哈工大概率论2012年秋季学期期末考题及答案

合集下载

2012年秋季学期 概率论考题及答案

2012年秋季学期 概率论考题及答案

哈工大 2012年秋季学期概率论与数理统计 试题一、填空题(每小题3分,共5小题,满分15分)1.设事件A 、B 相互独立,事件B 、C 互不相容,事件A 与C 不能同时发生,且()()0.5P A P B ==,()0.2P C =,则事件A ,B 和C 中仅C 发生或仅C 不发生的概率为__________ .2.设随机变量X 服从参数为2的指数分布, 则21e X Y-=-的概率密度为()Y f y =______ ____.3.设随机变量X 的概率密度为21e ,0()20, 0xx x f x x -⎧>⎪=⎨⎪≤⎩,利用契比雪夫不等式估计概率≥<<)51(X P ______.4.已知铝的概率密度2~(,)X N μσ,测量了9次,得 2.705x =,0.029s =,在置信度0.95下,μ的置信区间为______ ____.5.设二维随机变量(,)X Y 服从区域{(,)|01,02}G x y x y =≤≤≤≤上的均匀分布,令),min(Y X Z =,),max(Y X W =, 则)1(≥+W Z P = .(0.0250.050.050.025(8)23060,(8)18595,(9) 1.8331,(9) 2.2622t t t t =⋅=⋅==()1.960.975Φ=,()1.6450.95Φ=)二、选择题(每小题3分,共5小题,满分15分)(每小题给出的四个选项中,只有一个是符合题目要求的,把所选项的字母填在题后的括号内)1.设0()1, 0()1, ()()P A P B P B A P B <<<<=,则与上式不等价的是(A )A 与B 不相容. (B )()()P B A P B A =.(C ))()(A P B A P =. (D ))()(A P B A P =. 【 】2.设总体X 服从参数为λ的泊松分布,12,,,n X X X 是来自X 的样本,X 为样本均值,则 (A )1EX λ=,21DX n λ=. (B ),λ=X E n X D λ=. (C ),nX E λ=2n X D λ=. (D ),λ=X E λn X D 1=. 【 】 3.设随机变量X 的概率密度为2, 01()0, x x f x <<⎧=⎨⎩其他,则)2(DX EX X P ≥-等于(A)99-. (B)69+. (C )928-6. (D)69-. 【 】 4.如下四个函数,能作为随机变量X 概率密度函数的是(A )⎪⎩⎪⎨⎧≤>+=0,00,11)(2x x x x f . (B )0,157(),1116160, 1x f x x x x <-⎧⎪⎪=+-≤<⎨⎪≥⎪⎩.(C )1()e ,.2xf x x -=∈R . (D )1e ,0()0,0x x f x x -⎧->=⎨≤⎩ . 【 】5.设12,,,n X X X 为来自总体2~(,)X N μσ的一个样本,统计量2)(1μ-=X Sn Y 其中X 为样本均值,2S 为样本方差,则 【 】 (A )2~(1)Y x n -(B )~(1)Y t n -(C )~(1,1)Y F n - (D )~(1,1)Y F n -.三、(8分)假设某段时间内来到百货公司的顾客数服从参数为λ的Poisson 分布,而在百货公司里每个顾客购买电视机的概率均为p ,且顾客之间是否购买电视机相互独立,试求=A “该段时间内百货公司售出k 台电视机”的概率(假设每顾客至多购买一台电视机)。

哈尔滨工业大学概率论答案习题六(精)

哈尔滨工业大学概率论答案习题六(精)

n n m∑ Xi (1)Y1 = i =1 m∑ X i2 ; 2 i n+m (2) Y2 = i =1 n+m n n i = n +1 ∑X n ∑ X i2 i = n +1 解∑X i =1 i ~ N (0, nσ 2 ,1 nσ n ∑X i =1 i ~ N (0,1, n+m i = n +1 X i ~ N (0, σ 2 ,所以n X i2 1 ~ χ 2 (1 ,2 2 σ σ 1 nσ 1 σ2 n ∑X 2 i ~ χ 2 ( m ,m∑ Xi (1)Y1 = i =1 n+m ∑X i =1 2 i i = 2 i n+m i = n +1 ~ t (m; /m n n i = n +1 ∑X ∑X 1 n 2 ∑X /n σ 2 i =1 i n =1 (2)Y2 = n + m = ~ F (n, m. 1 n +m 2 2 n ∑ Xi ∑ Xi / m σ 2 i = n+1 i = n +1 m∑ X i2 13 .设 X 1 ,⋯ , X n , X n +1 是来自总体N ( µ , σ 2 的样本,X = 1 n ∑ Xi ,n i =1 S *2 = 1 n X −X ( X i − X 2 ,试求统计量T = n +1 * ∑ n i =1 S n −1 的分布。

n +1 解于是X n+1 − X ~ N (0, n +1 2 nS *2 σ ,2 ~ χ 2 (n − 1 n σ X n+1 − X ~ N (0,1 n +1 σ n X n+1 − X X − X n −1 n + 1/ nσ ~ t (n − 1 . T = n +1 * = S n +1 nS *2 /(n − 1 σ2 14.设样本 X 1 ,⋯ , X n 和 Y1 ,⋯ , Yn 分别来自相互独立的总体N ( µ1 , σ 12 和1 2 N ( µ 2 , σ ,已知σ 1 = σ 2 ,α 和β 是两个实数,求随机变量 2 2 ·87·α ( X − µ1 + β (Y − µ 2 2 (n1 − 1 S12 + (n2 − 1 S 2 α2 β 2 ( + n1 + n2 − 2 n1 n2 的分布解所以α ( X − µ1 ~ N (0, 2 α 2σ 12 β 2σ 2 ,β (Y − µ 2 ~ N (0, ,又σ 1 = σ 2n1 n2 α ( X − µ + β (Y − µ 2 ~ N (0, ( α ( X − µ + β (Y − µ 2 α2 β2 + σ n1 n2 而所以α2 β 2 2 + σ n1 n2 ~ N (0,1 2 (n1 − 1 S12 + (n2 − 1 S 2 ~ χ 2 (n1 + n2 − 2 2 σ α ( X − µ1 + β (Y − µ 2 2 ⎛α2 β 2 ⎞ (n1 − 1 S12 + (n2 − 1 S 2 + ⎜⎟ n1 + n2 − 2 ⎝ n1 η2 ⎠ [α ( X − µ1 + B(Y − µ 2 ] / = ~ t (n1 + n2 − 2 . 2 (n1 − 1 S12 + (n2 − 1 S 2 /(n1 + n2 − 2 σ2 15.从正态总体 N (3.4, 6 2 中抽取容量为 n 的样本,如果要求样本均值位于区间(1.4, 5.4)内的概率不小于 0.95,问样本容量 n 至少应多大?解α2 β 2 + σ n1 n2 0.95 ≤ P(1.4 < = 2Φ ( 1 n 5.4 − 3.4 1.4 − 3.4X i < 5.4 = Φ ( n − Φ( n ∑ n i =1 6 6 n −1 3 即Φ( n n ≥ 0.975 ,查正态分表得≥ 1.96 即n ≥ 34.57 . 3 3 故样本容量至少应为 35。

