湖南省邵阳市选修2-1学案 椭圆及其简单几何性质(1)

合集下载

高中数学选修2-1课时作业16:2.2.2 椭圆的简单几何性质(一)

高中数学选修2-1课时作业16:2.2.2 椭圆的简单几何性质(一)

2.2.2 椭圆的简单几何性质(一)一、选择题1.已知点(3,2)在椭圆x 2a 2+y 2b 2=1上,则( ) A.点(-3,-2)不在椭圆上B.点(3,-2)不在椭圆上C.点(-3,2)在椭圆上D.无法判断点(-3,-2)、(3,-2)、(-3,2)是否在椭圆上[答案] C[解析] 由椭圆的对称性知(-3,2)必在椭圆上.2.椭圆x 2+4y 2=1的离心率为( ) A.32 B.34 C.22 D.23[答案] A[解析] 将椭圆方程x 2+4y 2=1化为标准方程x 2+y 214=1,则a 2=1,b 2=14,即a =1,c =a 2-b 2=32,故离心率e =c a =32. 3.椭圆x 24+y 2=1的左,右焦点分别为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|的值为( ) A.32 B. 3 C.72D.4 [答案] C[解析] 由x 24+y 2=1知,F 1,F 2的坐标分别为(-3,0),(3,0),即点P 的横坐标为x P =-3,代入椭圆方程得|y P |=12,∴|PF 1|=12. ∵|PF 1|+|PF 2|=4,∴|PF 2|=4-|PF 1|=4-12=72. 4.中心在原点,焦点在坐标轴上,离心率为32,且过点(2,0)的椭圆的方程是( )A.x 24+y 2=1 B.x 24+y 2=1或x 2+y 24=1 C.x 2+4y 2=1D.x 2+4y 2=4或4x 2+y 2=16[答案] D[解析] 若焦点在x 轴上,则a =2.又e =32,∴c = 3. ∴b 2=a 2-c 2=1,∴方程为x 24+y 2=1, 即x 2+4y 2=4.若焦点在y 轴上,则b =2.又e =32,∴b 2a 2=1-34=14, ∴a 2=4b 2=16,∴方程为x 24+y 216=1,即4x 2+y 2=16. 5.椭圆x 212+y 23=1的左焦点为F 1,点P 在椭圆上,若线段PF 1的中点M 在y 轴上,则点P 的纵坐标是( ) A.±34B.±32C.±22D.±34[答案] B[解析] 设椭圆的右焦点为F 2,由题意知PF 2⊥x 轴,因为a 2=12,b 2=3,所以c 2=a 2-b 2=9,c =3.所以点P 和点F 2的横坐标都为3.故将x =3代入椭圆方程,可得y =±32.故选B. 6.若椭圆的焦距、短轴长、长轴长构成一个等比数列,则椭圆的离心率为( )A.5-12B.3-12C.32 D.5+12 [答案] A[解析] 依题意得,4b 2=4ac ,∴b 2a 2=c a,即1-e 2=e . ∴e 2+e -1=0,∴e =5-12(舍去负值). 7.椭圆x 225+y 29=1与x 29-k +y 225-k=1(0<k <9)的关系为( ) A.有相等的长、短轴长 B .有相等的焦距C.有相同的焦点D.有相同的顶点[答案] B[解析] ∵(25-k )-(9-k )=25-9=16,∴焦距相等.二、填空题8.若点O 和点F 分别为椭圆x 22+y 2=1的中心和左焦点,点P 为椭圆上的任意一点,则|OP |2+|PF |2的最小值为________.[答案] 2[解析] 设P (x 0,y 0),而F (-1,0),∴|OP |2+|PF |2=x 20+y 20+(x 0+1)2+y 20.又y 20=1-x 202, ∴|OP |2+|PF |2=x 20+2x 0+3=(x 0+1)2+2≥2.