溶剂处理过程需要沉降容器, 但是由于不用离心分离机, 可以得到较纯净的产品。
未来的石油资源——油砂
也 许 ,您 可 能 会 非 常 担 心 石 油 产 品 的 供应 能 否 持 续 。现 在 , 你 完 全 可 以放 下 心 了 , 因 为 未 来 的 大 油 田, 不 在沙 特 阿 拉伯 或者 科 威 特 中 的任 何 一 个地 方 ,而 是 在 加 拿 大 省 蒙 大拿 北 部
艾 伯 塔 省 油 砂 资 基 山脉 的 挤 压 , 00 大 量 的 石 油 由西 向东 、 向上 移 动 ,穿 过 长达 10 里 的岩 石 层 ,直 至 达到 接 0公
近 地 面 的 大 面 积 的砂 岩 层 。大 量 的 石 油 将 接 近 地 面 的 砂 岩 层 浸 饱 和 ,细 菌
2 3亿 立 方 米 沥 青 。加 上 冷 湖 和 和平 10
物 质 、 黏 土 、 水 等 ,外 观 似 黑 色 的糖 蜜 。 沥 青 是 重 质 原 油 , 它 的 密 度 比传 统 原 油 高 出 很 多 。 基 本 上 , 沥 青 原 油
的流动 性随着密度及黏度的增加而减
小 ,但 随温 度 的 增 加 会 加 大 。 在 浅 部
A h bsa 砂矿 中被 微 生 物 所 蚕食 掉 ta ac 油
石 油贮 藏 , 因 为 凭 着 现 在 掌 握 的 开 采 技 术 , 仅 仅 可 以对 1% 油 砂 资 源 ( 2的 或
者 说 其 中 的30 亿 桶 原 油) 00 进行 经 济 规
模 的 开采 ,大 部 分埋 在 地 下深 处和 含 量 较 低 的矿 藏 资 源 还 不 具 有 进 行 经 济
在 Fr c ur y — 隆 冬 的 时候 o tM Mr a—
2024年油砂矿市场发展现状
油砂矿市场发展现状油砂矿是一种含有大量油砂资源的地质产物,具有丰富的石油资源潜力。
随着全球能源需求的不断增长,油砂矿市场的发展也备受关注。
本文将对油砂矿市场的发展现状进行分析和概述。
1. 油砂矿概述油砂矿是指地下或地表堆积的富含油砂的矿体,主要由砂岩、泥页岩和沥青组成。
其中的沥青是一种含有丰富原油的凝胶状物质。
油砂矿被广泛认为是未来石油资源开发的重要方向之一,因其蕴含的大量油砂储量对于解决能源短缺问题具有巨大潜力。
2. 全球油砂矿市场发展现状目前,全球油砂矿市场发展较为活跃,在一些国家和地区已经进行了大规模的油砂资源开发。
主要的油砂矿开发国家包括加拿大、委内瑞拉、美国等。
这些国家拥有丰富的油砂储量,成为全球油砂矿市场的主要参与者。
2.1 加拿大油砂市场加拿大是全球最大的油砂矿开发国家之一,在亚塔巴斯加油砂地区拥有世界上最大的油砂储量。
加拿大油砂市场的发展主要集中在阿尔伯塔省,该地区拥有约1700亿桶的可开采油砂储量。
加拿大油砂市场以其丰富的资源和成熟的开发技术而闻名,为加拿大经济做出了重要贡献。
2.2 委内瑞拉油砂市场委内瑞拉是世界上拥有最多油砂储量的国家之一,主要集中在奥里诺科地区。
该地区的石油资源储量约为310亿桶,是全球最大的单个油砂区块。
委内瑞拉油砂市场的发展受到了技术和资金的限制,但随着技术的进步和国际投资的增加,委内瑞拉油砂市场具有巨大的潜力。
2.3 美国油砂市场美国也是全球重要的油砂矿市场之一,主要集中在加州、堪萨斯、堪萨斯和德克萨斯等地。
美国拥有丰富的油砂资源储量,尤其是德克萨斯州的布拉索地区被认为是全球最大的油砂储量之一。
然而,由于环保和社会反对等因素,美国油砂市场的发展面临一些困难。
3. 油砂矿市场的挑战和机遇尽管油砂矿市场具有巨大的潜力,但其发展面临许多挑战和机遇。
3.1 挑战首先,油砂矿的开采和加工过程对环境和生态造成一定的影响,包括土地破坏、水源污染等。
这些环境问题使得油砂矿的开发备受关注,并引发了环保组织和公众的抗议。
油砂资源分布及开采技术综述
油砂资源分布及开采技术综述摘要:油砂是一种重要的非常规石油资源,世界油砂资源折算为油砂稠油约4000×108t,大于天然石油探明储量。
世界上最大的油砂矿在加拿大西部的沉积盆地,总储量约占世界储量的50%。
委内瑞拉也拥有巨大的油砂稠油资源,其次为俄罗斯和美国等,中国的油砂资源尚未经详细勘察。
油砂的结构可以分为亲水性和亲油性两类,亲水性油砂较易将稠油与固体颗粒分开,而亲油性油砂则较难将稠油与固体颗粒开。
油砂开发、稠油提取以及油砂干馏主要有露天开发和稠油提取、油砂干馏、地下就地提取稠油三类工艺。
工业上油砂露天开采、经热碱水抽提制取的稠油了直接出售,也可加工改质制成合成原油或轻质油品出售,加工改质主要有延迟化和流化焦化两种工艺流程。
目前世界上只有加拿大有大规模的油砂开发和提取油及稠油加工工业,阿尔伯达省油砂稠油等油品的总产量达到130×104bbl/d,占加拿大总原油产量的45%,盈利较丰厚。
美国有几家公司正在进行美国油砂的提取研究和中型试验,尚无工业生产。
中国石油大学等进行了中国及其他一些国家砂的抽提和干馏研究;中国石油勘探开发研究院廊坊分院等进行了中国油砂抽提和干馏等研究及中试。
中国三大石油公司都涉足加拿大油砂工业的开发利用。
本文论述了油砂资源的分布、开采方法和油砂的分离方法,可为我国油砂的和利用提供有益的信息,促进油砂开采及加工分离技术的发展。
关键词:油砂;循环蒸汽刺激法(CSS);蒸汽辅助重力泄油法(SAGD);露天开发;就地开采;油砂分离技术Resource distribution and exploitation of oil sandstechnology ReviewAbstract:The oil sands is an important unconventional oil resources, the world's oil sands resources are converted into oil sands, heavy oil of about 4000 × 108t, greater than the natural oil proved reserves. The world's largest oil sands in western Canada sedimentary basin, the total reserves of about 50 percent of world reserves. V enezuela has huge resources of oil sands, heavy oil, followed by Russia and the United States, China's oil sands resources has not been a detailed investigation. The structure of the oil sands can be divided into hydrophilic and lipophilic two types of hydrophilic oil sands easier to separate heavy oil and solid particles, lipophilic oil sands is more difficult to open the heavy oil and solid particles. Oil sands development, the dry distillation of heavy oil extraction and oil sands open development and heavy oil extraction, the dry distillation of oil sands underground, in situ extraction of heavy oil three types of technology. Industrial oil sands open pit mining, sold directly by the hot alkaline extraction preparation of heavy oil can be processed, but also made of modified synthetic crude oil or light oil for sale, processing modified delay and fluidized coking two kinds of process. World, only Canada has a large-scale oil sands development and extraction of oil and heavy oil processing industry, the Alberta oil sands heavy oil production reached 130 × 104bbl / d, accounting for 45% of Canada's total crude oil production , the more profitable lucrative. The United States there are a few ongoing oil sands extraction research and medium-sized trial, there is no industrial production. China Petroleum University of China and some other countries of sand extraction and the dry distillation of research; Langfang Branch of China Petroleum Exploration and Development Institute, Chinese oil sand extraction and distillation of such as research and pilot. China's three major oil companies are involved in the development and utilization of the Canadian oil sands industry. This paper discusses the distribution of oil sands resources, mining methods a nd the separation of the oil sands can provide useful information for China's oil sands and utilization to promote the development of oil sands mining and processing of separation technology.Key words:Oil sands;Cyclic steam stimulation;Steam assisted gravity drainage method;Open development;In situ mining;Oil sands separation technology目录1绪论 (1)1.1本文研究的目的及意义 (1)1.2国内外现状 (2)1.3本文研究的主要内容 (10)2国内外油砂的资源量,埋藏地点和矿藏特征 (11)2.1加拿大油砂资源量,埋藏地点和矿藏特征 (12)2.2其他国外油砂资源量,埋藏地点和矿藏特征 (13)2.3国内油砂资源量,埋藏地点和矿藏特征 (13)3世界油砂资源主要的开采技术 (16)3.1国外油砂资源开采技术 (16)3.2国内油砂资源开采技术 (21)3.3国内外油砂资源与开采技术对比 (24)4我国油砂资源开发技术展望 (26)4.1我国目前油砂资源开发程度 (26)4.2我国油砂资源开发技术的发展现状 (26)4.3我国油砂资源开发面临的困难 (26)5结论和建议 (28)5.1结论 (28)5.2建议 (28)参考文献 (30)致谢 (31)1绪论1.1本文研究的目的及意义油砂是一种含有天然沥青的砂岩或其他岩石,是由砂、沥青、矿物质、粘土和水组成的混合物。
油砂有哪些种类,各有何特点
油砂有哪些种类?各有何特点油类黏结剂砂的特点是:流动性好,湿强度低,干强度高;容让性和溃散性好;抗吸湿性好,砂芯便于存放;能产生光亮碳,使铸件表面光洁;发气量大,烘干硬化中排放的烟气对工作环境有污染等。
油砂是制造复杂砂芯的主要黏结剂之一。
油类黏结剂按其来源可分为植物油(桐油、亚麻油等)和矿物油(合脂油、改性渣油等)两类。
植物黏结剂的硬化是氧化、聚合的过程:脂肪酸的分子在双键处通过“氧桥”不断聚合、加大,最后形成体型结构的高分子化合物。
为了加速油类黏结剂的硬化过程,可预先在植物油中加入少量催干剂(主要是铅、锰、钴、铁、钙、锌与松香、环烷酸或脂肪酸形成的皂类),以增加氧的吸收速率,促进聚合作用,加速油类的硬化。
矿物油类黏结剂的硬化是一个比较复杂的反应过程,需要比较高的烘干温度和比较长的烘干时间。
但是矿物油的含碳量较高,高温强度较好,浇出的铸件内腔表面比较光洁。
常用的油砂的种类如下。
(1)桐油砂由于桐油不源有限,是贵重而且用途广泛的工业原料,又是我国传统的出口商品,故应限制其在铸造生产中的应用。
(2)合脂砂合脂是合成脂肪酸蒸馏残渣的简称,是将炼油厂原料脱蜡过程中得到的石蜡,制取合成脂肪酸时所得的副产品。
它主要存在以下问题。
①湿强度低。
合脂砂的湿强度只有2.0~2.5kPa,比植物油砂还要低。
加入膨润土或者含泥量高的天然黏土砂可以提高湿强度。
②砂芯蠕变。
合脂砂湿强度低,合脂本身在常温下黏度大,芯砂流动性差,造芯时不易紧实,因比合脂砂芯在湿态和烘干过程中易发生蠕变,即逐渐往下沉。
在冬天,合脂变得更加黏稠,蠕变现象就更为严重。
可采用加入膨润土和高温入炉烘干硬化的方法来减少蠕变的缺陷。
(3)改性渣油砂改性渣油是以石油减压蒸馏过程中产生的残渣---减压渣油为原料,以柴油为稀释剂,以适量环烷酸盐为催化剂,外加少量香料,在一定的温度条件下经过混合、搅拌、稀释等处理工艺而制得的胶状液体,外观呈黑褐色,密度为0.92~0.96g/cm3,30℃时的黏度为25~45s(容量100mL、出口孔径φ直6mm黏度杯测)。