2012概率论与数理统计期末试题含详解

2012概率论与数理统计期末试题含详解

2012概率论与数理统计期末试题含详解概率论与数理统计⼀、填空题(每题4分,共20分) 1、假设事件A 和B 满⾜1)(=A B P ,则A和B 的关系是_______________。

2、设随机变量)(~λπX ,且{}{},21===X P X P 则{}==k X P _____________。

3、设X服从参数为1的指数分布,则=)(2X E ___________。

4、设),1,0(~),2,0(~N Y N X 且X 与Y 相互独⽴,则~Y X Z-=___________。

5、),16,1(~),5,1(~N Y N X且X 与Y 相互独⽴,令12--=Y X Z,则=YZ ρ____。

⼆、选择题(每题4分,共20分)1、将3粒黄⾖随机地放⼊4个杯⼦,则杯⼦中盛黄⾖最多为⼀粒的概率为()A、323B、83C、161 D、812、随机变量X 和Y 的,0=XY ρ则下列结论不正确的是()A、)()()(Y D X D Y XD +=-B、a X-必相互独⽴C、X 与Y 可能服从⼆维均匀分布D、)()()(Y E X E XY E =3、样本nX X X ,,,21 来⾃总体X ,,)(,)(2σµ==X D X E 则有()A、2iX)1(n i ≤≤都是µ的⽆偏估计B、X 是µ的⽆偏估计C、)1(2n i X i ≤≤是2σ的⽆偏估计 D、2X 是2σ的⽆偏估计4、设nX X X ,,,21 来⾃正态总体),(2σµN 的样本,其中µ已知,2σ未知,则下列不是ini X ≤≤1minB、µ-XC、∑=ni iX 1σD、1X X n-5、在假设检验中,检验⽔平α的意义是() A 、原假设0H 成⽴,经检验被拒绝的概率B、原假设0H 不成⽴,经检验被拒绝的概率C 、原假设0H 成⽴,经检验不能拒绝的概率 D、原假设0H 不成⽴,经检验不能拒绝的概率三、计算题(共28分)1、已知离散型随机变量的分布律为求:X 的分布函数,(2))(X D (5分)2、已知连续型随机变量X 的分布函数为),(,arctan )(∞-∞∈+=x x B A x F 求(1)常数A 和B ,(2))11(<<-X p ,(3)概率密度)(x f (8分)3、设随机变量321,,X X X 相互独⽴,其中21],6,0[~X U X 服从21=3(~3πX ,计算)32(321X X X D +-。

哈工大物期末试卷

哈工大物期末试卷

哈尔滨工业大学(威海) 2012/2013 学年秋季学期大学物理试题卷(A)考试形式(开、闭卷):闭卷答题时间:120 (分钟)本卷面成绩占课程成绩 70 %题号一二三四五六七八卷面总分平时成绩课程总成绩分数一、选择题(每题 2 分,共18 分)1. 一质点作简谐振动,周期为T.当它由平衡位置向x轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为[](A) T /12. (B) T /8. (C) T /6. (D) T /4.2. 一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是[](A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零.3. 用波长为的单色光进行双缝干涉实验,若用薄玻璃板遮住双缝中的一个缝,已知玻璃板中的光程比相同厚度的空气的光程大 3.5 ,则屏上原来的暗条纹处[](A) 变为明条纹; (B) 仍为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹.4.使单色光垂直入射到双缝光栅上观察光栅衍射图样,发现在其夫琅禾费衍射包线的中央极大宽度内恰好有9条干涉明条纹,则光栅常数d和缝宽a的关系是[](A) d=3a. (B) d=4a. (C) d=5a. (D) d=6a.得分5.一定频率的单色光照射在某种金属上,测出其光电流的曲线如图中实线所示.然后在光强度不变的条件下增大照射光的频率,测出其光电流的曲线如图虚线所示.满足题意的图是:[ ]6. 关于不确定关系η≥∆∆x p x ()2/(π=h η,下面的几种理解正确的是[ ]。

(1) 粒子的动量不可能确定.(2) 粒子的坐标不可能确定.(3) 粒子的动量和坐标不可能同时准确地确定.(4) 不确定关系不仅适用于电子和光子,也适用于其它粒子.(A) (1),(2). (B) (2),(4). (C) (3),(4). (D) (4),(1). 7. 一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为 (A) m kT x 32=v . (B) mkT x 3312=v . (C) m kT x /32=v , (D) m kT x /2=v . [ ]8. 速率分布函数f (v)的物理意义为:(A) 具有速率v 的分子占总分子数的百分比. (B) 速率分布在v 附近的单位速率间隔中的分子数占总分子数的百分比. (C) 具有速率v 的分子数.(D)速率分布在v 附近的单位速率间隔中的分子数. [ ]9. 所列四图分别表示理想气体的四个设想的循环过程.请选出其中一个在物理上可能实现的循环过程的图的标号. [ ]p V pVp VpV二、 填空题 (每题2 分,共16分)1. 一水平弹簧振子,振幅A=2.0×10-2m ,周期为T=0.50s 。

2012秋季期概率I试卷标准答案127

2012秋季期概率I试卷标准答案127

北方工业大学《概率论与数理统计I 》课程试卷答案及评分标准A 卷2012年秋季学期开课学院: 理学院考试方式:闭卷考试时间:120 分钟班级 姓名 学号 注意事项:1.最后一页可以撕下作稿纸,但不能把试卷撕散,撕散试卷作废。

