【学案】算术平方根
人教版七年级数学下册6.1.1《算术平方根》教案
人教版七年级数学下册6.1.1《算术平方根》教案一. 教材分析《算术平方根》是人教版七年级数学下册第六章第一节的内容。
本节课主要让学生掌握算术平方根的定义,理解求一个数的算术平方根的方法,以及熟练运用算术平方根解决实际问题。
教材通过引入大量的生活实例,激发学生的学习兴趣,引导学生探究、发现算术平方根的规律,培养学生的抽象思维能力。
二. 学情分析七年级的学生已经掌握了实数的概念,具备了一定的数学基础。
但在计算能力和数学思维方面,学生之间存在较大差异。
因此,在教学过程中,要关注学生的个体差异,引导他们积极参与课堂活动,提高他们的数学素养。
三. 教学目标1.理解算术平方根的定义,掌握求一个数的算术平方根的方法。
2.能够运用算术平方根解决实际问题,提高学生的应用能力。
3.培养学生的抽象思维能力,提高学生的计算能力。
4.激发学生的学习兴趣,培养他们积极探究数学规律的精神。
四. 教学重难点1.算术平方根的定义及其求法。
2.运用算术平方根解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生发现算术平方根的规律。
2.探究教学法:引导学生积极参与课堂讨论,自主发现算术平方根的求法。
3.练习法:通过大量练习,巩固学生对算术平方根的理解和运用。
六. 教学准备1.教学课件:制作精美的课件,辅助教学。
2.练习题:准备适量的一定难度的练习题,用于课堂练习和课后作业。
3.教学道具:准备一些实物,如正方形、长方形等,用于直观展示。
七. 教学过程1.导入(5分钟)利用生活实例,如衣服的尺码、房屋面积等,引导学生思考:如何快速找到一个数的平方根?从而引出本节课的主题——算术平方根。
2.呈现(10分钟)介绍算术平方根的定义,并通过PPT展示一些图片,让学生直观地感受算术平方根的应用。
3.操练(10分钟)让学生分组讨论,探索如何求一个数的算术平方根。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
算术平方根教学设计10篇
算术平方根教学设计10篇《平方根》教案篇一教学设计示例一.教学目标1.会用计算器求数的平方根;2.通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;3.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣。
二.教学重点与难点教学重点:用计算器求一个正数的平方根的程序教学难点:准确用计算器求解一个正数的平方根三.教学方法讲练结合四.教学手段实物投影仪,计算器五.教学过程在前面我们已学过平方根的概念,现在已掌握了一些数的平方根,如4,25,0.01,等数的平方根,但对于如:2,3,,0.3的平方根就不能像前面的数那样容易求解了,只能用根号表示。
具体的值或近似值如何求解的?在乘方时曾讲过毅力计算器求解,今天我们来研究如何用计算器求解一个数的平方根。
复习提问学生有关乘方如何用计算器运算的步骤。
熟悉计算器基本键的功能。
现在讲计算器打开,按键,屏幕上显示“0”此时可以进行运算。
例1.用计算器求的值。
分析:首先要学生熟悉计算器基本键的功能,对于平方根运算尤其要掌握“2F”的功能。
解:用计算器求的步骤如下:小结:在求解的过程中,由于要用到这个键上方的功能,这就需要用上方标有“2F”的键来转换。
例2.用计算器求的值。
(保留4个有效数字)解:用计算器求的步骤如下:小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。
例3.用计算器求的'值。
解:用计算器求的步骤如下:因为计算结果要求保留4个有效数字,例4.用计算器求1360.57的平方根。
解:用计算器求1360.57平方根的步骤如下:因为计算结果要求保留4个有效数字,小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。
例5.用计算器求值:分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。
《算术平方根》说课稿(精选3篇)
《算术平方根》说课稿《算术平方根》说课稿(精选3篇)在教学工作者开展教学活动前,常常需要准备说课稿,借助说课稿可以让教学工作更科学化。
如何把说课稿做到重点突出呢?下面是小编精心整理的《算术平方根》说课稿(精选3篇),欢迎阅读与收藏。
《算术平方根》说课稿1一、教材分析1、说教材《算术平方根》是九年制义务教育人教版七年级下册第十章《实数》的第一节内容,与旧教材相比,它在这里先讲算术平方根再去学习平方根。
为后学习平方根奠定一定基础,同时也把数从有理数拓展到无理数。
这一节的教材编写思路是由浅入深,循序渐进,引导学生观察、实验、猜测,逐步培养学生的逻辑推理能力。
2、教学目标和要求根据新课标的要求及七年级学生的认知水平,我制定本节课的教学目标如下:知识技能:了解算术平方根的概念,会求正数的算术平方根。
数学思考:通过探索的大小,培养估算意识。
解决问题:通过拼正方形的活动,体验解决问题方法的多样性,展形象思维。
情感态度:通过学习算术平方根,认识数学与生活的密切关系。
通过探究活动,锻炼意志,建立自信心,提高学习热情。
3、教学的重点与难点重点:算术平方根的概念,感受无理数。
难点:探究大小的过程二、说教学理念培养学生的合作探究精神,自主学习、创新精神是新课程标准的重要理念。
课堂教学中渗透了数学的转化思想,数型结合思想,体现新课程标准中的知识与能力、情感与态度,过程与方法的三统一。
三、说教法本节课结合七年级学生的理解能力、思维特征和依赖直观图形学习数学的年龄特征,采用多媒体辅助教学,将知识形象化、生动化、具体化,在教学中采用启发式、师生互动式等方法,充分发挥学生的主动性、积极性,特别是通过拼图法得出。
再通过渐进法得出的大小。
教师采用点拨的方法,启发学生主动思考,尝试用多种取值来得出的大小,进而引出无理数。
使整个课堂生动有趣,极大限度地培养了学生观察问题、发现问题、归纳问题的能力和一题多解,一题多法的创新能力,使课本知识成为学生自己的知识。
初二数学:下册第6章实数6.1平方根(第1课时)学案
6.1平方根(第一课时)班级: 姓名:【学习目标】1.理解算术平方根的意义,会用根号表示正数的算术平方根,会求一个非负数的算术平方根,掌握算术平方根的非负性。
2. 培养逆向思维能力。
重点难点:理解算术平方根的意义。
【学习过程】一、【自主预习】:(阅读课本40页的内容,完成以下题目)(一)算术平方根的定义表中的问题,实际上是已知一个正数的 ,求 的问题。
2. 算术平方根的定义 一般的,如果一个正数..x 的 等于a ,即a x =2,那么这个正数....x 叫做 算术平方根.....。