百科知识精选油砂
基本信息中文名:油砂英文名:Oil sand别称:焦油砂、重油砂、沥青砂主要成分:沥青基原油、砂/砂岩用途:可以提炼重油和沥青分布油砂在加拿大分布世界上85%的油砂集中在加拿大阿尔伯塔省北部地区,主要集中在阿沙巴斯克(Ashabasca)、冷湖(Cold Lake)和和平河(Peace River)三个油砂区,面积分别达430、72.9和97.6万公顷,总面积与比利时的国土面积相当。
加拿大的油砂由石英沙、泥土、水、沥青和少量的矿物质组成,其中沥青含量约为10-12%。
现已查明,加拿大的油砂中沥青的总含量达4000亿立方米,是世界上最大的沥青资源,其中240 亿立方米分布在表层(地下75米以内)、3760亿立方米分布在深层。
油砂中石油的含量依开采和提炼技术的不同而有所变化。
按目前的开采和提炼技术,阿尔伯塔的油砂中储藏有原油1800亿桶,少于沙特的2620亿桶,高于俄罗斯的1120亿桶。
但随着油砂提炼技术的改进和石油价格的上涨,到2020年现有的油砂资源可望多提炼出1300亿桶石油,使加拿大的石油总量达到3100亿桶,成为世界第一石油大国。
加拿大政府高度重视油砂资源的开发和技术研究,联邦政府和阿尔伯塔省政府均设有多个油砂研究机构,如联邦政府的Devon研究部和阿尔伯塔省政府的阿尔伯塔研究理事会等。
自1996年到2010年期间,加政府共投资340亿加元于60个大项目中,改进和计划改进油砂开采与提炼技术,扩大生产规模。
据加拿大官方统计,到2010年其可进行商业开采的油砂储量约相当于1750亿桶石油,仅次于沙特阿拉伯的石油储量。
油砂在中国分布我国也是在世界油砂矿资源丰富的国家之一,居世界第五位。
专家的一般推测,结合初步调查结果认为,中国油砂资源潜力可能大于稠油资源,初步估算中国油砂有千亿吨,可采石油资源量100亿吨左右。
主要分布在新疆、青海、西藏、四川、贵州。
此外,广西、浙江、内蒙古也有分布。
我国油砂远景资源量为100亿吨,预计到2050年,产能将达到年产1800万吨。
油砂资源开采现状及趋势
高油价催热加拿大油砂开采作者:宋玉春2006-05-31油砂属重油,是一种含有原油的砂状矿藏,具有很高的黏稠性甚至呈准固态。
油砂形成的地质年代为白垩纪,它出现在地表至760公里的地底,是一种沥青、沙、富矿黏土和水的混合物。
与从油井中喷射而出的原油不同,油砂实际上像黑泥一样。
世界上有70多个国家蕴藏着油砂,而加拿大集中了全世界95%的油砂储量,大约2.5万亿桶,相当于整个中东地区剩余原油蕴藏量。
其中已探明的可开采储量超过3000亿桶,足够中国使用100年以上。
专家指出,随着传统石油资源的减少,油砂将成为世界最重要的石油接替物。
但油砂矿中含有较多的重油分子、硫化物和金属等,使油砂难以提炼。
由于油砂开采成本在每桶20~40美元之间,因此并没有被计算入全球常规能源储量中。
随着油价在2004年突破40美元的“临界线”,使油砂的命运发生了巨大的转折。
最新的技术进步又使作业成本不断降低,采收率不断提高,这使得许多类似的项目在经济上可行。
油砂开采历史根据资料,最初发现油砂的是一个印第安商贩,他1719年把在加拿大阿萨巴斯卡河发现的油砂带到了邱吉尔堡。
到了1735年,法国人开始开采油砂矿,后来,可能是由于于成本过高,油砂开采停顿了下来。
一直到1967年,美国森诺克(Sunoco)设在加拿大的子公司才正式展开了开采活动,另一家美加联营企业辛克鲁德(Syncrude)1978年投入大规模生产以来,它的产量已达到加拿大需求量的13%。
阿尔伯塔油砂区可开采储量有将近80%位于地下深处,只能采用昂贵的就地开采技术。
油砂要以蒸汽加热,直到它滴出油来,再吸出地面。
由麦克默里堡往北64公里,便是Syncrude的奥罗拉油砂矿。
站在已经塌陷的矿坑边缘向下望去,映入眼帘的是黑漆漆的一个坑。
这个坑有3.2公里宽,2.4公里长,深入石灰石岩床近60米。
机械铲在矿坑内四周抓起黑色石块,形状很像城市中的铺路石。
装卸车把石块运送到破碎机。
破碎机再将石块压碎,并同泥浆搅拌,再由分离管道喷出,然后逐步提炼出真正的石油。
油砂玻璃利弊分析报告
油砂玻璃利弊分析报告油砂玻璃是一种制造玻璃的材料,它由油砂和其他添加剂混合而成。
油砂本身是一种特殊的矿石,主要成分是含有油脂和石英的砂岩。
油砂玻璃在玻璃制造工业中具有一定的优点和缺点。
接下来,我们将对其利弊进行分析。
利:首先,油砂玻璃的成品具有较高的抗冲击性能。
由于油砂中含有油脂成分,这种特殊的结构可以增强玻璃的韧性和抗压能力。
这使得油砂玻璃在使用过程中更加耐用,能够承受较大的力量而不易破碎。
其次,油砂玻璃具有较低的热导率。
热传导是指热量在物体中传播的过程,较低的热导率意味着油砂玻璃能够更好地保持温度,阻碍热量的散失。
因此,油砂玻璃在工业和建筑领域中可以作为隔热材料使用,提供较好的保温效果。
此外,油砂玻璃的生产过程相对简单,并且原料资源丰富。
油砂作为一种常见的矿石,其产量较大,具有较低的开采成本。
这降低了油砂玻璃的生产成本,使其更加经济实用。
缺:然而,油砂玻璃也存在一些不足之处。
首先,油砂玻璃的硬度较低,容易受到划伤和磨损。
这可能会影响其外观和使用寿命,需要额外的保护措施来避免损坏。
其次,由于油砂中含有油脂成分,油砂玻璃在高温环境下容易发生脱油现象。
这可能导致其物理性能发生变化,甚至导致破裂。
因此,在热处理过程中需要谨慎操作,以防止脱油现象的发生。
此外,油砂玻璃的生产过程中产生的废气和废水也是一个不可忽视的问题。
废气中可能含有有害物质,对环境造成污染;废水则需要进行处理,以防止对水资源造成影响。
这增加了生产过程中的环境管理和处理成本。
综上所述,油砂玻璃具有一定的优点和缺点。
其高抗冲击性能和较低的热导率使其在一些领域具备潜力应用,如工业和建筑。
然而,其较低的硬度以及热处理过程中的脱油问题以及废气、废水污染等缺点需要引起注意并加以解决。
第八讲-油砂形成条件及资源潜力
平梁沟油砂露头
一、油砂概念及地质特征
2.基本特征
其特点: (1)通常是由砂、沥青、矿物质、粘土和水组成的混合 物。 不同地区油砂矿的组成不同,一般沥青含量为3%~ 20%,砂和粘土占80%~85%,水占3%~6%。 (2)不具有流动性,埋藏浅(目前国内评价目标主要集 中在 500m 以浅); (3)常出现在盆地的边缘和浅层,由于地质构造作用而 暴露于地表。
阿尔伯达盆地 2406BBO,34.83% 尤因塔盆地 11.7BBO,0.17%
马拉开波盆地 169BBO,2.45% 东委内瑞拉盆地 1123.4BBO,16.26%
世界油砂分布图(BGR 1998)
一、油砂概念及地质特征
3.分布特征—分布在 3 大成矿构造带、4 大成矿构造区、6 大成矿盆地
二、油砂形成条件及成矿模式
1.形成条件—(3)生物降解作用、氧化作用及水洗作用
石油进入储层之后的整个稠变过程,实质上是一个由深层向浅层,由与地表水不连 通的系统到与地表水连通系统周期性运移的过程。这一过程表现为运移、聚集、 再运移、再聚集。石油随之变得愈来愈重、愈稠,甚至最终成为固体沥青。
准噶尔盆地西北缘油砂样品族组分三角图
二、油砂形成条件及成矿模式
1.形成条件—(4)储集条件及盖层对油砂成藏的作用
(1)储集条件: 超大规模油砂通常沉积于三角洲、滨岸或河道砂中。这些砂体大多具有高孔高渗 的特点,为形成大型油砂矿提供了储集空间。沉积环境主要为海相,但中国的油 砂沉积环境主要为陆相。油砂含油性的好坏与岩性关系密切,含油率较高的油砂 岩性主要是细砂岩、中细砂岩。 (2)盖层条件:
油砂形成条件及资源潜力
(第八讲)
报告人:姜振学
中国石油大学(北京)非常规天然气研究院
油页岩与油砂的区别和用途
油页岩与油砂的区别和用途油页岩和油砂都是一种含有大量有机质的沉积岩,可以提取石油。
它们的区别主要在于成因、地质特征以及提取方式等方面。
首先,油页岩是一种由含油有机质和粘土矿物质组成的沉积岩,其主要成分是干酪根。
油页岩由于经历了高温高压的作用,在地壳运动和埋藏作用下形成。
主要分布于大陆盆地和海陆交互区域,并且常常与煤炭储层共存。
而油砂是由石英砂、粘土矿物质和有机质等组成的砂岩性沉积物。
油砂是在古时古代河流冲击积下形成的,经过长时间的埋藏和演化,其有机质逐渐转化为油砂,并被石英砂颗粒吸附和包裹。
油砂主要分布于加拿大、委内瑞拉等地。
油页岩和油砂的用途主要是提取石油。
对于油页岩,一种常用的提取方法是通过地下热解处理,将岩石加热并分解为原油和天然气。
这样的方法一般需要用到高温和大量的水和化学添加剂,不仅成本较高,而且对环境产生了很大影响。
油砂的提取过程也相对复杂。
由于油砂中的油主要是吸附在沙粒表面或者包裹在沙粒内部,因此需要通过破碎和研磨等加工工艺来提取油砂中的油。
常见的方法是使用热水、溶剂等对油砂进行浸提,从而分离出油砂中的石油。
在使用方面,油页岩和油砂都是可以用来生产石油和天然气的重要资源。
由于含油有机质的丰富性,它们被广泛用于石油行业。
特别是在石油资源相对稀缺的地区,人们对油页岩和油砂的开发利用有着较高的期望。
此外,油页岩和油砂提取石油的方式不同,也会对环境产生不同的影响。
油页岩的提取过程中可能会产生大量的废水、废渣和尾气,对环境产生较大破坏。
而油砂的提取过程中也会消耗大量的水资源,并且废水难以达标排放,对当地水资源和生态环境带来极大的压力。
此外,油砂和油页岩开采所需的基建和设备投资非常庞大,资金和技术要求较高。
同时,石油价格的波动也可能对开采经济性产生影响。
因此,在资源开发的过程中,需要综合考虑开采成本、环境效应和经济可行性等因素。
总之,油页岩和油砂是两种重要的石油资源,它们的区别在于成因、地质特征以及提取方式等方面。
油砂怎么处理
油砂怎么处理油砂处理技术包括溶剂萃取、化学热洗处理和裂解处理等。
其中溶剂萃取处理就是在油泥油砂中加入萃取溶剂,将里面的油类分离出来,用于再生利用;化学热洗处理就是将工业油泥加水稀释后再加热,同时投加一定量化学试剂反复清洗,使油从固相表面脱附或聚集分离;裂解处理技术是指在加热的条件下,通过油泥处理设备将工业油泥中的重质油类分解成燃油。
油砂的成分:油砂是指富含天然沥青的沉积砂。
因此也称为“沥青砂”。
油砂实质上是一种沥青、沙、富矿粘土和水的混合物,其中,沥青含量为10~12%,沙和粘土等矿物占80~85%,余下为3~5%的水。
具有高密度、高粘度、高碳氢比和高金属含量的油砂沥青油。
注意,在有些沉积例如西加拿大“油砂”沉积当中,天然沥青的含量在一些诸如粉砂岩、碳酸盐的岩性当中可能占主导地位。
方法一简单处理含油污泥直接填埋或固化后填埋都具有简单易行的特点。
含油污泥直接填埋是目前多数国内油田采用的主要含油污泥处理方法。
简单处理的弊端这种方法既浪费了其中的宝贵能源,还有可能导致环境污染。
其中,固化后填埋的方法可降低环境危害,但根本不能满足现行的环保要求。
方法二萃取法萃取法是利用“相似相溶”原理,选择一种合适的有机溶剂作萃取剂,将含油污泥中的原油回收利用的方法。
利用多级分离萃取加一级热洗方法处理含油污泥,处理后污泥可达到农用污泥排放标准,化学药剂可循环使用。
萃取法的弊端超临界流体萃取技术,该技术正处于开发阶段。
目前,萃取法处理含油污泥还在试验开发阶段;但是由于萃取剂价格昂贵,而且在处理过程中有一定的损失,所以萃取法成本高,还没有实际应用于炼厂含油污泥处理。
方法三焚烧法经过预先脱水浓缩预处理后的含油污泥,送至焚烧炉进行焚烧,温度800~850℃,经30分钟焚烧即可完毕,焚烧后的灰渣需进一步处理。
焚烧法的弊端焚烧过程中产生了二次污染,浪费了宝贵资源。
焚烧必须在专门建立的焚烧炉中进行,可比较彻底地消除含油污泥中的有害有机物,如不考虑燃烧热能的综合利用,会造成能源浪费。
油砂名词解释
油砂名词解释
油砂是一种含有大量油质的沉积岩,由砂粒、砾石等碎屑物颗粒组成,通过沉积作用形成。
油砂中的油质主要是腐殖质和干酪根等有机物质,它们在地质历史中经过高温高压作用转化而成。
油砂主要分布在河流、湖泊、海岛等水体沉积的地区。
油砂是一种非常重要的能源资源,具有巨大的石油储量。
它的开发利用可以提供大量的石油和石油产品,满足能源需求。
近年来,随着全球能源供应紧张和能源需求的增长,油砂的开发利用越来越受到关注。
在油砂的开发过程中,通常采用采矿、破碎、浸提等方法。
首先,通过采矿将油砂从地下或地表开采出来;然后,将开采出来的油砂进行破碎处理,使其颗粒更加细小;最后,利用溶剂进行浸提,将油砂中的油质分离出来。
油砂开采和利用过程中存在一些问题和挑战。
首先,油砂开采对环境造成了一定程度的破坏,例如土地资源的浪费、水资源的污染等。
其次,油砂开采的过程中产生的大量温室气体排放,对全球气候变化造成了一定影响。
此外,油砂开采过程中需要大量的能源和水资源,使得开采成本较高。
为了解决这些问题,科学家们正在不断努力。
他们通过改进油砂开采技术,减少环境破坏和能源消耗。
同时,也在研发新的清洁能源替代品,减少对油砂等传统能源的依赖。
总之,油砂是一种重要的能源资源,具有巨大的潜力。
但是,
在开发利用油砂的过程中,需要解决一系列的环境和经济问题。
通过科技创新和可持续发展的理念,相信可以找到合适的解决方案,实现油砂资源的可持续利用。
油砂分离技术概述-张志峰
国内关于油砂处理技术的概述--张志峰2009.31溶剂萃取技术1.1油砂溶剂萃取机理油砂的溶剂萃取采用相似相溶原理,油砂沥青在溶剂中的溶解传质过程有别于常规的固液传质。
笔者等[]提出油砂沥青的萃取过程是溶剂分子向沥青层扩散,使沥青层的粘度降低;在搅拌等剪切力作用下溶剂分子使油层剥落,实现油砂沥青和泥沙的分离。
该观点可较好地解释有搅拌存在时的溶解现象,但与静态萃取实验结果不符。
笔者等[]认为:甲苯等芳香烃溶剂先扩散进入沥青质层,在分子作用力下将沥青质分散并驱入溶剂整体相中;而溶解力较差的正庚烷等烷烃溶剂由于不能进入沥青质分子内部,起不到溶解的作用,但是却可以溶解一些沥青中的低分子物质,如饱和分、芳香分以及部分胶质等。