∴|OP |2+|PF |2的最小值为2.9.若椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,过点(1,12)作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆的方程是____________.[答案] x 25+y 24=1 [解析] ∵x =1是圆x 2+y 2=1的一条切线.∴椭圆的右焦点为(1,0),即c =1.设P (1,12),则k OP =12,∵OP ⊥AB ,∴k AB =-2,则直线AB 的方程为y =-2(x -1),它与y 轴的交点为(0,2).∴b =2,a 2=b 2+c 2=5,故椭圆的方程为x 25+y 24=1. 10.若椭圆x 2+my 2=1的离心率为32,则m =________. [答案] 14或4 [解析] 方程化为x 2+y 21m=1,则有m >0且m ≠1. 当1m<1,即m >1时,依题意有1-1m 1=32, 解得m =4,满足m >1;当1m>1,即0<m <1时,依题意有1m -11m =32, 解得m =14,满足0<m <1. 综上,m =14或4. 三、解答题 11.分别求适合下列条件的椭圆的标准方程:(1)离心率是23,长轴长是6; (2)在x 轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为6.解 (1)设椭圆的标准方程为x 2a 2+y 2b 2=1 (a >b >0)或y 2a 2+x 2b2=1 (a >b >0). 由已知得2a =6,e =c a =23,∴a =3,c =2. ∴b 2=a 2-c 2=9-4=5.∴椭圆的标准方程为x 29+y 25=1或x 25+y 29=1. (2)设椭圆的标准方程为x 2a 2+y 2b2=1 (a >b >0).如图所示,△A 1F A 2为等腰直角三角形,OF 为斜边A 1A 2上的中线(高),且|OF |=c ,|A 1A 2|=2b ,∴c =b =3,∴a 2=b 2+c 2=18,故所求椭圆的标准方程为x 218+y 29=1. 12.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(-c,0),F 2(c,0)(c >0),过点E (a 2c ,0)的直线与椭圆相交于点A ,B 两点,且F 1A ∥F 2B ,|F 1A |=2|F 2B |,求椭圆的离心率.解 由F 1A ∥F 2B ,|F 1A |=2|F 2B |,得|EF 2||EF 1|=|F 2B ||F 1A |=12, 从而a 2c -c a 2c+c =12,整理得a 2=3c 2. 故离心率e =c a =33. 13.已知椭圆E 的中心为坐标原点O ,两个焦点分别为A (-1,0),B (1,0),一个顶点为H (2,0).(1)求椭圆E 的标准方程;(2)对于x 轴上的点P (t,0),椭圆E 上存在点M ,使得MP ⊥MH ,求实数t 的取值范围. 解 (1)由题意可得,c =1,a =2,∴b = 3.∴所求椭圆E 的标准方程为x 24+y 23=1.(2)设M (x 0,y 0)(x 0≠±2),则x 204+y 203=1.①MP →=(t -x 0,-y 0),MH →=(2-x 0,-y 0), 由MP ⊥MH 可得MP →·MH →=0, 即(t -x 0)(2-x 0)+y 20=0.② 由①②消去y 0,整理得 t (2-x 0)=-14x 20+2x 0-3.∵x 0≠2,∴t =14x 0-32.∵-2<x 0<2,∴-2<t <-1.∴实数t 的取值范围为(-2,-1).。