2.可以使用简易计算器,但不可使用有存储功能的文曲星、掌上电脑等,否则视为作弊。

一、填空题:(每题4分,共20分)1. 设A 与B 为互斥事件,()0>B P ,则()=B A P 02. 设随机变量 ),(~p n B X 且 4.2=EX ,44.1=DX ,则 =n 6 ,=p 0.4 。

3. 已知)1,0(N ~X ,则}0X {P >= 0.5 。

4. 设22,),,(~σμσμN X 均未知,样本容量为n ,样本方差为2s , 2σ的95%的置信区间为 ()()()()⎪⎪⎪⎭⎫ ⎝⎛-----11,112222212n s n n s n ααχχ。

5. 设随机变量4321X ,X ,X ,X 相互独立,服从相同的正态分布),(N 2σμ,则)X 2X X 2X X X X X (21Y 4321242322212--+++=σ服从 )2(2χ 分布。

二、选择题(每题4分,共20分)1. 设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量Y X 23-的方差是 (C )订线装(A ) 8 (B ) 16 (C ) 34 (D ) 442.随机变量X 服从参数为1的泊松分布,则()C X E X P ==)}({。

(A )1-e (B )121-e(C )22-e(D )221-e3. 设X 服从)(n t 分布, a X P =>}|{|λ,则}{λ-<X P 为 (A ) 。

(A )a 21 (B ) a2 (C )a +21 (D ) a 211-4. 为使⎩⎨⎧≥=+-其他,00,,),()43(y x Ke y x f y x 为二维随机向量()Y ,X 的联合密度,则K 必为( C ) 。

哈尔滨工业大学00级《概率统计》期末考试试题

哈尔滨工业大学00级《概率统计》期末考试试题

哈尔滨工业大学2000级《概率统计》期末考试试题一、填空题(每小题3分,共15分)(1) 设事件A 与B 相互独立,事件B 与C 互不相容,事件A 与C 互不相容,且()()0.5P A P B ==,()0.2P C =,则事件A 、B 、C 中仅C 发生或仅C 不发生的概率为___________.(2) 甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中各取2个球,发现它们是同一颜色的,则这颜色是黑色的概率为___________. (3) 设随机变量X 的概率密度为2,01,()0,x x f x <<⎧=⎨⎩其它,现对X 进行四次独立重复观察,用Y 表示观察值不大于0.5的次数,则2EY =___________. (4) 设二维离散型随机变量(,)X Y 的分布列为(,)(1,0)(1,1)(2,0)(2,1)0.40.2X Y P ab若0.8EXY =,则Cov(,)X Y =____________.(5) 设1217,,,X X X 是总体(,4)N μ的样本,2S 是样本方差,若2()0.01P S a >=,则a =____________.(注:20.01(17)33.4χ=, 20.005(17)35.7χ=, 20.01(16)32.0χ=, 20.005(16)34.2χ=)解:(1)()()()P ABC ABC P ABC P ABC +=+因为 A 与C 不相容,B 与C 不相容,所以,A C B C ⊃⊃,故ABC C = 同理 A B C A B=. ()()()0.20.50.50.45P A B C A B C P CP A B +=+=+⨯=. (2)设A =‘四个球是同一颜色的’,1B =‘四个球都是白球’,2B =‘四个球都是黑球’ 则 12A B B =+. 所求概率为 22212()()(|)()()()P AB P B P B A P A P B P B ==+ 22223322122222555533(),()100100C C C C P B P B C C C C =⋅==⋅=所以 21(|)2P B A =.(3)~(4,),Y B p其中 10.52201(0.5)24p PX x d x x =≤===⎰,113341,44444E Y D Y =⨯==⨯⨯=, 2215()144EY DY EY =+=+=.(4)(,)X Y 的分布为X Y 1 2 0 0.4 0.1 0.5 1 0.2 0.3 0.50.60.4这是因为 0.4a b +=,由0.8EXY = 得 0.220.8b += 0.1,0.3a b ∴==0.620.4 1.4EX =+⨯=,0.5EY =故 c o v (,)0.80.7XY E X Y E X E Y =-=-=.(5)2216(){4}0.014S P S a P a >=>= 即 20.01(16)4a χ=,亦即 432a = 8a ∴=.二、单项选择题(每小题3分,共15分)(1)设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有 (A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤(C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥ ( ) (2)设随机变量X 的概率密度为2(2)41(),2x f x ex π+-=-∞<<∞且~(0,1)Y aX b N =+,则在下列各组数中应取 (A )1/2, 1.a b == (B )2/2, 2.a b ==(C )1/2,1a b ==-. (D )2/2, 2.a b ==- ( ) (3)设随机变量X 与Y 相互独立,其概率分布分别为 010.40.6X P 010.40.6Y P则有(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == ( ) (4)对任意随机变量X ,若EX 存在,则[()]E E EX 等于(A )0. (B ).X (C ).EX (D )3().EX ( ) (5)设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的 置信度为1α-的置信区间为(A )/2/244(,).x u x u n n αα-+ (B )1/2/222(,).x u x u n nαα--+(C )22(,).x u x u n n αα-+ (D )/2/222(,).x u x u n nαα-+ ( )解 (1)由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C. (2)222[(2)](2)2(2)411()222x x f x eeππ--+--==即 2~(2,2)X N - 故当 12,222a b -==-= 时 ~(0,1)Y aX b N =+ 应选B.(3)()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.(4)[()]E E EX EX = 应选C.(5)因为方差已知,所以μ的置信区间为 /2/2(,)X u X u nnαασσ-+应选D.三、(8分)装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都 是一等品,求丢失的也是一等品的概率。

概率论和数理统计期末考试题及答案

概率论和数理统计期末考试题及答案

概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。

则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。

哈工大概率论参考答案习题

哈工大概率论参考答案习题

习 题 一1.写出下列随机试验的样本空间及下列事件中的样本点:(1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’;(2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’;(3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’;(5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。

解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =L , 135{,,}A e e e =。

(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S =(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)};{(4,6),(5,5),(6,4)}A =;{(3,1),(4,2),(5,3),(6,4)}B =。

(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =(4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。