a 的算术平方根记为 ,读作“ ”, a 叫做 。
规定:0的算术平方根是 .(二)算术平方根的性质=2)4( ;=2)91( ;2)2(= ;=2)31( 。
一个非负数的算术平方根一定是 ,一个非负数的算术平方根的平方一定等于 。
a 要有意义,a 的取值范围是三、【合作探究】:例: 求下列各数的算术平方根:(1)100 (2)4964; (3) 0.0001. 精练1.填空:(1)因为_____2=64,所以64的算术平方根是______=______;(2)因为_____2=0.25,所以0.25的算术平方根是____________;(3)因为_____2=1649,所以1649的算术平方根是____________.2.求下列各式的值:=______;______;______;______;=______;=______.3.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:_______,_______,_______,_______,_______,_______,_______,_______,_______4.辨析题:小欧认为,因为(-4)2=16,所以16的算术平方根是-4.你认为小欧的看法对吗?为什么?四、【总结升华】:本节课我的收获:我的疑问:【学习评价】答案:精练的答案:1、(1)8,8,8 (2)0.5,0.5,0.5 (3)4/7 4/7 4/72、9, 10, 1, 3/5, 0.1, 33、11,12,13,14,15,16,17,18,194、不正确,负数没有算术平方根七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)x-在实数范围内有意义,则x的取值范围是()1.若式子5A.x>5 B.x≥5 C.x≠5 D.x≥0【答案】B【解析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.-在实数范围内有意义,解:∵式子x5∴x-1≥0,解得x≥1.故答案为:x≥1.2.4的算术平方根为()A.2 B.±2 C.﹣2 D.16【答案】A【解析】根据算术平方根的定义直接选出答案.【详解】4的算术平方根为:1.故选:A.【点睛】本题考查了学生对算术平方根定义的掌握,掌握区分算术平方根和平方根的区别是解决此题的关键.3.如图所示,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30′,则下列结论中不正确的是( )A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为邻补角D.∠1的余角等于75°30′【答案】D【解析】根据角平分线性质、对顶角性质、互余、互补角的定义,逐一判断.【详解】A、由OE⊥AB,可知∠AOE=90°,OF平分∠AOE,则∠2=45°,正确;B、∠1与∠3互为对顶角,因而相等,正确;C、∠AOD与∠1互为邻补角,正确;D、∵∠1+75°30′=15°30′+75°30′=91°,∴∠1的余角等于75°30′,不成立.故选D.【点睛】本题主要考查邻补角以及对顶角的概念,和为180°的两角互补,和为90°的两角互余.4.如图,在△ABC 中,AD 是BC 边上的高,且∠ACB=∠BAD,AE 平分∠CAD,交BC于点E,过点 E 作EF∥AC,分别交AB、AD 于点F、G.则下列结论:①∠BAC =90°;②∠AEF=∠BEF;③∠BAE=∠BEA;④∠B=2∠AEF,其中正确的有()A.4 个B.3 个C.2 个D.1 个【答案】B【解析】利用高线和同角的余角相等,三角形内角和定理即可证明①,再利用等量代换即可得到③④均是正确的,②缺少条件无法证明.【详解】解:由已知可知∠ADC=∠ADB=90°,∵∠ACB=∠BAD∴90°-∠ACB=90°-∠BAD,即∠CAD=∠B,∵三角形ABC的内角和=∠ACB+∠B+∠BAD+∠CAD=180°,∴∠CAB=90°,①正确,∵AE平分∠CAD,EF∥AC,∴∠CAE=∠EAD=∠AEF,∠C=∠FEB=∠BAD,②错误,∵∠BAE=∠BAD+∠DAE,∠BEA=∠BEF+∠AEF,∴∠BAE=∠BEA,③正确,∵∠B=∠DAC=2∠CAE=2∠AEF,④正确,综上正确的一共有3个,故选B.【点睛】本题考查了三角形的综合性质,高线的性质,平行线的性质,综合性强,难度较大,利用角平分线和平行线的性质得到相等的角,再利用等量代换推导角之间的关系是解题的关键.5.下列调查中,适合采用全面调查方式的是()A.了解某班40名学生视力情况B.对市场上凉糕质量情况的调查C.对某类烟花爆竹燃放质量情况的调查D.对鄂旗水质情况的调查【答案】A【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,对各选项分析判断后利用排除法求解.详解:A.对某班40名同学视力情况的调查,比较容易做到,适合采用全面调查,故本选项正确;B.对市场上凉糕质量情况的调查,调查面较广,不容易做到,不适合采用全面调查,故本选项错误;C.对某类烟花爆竹燃放质量情况的调查,破坏性调查,只能采用抽样调查,故本选项错误;D.对鄂旗水质情况的调查,无法进行普查,只能采用抽样调查,故本选项错误.故选A.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.有3cm ,6cm ,8cm ,9cm 的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为A .1B .2C .3D .4 【答案】C【解析】分析:从4条线段里任取3条线段组合,可有4种情况,根据两边之和大于第三边,两边之差小于第三边,看哪种情况不符合三角形三边关系,舍去即可:四条木棒的所有组合:3cm ,6cm ,8cm 和3cm ,6cm ,9cm 和3cm ,8cm ,9cm 和6cm ,8cm ,9cm ;只有3cm ,6cm ,9cm 不能组成三角形.故选C .7.若多项式2x bx c ++因式分解后的一个因式是()1x +,则b c -的值是( ) A .1-B .1C .0D .2- 【答案】B【解析】根据多项式x 2+bx +c 因式分解后的一个因式是(x +1),即可得到当x +1=0,即x =−1时,x 2+bx +c =0,即1−b +c =0,即可得到b−c 的值.【详解】解:1x +为2x bx c ++因式分解后的一个因式.∴当10x +=,即1x =-时,20x bx c ++=,即2(1)(1)0b c -+⋅-+=,1b c ∴-+=-,1b c ∴-=.故选:B .