湖南省邵阳市隆回二中高中数学 2.2.1椭圆及其标准方程(1)导学案 理 新人教A版选修2-1

湖南省邵阳市隆回二中高中数学 2.2.1椭圆及其标准方程(1)导学案 理 新人教A版选修2-1

湖南省邵阳市隆回二中高中数学(理)选修2-1学案:2.2.1椭圆及其标准方程(1)导学案【学习目标】1.从具体情境中抽象出椭圆的模型;2.掌握椭圆的定义;3.掌握椭圆的标准方程.【自主学习】(认真自学课本P38-P40)新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .思考:若将常数记为2a 当122a F F =时,其轨迹为 ;122a F F <时,其轨迹为 .试试:已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于8的点的轨迹是 .应用椭圆的定义注意两点:①分清动点和定点; ②看是否满足常数122a F F >.新知2:焦点在x 轴上的椭圆的标准方程()222210x y a b a b+=>> 其中222a b c =+ 若焦点在y 轴上,两个焦点坐标 ,则此时椭圆的标准方程是 .【合作探究】例1.(教材P40例1)已知椭圆两个焦点的坐标分别是()2,0-,(2,0),并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程 .例2.椭圆过点 ()2,0-,(2,0),(0,3),求它的标准方程.【目标检测】1.平面内一动点M 到两定点1F 、2F 距离之和为常数2a ,则点M 的轨迹为( ).A .椭圆B .圆C .无轨迹D .椭圆或线段或无轨迹2. 如果椭圆22110036x y +=上一点P 到焦点1F 的距离等于6,那么点P 到另一个焦点2F 的距离是 ( ).A .4B .14C .12D .83. 已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是 ( ).A ..6 C ..124. 方程214x y m+=表示焦点在x 轴上的椭圆,则实数m 的范围 .5. 写出适合下列条件的椭圆的标准方程:⑴4,1a b ==,焦点在x 轴上;⑵4,a c ==y 轴上;⑶10,a b c +==【作业布置】任课教师自定。