1.2油砂萃取工艺溶剂萃取技术具有节约水资源、处理方便、适用范围广、常温操作等各种优点,受到很多学者的亲睐。
笔者等[]采用半连续溶剂抽提法对油砂进行分离试验,选择重整汽油做萃取剂,溶剂流量60mL/min,在80℃、1.0MPa下,萃取60min,油砂沥青提取率达到92.74%。
笔者等[]选择石脑油为溶剂对哈萨克斯坦的油润型油砂进行抽提实验研究,油砂颗粒小于40目、剂砂质量比为4∶1、室温下抽提10min,收率高达98.00%。
笔者等[]提出 (WASEPs)溶剂萃取工艺分离油砂,该工艺在用溶剂萃取油砂沥青的同时加入水,利用溶剂、沥青、水以及固体砂的密度差异,使得萃取体系很好的分为三相,从上到下依次为沥青与溶剂混合相、水相、固体砂。
该工艺和单独用溶剂萃取相比,能更好的使沥青溶液和固体砂分离,同时能减少沥青溶液中细颗粒含量(溶剂单独萃取后沥青液中细颗粒含量为1.2%,WASEPs萃取后含量为0.55%),并且能减少尾砂中溶剂残余量(溶剂单独萃取后尾砂中溶剂残余量为22%,WASEPs萃取后溶剂残余量为7%)。
笔者:选择石脑油做萃取剂,油砂∶石脑油∶水=1∶1∶0.5,温度50~60℃,搅拌30min,沥青收率达到72%~74%,石脑油回收率在92%以上。
Tar sand(油砂介绍)
Kirk-Othmer Encyclopedia of Chemical Technology.Copyright c John Wiley&Sons,Inc.All rights reserved.TAR SANDSIn addition to conventional petroleum(qv)and heavy crude oil,there remains another subclass of petroleum, one that offers to provide some relief to potential shortfalls in the future supply of liquid fuels and other products.This subclass is the bitumen found in tar sand deposits(1,2).Tar sands,also known as oil sands and bituminous sands,are sand deposits impregnated with dense,viscous petroleum.Tar sands are found throughout the world,often in the same geographical areas as conventional petroleum.Petroleum,and the equivalent term crude oil,cover a vast assortment of materials consisting of gaseous, liquid,and solid hydrocarbon-type chemical compounds that occur in sedimentary deposits throughout the world(3).When petroleum occurs in a reservoir that allows the crude material to be recovered by pumping operations as a free-flowing dark-to light-colored liquid,it is often referred to as conventional petroleum.Heavy oil is another type of petroleum,different from conventional petroleum insofar as theflow properties are reduced.A heavy oil is much more difficult to recover from the subsurface reservoir.These materials havea high viscosity and low API gravity relative to the viscosity and API gravity of conventional petroleum(Fig.1)(3,4),and recovery of heavy oil usually requires thermal stimulation of the reservoir.The definition of heavy oil is usually based on API gravity or viscosity,but the definition is quite arbitrary. Although there have been attempts to rationalize the definition based on viscosity,API gravity,and density(2, 3),such definitions,based on physical properties,are inadequate,and a more precise definition would involve some reference to the recovery method.In a general sense,however,the term heavy oil is often applied to a petroleum that has a gravity <20◦API.The term heavy oil has also been arbitrarily used to describe both the heavy oil that requires thermal stimulation for recovery from the reservoir and the bitumen in bituminous sand(also known as tar sand or oil sand)formations,from which the heavy bituminous material is recovered by a mining operation. Extra heavy oil is the subcategory of petroleum that occurs in the near-solid state and is incapable of freeflow under ambient conditions.The bitumen from tar sand deposits is often classified as an extra heavy oil.Tar sand,also variously called oil sand(in Canada)or bituminous sand,is the term commonly used to describe a sandstone reservoir that is impregnated with a heavy,viscous black extra heavy crude oil,referred to as bitumen(or,incorrectly,as native asphalt).Tar sand is a mixture of sand,water,and bitumen,but many of the tar sand deposits in the United States lack the water layer that is believed to cover the Athabasca sand in Alberta,Canada,thereby facilitating the hot-water recovery process from the latter deposit.The heavy asphaltic organic material has a high viscosity under reservoir conditions and cannot be retrieved through a well by conventional production techniques.It is incorrect to refer to bitumen as tar or pitch.Although the word tar is somewhat descriptive of the black bituminous material,it is best to avoid its use in referring to natural materials.More correctly,the name tar is usually applied to the heavy product remaining af.ter the destructive distillation of coal(qv)or other organic matter.Pitch is the distillation residue of the various types of tar(see Tar and pitch).Physical methods of fractionation of tar sand bitumen usually indicate high proportions of nonvolatile asphaltenes and resins,even in amounts up to50%wt/wt(or higher)of the bitumen.In addition,the presence of12TAR SANDSFig.1.Relative viscosity data for conventional petroleum,heavy oil,and bitumen.ash-forming metallic constituents,including such organometallic compounds as those of vanadium and nickel, is also a distinguishing feature of bitumen.Asphalt(qv)is prepared from petroleum and often resembles bitumen.When asphalt is produced sim-ply by distillation of an asphaltic crude,the product can be referred to as residual asphalt or straight-run petroleum asphalt.If the asphalt is prepared by solvent extraction of residua or by light hydrocarbon(propane) precipitation,or if blown or otherwise treated,the term should be modified accordingly to qualify the product, eg,propane asphalt.1.Origin of BitumenThere are several general theories regarding the origin of the bitumen.One theory is that the oil was formed locally and has neither migrated a great distance nor been subjected to large overburden pressures.Because un-der these conditions the oil cannot have been subjected to any thermal effects with the resulting decomposition or molecular changes,it is geologically young and therefore dense and viscous.Another theory promotes the concept of a remote origin for the bitumen,or,more likely,the bitumen pre-cursor,both geographically and in geological time.The bitumen precursor,originally resembling a conventional crude oil,is assumed to have migrated into the sand deposit,which may originally have beenfilled with water. After the oil migrated,the overburden pressures were relieved,and the light portions of the crude evaporated, leaving behind a dense,viscous residue.TAR SANDS3 Table1.Bitumen vs Conventional Petroleum PropertiesProperty Bitumen Conventionalgravity,API8.625–37distillation Vol%IBP