【点睛】本题主要考查了因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.8.定义:平面内的直线l 1与l 2相交于点O ,对于该平面内任意一点M ,点M 到直线l 1、l2的距离分别为a、b,则称有序非实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,3)的点的个数是()A.1 B.2 C.3 D.4【答案】D【解析】根据两条相交直线把平面分成四部分,在每一个部分内都存在一个满足要求的距离坐标解答.【详解】如图,直线l1,l2把平面分成四个部分,在每一部分内都有一个“距离坐标”为(2,3)的点,所以,共有4个.故选D.【点睛】本题考查了点到直线的距离,点的坐标的类比利用,读懂题目信息并且理解两条相交直线把平面分成四部分是解题的关键.9.下列图形中不是轴对称图形的是A.B.C.D.【答案】D【解析】根据轴对称图形的定义即可求解.【详解】ABC均为轴对称图形,D不是轴对称图形故选D.【点睛】此题主要考查轴对称图形的定义,解题的关键是熟知轴对称图形的定义.10.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④【答案】B【解析】试题分析:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选B.考点:1.正方形的判定;2.平行四边形的性质.二、填空题题11.已知方程2x+y=3,用含x的代数式表示y,则y=______.-【答案】32x-=写成用含x的代数式表示y,需要进行移项即得.【解析】把方程2x y1【详解】解:移项得:=-,y32x=-.故答案为y32x【点睛】考查的是方程的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的左边,其它的项移到另一边.∥的一个条件是__________.12.如图,不添加辅助线,请写出一个能判定AB CD【答案】∠1=∠2或∠1=∠3或∠1+∠4=180°【解析】平行线判定方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此可得结论.【详解】∠1与∠2是内错角,如果∠1=∠2,则两直线平行;∠1与∠3是同位角,如果∠1=∠3,则两直线平行;∠1与∠4是同旁内角,如果∠1+∠4=180°,两直线平行.故答案为:∠1=∠2或∠1=∠3或∠1+∠4=180°.【点睛】本题主要考查了平行线的判定,解答此类要围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索因”的思维方式与能力.13.利用如图2的二维码可以进行身份识别,某校模仿二维码建立了一个七年级学生身份识别系统,图2是七年级某个学生的识别图案,黑色小正方形表示2,白色小正方形表示2.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×22+d×22+2.如图2第一行数字从左到右依次为2,2,2,2,序号为2×23+2×22+2×22+2×22+2=6表示该生为6班学生.则该系统最多能识别七年级的班级数是___个.【答案】26.【解析】该系统最多能识别七年级的班级数是a×32+b×22+c×12+d×02+2的最大值,由于a,b,c,d的取值只能是2或2,所以当a=b=c=d=2时,序号有最大值.【详解】当a =b =c =d =2时,a ×23+b ×22+c ×22+d ×22+2=2×23+2×22+2×22+2×22+2=8+4+2+2+2=26.故答案为26.【点睛】本题考查了规律型:图形的变化类,理解题意,得出当a=b=c=d=2时,序号有最大值是解题的关键.14.若关于x 的不等式2x ﹣a≤0的正整数解是1、2、3,则a 的取值范围是_____.【答案】6≤a <1.【解析】解:解不等式20x a -≤,得: 2a x ≤, ∵其正整数解是1、2、3, 所以342a ≤<, 解得68a ≤<故答案为:68a ≤<.15.已知31x y =⎧⎨=⎩是方程kx ﹣y =2的解,那么k =_____. 【答案】1【解析】根据二元一次方程的解的定义解答即可.【详解】解:由题意得,3k ﹣1=2,解得,k =1,故答案为:1.【点睛】本题考查的是二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.16.如图,直线12l l ,143=∠,272=∠,则3∠的度数是__________度.【答案】65【解析】先用对角线和平行线的性质将已知和所求角转换到一个三角形中,最后用三角形内角和即可解答 【详解】解:如题:∵12l l∴∠1=∠5由∵∠2=∠4∴∠3=180-∠4-∠5=180-∠1-∠2=65°故答案为65.【点睛】本题主要考查了平行线的性质和三角形内角和定理的知识,其关键是将已知和所求联系在一个三角形上.17.如果22a b =,那么a b =的逆命题是________.【答案】若a b =,则22a b =【解析】把一个命题的条件和结论互换就得到它的逆命题,【详解】解:命题“如果22=,结论是a=b,a b=,那么a=b”的条件是如果22a b故逆命题是:如果a=b,那么22=.a b故答案为:若a=b,那么22=.a b【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.三、解答题18.某商场正在销售A、B两种型号玩具,已知购买一个A型玩具和两个B型玩具共需200元;购买两个A型玩具和一个B型玩具共需280元.(1)求一个A型玩具和一个B型玩具的价格各是多少元?(2)我公司准备购买这两种型号的玩具共20个送给幼儿园,且购买金额不能超过1000元,请你帮该公司设计购买方案?(3)在(2)的前提下,若要求A、B两种型号玩具都要购买,且费用最少,请你选择一种最佳的设计方案,并通过计算说明。
八年级数学下册《算术平方根》教案、教学设计
4.课堂小结,总结提升
-通过课堂小结,让学生回顾本节课所学内容,加深对算术平方根的理解。
-教师总结学生在学习过程中的优点和不足,提出改进措施,促进学生的全面发展。
5.课后拓展,提高应用能力
-布置课后作业,让学生运用算术平方根知识解决实际问题,提高学生的应用能力。
1.请同学们完成课本第chapter页的练习题,题目涵盖了算术平方根的定义、性质和求法等知识点,通过练习,加深对算术平方根的理解。
2.结合生活实际,找一找身边的例子,运用算术平方根知识解决问题,并简要说明解题过程。例如:计算家中某间房屋的面积、求解物体速度等。
3.小组合作,探讨以下问题:
a.算术平方根与平方根有什么区别和联系?
b.如何求解含有算术平方根的实际问题?
c.在计算过程中,如何避免符号和精度问题?