哈工大概率论练习题

哈工大概率论练习题

哈工大概率论练习题第一章随机事件与概率4.已知P(A)=P(B)=P(C)=0.25, P(AB)=0, P(AC)=P(BC)=1/16,则A,B,C 都不发生的概率为_____5. 设两个相互独立的事件A 和B 都不发生的概率为1/9,A 发生B 不发生的概率与B 发生而A 不发生的概率要等,则P(A)=____6. 设A,B,C 两两独立,则A,B,C 相互独立充分必要条件是()A. A 与BC 独立B.AB 与A ∪C 独立C. AB 与AC 独立D. A ∪B 与A ∪C 相独立7. 设事件A,B 满足P(A)=0.5, P(B)=0.6, P(B|A )=0.6, 则P (A ∪B )=_____8. 事件 A,B 满足P(A)=P(B)=0.5,P(A| B )=P(B),则下列正确的是()A. P(AB)=0.25B. P(A-B)=0.75C. P(A B -)=0.5D. P(A ∪B ) =19. 设事件A,B 仅发生一个的概率为0.3, 且P(A)+P(B)=0.5,则A,B 至少有一个不发生的概率为_____10. 设事件A,B 相互独立,事件B,C 互不相容,事件A 与C 不能同时发生,且P(A)=P(B)=0.5, P(C)=0.2,则事件A,B 和C 中仅C 发生或仅C 不发生的概率为_____11. 设A,B,C 为三个事件且A,B 相互独立,则以下结论中不正确的是()A. 若P(C)=1,则AC 与BC 也独立B. 若P(C)=1, 则A ∪C 与B 也独立C. 若P(C)=1,则A-C 与A 也独立D. 若C 属于B,则A 与C 也独立12. 若事件A,B,C 相互独立,且P(A)=0.25,P(B)=0.5,P(C)=0.4,则A,B,C 至少有一个不发生的概率是_______13. 设事件A 和B 满足P(B|A)=1,则()A. A 是必然事件B. P (A|B ) =0C. B ?AD. A ?B14. 在投掷一枚均匀硬币的4次独立试验中,若已知至少1次已经反面朝上,则这时得到至少 3次正面朝上的概率为______15. 已知P (B )>0,A 1A 2=¢,则下列各式中不正确的是()A. P(A 1A 2|B)=0B. P(A 1∪ A 2|B)=P(A 1|B)+P(A 2|B)C. P (1A 2A |B)=1D. P(1A ∪2A |B)=116.设A,B 为两事件,且P(A)=P,P(AB)=P(AB ),则P(B)=_____17.设A,B 为两个事件,P(A)≠P(B)>0,且B 属于A,则()一定成立 A. P(A|B)=1 B.P(B|A)=1 C. P(B|A ) =1 D. P(A|B )=018. 已知P(A)=0.5,P(B)=0.6,P(B|A)=0.8则P(A ∪B)=_____19. 设事件A 与BA 互不相容,且P(A)=P, P(B)=q, 求下列事件的概率,则P(A B )=______20. 5人以上以摸彩的方式决定谁能得一张电影票,今设Ai 表示第 i 个人摸到(i=0,1,2,3,4,5),则下列结果中有一个是对的,它是()A. P(A 3|1A 2A )=1/3B. P(1A A 2)=1/5C. P(1A A 2)=1/4D. P(A 5)=1/521.若P(A|C )≥P(B|C),P(A|C )≥P(B|C ) 则下列()成立A. P(A) ≥P(B)B. P(A)=P(B)C. P(A)≤P(B)D.P(A)=P(B)+P(C)22. 设相互独立的三个事件A,B,C 满足条件:P(A)=0.4 ,P(B)=0.5 ,P(C)=0.5,则P(A-C|AB ∪C)=______23.设AB ?C,则()成立 A. C ?AB B. A ?C 且B ?C C.B A ? C ? D.A C ?或B ?C24. 已知P(A)=P(B)=P(C)=0.25,P(AB)=P(AC)=P(BC)=1/8,P(ABC)=1/16,则A,B,C 恰有一个发生的概率为_______25. 设A,B 为任意两个事件,则下列关系成式立的是()A. (A ∪B )-B=AB. (A ∪B )-B ?AC. (A ∪B )-B ?AD. (A-B) ∪B=A26. 设事件A,B 满足P(B|A)=P(B |A )=0.2,P(A)=1/3,则P(B)=____27. 对于任意两事件A,B ,与A ∪B=B 不等价的是()A. A ?BB. B ?AC. A B =¢D. A B=¢28. 设事件A,B 满足:P(B|A)=P(B |A )=1/3,则P(B)=______29. 设0<p(a)<1,0<p(b)<="">A. A 与B 独立B. P(B|A)=P(B|A )C. A 与B 互不相容D.P(A|B )=P(A|B)30. 在区间(0,1)中随意地取两个数则“两数之和小于6/5”的概率为_______31. 在一张打上方格的纸上随机地投一枚硬币,若方格的长度为a,硬币的直径为2b(2b<a)且硬币落在每一处的是等可能的则硬币与方格线不相交的概率为_____< p="">32. 在有三个小孩的家庭中,已知至少有一个女孩子,求该家庭中至少有一个男孩子的概率_______33. 两人约定上午9点到10点在公园见面,试求一人要等另一个人半小时以上的概率_____34. 随机事件A ?B,0<p(a)<="">A. P(A ∪B)=P(A)B. P(AB)=P(A)C. P(B-A)=P(B)-P(A)D. P(B|A)=P(B)第二章条件概率与独立性1. 某炮台上有三门炮,假定第一门炮的命中率为0.4,第二门炮的命中率为0.3,第三门炮的命中率为0.5,今三门炮向同一目标各发射一发炮弹,结果有两弹中靶,求第一门炮中靶的概率?2.甲袋中有2个白球,3个黑球,乙袋中有3个白球2个黑球,从甲袋中取出一个放入乙袋,再从乙袋中任取一个,若放入乙袋的球和从乙袋中取出的球是同色的,求放入乙袋的是黑球的概率?3.袋中有8个正品,2个次品,任取3个,取后不入回,若第3次取到的次品,求前2次取到的是正品概率。

哈尔滨工业大学概率论答案习题三(精)

哈尔滨工业大学概率论答案习题三(精)
5
1150.99977(1(1(1!
k K N K N P X N P X N P X K e
k ∞

−=+=+≤≤=−>=−==−∑∑即
5
1
50.00023!K K N e k ∞
−=+≤∑查泊松分布表知115N +=,故月初要库存14件以上,才能保证当月不脱销的概率在0.99977以上。
8.已知离散型随机变量X的分布列为:(10.2,(20.3P X P X ====,