a,◦C5221102933043750543viscosity,suspensionat38◦C35,000<30at99◦C513pour point,◦C10≤0elemental analysis,wt%carbon83.186hydrogen10.613.5sulfur 4.80.1–2.0nitrogen0.40.2oxygen 1.1hydrocarbon type,wt%asphaltenes19≤5resins32oils49metals,ppmvanadium250≤100nickel100iron75copper5ash,wt%0.750Conradson carbon,wt%13.51–2net heating value,kJ/g b40.68ca45.33a IBP=initial boiling point.b To convert kJ/g to btu/lb,multiply by430.2.Included in the remote origin theory is the postulate that the light hydrocarbons were destroyed by bacteria carried into the petroleum reservoirs in oxygenated,meteoric waters.The remote origin theory would explain the water layer surrounding sand grains in the Athabasca deposit.However,because the metals and porphyrin contents of bitumen are similar to those of some conventional Alberta crude oils of Lower Cretaceous age and because Athabasca bitumen has a relatively low coking temperature,the bitumen may be of Lower Cretaceous age.This is the age of the McMurray formation(Canada),which is geologically young.This evidence supports the theory that the oil was formed in situ and is a precursor,rather than a residue of some other oil. The issue remains unresolved as of this writing(ca1997).2.OccurrenceMany of the reserves of bitumen in tar sand formations are available only with some difficulty,and optional refinery methods are necessary for future conversion of these materials to liquid products,because of the substantial differences in character between conventional petroleum(qv)and bitumen(Table1).Because of the diversity of available information and the continuing attempts to delineate the various world oil sands deposits,it is virtually impossible to reflect the extent of the reserves in terms of barrel units with4TAR SANDSFig. 2.Principal tar sand deposits of the world,where•represents>2,385,000m3(>15×106bbl)bitumen; ,probably <159,000m3(<1×106bbl)bitumen;and ,reported occurrence information limited.Table2.Tar Sand Deposits and Mode of Entrapment aNumber Deposit Location1.stratigraphic trap:structure of littleimportance;short-distance migrationassumedSunnyside,P.R.Springs,Santa Cruz2.structural/stratigraphic trap:folding/faulting and unconformity equallyimportant Oficina–Temblador tar,Bemolanga, Asphalt Ridge,Melville Island, Guanoco,Kentucky deposits3.structural trap:structure important;long-distance migration assumed;unconformity may be absentWhiterocks,La Brea4.intermediate between1and2Athabasca,Edna,Sisquoc,Santa Rosa5.intermediate between2and3Selenizza,Dernaa See Fig.3.a great degree of accuracy.The potential reserves of hydrocarbon liquids that occur in tar sand deposits have, however,variously been estimated on a world basis to be in excess of477×109m3(3×1012bbl).Reserves that have been estimated for the United States are believed to be in excess of795×104m3(50×106bbl),although estimates vary.Bitumen reserves throughout the world can compare favorably with reserves of conventional crude oil.Tar sand deposits are widely distributed throughout the world(Fig.2)(5,6)and the various deposits have been described as belonging to two types:stratigraphic traps and structural traps(Table2;Fig.3)(7). However,there are the inevitable gradations and combinations of these two types of deposits,and thus a broad pattern of deposit entrapment is believed to exist.In general terms,the entrapment character of the very large tar sand deposits involves a combination of both stratigraphic and structural traps.TAR SANDS5Fig.3.Types of traps for tar sand deposits,where represents a stratigraphic trap,×,an intermediate between stratigraphic and structural/stratigraphic traps; ,a structural/stratigraphic trap;•,an intermediate between struc-tural/stratigraphic and structural traps;and ,a structural trap.The largest tar sand deposits are in Alberta,Canada,and in Venezuela.Smaller tar sand deposits occur in the United States(mainly in Utah),Peru,Trinidad,Madagascar,the former Soviet Union,Balkan states, and the Philippines.Tar sand deposits in northwestern China(Xinjiang Autonomous Region)also are large;at some locations,the bitumen appears on the land surface around Karamay,China.The largest deposits are in the Athabasca area in the province of Alberta,Canada,and in the Orinoco region of east central Venezuela.The Athabasca deposit,along with the neighboring Wabasca,Peace River,and Cold Lake heavy oil deposits,have together been estimated to contain1.86×1011m3(>1.17×1012bbl)of bitumen.The Venezue-lan deposits may at least contain>1.60×1011m3(1.0×1012bbl)bitumen(2).Deposits of tar sand,each containing>3×106m3(20×106bbl)of bitumen,have also been located in the United States,Albania,Italy,Madagascar,Peru,Romania,Trinidad,Zaire,and the former Soviet Union,comprising a total of ca 450×109m3(2.8×1012bbl).The Alberta(Athabasca)tar sand deposits are located in the northeast part of that Canadian province (Fig.4).These are the only mineable tar sand deposits undergoing large-scale commercial exploitation as of this writing(ca1997).The Athabasca deposits have been known since the early1800s.Thefirst scientific interest in tar sands was taken by the Canadian government in1890,and in1897–1898,the sands werefirst drilled at Pelican Rapids on the Athabasca River.Up until1960,many small-scale commercial enterprises were attempted but not sustained.Between1957and1967,three extensive pilot-plant operations were conducted in the Athabasca region,each leading to a proposal for a commercial venture,eg,Suncor and Syncrude.The Venezuelan tar sands are located in a50–100-km belt extending east to west for>700km,imme-diately north of the Orinoco River.The precise limits of the deposit are not well defined because exploration efforts in the past concentrated on light and medium crude accumulations.The geological setting of the Orinoco deposit is complex,having evolved through three cycles of sedimenta-tion.The oil is contained by both structural and stratigraphic traps,depending on location,age of sediment,and6TAR SANDSFig.4.Tar sand and heavy