4.针对课堂学习中的难点,请同学们自主查找相关资料,总结求解算术平方根的方法和技巧,并在下节课分享。
5.结合课后拓展阅读,了解算术平方根在科学研究和生产生活中的应用,提高学生的数学素养。
作业要求:
1.认真完成作业,书写规范,保持卷面整洁。
4.设计丰富的练习题,巩固所学知识,培养学生的逻辑思维能力和解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的热情。
2.培养学生勇于探索、善于合作的精神,增强学生的自信心。
3.使学生认识到算术平方根在日常生活和科学计算中的重要性,提高学生的数学应用意识。
4.培养学生严谨、细致的学习态度,养成良好的学习习惯。
3.每个小组汇报解题过程和答案,其他小组进行评价和补充。
(四)课堂练习,500字
最新版初中数学教案《算术平方根》精品教案(2022年创作)
2.2 平方根第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点)2.根据算术平方根的概念求出非负数的算术平方根;(重点)3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过假设x 2=a ,那么a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念 【类型一】 求一个数的算术平方根 求以下各数的算术平方根: (1)64;(2)214;(3)0.36;(4)412-402. 解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32; 2,∴的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被外表现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22.方法总结:一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质【类型一】 含算术平方根式子的运算计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算.解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】 算术平方根的非负性x ,y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1.方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计 算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.三角形的稳定性【知识与技能】1.通知过观察、实践、想象、推理、交流等活动,让学生了解三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用.2.培养实事求是的学习作风和学习习惯.【过程与方法】1.通过提问、合作讨论以及小组交流方式探究三角形的稳定性.2.实物演示,激发学习兴趣,活泼课堂气氛.3.探究质疑,总结结果.和学生共同探究三角形稳定性的实例,答复课前提出的疑惑.【情感态度】1.引导学生通过实验探究三角形的稳定性,培养其独立思考的学习习惯和动手能力.2.通过合作交流,养成学生互助合作意识,提高数学交流表达能力.【教学重点】了解三角形稳定性在生产、生活中的实际应用.【教学难点】准确使用三角形稳定性于生产生活之中.一、情境导入,初步认识课前准备:木条〔用硬纸条代替〕假设干、小钉假设干、小黑板.问题1 工程建筑中经常采用三角形的结构,如屋顶钢架,钢架桥,其中道理是什么?问题 2 盖房子时,在窗框未安装好之前.木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢? 活动挂架为什么做成四边形?【教学说明】问题设立要让学生体会三角形在生产和生活中的应用,并引导思考为什么要在这些地方用三角形,另一些地方又要用到四边形.注意接纳学生其他不同的思路.教师讲课前,先让学生完成“自主预习〞.二、思考探究,获取新知老师演示P6探究内容,也可叫学生亲手实验,通过实际操作加深学生印象,完后请学生们交流讨论后答复得出了什么?教师根据学生们的答复进行简要归纳.【归纳结论】三角形木架形状不会改变,四边形木架形状会改变,这就是说,三角形具有稳定性,四边形没有稳定性.还可以发现,斜钉一根木条的四边形木架的形状不会改变.这是因为斜钉一根木条后,四边形变成了两个三角形,由于三角形有稳定性,窗框在未安装好之前也不会变形.三、运用新知,深化理解1.如图,一扇窗户翻开后,用窗钩BC可将其固定,这里所运用的几何原理是 .2.以下列图形中哪些具有稳定性?【教学说明】本节课的内容较少,题目比较简单,在学生独立完成后,要求学生说明理由.【答案】1.三角形具有稳定性.2.〔1〕〔4〕〔6〕中的图形具有稳定性.四、师生互动,课堂小结三角形具有稳定性,四边形没有稳定性.1.布置作业:从教材“习题”中选取.2.完成练习册中本课时的练习.本节课学习三角形稳定性,并板书课题.完成的教学目标是通过观察、实践、想象、推理、小组交流合作,使同学们了解三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用,培养同学们实事求是的学习作风和学习习惯,以及自主学习和独立思考的能力.。
冀教版八年级上册数学第14章 实数 【学案】算术平方根
算术平方根学习目标:1.理解算术平方根的概念.2.根据算术平方根的概念求一个数的算术平方根.(重点)3.理解平方根与算术平方根的区别和联系.(难点)学习重点:求一个数的算术平方根.学习难点:平方根与算术平方根的区别和联系.知识链接1.什么叫平方根?答:一般地,如果一个数x的平方等于a,即2x=a,那么这个数______就叫做a的_________.也叫a的_________.2.平方根的性质有哪些?答:一个正数有_____个平方根,它们互为________.0只有_____平方根,是____本身,负数____平方根.新知预习一个正数的两个平方根互为________,我们把一个正数a的____的平方根______,叫做a的算数平方根.正数a的算数平方根记作_______.正数有的算术平方根,0的算数平方根是_____,负数___算数平方根. 三、自学自测1.非负数a 的算术平方根表示为___,225的算术平方根是____, 0.64-的算术平方根____,0的算术平方根是____2. 41的算术平方根是( ) A .161 B .81 C .21 D .21± 3.若x 是49的算术平方根,则x =( ) A. 7 B. -7 C. 49 D.-49四、我的疑惑_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________要点探究探究点:算术平方根问题1:求下列各数的算术平方根: (1)64;(2)214;(3)0.36;(4)412-402.【归纳总结】(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用. 【针对训练】.在下列式子中,正确的是( )A.552=B.6.06.3-=-C.13)13(2-=-D.636±= 问题2:3+a 的算术平方根是5,求a 的值.合作探究【归纳总结】已知一个数的算术平方根,可以根据平方运算来解题.【针对训练】若4x+6的算术平方根是2,则x=______________.问题3:计算:49+9+16-225.【归纳总结】解题时容易出现如9+16=9+16的错误.【针对训练】3问题4:已知x,y为有理数,且x-1+3(y-2)2=0,求x-y的值.【归纳总结】算术平方根、绝对值和完全平方都具有非负性,即a≥0,|a|≥0,a2≥0,当几个非负数的和为0时,各数均为0.【针对训练】.