选修2-1教案2.2.1椭圆及其标准方程、几何性质

选修2-1教案2.2.1椭圆及其标准方程、几何性质

2.2.1圆及其标准方程教学要求:从具体情境中抽象出椭圆的模型,掌握椭圆的定义,标准方程 教学重点:椭圆的定义和标准方程 教学难点:椭圆标准方程的推导 教学过程:一、新课导入:取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个圆.如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?(学生动手,观察结果)思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的长度保持不变,即笔尖到两个定点的距离之和等于常数. 二、讲授新课:1. 定义椭圆:把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.2.椭圆标准方程的推导:以经过椭圆两焦点12,F F 的直线为x 轴,线段12F F 的垂直平分线为y 轴,建立直角坐标系xOy .设(,)M x y 是椭圆上任意一点,椭圆的焦距为()20c c >,那么焦点12,F F 的坐标分别为(),0c -,(),0c ,又设M 与12,F F 的距离之和等于2a ,根据椭圆的定义,则有122MF MF a +=,用两点间的距离公式代入,画简后的222221x y a a c+=-,此时引入222b ac =-要讲清楚. 即椭圆的标准方程是()222210x y a b a b+=>>. 根据对称性,若焦点在y 轴上,则椭圆的标准方程是()222210x y a b b a+=>>.两个焦点坐标()()12,0,,0F c F c -.通过椭圆的定义及推导,给学生强调两个基本的等式:122MF MF a +=和222b c a +=3. 例1 写出适合下列条件的椭圆的标准方程:⑴4,1a b ==,焦点在x 轴上;⑵4,a c ==y 轴上;⑶10,a b c +==(教师引导——学生回答) 例2 已知椭圆两个焦点的坐标分别是()()2,0,2,0-,并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程.(教师分析——学生演板——教师点评) 三、巩固练习:1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点(3,P -;⑵焦点坐标分别为()()0,4,0,4-,5a =; ⑶10,4a c a c +=-=. 2. 作业:40P 第2题.2.2椭圆及其标准方程教学要求:掌握点的轨迹的求法,坐标法的基本思想和应用. 教学重点:求点的轨迹方程,坐标法的基本思想和应用. 教学难点:求点的轨迹方程,坐标法的基本思想和应用. 教学过程: 一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.关于椭圆的两个基本等式. 二、讲授新课:1. 例1 设点,A B 的坐标分别为()()5,0,5,0-,.直线,AM BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程. 求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式. (教师引导——示范书写)2. 练习:1.点,A B 的坐标是()()1,0,1,0-,直线,AM BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的商是2,点M 的轨迹是什么? (教师分析——学生演板——教师点评)2.求到定点()2,0A 与到定直线8x =的距离之比为2的动点的轨迹方程. (教师分析——学生演板——教师点评)3. 例2 在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程.(教师引导——示范书写) 4. 练习: 1.47P 第7题.2.已知三角形ABC 的一边长为6,周长为16,求顶点A 的轨迹方程. 5.知识小结:①注意求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式.②相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程. 三、作业: 40P 第4题 精讲精练第8练.2.2椭圆的简单几何性质教学要求:根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图. 教学重点:通过几何性质求椭圆方程并画图. 教学难点:通过几何性质求椭圆方程并画图. 教学过程: 一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.椭圆的标准方程. 二、讲授新课:1.范围——变量,x y 的取值范围,亦即曲线的取值范围:横坐标a x a -<<;纵坐标b x b -<<.方法:①观察图像法; ②代数方法.2.对称性——既是轴对称图形,关于x 轴对称,也关于y 轴对称;又是中心对称图形. 方法:①观察图像法; ②定义法.3.顶点:椭圆的长轴122A A a =,椭圆的短轴122B B b =,椭圆与四个对称轴的交点叫做椭圆的顶点,()()()()1212,0,,0,,0,,0A a A aB b B b --.4.离心率:刻画椭圆的扁平程度.把椭圆的焦点与长轴长的比c a 称为离心率.记ce a=. 可以理解为在椭圆的长轴长不变的前提下,两个焦点离开中心的程度.5.例题例4 求椭圆221625400x y +=的长轴和短轴的长,离心率,焦点和定点坐标. 提示:将一般方程化为标准方程. (学生回答——老师书写)练习:求椭圆22416x y +=和椭圆22981x y +=的长轴和短轴长,离心率,焦点坐标,定点坐标.(学生演板——教师点评)例5 点(),M x y 与定点()4,0F 的距离和它到直线25:4l x =的距离之比是常数45,求点M 的轨迹.(教师分析——示范书写)三、课堂练习:①比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?⑴22936x y +=与2211612x y += ⑵22936x y +=与221610x y +=(学生口答,并说明原因)②求适合下列条件的椭圆的标准方程.⑴经过点()(,P Q -⑵长轴长是短轴长的3倍,且经过点()3,0P ⑶焦距是8,离心率等于0.8 (学生演板,教师点评) ③作业:47P 第4题.。