从a b +个球中任取r个球共有r
a b C +种取法,r个球中有k个黑球的取
法有k
r k
b a
C C −,所以X的分布列为
(k r k
b a r
a b
C C P X k C −+==,max(0,,max(0,1,,min(,k r a r a b r =−−+⋯,此乃因为,如果r a <,则r个球中可以全是白球,没有黑球,即0k =;如果r a >则r个球中至少有r a −个黑球,此时k应从r a −开始。
8!!!k k k k q P X e e e k k ∞∞−−−=====−=∑∑(24
114(100.00284.
!
k k P X e k ∞
−=>==∑7.某商店每月销售某种商品的数量服从参数为5的泊松分布,问在月初至少库存多少此种商品,才能保证当月不脱销的概率为0.99977以上。

设X为该商品的销售量,N为库存量,由题意
2
X B n ,X的分布列为
1(2n
k n P X k C ⎛⎞
==⎜⎟
⎝⎠

概率论期末考试复习题及答案

概率论期末考试复习题及答案

概率论期末考试复习题及答案第⼀章1.设P (A )=31,P (A ∪B )=21,且A 与B 互不相容,则P (B )=____61_______.2. 设P (A )=31,P (A ∪B )=21,且A 与B 相互独⽴,则P (B )=______41_____.3.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A )=___0.5_____.4.已知P (A )=1/2,P (B )=1/3,且A ,B 相互独⽴,则P (A B )=________1/3________. A 与B 相互独⽴5.设P (A )=0.5,P (A B )=0.4,则P (B|A )=___0.2________.6.设A ,B 为随机事件,且P(A)=0.8,P(B)=0.4,P(B|A)=0.25,则P(A|B)=____ 0.5______.7.⼀⼝袋装有3只红球,2只⿊球,今从中任意取出2只球,则这两只恰为⼀红⼀⿊的概率是________ 0.6________.8.设袋中装有6只红球、4只⽩球,每次从袋中取⼀球观其颜⾊后放回,并再放⼊1只同颜⾊的球,若连取两次,则第⼀次取得红球且第⼆次取得⽩球的概率等于____12/55____.9.⼀袋中有7个红球和3个⽩球,从袋中有放回地取两次球,每次取⼀个,则第⼀次取得红球且第⼆次取得⽩球的概率p=___0.21_____.10.设⼯⼚甲、⼄、丙三个车间⽣产同⼀种产品,产量依次占全⼚产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该⼚⽣产的产品中任取1件,它是次品的概率; 3.5% (2)该件次品是由甲车间⽣产的概率. 35 18第⼆章1.设随机变量X~N (2,22),则P {X ≤0}=___0.1587____.(附:Φ(1)=0.8413)设随机变量X~N (2,22),则P{X ≤0}=(P{(X-2)/2≤-1} =Φ(-1)=1-Φ(1)=0.15872.设连续型随机变量X 的分布函数为≤>-=-,0,0;0,1)(3x x e x F x则当x >0时,X 的概率密度f (x )=___ xe 33-_____.3.设随机变量X 的分布函数为F (x )=?≤>--,0,0;0,2x x e a x 则常数a =____1____.4.设随机变量X~N (1,4),已知标准正态分布函数值Φ(1)=0.8413,为使P{X5.抛⼀枚均匀硬币5次,记正⾯向上的次数为X ,则P{X ≥1}=_____3231_______.6.X 表⽰4次独⽴重复射击命中⽬标的次数,每次命中⽬标的概率为0.5,则X~ _B(4, 0.5)____7.设随机变量X 服从区间[0,5]上的均匀分布,则P {}3≤X = ____0.6_______.8.设随机变量X 的分布律为Y =X 2,记随机变量Y 的分布函数为F Y (y ),则F Y (3)=_____9/16____________.9.设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 110.已知随机变量X 的密度函数为f (x )=A e -|x |, -∞求:(1)A 值;(2)P {021 21(1-e -1)≤>-=-0210211)(x e x e x F x x11.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-?+≥>?(1)求常数A ,B ;(2)求P {X ≤2},P {X >3};(3)求分布密度f (x ). A=1 B=-1 P {X ≤2}=λ21--e P {X >3}=λ3-e≤>=-0)(x x e x f xλλ 12.设随机变量X 的概率密度为f (x )=??<≤-<≤.,0,21,2,10,其他x x x x 求X 的分布函数F (x ).≥≤<-+-≤<≤=21211221102100)(22x x x x x x x x F13.设随机变量X 的分布律为求(1)X 的分布函数,(2)Y =X 2的分布律.≥<≤<≤<≤--<≤--<=313130/191030/170130/11125/120)(x x x x x x x F 14.设随机变量X ~U (0,1),试求:(1) Y =e X 的分布函数及密度函数;(2) Z =-2ln X 的分布函数及密度函数. <<=others e y y y f Y 011)(>=-othersz ez f zZ 0021)(2第三章1.设⼆维随机变量(X ,Y )的概率密度为 >>=+-,,0;0,0,),()(其他y x ey x f y x(1)求边缘概率密度f X (x)和f Y (y ),(2)问X 与Y 是否相互独⽴,并说明理由.≤>=-00)(x x e x f xX ≤>=-00)(y y e y f yY因为 )()(),(y f x f y x f Y X = ,所以X 与Y 相互独⽴2.设⼆维随机变量221212(,)~(,, ,,)X Y N µµσσρ,且X 与Y 相互独⽴,则ρ=____0______.3.设X~N (-1,4),Y~N (1,9)且X 与Y 相互独⽴,则2X-Y~___ N (-3,25)____.4.设随机变量X 和Y 相互独⽴,它们的分布律分别为,则{}==+1Y X P _____516_______. 5.设随机变量(X,Y)服从区域D 上的均匀分布,其中区域D 是直线y=x ,x=1和x 轴所围成的三⾓形区域,则(X,Y)的概率密度101()2y x f x y others≤<≤=,.6,Y(2)随机变量Z=XY 的分布律.7求:Y 的边缘分布列;(3)X 与Y 是否独⽴?为什么?(4)X+Y 的分布列.因为{0,1}{0}{1}P X Y P X P Y ==≠==,所以X 与Y 不相互独⽴。