oil deposits in Alberta,Canada.degree of faulting.The tar sands are located along the southernflanks of the eastern Venezuelan basin,where three distinct zones are apparent from north to south:a zone of tertiary sedimentation,a central platform with transgressive overlapping sediments,and a zone of erosional remnants covered by sediments.The deposit also contains three systems of faulting.All the faults are normal and many are concurrent with deposition.Tar sands in the United States are contained in a variety of separate deposits in various states(Fig.5) but because many of these deposits are small,information on most is limited(8).Attempts at development of the deposits have occurred primarily in Utah.3.PropertiesTar sand has been defined as sand saturated with a highly viscous crude hydrocarbon material not recoverable in its natural state through a well by ordinary production methods(2–8).Technically the material shouldTAR SANDS7 perhaps be called bituminous sand rather than tar sand because the hydrocarbon is bitumen,ie,a carbon disulfide-soluble oil.The data available are generally for the Athabasca materials,although workers at the University of Utah (Salt Lake City)have carried out an intensive program to determine the processibility of Utah bitumen and considerable data have become available.Bulk properties of samples from several locations(Table3)(9)show that there is a wide range of properties.Substantial differences exist between the tar sands in Canada and those in the United States;a difference often cited is that the former is water-wet and the latter,oil-wet(10).Canada United Statessand is water-wet,thus disengagement of bitumen isefficient using hot-water process( caustic=sodium hydroxide; bitumen recovery>98%)sand is oil-wet,thus efficient dis-engagement of bitumen requires high shear rates( caustic=sodium carbonate; bitumen recovery∼95%)formations usually unconsolidated formations usually consolidated tosemiconsolidated by mineralcementationfew deposits have been identified (Alberta contains ca0.4m3 bitumen)numerous deposits identified(33 major deposits=12m3bitumen; 20minor deposits=12m3bitu-men);total resource=6.5m3 bitumen(2.6m3measured and 3.8m3billion speculative)problems exist in settling and removal of clay from tar sand deposits and process streams little is known about the nature and effect on processing of claysbitumen properties fairly uniform (sulfur=4.5−5.5wt%,nitrogen= 0.1–0.5wt%;H/C ratio∼1.5;API gravity from6to12◦)bitumen properties diverse(sul-fur=0.5−10wt%,nitrogen0.1–1.3wt%;H/C ratio=1.3−1.6; API gravity from−2to14◦)bitumen deposits large with uniform quality;recovery and upgrading plants on-stream since 1970s bitumen deposits small and not of uniform quality;recovery and upgrading methods need to be site-specificThe sand component is predominantly quartz in the form of rounded or angular particles(11),each of which is wet with afilm of water.Surrounding the wetted sand grains and somewhatfilling the void among them is afilm of bitumen.The balance of the void volume in the Canadian sands isfilled with connate water plus,sometimes,a small volume of ually the gas is air but methane has been reported from some test borings in the Athabasca deposit.Some commercial gas deposits were developed in the late1980s.The sand grains are packed to a void volume of ca35%,corresponding to a mixture of ca83wt%sand;the remainder is bitumen and water which constitute ca17wt%of the tar sands.3.1.BitumenThere are wide variations both in the bitumen saturation of tar sand(0–18wt%bitumen),even within a particular deposit,and the viscosity.Of particular note is the variation of density of Athabasca bitumen with temperature,and the maximum density difference between bitumen and water(70–80◦C(160–175◦F));hence the choice of the operating temperature of the hot-water bitumen-extraction process.8TAR SANDSTable3.Bulk Properties of Tar SandsProperty Alberta Asphalt Ridge a P.R.Springs a Sunnyside a Tar SandTriangle a Texas Alabamabulk density,g/cm31.75–2.19 1.83–2.50porosity,vol%27–5616–276–3316–289–32326–25permeability, m2×10−16b 99–5,9004,905–5,950553–14,9025,265–7,4022,043–7,77731589.9–6,316specific heat,J/(g·◦C)c1.46–2.09 thermalconductivity,J/( s·◦C·cm)c 0.0071–0.0015a Deposit in Utah.b To convert m2to millidarcies,multiply by1.013×1012.c To convert J to cal,divide by4.184.Fig.5.Tar sand deposits in the United States.The API gravity of tar sand bitumen varies from5to ca10◦API,depending on the deposit,and the viscosity is very high.Whereas conventional crude oils may have a high(>100MPa·s(=cP))viscosity at40◦C, tar sand bitumen has a viscosity on the order of10−100kPa·s(105−106P)at formation temperature(ca0–10◦C),depending on the season.This offers a formidable obstacle to bitumen recovery and,as a result of the high viscosity,bitumen is relatively nonvolatile under conditions of standard distillation(Table4)(12,13), which influences choice of the upgrading process.TAR SANDS9 Table4.Distillation Data for Various BitumensCut point,◦C Athabasca,wt%distilled aNW Asphalt Ridge,wt%distilled aP.R.Springs,wt%distilled aTar Sand Triangle,wt%distilled a200 3.0 2.30.7 1.7225 4.6 3.3 1.4 2.9250 6.5 4.4 2.4 4.42758.9 5.8 3.8 5.930014.07.5 4.98.432525.98.8 6.812.435018.111.78.015.237522.413.810.118.640026.216.812.522.442529.119.516.026.945033.123.720.028.947537.028.422.532.350040.034.025.035.152542.940.027.338.553844.644.228.040.0538+55.455.872.060.9a Cumulative.3.2.MineralsUsually>99%of the tar sand mineral is composed of quartz sand and clays(qv).In the remaining1%,more than30minerals have been identified,mostly calciferous or iron-based(14).Particle sizes range from large grains(99.9%finer than1000µm)to44µm(325mesh),the smallest size that can be determined by dry screening.The size between44and2µm is referred to as silt;sizes<2µm(equivalent spherical diameter)are clay.Clays(qv)are aluminosilicate minerals,some of which have definite chemical compositions.In regard to tar sands,however,clay is only a size