人教新课标版数学高二高二数学新人教版选修2-1导学案 椭圆的简单几何性质(一)

人教新课标版数学高二高二数学新人教版选修2-1导学案 椭圆的简单几何性质(一)

椭圆的简单几何性质(一)导学案【学习要求】1.理解椭圆的简单几何性质.2.利用椭圆的简单几何性质解决一些简单问题.【学法指导】通过几何图形观察,代数方程验证的学习过程,体会数形结合的数学思想.通过几何性质的代数研究,养成辩证统一的世界观.【知识要点】1.椭圆的简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程范围顶点轴长短轴长=,长轴长=焦点(±a2-b2,0)(0,±a2-b2)焦距|F1F2|=2a2-b2对称性对称轴:对称中心:离心率e=ca∈准线2.离心率的作用当椭圆的离心率越,则椭圆越扁;当椭圆离心率越,则椭圆越接近于圆.【问题探究】探究点一 椭圆的简单几何性质问题1 观察椭圆x 2a 2+y 2b2=1 (a >b >0)的形状,你能从图中看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?问题2 如何用椭圆的标准方程(代数方法)研究你观察到的几何性质?问题3 观察不同的椭圆,椭圆的扁平程度不一样,怎样刻画椭圆的扁平程度呢?问题4 (1)b a 或c b的大小能刻画椭圆的扁平程度吗?为什么? (2)你能运用三角函数的知识解释:为什么e =c a 越大,椭圆越扁?e =c a越小,椭圆越圆吗?问题5 比较下列各组中椭圆的形状,哪一个更圆,哪一个更扁?为什么?(1)4x 2+9y 2=36与x 225+y 220=1; (2)9x 2+4y 2=36与x 212+y 216=1.例1 求椭圆m 2x 2+4m 2y 2=1 (m >0)的长轴长、短轴长、焦点坐标、顶点坐标和离心率. 跟踪训练1 已知椭圆方程为4x 2+9y 2=36,求椭圆的长轴长、短轴长、焦点坐标、顶点坐标和离心率.探究点二 由椭圆的几何性质求方程例2 椭圆过点(3,0),离心率e =63,求椭圆的标准方程. 跟踪训练2 求适合下列条件的椭圆的标准方程.(1)长轴在x 轴上,长轴的长等于12,离心率等于23; (2)长轴长是短轴长的2倍,且椭圆过点(-2,-4).探究点三 求椭圆的离心率例3 如图所示,椭圆的中心在原点,焦点F 1,F 2在x 轴上,A ,B 是椭圆的顶点,P 是椭圆上且PF 1⊥x 轴,PF 2∥AB ,求此椭圆的离心率.跟踪训练3 如图,A 、B 、C 分别为椭圆x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点,若∠ABC =90°,则该椭圆的离心率为 ( )A .-1+52B .5-1C .2+12D .2+1【当堂检测】1.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是 ( )A .5、3、0.8B .10、6、0.8C .5、3、0.6D .10、6、0.6 2.已知椭圆的中心在坐标原点,焦点在x 轴上,且长轴长为12,离心率为13,则椭圆的方程是 ( )A .x 2144+y 2128=1 B .x 236+y 220=1 C .x 232+y 236=1 D .x 236+y 232=1 3.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 ( )A .45B .35C .25D .154.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为______.【课堂小结】1.已知椭圆的方程讨论性质时,若不是标准形式要先化成标准形式,再确定焦点的位置,找准a 、b .2.利用椭圆的几何性质求标准方程通常采用待定系数法.3.求离心率e 时,注意方程思想的运用.【拓展提高】1.已知F 1、F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,过F 2作椭圆的弦AB ,若△AF 1B 的周长为16,椭圆离心率e =32,则椭圆的方程是( )A .x 24+y 23=1B .x 216+y 24=1C .x 216+y 212=1D .x 216+y 23=1 2.椭圆1145222=++a y a x 的焦点在x 轴上,则它离心率的取值范围是 3.椭圆M :2222x y a b+=1 (a >b >0) 的左、右焦点分别为F 1、F 2,P 为椭圆M 上任一点,且12PF PF ⋅ 的最大值的取值范围是[2c 2,3c2],其中c =则椭圆M 的离心率e 的取值范围是( ) A .⎥⎦⎤⎢⎣⎡22,33 B.[C .D .11[,)32 4.已知椭圆)0(12222>>=+b a by a x 的左、右顶点分别为B A 、,右焦点是F ,过F 作直线与长轴垂直,与椭圆交于Q P 、两点(1)若060=∠PBF ,求椭圆的离心率(2)求证:APB ∠一定为钝角5.在平面直角坐标系内,已知点)0,2()0,2(-B A 、,P 是平面内一动点,直线PB PA 、的斜率之积为43- (1)求动点P 的轨迹C 的方程(2)过点)0,21(作直线l 与轨迹C 交于F E 、两点,线段EF 的中点为M ,求直线MA 的斜率k 的取值范围。