概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答
…………8分
七、(8分)设二维随机变量 的联合密度函数为
求:(1) ;(2)ຫໍສະໝຸດ 的边缘密度。解:(1) …………..2分
=
=[ ] ………….4分
(2) …………..6分
……………..8分
八、(6分)一工厂生产的某种设备的寿命 (以年计)服从参数为 的指数分布。工厂规定,出售的设备在售出一年之内损坏可予以调换。若工厂售出一台设备盈利100元,调换一台设备厂方需花费300元,求工厂出售一台设备净盈利的期望。
解:因为 得 ………….2分
用 表示出售一台设备的净盈利
…………3分

………..4分
所以
(元)………..6分
九、(8分)设随机变量 与 的数学期望分别为 和2,方差分别为1和4,而相关系数为 ,求 。
解:已知
则 ……….4分
……….5分
……….6分
=12…………..8分
十、(7分)设供电站供应某地区1 000户居民用电,各户用电情况相互独立。已知每户每日用电量(单位:度)服从[0,20]上的均匀分布,利用中心极限定理求这1 000户居民每日用电量超过10 100度的概率。(所求概率用标准正态分布函数 的值表示).
答案:
解答:设 的分布函数为 的分布函数为 ,密度为 则
因为 ,所以 ,即

另解在 上函数 严格单调,反函数为
所以
4.设随机变量 相互独立,且均服从参数为 的指数分布, ,则 _________, =_________.
答案: ,
解答:
,故
.
5.设总体 的概率密度为
.
是来自 的样本,则未知参数 的极大似然估计量为_________.
(4) 设总体 和 相互独立,且都服从 , 是来自总体 的

哈尔滨工业大学《概率论与数理统计》历年期末考试

哈尔滨工业大学《概率论与数理统计》历年期末考试

n
i 1, n , 则 b ai X i i 1
~
N b
n i 1
ai i ,
n i 1
ai2 i 2
亦为正态变量(
a1,, an不全为0
3分
)且
五、解: X ~ B(2, 1) Y ~ U[0,1] 3
0, x 0
FY
(
y
)
x,
0 x 1
1, x 1
FZ (z) P(Z z) P(X Y z)
于是有:
A Ai A i 1
P(A)
i 1
P( Ai )P( A Ai )
i 1
i i!
e (1)i 2
e
( )i 2
e (e 2
1) e 2
e
i1 i!
2分 2分
2011年《概率论与数理统计》期末考试试题及答案解析
一、填空题(每小题 3 分,共 5 小题,满分 15 分)
(z)
n
2
1 1
(
2z 2 1
) n1 ,1
z
2
0,
其它
EZ
2 1
zf Z
( z )dz
2 n 1
n
n
11
1, 但EZ
1(n
)
x(1)为1的渐进无偏估计。
4分
七、解:令 A. 表示器皿产生了甲类细菌而没有产生乙类细菌事件,而 Ai 表示产 生了 i 个细菌的事件( i 1,2,3,)。
于是 1 , 2
矩估计为
ˆˆ12
x x
3s 3s
s s2
4分 4分
(2)似然函数
Lx1,,
xn ;1 , 2

哈工大2012年数电期末试题 答案概要

哈工大2012年数电期末试题 答案概要

哈工大 2012 年 秋 季学期数字电子技术基础(A)试 题一、(12分)填空和选择(每空1分)(1)进制为一千的计数器至少应使用_________个触发器实现。

(2)集电极开路门使用时应注意在输出端接_______________。

(3)32选1数据选择器有____________个选择变量。

(4)函数式Y =+AB BCD ,写出其对偶式Y '=_______________________。

(5)相同供电电源的CMOS 门电路与TTL 门电路相比,_________________门的噪声容限更大;_________________门的静态功耗更低。

(6)模数转换时,要求能分辨ADC 输入满量程0.1%的变化,则至少需要使用____________位的ADC 。

若信号频率为20kHz ,则要求该ADC 采样频率至少为____________kHz 。

(7)由与非门构成的基本RS 触发器,其约束条件是__________________________。

(8)下列器件的信号一定不能和其他输出信号接在一起的是______________。

(a )RAM 的数据信号;(b )ROM 的数据信号; (c )74LS138的输出信号。

(9)下列说法正确的是____________________。

(a )输入悬空时,TTL 门电路的输入端相当于接低电平; (b )输入悬空时,CMOS 门电路的输入端相当于接低电平; (c )输入悬空时,CMOS 门电路的输入端相当于接高电平; (d )实际应用中,门电路的输入端应尽量避免悬空。

(10)用万用表测量一个标准TTL 门电路的输出信号,发现其值为1.5V ,可能的情况有(多选):______________________________________。

(a )输出端处于高阻态; (b )两输出信号短接; (c )输出为脉冲信号; (d )驱动门过载。

概率论期末试题(带答案)

概率论期末试题(带答案)

草纸:
试卷纸
共4页
第1页
试题要求:1、试题后标注本题得分;2、试卷应附有评卷用标准答案,并有每题每步得分标准;3、试卷必须装订,拆散无效;4、试卷必须
用碳素笔楷书,以便誉印;5、考试前到指定地点领取试卷。
学号:
姓名:
班级:
..........................................................密.......................................................封..........................................................线..........................................................
..
27

19
8
设每次试验成功的概率为 p, 由题意知至少成功一次的概率是 ,那么一次都没有成功的概率是
. 即 (1 − p)3 =
8
,故
p=1.
27
27
27
3
4. 设随机变量 X, Y 的相关系数为 0.5 , E(X ) = E(Y ) = 0, E= (X 2) E= (Y 2) 2 , 则 E[( X + Y )2 ] =(空 4)
8. 设 zα , χα2 (n), tα (n) , Fα (n1, n2 ) 分别是标准正态分布 N(0,1)、χ 2 (n)分布、t 分布和 F 分布的上α 分位点, 在
下列结论中错误的是(
).
(A) zα = −z1−α .
(B)
χ
2 α
(n)=-
χ2 1−α