classification and is usually determined by a sedimentation method. According to the previous definition offines,thefines fraction equals the sum of the silt and clay fractions.The clay fraction over a wide range offines contents is a relatively constant30%of thefines.The Canadian deposits are largely unconsolidated sands having a porosity ranging up to45%and good intrinsic permeability.However,the deposits in Utah range from predominantly low porosity,low permeability consolidated sand to,in some instances,unconsolidated sands.In addition,the bitumen properties are not conducive tofluidflow under normal reservoir conditions in either Canadian or U.S.deposits.Nevertheless, where the general nature of the deposits prohibits the application of a mining technique,as in many of the U.S. deposits,a nonmining technique may be the only feasible bitumen recovery option(6).4.RecoveryOil prices and operating costs are the key to economic development of tar sand deposits.However,two technical conditions of vital concern for economic development are the concentration of the resource(percent bitumen saturation)and its accessibility,usually measured by the overburden thickness.The remoteness of the U.S.tar sands is often cited as a deterrent to development but topography of the site,overburden-to-ore body ratio,and richness of the ore body are also important.In the1990s context of mining tar sand deposits in the United States,the Utah deposits(Tar Sand Triangle,P.R.Springs,Sunnyside, and Hill Creek)generally have an overburden-to-net pay zone ratio above the0.4–1.0range,with a lean oil10TAR SANDSFig.6.Recovery processes.content.On the other hand,the Asphalt Ridge deposit is loosely consolidated and could be mined using aripper/front-end loader(without drilling and blasting)at the near-surface location of the deposit.Recovery methods are based either on mining combined with some further processing or operation onthe oil sands in situ(Fig.6).The mining methods are applicable to shallow deposits,characterized by anoverburden ratio(ie,overburden depth-to-thickness of tar sand deposit)of ca1.0.Because Athabasca tar sandshave a maximum thickness of ca90m and average ca45m,there are indications that no more than10%ofthe in-place deposit is mineable within1990s concepts of the economics and technology of open-pit mining.The bitumen in the Athabasca deposit,which has a gravity on the API scale of8◦,is heavier than waterand very viscous.Tar sand is a dense,solid material,but it can be readily dug in the summer months;duringthe winter months when the temperatures plunge to−45◦C,tar sand assumes the consistency of concrete.To maintain acceptable digging rates in winter,mining must proceed faster than the rate of frost penetration;ifnot,supplemental measures such as blasting are required.4.1.Nonmining MethodsNonmining(in situ)processes depend on injecting a heating-and-driver substance into the ground throughinjection wells and recovering bitumen through production wells.Such processes need a relatively thick layerof overburden to contain the driver substance within the formation between injection and production wells(2).In principle,the nonmining recovery of bitumen from tar sand deposits is an enhanced oil recoverytechnique and requires the injection of afluid into the formation through an injection well.This leads to the insitu displacement of the bitumen from the reservoir and bitumen production at the surface through an egress(production)well.There are,however,several serious constraints that are particularly important and relateto the bulk properties of the tar sand and the bitumen.In fact,both recovery byfluid injection and the seriousconstraints on it must be considered in toto in the context of bitumen recovery by nonmining techniques(seePetroleum,enhanced oil recovery).Another general constraint to bitumen recovery by nonmining methods is the relatively low injectivityof tar sand formations.It is usually necessary to inject displacement/recoveryfluids at a pressure such thatfracturing(parting)is achieved.Such a technique,therefore,changes the reservoir profile and introduces aseries of channels through whichfluids canflow from the injection well to the production well.On the otherTAR SANDS11 hand,the technique may be disadvantageous insofar as the fracture occurs along the path of least resistance, giving undesirable or inefficientflow characteristics within the reservoir between the injection and production wells,which leave a part of the reservoir relatively untouched by the displacement or recoveryfluids.In steam stimulation,heat and drive energy are supplied in the form of steam injected through wells into the tar sand formation.In most instances,the injection pressure must exceed the formation fracture pressure in order to force the steam into the tar sands and into contact with the oil.When sufficient heating has been achieved,the injection wells are closed for a soak period of variable length and then allowed to produce,first applying the pressure created by the injection and then using pumps as the wells cool and production declines.Steam can also be injected into one or more wells,with production coming from other wells(steam drive). This technique is effective in heavy oil formations but has found little success during application to tar sand deposits because of the difficulty in connecting injection and production wells.However,once theflow path has been heated,the steam pressure is cycled,alternately moving steam up into the oil zone,then allowing oil to drain down into the heatedflow channel to be swept to the production wells.If the viscous bitumen in a tar sand formation can be made mobile by an admixture of either a hydrocarbon diluent or an emulsifyingfluid,a relatively low temperature secondary recovery process is possible(emulsion steam drive).If the formation is impermeable,communication problems exist between injection and production wells.However,it is possible to apply a solution or dilution process