人教课标版高中数学选修2-1:《椭圆的简单几何性质(第1课时)》教案-新版

人教课标版高中数学选修2-1:《椭圆的简单几何性质(第1课时)》教案-新版

2.2.2 椭圆的简单几何性质(第一课时)一、教学目标 (一)学习目标1.给定椭圆标准方程,能说出椭圆的范围,对称性,顶点坐标和离心率;2.在图形中,能指出椭圆中e c b a ,,,的几何意义及其相互关系;3.知道离心率大小对椭圆扁平程度的影响. (二)学习重点1.用方程研究椭圆上点的横纵坐标范围,对称性;2.椭圆的简单几何性质. (三)学习难点椭圆的离心率及椭圆几何性质的简单应用 二.教学设计 (一)预习任务设计 1.预习任务(1)读一读:阅读教材第43页至第46页.(2)想一想:椭圆的离心率对椭圆扁平程度的影响?(3)写一写:焦点分别在,x y 轴上的椭圆的范围、对称性、顶点. 2.预习自测判断(正确的打“√”,错误的打“×”)(1)椭圆22221(0)x y a b a b +=>>的长轴长为a .( )(2)椭圆的离心率e 越大,椭圆就越圆.( )(3)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为2212516x y +=.( )(4)已知点(,)m n 在椭圆228324x y +=上,则24m +的最大值为4+.( ) 【知识点】椭圆的几何性质.【解题过程】通过椭圆的标准方程22221x y a b +=可认识到椭圆的相应几何量:长轴长2a ,短轴长2b ,离心率e ca=,x 的取值范围取值范围a x a -≤≤. 【思路点拨】通过椭圆的标准方程认识几何性质. 【答案】(1)×;(2)×;(3)×;(4)√. (二)课堂设计 1.知识回顾椭圆的标准方程:当焦点在x 轴时,)0(12222>>=+b a b y a x当焦点在y 轴时,)0(12222>>=+b a b x a y2.新知讲解探究一:具体方程,认识图形 ●活动① 图形引发性质运用所学的知识,你能否画出方程14922=+y x 所对应的曲线?(如果不能精确地画出,也可以画出它的草图.)预案一:利用椭圆的定义,用绳子画图;预案二:根据所学先判断其为椭圆,求与x 轴y 轴的交点再连结;预案三:根据所学判断椭圆具有对称性,只需比较精确地画出第一象限的部分; 【设计意图】让学生在画曲线的时候,通过动手能发现椭圆上点的坐标取值有范围限制,即椭圆的范围;发现椭圆具有对称性,从而为引出对称性作铺垫;发现特殊点(与对称轴的交点),即椭圆的顶点.研究曲线的性质,可以从整体上把握它的形状,大小和位置.以椭圆)0(12222>>=+b a b y a x 为例,你觉得应该从哪些方面研究它的几何性质?【设计意图】引出研究曲线性质的意义,为后面研究椭圆的几何性质指明角度. 探究二:简化抽象、探究性质 ●活动① 归纳梳理、理解提升(1)范围:由标准方程知,椭圆上点的坐标(,)x y 满足不等式22221,1x y a b ≤≤,∴22x a ≤,22y b ≤,∴||x a ≤,||y b ≤.说明椭圆位于直线x a =±,y b =±所围成的矩形里. (2)对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称.若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称.所以,椭圆关于x 轴、y 轴和原点对称.这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心. (3)顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标.在椭圆的标准方程中,令0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点.同理令0y =得x a =±,即1(,0)A a -,2(,0)A a 是椭圆与x 轴的两个交点. 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点.同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长.由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在22R t O BF ∆中,2||O B b =,2||O F c =,22||BF a =,且2222222||||||O F B F O B =-,即222c a b =-. (4)离心率:椭圆的焦距与长轴的比e ca=叫椭圆的离心率.∵0a c >>,∴01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆.当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为222x y a+=.e 1,0c a b →→→⎧⎨⎩当时,椭圆图形越扁; e 00,c b a →→→⎧⎨⎩当时,椭圆越接近于圆. ●活动② 巩固基础、检查反馈 例1.根据下列条件求椭圆的标准方程 (1)28,e 3c ==; (2)过点(3,0)P ,离心率e =,求椭圆的标准方程. 【知识点】椭圆的标准方程以及离心率. 【解题过程】(1)8e ,1223c c a a e =∴===,又2222212880b a c =-=-= ∴椭圆标标准方程为22114480x y +=或22114480y x +=. (2)当椭圆的焦点在x 轴上时,3,c a c a ==∴=. 从而222963b a c =-=-=,∴椭圆的方程为22193x y +=.当椭圆的焦点在y 轴上时,3,c b a === 227a ∴=,∴椭圆方程为221927x y += ∴所求椭圆的方程为221927x y +=或22193x y +=. 【思路点拨】已知椭圆的某些性质,和与性质相关的条件求标准方程仍需先判定焦点位置,从而确定方程形式,并用待定系数的思想,求出方程中的,a b 值,得到方程.