若x、y满足4+-yxx,求x y的值.-2112=+问题5:全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种低等植物苔藓开始在岩石上生长.每个苔藓都会长成近似圆形,苔藓的直径和其生长年限近似地满足如下关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,则冰川约是在多少年前消失的?【归纳总结】本题考查算术平方根的定义,注意实际问题中涉及开平方通常取算术平方根.【针对训练】小刚同学的房间地板面积为16米2,恰好由64块正方形的地板砖铺成,求每块地板砖的边长是多少?二、课堂小结内容算术平方根一个正数的两个平方根互为________,我们把一个正数a 的____的平方根______,叫做a的算数平方根.正数有的算术平方根,0的算数平方根是_____,负数___算数平方根.1.若的算术平方根是3,则a =________①1的平方根是1 ;②1是1的算术平方根;③(−1)2的平方根是−1;④0的算术平方根是它本身当堂检测A .1个B .2个C .3个D .4个 3.已知x ,y 满足096432=+-++y y x ,则xy 的值是( ) A.4 B.-4 C.49D.49-4.求下列各数的算术平方根:36, 121144 ,15,0.64,410-,225,05()6 .5.如果将一个长方形ABCD 折叠,得到一个面积为144cm 2的正方形ABFE ,已知正方形ABFE 的面积等于长方形CDEF 面积的2倍,求长方形ABCD 的长和宽.当堂检测参考答案:81 B B(1)6;(2)1112;(3(4)0.8;(5)10-2;(6(7)1. 设正方形ABFE 的边长为a ,有a2=144,所以 12==a ,所以12====AB AE EF CD . 又因为 2=ABFE CDEF S S , 设FC=x ,所以144212=⨯x ,x=6 . 所以12618=+=+=BC BF FC (cm). 所以长方形的长为18cm ,宽为12cm .。
北师大版数学八年级上册《算术平方根》教案1
北师大版数学八年级上册《算术平方根》教案1一. 教材分析《算术平方根》是北师大版数学八年级上册的一章内容。
本章主要介绍了算术平方根的概念、性质和运算方法。
通过学习本章,学生能够理解算术平方根的定义,掌握求算术平方根的方法,并能够运用算术平方根解决实际问题。
二. 学情分析学生在学习本章之前,已经掌握了实数的概念和运算方法,具备了一定的数学基础。
但是,对于算术平方根的概念和运算方法可能较为陌生,需要通过实例和练习来加深理解和掌握。
三. 教学目标1.知识与技能:学生能够理解算术平方根的定义,掌握求算术平方根的方法,并能够运用算术平方根解决实际问题。
2.过程与方法:学生能够通过观察、操作、思考、交流等方式,培养解决问题的能力。
3.情感态度与价值观:学生能够对数学产生兴趣,培养积极的学习态度,增强自信心。
四. 教学重难点1.重点:算术平方根的定义和求法。
2.难点:算术平方根在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和实际问题,引发学生的兴趣和思考,培养解决问题的能力。
2.启发式教学法:通过提问和引导,激发学生的思维,引导学生主动探索和发现。
3.合作学习法:通过小组讨论和合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教学素材:准备相关的实例和实际问题,用于引发学生的兴趣和思考。
2.教学工具:准备黑板、粉笔等教学工具,用于展示和讲解。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如测量物体长度、计算土地面积等,引发学生的兴趣和思考,引出算术平方根的概念。
2.呈现(15分钟)教师通过讲解和展示,介绍算术平方根的定义和性质,让学生初步了解和认识算术平方根。
3.操练(15分钟)教师给出一些算术平方根的题目,学生独立完成,教师进行个别指导和讲解。
通过反复练习,让学生掌握求算术平方根的方法。
4.巩固(10分钟)教师给出一些实际问题,学生运用算术平方根的知识解决。
通过解决实际问题,巩固学生对算术平方根的理解和掌握。
2.2算术平方根(教案)
2.教学难点
-无理数算术平方根的理解:解释无理数算术平方根的存在,如√2、√3等,并理解它们不能表示为两个整数的比。
-估算无理数算术平方根的精确度:如何通过近似计算得到一个无理数算术平方根的近似值,并理解误差的概念。
1.讨论主题:学生将围绕“算术平方根在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
首先,算术平方根的定义对于一些学生来说可能还是有点抽象。虽然通过正方形边长的例子帮助他们理解了算术平方根的实际意义,但在抽象出数学概念的过程中,部分学生仍然感到困惑。在今后的教学中,我需要更多地借助直观模型和实际例子,让学生更好地理解算术平方根的定义。
其次,无理数算术平方根这一部分是学生们的一个明显难点。他们对无理数的概念本身就感到陌生,更不用说理解无理数算术平方根了。在讲解这一部分时,我意识到需要更耐心地引导学生们去感受无理数的无限不循环小数特性,以及如何估算无理数算术平方根的精确度。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了算术平方根的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对算术平方根的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对算术平方根的概念和计算方法掌握得还不错,但确实存在一些难点需要我们去关注和解决。
算术平方根学案
算术平方根学案一、学习目标1、理解算术平方根的概念,掌握算术平方根的性质和运算方法。
2、学会运用算术平方根解决实际问题。
二、重点难点1、重点:算术平方根的概念和性质。
2、难点:算术平方根的运算方法和应用。
三、学习过程1、导入新课通过回顾平方根的概念,引出算术平方根的概念。
2、学习新课(1)算术平方根的概念:如果一个正数x的平方等于a,即x²=a,那么这个正数x叫做a的算术平方根。
(2)算术平方根的性质:正数的算术平方根只有一个,并且是非负数。
(3)算术平方根的运算方法:根据算术平方根的定义,通过开方运算求出算术平方根。
(4)算术平方根的应用:利用算术平方根解决实际问题,如计算面积、体积等。
3、练习巩固(1)判断题:4、一个正数的算术平方根有两个。
()5、所有正数的算术平方根都是非负数。
()6、a的算术平方根就是√a。
()(2)填空题:7、如果一个正数的平方等于4,那么这个正数是()的算术平方根。
8、一个正数的算术平方根等于它本身,这个正数是()。
(3)计算题:9、求下列各数的算术平方根:5、12、0.5、81、0.01、49、100、0.25。
10、求下列各式的值:9、√16、√25、√36、√49、√64。
11、解决实际问题:如果一个长方形的长和宽分别为6cm和4cm,求这个长方形的面积是多少?八年级算术平方根课件一、教学目标1、理解算术平方根的概念。
2、掌握算术平方根的计算方法。
3、运用算术平方根解决实际问题。
二、教学内容及过程1、引入:什么是算术平方根?算术平方根是指一个正数的正的平方根,也就是这个正的平方根和它的原数的关系是互为相反数。
例如,4的算术平方根是2,-4没有算术平方根。
2、讲解算术平方根的计算方法算术平方根可以通过查表、开方等方法来计算。
例如,求4的算术平方根,可以通过查表得到2,也可以通过开方得到2。
3、讲解算术平方根的应用算术平方根可以用于解决实际问题,例如,求一个矩形的面积,可以用长和宽的算术平方根之积来表示。
算术平方根教学设计(最新3篇)