组合数学期末试卷及答案

组合数学期末试卷及答案
即该序列中的数介于 1~199 之间。 根据鸽巢原理,其中必有两项相等,但序列中前 100 项为单增,后 100 项也为 单增的。故存在 i 和 j ,设 j i ,使得:
n 种取法,将取出的 m 个数由大到小排 m 序 , 设 为 a1 , a2 , , a m , 再 将 其 分 为 两 组 , a1 , , a k , a k 1 , ,am k 1,2, ,m 1 ,则第一组中的最小数一定大于第二组中的
解:从 n 个数中先任取 m 个数,则有 最大数。故题目所求为:
S j S i 39
第3页
共4页
第4页
共 4页
S j Si 39
即: d i 1 d i 2 d j 39 九. (10 分)求方程 的正整数解的个数。 解: 由题可知: (1) 绕如 v1v2 和 v3v4 中点的连线旋转 180 度,所得置换如下: P1=(v1)(v2)(v3)(v4), P2=(v1 v2)(v3 v4), P3=(v1 v3)(v2 v4), P4=(v2 v3)(v1 v4), (2) 绕每一个顶点的中心线旋转 120 度,240 度,所得置换如下: P5=(v1)(v2 v3 v4), P6=(v1)(v2 v4 v3), P7=(v2)(v1 v3 v4), P8=(v2)(v1 v4 v3), P9=(v3)(v1 v2 v4), P10=(v3)(v1 v4 v2), P11=(v4)(v1 v2 v3), P12=(v4)(v1 v3 v2), 装 由 Polya 定理可知: 不同方案数=(11*32+34)/12=15 订
递推关系如下:
an=an-1+n a1=2
第1页 共2页

组合数学期末试卷及答案

组合数学期末试卷及答案

学号:姓名:== ()+() =x 41(x +)2+()第3页共4页第4页共4页311713210====r ,r ,r ,r则所求的排列方案数为:()()()123525155321=-⋅--+-⋅-=!r !r !r !N五.(10分)由9种颜色珠子组成的长度为n 的珠串中,要求其中的红色和蓝色珠子出现的个数之和为偶数。

求有多少种这样的珠串? 解:有题可知,分为两种情况:(1)红色为偶数,且蓝色为偶数; (2)红色为奇数,且蓝色为奇数; G(x)=(1+x 2/2!+x 3/3!+..)2(1+x/1!+x 2/2!+..)7+(x+x 3/3!+x 5/5!+..)2(1+x/1!+x 2/2!+..)7 最后答案:(9n +5n )/2六.(10分)求多重集S={4a,4b,3c,3d} 的7-组合的个数。

解:2342232()(1)(1)G x x x x x x x x =+++++++出展开式中7x前的系数等于60,即为题目所求之解。

七.(10分)有n 个不同的整数,从中取出两组数来,要求第一组里的最小数大于第二组里的最大数,问有多少种不同的方案?(要求结果只能用n 及常数表示)解:从n 个数中先任取m 个数,则有 ⎪⎪⎭⎫ ⎝⎛m n 种取法,将取出的m 个数由大到小排序,设为m a ,,a ,a 21,再将其分为两组,{}k a ,,a 1,{}m k a ,,a 1+()121-=m ,,,k ,则第一组中的最小数一定大于第二组中的最大数。

故题目所求为:()12-⎪⎪⎭⎫ ⎝⎛∑=m mn n m ∑∑==⎪⎪⎭⎫ ⎝⎛⋅-⎪⎪⎭⎫⎝⎛⋅=n m n m mn m n m 22⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛⋅=∑∑==111n m n n m n m nm nm()()n n n n n ----⋅=122 ()1221+⋅-=-n n八.(10分)某专业运动员在大赛前的100天集训中,每天要抽出1小时或2小时进行技术理论学习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哈工大 2012年 秋季学期概率论与数理统计 试题一、填空题(每小题3分,共5小题,满分15分)1.设事件A 、B 相互独立,事件B 、C 互不相容,事件A 与C 不能同时发生,且()()0.5P A P B ==,()0.2P C =,则事件A ,B 和C 中仅C 发生或仅C 不发生的概率为__________ .2.设随机变量X 服从参数为2的指数分布, 则21e X Y-=-的概率密度为()Y f y =______ ____.3.设随机变量X 的概率密度为21e ,0()20, 0xx x f x x -⎧>⎪=⎨⎪≤⎩,利用契比雪夫不等式估计概率≥<<)51(X P ______.4.已知铝的概率密度2~(,)X N μσ,测量了9次,得 2.705x =,0.029s =,在置信度0.95下,μ的置信区间为______ ____.5.设二维随机变量(,)X Y 服从区域{(,)|01,02}G x y x y =≤≤≤≤上的均匀分布,令),min(Y X Z =,),max(Y X W =, 则)1(≥+W Z P = .(0.0250.050.050.025(8)23060,(8)18595,(9) 1.8331,(9) 2.2622t t t t =⋅=⋅==()1.960.975Φ=,()1.6450.95Φ=)二、选择题(每小题3分,共5小题,满分15分)(每小题给出的四个选项中,只有一个是符合题目要求的,把所选项的字母填在题后的括号内)1.设0()1, 0()1, ()()P A P B P B A P B <<<<=,则与上式不等价的是(A )A 与B 不相容. (B )()()P B A P B A =.(C ))()(A P B A P =. (D ))()(A P B A P =. 【 】 2.设总体X 服从参数为λ的泊松分布,12,,,n X X X 是来自X 的样本,X 为样本均值,则 (A )1EX λ=,21DX n λ=. (B ),λ=X E n X D λ=. (C ),nX E λ=2n X D λ=. (D ),λ=X E λn X D 1=. 【 】3.设随机变量X 的概率密度为2, 01()0, x x f x <<⎧=⎨⎩其他,则)2(DX EX X P ≥-等于(A(B(C )928-6. (D【 】4.如下四个函数,能作为随机变量X 概率密度函数的是(A )⎪⎩⎪⎨⎧≤>+=0,00,11)(2x x xx f . (B )0,157(),1116160, 1x f x x x x <-⎧⎪⎪=+-≤<⎨⎪≥⎪⎩. (C )1()e ,.2xf x x -=∈R . (D )1e ,0()0,0x x f x x -⎧->=⎨≤⎩ . 【 】5.设12,,,n X X X 为来自总体2~(,)X N μσ的一个样本,统计量2)(1μ-=X Sn Y 其中X 为样本均值,2S 为样本方差,则 【 】 (A )2~(1)Y x n -(B )~(1)Y t n -(C )~(1,1)Y F n - (D )~(1,1)Y F n -.三、(8分)假设某段时间内来到百货公司的顾客数服从参数为λ的Poisson 分布,而在百货公司里每个顾客购买电视机的概率均为p ,且顾客之间是否购买电视机相互独立,试求=A “该段时间内百货公司售出k 台电视机”的概率(假设每顾客至多购买一台电视机)。