along a narrow fracture plane between injection and production wells.To date(ca1997),steam methods have been applied almost exclusively in relatively thick reservoirs containing viscous crude oils.In the case of heavy oilfields and tar sand deposits,the cyclic steam injection technique has been employed with some success.The technique involves the injection of steam at greater than fracturing pressure,usually in the10.3–11.0MPa(1500–1600psi)range,followed by a soak period,after which production is commenced(15).Variations include the use of steam and the means of reducing interfacial tension by the use of various solvents.The solvent extraction approach has had some success when applied to bitumen recovery from mined tar sand but when applied to unmined material,losses of solvent and bitumen are always an obstacle.This approach should not be rejected out of hand because a novel concept may arise that guarantees minimal acceptable losses of bitumen and solvent.Combustion has also been effective for recovery of viscous oils in moderately thick reservoirs where reservoir dip and continuity promote effective gravity drainage,or where several other operational factors permit close well spacing.During in situ combustion orfireflooding,energy is generated in the formation by igniting bitumen in the formation and sustaining it in a state of combustion or partial combustion.The high temperatures generated decrease the viscosity of the oil and make it more mobile.Some cracking of the bitumen also occurs,and thefluid recovered from the production wells is an upgraded product rather than bitumen itself.The recovery processes using combustion of the bitumen are termed forward combustion or reverse combustion,depending on whether the combustion front moves with or counter to the direction of airflow. In either case,burning occurs at the interface where air contacts hot,unburned oil or,more likely,coke. Thus,if theflame front is ignited near the injection well,it propagates toward the production well(forward combustion).However,if the front is ignited near the production well,it moves in the opposite direction(reverse combustion).In forward combustion,the hydrocarbon products released from the zone of combustion move into a relatively cold portion of the formation.Thus,there is a definite upper limit of the viscosity of the liquids that can be recovered by a forward combustion process.On the other hand,because the air passes through the hot formation before reaching the combustion zone,burning is complete;the formation is left completely cleaned of hydrocarbons.In reverse combustion,some hydrocarbons are left in the formation.The theoretical advantage of reverse combustion is that the combustion products move into a heated portion of the formation and therefore are not subject to a strict viscosity limitation.However,most attempts to implement reverse12TAR SANDScombustion infield pilot installations have been unsuccessful.In many cases,the failure resulted from the onset of secondary combustion at the production well.Using combustion to stimulate bitumen production is attractive for deep reservoirs and in contrast to steam injection usually involves no loss of heat.The duration of the combustion may be short(days)depending on requirements.In addition,backflow of oil through the hot zone must be prevented or excessive coking occurs(15,16).Another variation of the combustion process involves use of a heat-up phase,then a blow-down (production)phase,followed by a displacement phase using afire–waterflood(COFCAW process).4.2.Mining MethodsThe alternative to in situ processing is to mine the tar sands,transport them to a processing plant,extract the bitumen value,and dispose of the waste sand(17,18).Such a procedure is often referred to as oil mining.This is the term applied to the surface or subsurface excavation of petroleum-bearing formations for subsequent removal of the oil by washing,flotation,or retorting treatments.Oil mining also includes recovery of oil by drainage from reservoir beds to mine shafts or other openings driven into the oil rock,or by drainage from the reservoir rock into mine openings driven outside the oil sand but connected with it by bore holes or mine wells.On a commercial basis,tar sand is recovered by mining,after which it is transported to a processing plant, where the bitumen is extracted and the sand discharged.For tar sands of10%wt/wt bitumen saturation,12.5 metric tons of tar sand must be processed to recover1m3(6.3bbl)of bitumen.If the sand contains only5% wt/wt bitumen,twice the amount of ore must be processed to recover this amount.Thus,it is clear that below a certain bitumen concentration,tar sands cannot be processed economically(19).The Athabasca tar sands deposit in Canada is the site of the only commercial tar sands mining operations. The Suncor operation(near Fort McMurray,Alberta),started production in1967.The Syncrude Canada project, located8km away,started production in1978.In both projects,about half of the terrain is covered with muskeg, an organic soil resembling peat moss,which ranges from a few centimeters to7m in depth.The primary part of the overburden,however,consists of Pleistocene glacial drift and Clearwater Formation sand and shale.The total overburden varies from7to40m in thickness,and the underlying tar sand strata averages about45m, although typically5–10m must be discarded because of a bitumen content below the economic cut-off grade of ca6%wt/wt.Mining of the Athabasca tar sands presents two principal issues:in-place tar sand requires very large cutting forces and is extremely abrasive to cutting edges,and both the equipment and pit layouts must be designed to operate during the long Canadian winters at temperatures as low as−40◦C.There are two approaches to open-pit mining of tar sands.Thefirst uses a few mining units of custom design,which are necessarily expensive,eg,bucket-wheel excavators and large drag lines in conjunction with belt conveyors.In the second