算术平方根教学设计(最新3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!算术平方根教学设计(最新3篇)作为一位优秀的人·民教师,就不得不需要编写教案,教案是教学蓝图,可以有效提高教学效率。
第1课时 算术平方根(教案)
第六章实数6.1平方根第1课时算术平方根教学目标1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2.了解开方与乘方互为逆运算用。
3.通过学习算术平方根,建立初步的数感和符号感,发展抽象思维。
教学重点算术平方根的意义及其符号表示。
教学难点求稍复杂数的算术平方根。
.教学过程一、自学导学出示下列问题1,并引导学生分析.问题1学校要举行美术作品比赛,小鸥想裁出一块面积为25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?(1)你算出来的正方形的边长是多少?(2)你是怎样算出来的?分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm。
二、交流协作归纳出新定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记作a,读作“根号a”,a叫作被开方数。
规定:0的算术平方根是0例1求下列各数的算术平方根:(1)100 (2)4964(3)0.0001从上面的例题可以看出:被开方数越大,对应的算术平方根也越大。
这个结论对所有正数都成立。
练习:1.求下列各数的算术平方根:(1)0.0025 (2)81 (3)322.求下列各式的值:(1(2(3误区:忽视算术平方根的意义导致错解例1求的算术平方根分析:正数的算术平方根是正数,零的算术平方根是零,负数没有算术平方根。
2222=9=- - 386415158==11.7494949781 3.⎛⎫ ⎪⎝⎭解:(1)因为3(3),所以(3)的算数平方根是(2)因为,所以的算数平方根是(3)因为0的算数平方根是0,(4的算数平方根是9,而9的算数平方根是3探究:当a 为负数时,a 2有没有算术平方根?其算术平方根与a 有什么关系?举例说明所得结论。
三、展示激励1.(15分)(1)式子表示的意思是100的算术平方根,其值为10(2表示的意思是(-4)2的算术平方根,其值为4 2.求下列各式的值:(1(2) (23.小文房间的面积为10.8m 2,房间地面恰巧由120块相同的正方形地砖铺成,每块地砖边长是多少?解:设每块地砖的边长是x m.则120x 2=10.8, x=0.3.答:每块地砖的边长是0.3m.4.国际足球比赛的足球场长在100m 到110m 之间,宽在64m 到75m 之间,现有一个长方形足球场,其长是宽的1.5倍,面积是6337.5m 2,问这个足球场是否能用作国际比赛球场?解:设这个长方形足球场的宽为x m ,则长为1.5x m ,依题意得x ·1.5x=6337.5,x 2=4225,解得x=65, x=65, 65×1.5=97.5(m )答:这个足球场不能用作国际比赛球场。
(完整版)《算术平方根》教学设计
(完整版)《算术平方根》教学设计教材分析:《算术平方根》是人教版七年级下第六章第一节,本节通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。
通过对这一节课的学习,既可以让学生了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性,将为学生学习算术平方根奠定基础。
引入算术平方根的知识,要借助具体的生活情境,这样才能加深对引入平方根知识必要性的认识。
注意引导学生发现被开方数与对应的算术平方根之间的关系。
本节课的开始就设置了一个问题情境,把这个问题情境抽象成数学问题就是已知正方形的面积求正方形的边长,这是典型的求算术平方根的问题。
由于所选数字简单,可见其设计目的,并不着眼于计算,而在于巩固概念。
因此本节课的关键是抓住算术平方根概念的本质特征,逐层深入,多个角度展示。
课标要求:在实际情境中理解算术平方根的概念及求法,并能解决简单的问题,体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。
本节突出概念形成过程的教学,首先列举学生熟悉的例子,从生活问题中抽象出数学本质,引导学生观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,再引导学生运用概念并及时反馈。
同时在概念的形成过程中,着意培养学生观察、分析、抽象、概括的能力。
在本节课中,我利用学生的已有经验,通过思考、讨论、探究等活动,使学生感受到做数学、用数学的价值。
策略分析:根据教材内容和编排特点,为了更有效地突出重点、突破难点、抓住关键,本节课按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的原则,采用“自主探究法”和“引导发现法”为主,并根据学法指导自主性和差异性要求,让学生在探究过程中理解理解算术平方根的概念。
教学目标:1、经历算术平方根概念的形成过程,会用根号表示算术平方根,并了解算术平方根的非负性。
2、会用平方运算求非负数的算术平方根,包括完全平方数的算术平方根和部分非完全平方数的算术平方根。
算术平方根教学设计
算术平方根教学设计《平方根》教案篇一一、内容和内容解析1、内容算术平方根的概念,被开方数越大,对应的算术平方根也越大、2、内容解析算术平方根是初中数学中的重要概念,引入算术平方根,是解决实际问题的需要、作为《实数》的开篇第一课,掌握好算术平方根的概念和计算,一方面可为后续研究平方根、立方根提供方法上的借鉴,另一方面也是为认识无理数,完成数集的扩充,解决数学内部运算,以及二次根式的学习等作准备、算术平方根的概念分两个部分,分别是关于一个正数算术平方根的定义和关于0的算术平方根的规定、由算术平方根的概念引出其符号表示、读法及什么是被开方数、根据算术平方根的概念,可以利用互逆关系,求一些数的算术平方根、根据这些数的算术平方根的结果,不难归纳得出“被开方数越大,对应的算术平方根也越大”的结论,其间体现了从特殊到一般的思想方法、基于以上分析,确定本节课的教学重点为:算术平方根的概念和求法、二、目标和目标解析1、教学目标(1)了解算术平方根的概念,会用根号表示一个非负数的算术平方根、(2)会求一些数的算术平方根、2、目标解析(1)学生能说出正数的算术平方根的定义,记住0的算术平方根是0;会用符号表示一个非负数的算术平方根,并能正确读出符号,能够说出中数的名称;理解符号中被开方数≥0(即是一个非负数)的条件,了解也是一个非负数、(2)学生能依据算术平方根的定义判断一个数有没有算术平方根;掌握用平方运算求某些数的算术平方根的方法,会求出100以内完全平方数或分子、分母均是这类数的分数的算术平方根,以及上述这类数扩大(或缩小)100倍、10000倍的数的算术平方根;了解被开方数越大,对应的算术平方根也越大、三、教学问题诊断分析在本课学习之前,学生们已经掌握了一些完全平方数,对乘方运算也有一定的认识、但对于算术平方根为什么只是就正数进行定义,并对0的算术平方根作出规定,大多数学生不习惯、还有就是负数没有算术平方根,这种某数不能进行某种运算的情况在有理数的前五种代数运算中,一般不会碰到(0不能作除数除外);加之算术平方根的符号表示只涉及一个数,这与前面所学都涉及两个数的运算不一样,学生可能难以理解、基于以上分析,本节课的教学难点是:深化对算术平方根的理解、四、教学过程设计1、创设情境,引入新课教师展示教科书中本章的章前图,说明这是神舟七号宇宙飞船升空的照片,并提出下面的问题、问题1请同学们阅读本章的引言,你从引言中发现了哪些与数有关的概念?本章将要学习的主要内容以及大致的研究思路是什么?师生活动学生阅读,回答;教师补充说明数的范围不断扩大体现了人类在数的认识上的不断深入,让学生感受数的扩充的必要性、设计意图:通过“神舟七号载人飞船发射成功”引入本章学习,激发兴趣,增强学生的学习热情、2、师生互动,学习新知问题2学校要举行美术作品比赛,小鸥想裁出一块面积为25d的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?