四、(8分)设随机变量[]~0,1X U ,求(1)241Y X X =-+的概率密度()Y f y ;(2)X 与Y 的相关系数XY ρ.五、(8分)设随机变量X 和Y 的分布列分别为X 0 1 Y —1 0 1P 1/3 2/3 P 1/3 1/3 1/3且1)(22==Y X P ,求(1)二维随机变量),(Y X 的概率分布;(2)XY Z =的概率分布;(3)X 与Y 的相关系数XY ρ.六、(12分)设随机变量X 与Y 相互独立,且分别服从正态分布)2,(σμN 和)22,(σμN ,其中σ为未知参数且0σ>. 记Y X Z -=.(1)求的概率密度Z 2(;)f z σ;(2)设12,,,n Z Z Z 为来自总体Z 的简单随机样本, 求2σ的最大似然估计2σ∧;(3)证明2σ∧是2σ的无偏估计量。

七、(4分)在x 轴上的一个质点可以在整个数轴的整数点上游动,记n S 为时刻n 时质点的位置。

若在时刻0t =时,处于初始位置为原点,即00S =,它移动的规则:每隔单位时间,它总是收到一个外力的随机作用,使位置发生变化,分别以概率p 及概率1q p =-向正的或负的方向移动一个单位(直线上无限制的随机游动)。

求质点在时刻n 时处于位置k 的概率,即求()n P S k =.2012年概率期末答案一、 填空题:(15分)1.0.452.()⎩⎨⎧≤≤=其它,010,1y y f Y 3.41. 4.)(8.2,6.2.5.3/4 二、选择题:(15分)1A 2B 3D 4C 5C三、解:设iA 表示这段时间内到达百货公司的顾客数() ,2,1,0=i利用全概率公式: ++++=A A A A A A A k 10()()()()()0i i i i i i kP A P A P A A P A P A A ∞∞====∑∑ (()0,0)i P A A i k =≤< 4分 ()ki k k i ki ip p C e i --∞=-⋅=∑1!λλ()()()()()()∑∑∞=---∞=---⋅=--⋅⋅=ki k i kk i kki ik i p k p e p p k i k i ei !1!1!!!!λλλλλ()()()()()()∑∞=----=⋅⋅=-⋅==-om p k p kmk ek p ee k p m p p k e p mk i λλλλλλλλ!!!1!1 ),2,1,0( =k 4分四、解:(1)分布函数方法:含f d Y ⋅与()y F YR y ∈∀,()()()y X X P y Y P y F Y ≤+-=≤=142()()322+≤-=y X P又]1.0[∈x ∴()4212≤-≤x 同样431≤+≤y∴12≤≤-y 于是当2-<y 时,()0=y F Y 当1>y 时,()1=y F Y 当12≤≤-y 时,()()()322+≤-=y X P y F Y()3232++≤≤+-=y X y P ()()321132++≤≤+≤≤+-=y X P X y P()130321-+=++--=y y∴()⎪⎩⎪⎨⎧≥<≤--+-<=1,112,132,0y y y y y F Y ()⎪⎩⎪⎨⎧≤≤-+=其它,012,321y y y f Y或公式法:142+-=x x y ↙严格()()()121.0,022≤≤-∈<-='y x x y其反函数()y y h x +-==32 ()12≤≤-y ()yy h x +-='='3214分从而有:()()()()⎪⎩⎪⎨⎧≤≤-+='=其它,12,321y yy h y h f y f X Y 分(2)223441, 345EY EX EX DY =-+=-= 2分 (3)114XY ρ==-=- 2分五、解:(I )由题设有:0)(1)(2222==-=≠Y X P Y XP而)()0,1(),1,0(22Y XY X Y X ≠⊂==±==所以利用概率的非负性和保序性:0)Y 1,P(X 01)Y 0,P(X ====±== 再利用联合分布和边缘分布之间的关系可得联合分布列4分)(∏.Z=XY 的分布列为:31)1,1()1(31)1,1()1(310)Y 0,P(X 0)Y 1,P(X 1)Y 0,P(X 0)P(Z =-===-========++==+±====Y X P Z P Y X P Z P2分 ()I∏)031131)1(31).(132031()1(31131031),(=⨯+⨯+-⨯⨯+⨯--⨯+⨯+⨯=-=EXEY EXY Y X COV 0320031)1(31131)(,92)32(32)(222222222>=-⨯+-⨯+⨯=-==-=-=EY EY DY EX EX DX 所以 0=ρ2分六、解:(I )由题设:Y -X Z =服从正态分布且)3,0()2,(~222σσσμμN N Z =+-Z ∴的概率密度为:2262321)f(z,σσπσz e-=4分(II )似然函数222262226121)()6(321);,,L(z σσσπσπσi i z n n z ni n eez ----===∏取对数:2226262σσπi z Ln n Ln n LnL ---=令42226120σσσi z n LnL +⨯-==∂∂,解得:=2σ∑=n i i z n 1231∴2σ的极大似然估计为=∧2σ∑=n i i z n 1231 4分(III )由题设知:n z z z ,,,21 独立且与总体Z 同分布E ∴=∧2σE 2212123313131σσ=⨯⨯=⨯=∑∑==n nEz n z n ni in i i 于是=∧2σ∑=n i i z n 1231为2σ的无偏估计。

4分七、解: 为使质点在时刻t=n 时位于k 位置(k 也可以是负值)⇔在前n 次游动中向右移动的次数比向左移动的次数多k 次,若以x 表示它在前n 次游动中向右移动的次数,y 表示向左移动的次数,则有:⎩⎨⎧==+k y -x ny x 2分 即,2kn x +=因为x 是整数,所以k 与n 必须具有相同的奇偶性。

事件{}k =n S 发生相当于要求在前n 次游动中有2k n +次向右,2kn -次向左,利用二项分布即得{}222n S P k n k n k n nqpCk -++==当k 与n 奇偶性相反时,其概率为0 2分。

相关文档
最新文档