approach,a multiplicity of smaller mining units of conventional design is employed at relatively much lower unit costs.Scrapers and truck-and-shovel operations have been considered. Each method has advantages and risks.Thefirst approach was originally adopted by Suncor and Syncrude Canada,Ltd.,with Suncor converting to large-scale truck and shovel technology in1993.In the Suncor pit design,the ore body is divided into two layers(benches),each nominally23m high. The pitfloor and the dividing plane between the upper and lower bench are roughly horizontal,and7300-t/h bucket-wheel excavators are employed as the primary mining equipment(Fig.7).Tar sands loosened from the face of each bench by the bucket-wheels are discharged onto a series of conveyors.The overburden is stripped by an electric shovel that discharges to trucks for removal of the overburden material.Syncrude utilizes a single-bench design with four60-m3capacity draglines as the primary mining equipment(Fig.8).The draglines pile tar sands in windrows along the edge of the pit;four60,000-t/h bucket-wheels transfer the tar sands to a system of trunk conveyor belts that move the material to the extraction plant.The mining operations at the two plants differ by choice of the primary mining equipment;the bucket-wheel excavators sit on benches, whereas the draglines sit on the surface.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修课期末论文课程:非常规油气资源开发理论与技术论文题目:油砂分布与开采的相关问题研究分析10级勘查技术与工程专业一班1400100102李阳油砂分布与开采的相关问题研究分析一、非常规油气资源的前景世界范围内的非常规资源蕴藏十分丰富,非常规油产量超过7500×104t∕a,非常规天然气超过1800×108m3∕a。
近年来非常规油气资源的勘探开发,已经使人们认识到了它对未来世界资源格局的影响。
作为非常规油气资源的主要来源,在世界能源供给中起着巨大作用。
我国非常规油气资源也比较丰富,油页岩、油砂、煤层气和天然气水合物等开发潜力巨大。
与世界非常规油气资源研究与利用相比,我国在非常规油资源的研究和开发方面相对比较滞后,对油砂矿的资源潜力研究与评价技术、开采技术及综合利用技术研究得比较少,有待进一步的加大科研投入。
油砂及其利用前景油砂是一种非常规性含原油的砂状矿藏,由砂、沥青、矿物质、黏土和水以相互结合的方式构成,是地壳表层的碎屑物或岩石与其中所含的水和沥青形成的混合物的统称。
不同地区油砂矿的组成不同,沥青是其主要成分,含量可占到1%~20%,砂和粘土占80% ~85%,水占3% ~6%。
又称“沥青砂”、“稠油砂”、“重油砂”或“焦油砂”。
其中的沥青经过焦化、蒸馏、催化转换、加氢处理等复杂的工艺环节被从油砂中提取出来后,可产生类似天然石油的“合成原油”。
用油砂生产合成石油的第一步,是将其中的沥青与砂、矿物质、黏土以及水分进行分离。
然后在分选厂,通过加热过程,将漂浮在大型分离池表面的沥青加工成各种石油产品。
油砂的特点:1、通常含有80%~90%的无机质(砂、矿物等)、3%~6%的水和6%~20%的沥青。
油砂沥青是烃类和非烃类有机物质,是稠粘的半固体2、沥青流动性极差,一般不能以打井开采原油、稠油的方法来获取油砂沥青。
3、油砂中的沥青大部分溶于有机溶剂,而有别于油页岩中有机质不能溶于有机溶剂。
4、油砂中的沥青多来自降解作用,正构石蜡族烃达到了几乎耗尽的程度,因此饱和馏分中没有或几乎没有正构石蜡族烃。
油砂资源分布广泛,根据美国地质调查局的相关数据表明,世界油砂油可开采资源量为6510亿桶,约占世界石油资源可开采总量的32%,开发潜力巨大。
如果全部开发利用,大概可使世界消费上百年。
由于其开采成本较高,起初并不被人们所重视,但随着油价的飙升与油砂开采技术的革新,油砂越来越吸引投资者的目光。
随着世界经济对烃类需求的不断上升,未来能源的巨大缺口在很大程度上要依靠包括油砂在内的非常规油气资源来弥补。
目前,对于油砂资源的研究和开发,世界各国均在加速进行,其占世界烃类能源的比重在不断增加,在今后的能源结构中起着至关重要的作用,勘探前景巨大,综合利用前景广泛。
二、油砂的分布全球油砂资源分布主要沿环太平洋和阿尔卑斯带。
涵盖了:东委内瑞拉盆地、阿尔伯达盆地、中国东部诸盆地和一度坎贝海湾、欧洲诸盆地。
在世界油砂资源中加拿大资源储量位居世界第一,为 2.9×1012桶。
俄罗斯第二为0.7×1012桶。
美国第三为6.9×1010桶。
虽然目前全球缺乏系统评价,但就目前数据可以看出,世界油砂矿资源相当丰富。
俄罗斯境内各含油气盆地几乎均有发现,90%集中在古老地台区的隆起地带和断裂带。
美国油砂资源主要富集于阿拉斯加州和犹他州,各占总数的30%左右。
油砂在加拿大的分布加拿大是油砂矿资源最为丰富的国家,也是目前世界上真正实现大规模的油砂开采,形成完整的上中下游产业链的国家。
其油砂矿约占全球总量的77%,阿尔伯达盆地是主要的分布区,有阿萨巴斯卡、冷湖以及和平河等8个大油田,地质储量约为2680×108~4000×108t,几乎从泥盆系到上白垩纪统均有分布。
油砂分布在盆地东部较浅的白垩纪下不,总体处于不整合面上面。
加拿大的油砂由石英沙、泥土、水、沥青和少量的矿物质组成,其中沥青含量约为10-12%。
现已查明,加拿大的油砂中沥青的总含量达4000亿m3,是世界上最大的沥青资源,其中240 亿m3分布在表层(地下75米以内)、3760亿m3分布在深层。
其中艾伯塔盆地的最大油砂矿阿萨巴斯卡估计储量9.2×1011桶。
是唯一一个出露地表的油砂矿,进行露开采。
照目前消费水平,足以保证加拿大国内原油需求200年。
这也使得加拿大石油储量在全世界排名第三,仅次于沙特阿拉伯和委内瑞拉,超过伊拉克、伊朗和科威特。
我国油砂资源的分布我国也是在世界油砂矿资源丰富的国家之一,结合调查认为,中国油砂资源潜力可能大于稠油资源,初步估算中国油砂有千亿吨,可采石油资源量100×108t左右。
分布特点是:范围广泛、层位多、厚度小、含油率低等。
主要分布在新疆、青海、西藏、四川、贵州等地。
我国油砂远景资源量为100亿吨。
油砂资源在各含油气盆地中均有分布,主要分布在4类盆地中:西部挤压盆地,东部裂谷盆地,中部过渡型盆地及南部山间盆地。
不同板块的发生、发展和碰撞等地质活动好、控制了中国大陆内部不同含油气盆地的形成和演化。
形成了西部挤压盆地油砂、东部伸展盆地油砂、中部过度型盆地油砂和南部地台型盆地油砂多种类型。
准噶尔盆地、塔里木盆地、柴达木盆地、四川盆地、鄂尔多斯盆地等7个盆地中油砂资源量巨大,是未来我国油砂资源勘探开发的重点区域。
三、油砂的开采技术由于油砂是由沥青、啥、富矿粘土和水的混合物,流动性差,通常石油和天然气是通过钻井从多孔隙岩石中收集并使用油泵抽出而获得,但油砂必须用萃取工艺分理处沥青,再从中提炼出重油。
它的这种特殊性质决定了它的开采方式与常规石油开采方式不同。
同时根据其深度不同,采用的开采方法也是不一样的。
根据油砂矿的不同条件,国际上常用的开采方式有:露天开采、就地开采和其他开采方法,其中露天开采与就地开采占主要地位,而较为成熟的开采方式是露天开采。
露天开采法露天采矿分为采矿和萃取两个部分,主要适用于埋深<75m、厚度>3m的近地表油砂矿,通过建造巨大的露天矿场以及萃取设施,运用采矿的方式进行油砂开采,此方法沥青平均采收率为75%。
露天开采所需的设备、费用较其他方法好,技术较为成熟,在加拿大及委内瑞拉等地已形成大规模工业开采。
露天采矿的主要工艺流程是:除去盖层、用铲车挖出油砂、将油砂运送到粉碎装置、碾碎混合成砂浆、用水运送到萃取装置、将沥青从油砂中分离、进行为渣处理等。
油砂矿采出粉碎后,与热水及蒸汽混合,沥青粗分理出后用轻油稀释,在用离心法分离。
该法得到的沥青粘稠度极高、流动性极差。
近年来,随着各国科研及经费的大量投入,油砂开采工艺有了较大的进步和提高。
铲车和卡车的投入开采,增加了开采的灵活性,同时也降低了成本;用水力运输管道系统代替和传送带系统,使油砂达到运输要求,简化了分离沥青和砂的萃取过程,确保了最佳分离条件,降低了能量消耗;实现了可移动式矿区开采技术,即把采出的所有矿运输到提炼厂,再将地层砂返回到采矿区,生产操作范围小、项目费用少,能满足大型提炼厂的需求。
就地开采对于埋藏较深的油砂,因需要剥离的盖层过大、成本过高而无法应用露天开采技术,这类油砂约占油砂储量的85%以上,需要就地开采。
就地开采又份热采法和冷采法,目前热采法比较成熟度的技术有蒸汽吞吐和蒸汽驱技术、蒸汽辅助重力泄油技术、注入溶剂技术、井下就地催化改质开采技术、水热裂解开采技术等。
出砂冷采法。
是加拿大近年来发展起来的一项新的油砂开采技术。
主要原理是:1、通过出砂冷采在油藏中形成“蚓孔”及网络,使油层孔隙度和渗透率大幅增加,极大地提高了油砂的流动性。
2、稳定的泡沫油使原油密度变得很低,从使粘度极大地油砂得以流动。
3、油层中的大量油砂使得油层的强度降低,在上履地层压力作用下,油层将发生一定程度上的压实作用使孔隙压升高,驱动能量增强。
4、远距离的边底水可提供一定程度的驱动能量。
最适用的油藏条件是油藏胶结疏松、埋藏深度在400-500m、油层厚度大于10m,井位部署忌靠近边底水,多采用从式斜直井并组进行开发,采油工艺采用适宜高含砂和高原油粘度的高转速大排量螺杆泵。
出砂冷采技术具有投资少、日产油量高、开采成本低和不伤害地层等优点而被广泛应用。
蒸汽吞吐和蒸汽驱技术。
蒸汽吞吐是一种相对简单的和成熟的注入蒸汽开采油砂技术,蒸汽吞吐的机理主要是加热近井地带原油,使之粘度降低,当生产压力下降时,为地层束缚水和蒸汽的闪蒸提供气体驱动力。
蒸汽驱是目前大规模工业化应用的热采技术,其机理主要是降低油砂粘度,提高原油的流度,烃汽与蒸汽一起凝结,驱替并稀释前缘原油,从而留下较少较重的残余油。
其特点是:采油速度快、采收效率高、经济成本低。
井下就地催化改质开采技术。
此法相当于将地面炼油厂搬到地下,通过油田开采中常用的砾石充填或压裂作业中支撑剂注入的方式将固体催化剂放置到油层中生产井附近,向地层中注入氢气或合成气。
通过就地燃烧原油产生就地改质需要的温度条件,使油气流过加热的催化剂层开采。
该项技术难度较大,需要突破的两个方面是催化剂技术研究和原油大规模与催化剂反应技术。
其他开采技术除了上述技术外还有一些技术也开始应用于油砂开采,例如微波采油技术和巷道开采技术等。
微波处理油砂能改变油砂中油的各组分含量,从而改变油砂油的性质,将油从油砂中分离出来,是目前广泛研究的方向。
微波开采技术是将大功率下到要做用的的油砂层位置,微波在油砂层中传播时使温度升高,油的粘度降低,原油开始流动即可采出。
巷道开采的原理是对埋藏较深的油砂先打一口竖井,然后在油砂层掘进集油巷道,再利用水力冲刷法或螺旋钻机法进行油砂开采,并进行油、砂的粗略分离,最后通过水利系统将少量砂浆和油砂输送到地面。
四、总结油砂的分布和储量较为丰富,集中在环太平洋带和阿尔卑斯带,根据其成藏位置、深度不同,其对应的开采技术也不相同。
成藏75m以上的浅藏适宜露天开采,较深的需用地下开采法(包括蒸汽吞吐和蒸汽驱技术、蒸汽辅助重力泄油技术、注入溶剂技术等)。
开采出来的油砂进行油、砂分离一步步提取出油。
非常规油气资源作为继常规油气资源的重要能源来源,将会为能源日益紧张的人类社会的补给。
随着人们把目光转向非规油气资源,油砂进入了人类的视野,对于油砂的研究开发也在不断的加深。
参考文献:1、《规油气资源勘探开发的几点思考》作者:翟光明(工程院院士)期刊:《天然气工业》2008.12.282、《国内外油砂资源研究现状》作者:单玄龙、车长波、李剑等期刊:《世界地质》2007.4.263、《挤压型盆地油砂富集条件及成矿模式》作者:赵群、王红岩、刘人和等期刊:《天然气工业》2004.4.284、《加拿大油砂资源现状和石油管线建设分析》作者:邱海俊、任收麦(作者单位:国土资源部油气资源战略研究中心)期刊:《中国国土资源经济》2009.5.22 5、《油砂开采技术和方法综述》作者:郑德温、方朝合、李剑等期刊:《西南石油大学学报》2008.6.30 6、《油砂开采现状及开发技术进展》作者:陈媛媛、刘洪伟期刊:《石油化工应用》2011.3.307、《油砂资源的开发利用》作者:崔苗苗、李文深等期刊:《化学工业与工程》2009.1.26。