师生活动:学生可能很快答出边长为5d、追问请说一说,你是怎样算出来的?师生活动:学生理清解决问题的思路,回答,教师可结合图片强调思路、设计意图:从现实生活中提出数学问题,使学生积极主动的投入到数学活动中去,同时为学习算术平方根提供实际背景和生活素材、问题3完成下表:正方形的面积师生活动:学生不难回答“0的算术平方根是0”,可以表示为“”;教师指明:算术平方根的概念包含“正数算术平方根”的定义和“0的算术平方根”的规定两部分、追问(1)根据以上学习,你认为对于算术平方根中被开方数可以是哪些数?师生活动:学生回答,教师明确:算术平方根中被开方数可以是正数或0,即非负数、追问(2)为什么负数没有算术平方根呢?师生活动:学生思考、回答,教师点拨:因为任何一个正数的平方都不可能是负数、设计意图:通过不断追问,由学生思考解决,体会分类讨论,既加深学生对算术平方根的理解,又让学生养成全面考虑问题的习惯、追问(3)请判断正误:(1)—5是—25的`算术平方根;(2)6是的算术平方根;(3)0的算术平方根是0;(4)0、01是0、1的算术平方根;(5)一个正方形的边长就是这个正方形的面积的算术平方根、师生活动:学生回答,其他学生讨论,教师对有难度的进行适当引导、设计意图:检验对算术平方根的理解、3、例题示范,学会应用例1求下列各数的算术平方根:(1)100;(2);(3)0、0001、师生活动:教师给出第(1)小题求数的算术平方根的思考过程,学生模仿独立完成第(2)、第(3)小题,两名学生板演后,全班交流、追问从例1中,你能发现被开方数的大小与对应的算术平方根的大小之间有什么关系吗?师生活动:学生比较被开方数的大小以及其算术平方根的大小,试图归纳出结论、如有困难,教师再举一些具体例子加以引导,说明、设计意图:通过求大小不同的三种形式的正数的算术平方根的实践,巩固求算术平方根的方法,由特殊到一般归纳出结论:被开方数越大,对应的算术平方根也越大、为下节课学习估计平方根的大小做准备、例2求下列各式的值、(1)_____;(2)_____;(3)_____师生活动:学生先说明所求式子的含义,然后三名学生板演,全班交流,教师点评、设计意图:使学生熟悉算术平方根的符号表示,全面了解算术平方根、4、即时训练,巩固新知(1)教科书第41页的练习、(2)求的算术平方根、师生活动:学生独立完成,教师巡视,对个别差生进行辅导、对“求的算术平方根”,要让学生明白此题包含两层运算,即先求=?,然后再求“?”的算术平方根,实际上就是上述例1、例2类型的综合题、设计意图:通过练习使学生在了解算术平方根及有关概念的基础上,达到能自己求一个数的算术平方根,进一步巩固、深化对算术平方根的理解、5、课堂小结师生共同回顾本节课所学内容,并请学生回答以下问题:(1)什么是算术平方根?(2)如何求一个正数的算术平方根?(3)什么数才有算术平方根?设计意图:让学生对本节课知识进行梳理,进一步落实相关概念、6、布置作业:教科书习题6、1第1、2题、五、目标检测设计1、若是49的算术平方根,则_____=(_____)A、7B、-7C、49D、-49设计意图:本题考查学生对算术平方根概念的理解、2、说出下列各式的意义,并求它们的值、(1)_____;(2)_____;(3)_____;(4)_____设计意图:本题考查学生对算术平方根概念的理解,以及是否能正确认识符号化语言、3、_____的算术平方根是_____设计意图:本题考查学生对算术平方根概念的全面理解、教学目标: 篇二知识与技能目标:1、知道平方根的概念,能熟练地求出一个正数的平方根。
《算术平方根》教案
《算术平方根》教案一、教学目标1. 让学生理解算术平方根的概念,掌握求一个正数的算术平方根的方法。
2. 培养学生运用算术平方根解决实际问题的能力。
3. 培养学生合作学习、积极思考的能力。
二、教学内容1. 算术平方根的概念。
2. 求一个正数的算术平方根的方法。
3. 算术平方根在实际问题中的应用。
三、教学重点与难点1. 重点:算术平方根的概念,求一个正数的算术平方根的方法。
2. 难点:理解算术平方根的实际应用。
四、教学方法1. 采用自主学习、合作学习、探究学习的方式。
2. 利用多媒体辅助教学,直观展示算术平方根的概念和应用。
3. 结合生活实例,激发学生学习兴趣。
五、教学过程1. 导入:利用多媒体展示一些生活中的平方根现象,如建筑物的高度、物体的温度等,引导学生思考这些现象与平方根的关系。
2. 新课导入:介绍算术平方根的概念,引导学生理解算术平方根的定义。
3. 知识讲解:讲解求一个正数的算术平方根的方法,引导学生掌握求解方法。
4. 实例分析:给出一些实际问题,让学生运用所学的算术平方根知识解决问题。
5. 课堂练习:设计一些练习题,让学生巩固所学知识。
7. 课后作业:布置一些课后作业,让学生进一步巩固所学知识。
六、教学评价1. 通过课堂表现、练习题和课后作业评价学生对算术平方根的理解和运用能力。
2. 关注学生在解决问题时的思维过程,鼓励创新和解决问题的方法。
3. 评价学生在小组合作学习中的参与程度,培养团队合作精神。
七、教学反馈1. 课后收集学生作业,分析学生对算术平方根概念和求解方法的掌握情况。
2. 听取学生对课堂内容和建议的反馈,及时调整教学方法和内容。
3. 与家长沟通,了解学生在家庭环境下的学习情况,共同促进学生进步。
八、教学资源1. 多媒体教学课件:包括算术平方根的定义、求解方法、实际应用等内容的展示。
2. 练习题库:设计不同难度的练习题,供课堂练习和课后作业使用。
3. 生活实例素材:收集一些与算术平方根相关的实际问题,用于教学导入和实例分析。
【教案】算术平方根
算术平方根一、学生起点分析学生的知识技能基础:学生刚学完《勾股定理》,通过本章第一节的学习,已具备了对无理数的认识,知道只有有理数是不够的.学生还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能.学生活动经验基础:在前面的学习过程中,学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析本节课是义务教育课程标准实验教科书人教版七年级(下)第六章《实数》的第一节《平方根》.本节内容计3个课时,本节课是第1课时,主要是算术平方根的概念和性质的教学.课程标准要求,对于数学概念的教学,要关注概念的实际背景与形成过程,力求从学生实际出发,以他们熟悉的问题情景引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性,因此确定本节的教学目标如下:①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质.②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识.③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.三、教学过程设计本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置.本节课教学流程为:第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的问题情境初步探究反馈练习学习小结作业布置深入探究实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大的正方形,那么有22=a ,a = ,2是有理数,而a 是无理数.在前面我们学过若a x =2,则a 叫x 的平方,反过来x 叫a 的什么呢?本节课我们一起来学习.方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:=2x ,=2y ,=2z ,=2w .目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.效果:能表示22=x ,32=y ,42=z ,52=w ;能求得2=z ,但不能求得x ,y ,w 的值.说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.第二环节:初步探究内容1:情境引出新概念22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗?目的:让学生体验概念形成过程,感受到概念引入的必要性.效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数但无法表示x ,y ,w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?”内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=.目的:对算术平方根概念的认识.效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的.内容3:简单运用 巩固概念例1 求下列各数的算术平方根:(1) 900; (2) 1; (3) 6449; (4) 14.目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是14.效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.答案:解:(1)因为900302=,所以900的算术平方根是30,即30900=;(2)因为112=,所以1的算术平方根是1,即11=;(3)因为6449)87(2=,所以 6449的算术平方根是87, 即876449=; (4)14的算术平方根是14.内容4:回解课堂引入问题22=x ,32=y ,52=w ,那么2=x ,3=y ,5=w .第三环节:深入探究内容1:例2 自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?目的:用算术平方根的知识解决实际问题.效果:学生多能利用等式的性质将29.4t h =进行变形,再用求算术平方根的方法求得题目的解.解:将6.19=h 代入公式29.4t h =,得42=t ,所以正数24==t (秒). 即铁球到达地面需要2秒.说明:强调实际问题t 是正数,用的是算术平方根,此题是为得出下面的结论作铺垫的.内容2:观察我们刚才求出的算术平方根有什么特点.目的:让学生认识到算术平方根定义中的两层含义:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根.第四环节:反馈练习一、填空题:1.若一个数的算术平方根是7,那么这个数是 ;2.9的算术平方根是 ;3.2)32(的算术平方根是 ;4.若22=+m ,则=+2)2(m . 二、求下列各数的算术平方根:36,144121,15,0.64,410-,225,0)65(.三、如图,从帐篷支撑竿的顶部A 向地面拉一根绳子固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?答案:一、1.7;2.3;3.32;4.16;二、6;1211;15;0.8;210-;15;1.三、解:由题意得 =5.5米,=4.5米,∠=90°,在△中,由勾股定理得105.45.52222=-=-=BC AC AB (米).所以帐篷支撑竿的高是10米.目的:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评.第五环节:学习小结内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0.(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3四、教学设计反思1.细讲概念、强化训练要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,”的“正数x ”,即被开方数是正的,由平方的意义,a 也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根,非平方数的算术平方根只能用根号来表示.“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”组成题组,在教学的不同阶段按由浅入深的原则加以使用.2.发展思维、适度拓展在教学中,根据学生的实际情况,在学有余力的情况下,可以对a的双重非负性的知识进行适当的拓展.。
平方根教学设计
6.1 平方根第1课时算术平方根一、教学目标1.理解算术平方根的概念,会用根号表示一个数的算术平方根.2.掌握算术平方根的非负性,会求非负数的算术平方根.3.会用计算器求一个正数的算术平方根.4.掌握算术平方根的估算及比较两个数大小的方法.二、教学重难点重点1.理解算术平方根的概念,会用根号表示一个数的算术平方根.2.会用计算器求一个正数的算术平方根.难点1.掌握算术平方根的非负性,会求非负数的算术平方根.2.掌握算术平方根的估算及比较两个数大小的方法.重难点解读1.求一个非负数的算术平方根的方法:先找出哪个非负数的平方等于所给的数,然后用数学式子表示即可,根据平方求一个数的算术平方根体现了数学中的转化思想.2.算术平方根(a)的非负性:(1)被开方数一定是非负数,即a≥0;(2)a≥0.3.只有正数和0有算术平方根,负数没有算术平方根.4.a中的根指数2,由此a也读作“二次根号a”.5.比较两个数的算术平方根时,只要比较它们的被开方数的大小.6.估算时要合理,不能偏太大或太小.三、教学过程活动1 旧知回顾1.回顾乘方的概念.2.一个正方形的边长是4 cm,它的面积是 cm2.活动2 探究新知1.教材第40页问题.提出问题:(1)你能完成问题中的填表吗?找出它们的共同点.(2)什么叫做算术平方根?(3)算术平方根的被开方数有什么特点?(4)0的算术平方根是多少?(5)算术平方根与被开方数有什么关系?2.教材第41页第1个探究,第2个探究.提出问题:(1)能否用两个面积为1 dm2的小正方形拼成一个面积为2 dm2的大正方形?(2)你能根据算术平方根的意义由大正方形的面积求出大正方形的边长吗?(3)2有多大?如何估算一个数的算术平方根?3.教材第43页探究及以下内容.提出问题:(1)如何用计算器求算术平方根?(2)如何比较两个算术平方根的大小?活动3 知识归纳1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a 的算术平方根 .a,读作“根号a ”,a 叫做被开方数 .2.规定:0的算术平方根是 0 .3.被开方数越大,对应的算术平方根也越大 .4.估算:在确定一个正数的算术平方根时,可以通过每次增加一位小数计算平方与被开方数比较大小,如此进行下去,在精确度范围内逐步确定出正数的算术平方根的取值范围,这种方法叫做夹逼法.活动4 典例赏析及练习例1 教材第40页 例1.例2 教材第42页 例2.例3 通过估算比较下列各组数的大小:(1)5与1.9;(2)216+与1.5. 【答案】解:(1)∵5>4,∴5>4,即5>2.∴5>1.9.(2)∵6>4,∴6>4,即6>2.∴216+>212+,即216+>1.5. 例4 教材第43页 例3.练习:1.教材第41页 练习.2.若4-x =7,则x 的算术平方根是( C ) A.53 B.49 C.53 D.73.估算31-2的值( C )A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间4.教材第44页 练习.活动5 课堂小结1.算术平方根的概念.2.求一个数的算术平方根.3.估算算术平方根和比较数的大小.4.用计算器计算一个正数的算术平方根.四、作业布置与教学反思。