【答案】(1)22114480x y +=或22114480y x +=;(2)221927x y +=或22193x y +=.同类训练 已知椭圆()22550mx y m m +=>的离心率为e =,求m 的值. 【知识点】椭圆的离心率.【解题过程】依题意,0,5m m >≠,但椭圆的焦点位置没有确定,应分类讨论:①当焦点在x 轴上,即05m <<时,有a b c ===,∴=,得3m =;②当焦点在y 轴上,即5m >时,有a b c ===,∴253m =⇒=. 【思路点拨】根据椭圆焦点的位置确定,,a b c 的值,结合离心率的定义建立方程求解.【答案】m =3或253. 例2.已知12,F F 分别为椭圆12222=+by a x 的左右焦点,P 是以12F F 为直径的圆与椭圆的一个交点,且12212PF F PF F ∠=∠,求这个椭圆的离心率. 【知识点】椭圆的离心率.【解题过程】由题意12PF F ∆为直角三角形,且90P ∠=,1260PF F ∠=,122F F c =,则12,PF c PF ==,所以由椭圆的定义知,122PF PF a +=,即2c a +=,得离心率e 1ca==. 【思路点拨】求离心率一般是先找到关于,,a b c 的一个齐次关系式,然后再变形求e 的值或范围.1-同类训练 已知椭圆12222=+by a x (0)a b >>,过椭圆的右焦点作x 轴的垂线交椭圆于A B 、两点, 0OA OB ⋅=,求椭圆的离心率. 【知识点】椭圆的离心率.【解题过程】2(,0)F c ,把x c =代入椭圆12222=+b y a x 得2(,)b A c a .由0OA OB ⋅=,结合图形得22||||OF AF =,即:22222e e 10e b c b ac a c ac a =⇒=⇒-=⇒+-=⇒=. 【思路点拨】求离心率一般是先找到关于,,a b c 的一个齐次关系式,然后再变形求e 的值或范围.. 例3.如图,设(),M x y 与定点()4,0F 的距离和它到直线l :254x =的距离的比是常数45,求点M 的轨迹方程.【知识点】椭圆的方程以及离心率. 【解题过程】分析:若设点(),M x y ,则MF =,到直线l :254x =的距离254d x =-,则容易得点M 的轨迹方程.25:44,5d M l x MF M P M d =⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭解:设是点到直线的距离,根据题意,点的轨迹就是集合4.5=22925225,x y +=将上式两边平方,并化简,得22 1.259x y +=即 所以,点M 的轨迹是长轴、短轴长分别为10,6的椭圆.【思路点拨】利用条件直接求轨迹方程,我们可以将例3抽象为下面问题:点(,)P x y 与定点(,0)F c 的距离和它到一定直线2:a l x c=的距离之比是常数ca(0)a c >>,求点P 的轨迹方程. (记222b ac =-,则轨迹方程为22221x y a b+=.)【答案】221259x y +=.3.课堂总结知识梳理椭圆的简单几何性质:重难点归纳利用椭圆轴长、离心率、准线等性质求解椭圆方程时,需注意:(1)在,,,e a b c 四个参数中,只要知道其中的任意两个,便可求出其它两个,必须正确地掌握四个参数间的相互关系;(2)离心率的转化和变形:222e (1)c bb a e a a==⇒=⇒=-. (三)课后作业 基础型 自主突破1.若焦点在y 轴上的椭圆x 2m +y 22=1的离心率为12,则m 的值为( ) A.1 B.32 C. 3 D.83 【知识点】椭圆的离心率.【解题过程】由题意得a 2=2,b 2=m ,∴c 2=2-m ,又c a =12,∴2-m 2=12,∴m=32.【思路点拨】利用椭圆离心率定义解题. 【答案】B2.椭圆C 1:x 225+y 29=1和椭圆C 2:x 29-k +y 225-k =1 (0<k <9)有( )A.等长的长轴B.相等的焦距C.相等的离心率D.等长的短轴 【知识点】椭圆的几何性质.【解题过程】依题意知椭圆C 2的焦点在y 轴上,对于椭圆C 1:焦距=225-9=8,对于椭圆C 2:焦距=8=,故选B. 【思路点拨】灵活利用椭圆a,b,c 三者关系. 【答案】B3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为( ) A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 【知识点】椭圆的几何性质.【解题过程】根据条件可知c a =33,且4a =43, ∴a =3,c =1,b =2,椭圆的方程为x 23+y 22=1. 【思路点拨】过焦点的直线利用椭圆的定义. 【答案】A.4.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1、F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( ) A.14 B.55 C.12 D.5-2 【知识点】椭圆的几何性质.【解题过程】∵A 、B 分别为左右顶点,F 1、F 2分别为左右焦点,∴|AF 1|=a -c ,|F1F2|=2c,|BF1|=a+c,又由|AF1|、|F1F2|、|F1B|成等比数列得(a-c)(a+c)=4c2,即a2=5c2,所以离心率e=5 5.【思路点拨】利用椭圆的几何性质中量的关系.【答案】B5.已知椭圆的焦点在y轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为________.【知识点】椭圆的定义.【解题过程】由已知,2a=8,2c=215,∴a=4,c=15,∴b2=a2-c2=16-15=1,∴椭圆的标准方程为y216+x2=1.【思路点拨】利用条件求a,b,c的值.【答案】y216+x2=1.6.已知椭圆的短半轴长为1,离心率0<e≤32.则长轴长的取值范围为________.【知识点】椭圆的几何性质.【解题过程】∵b=1,∴c2=a2-1,又c2a2=a2-1a2=1-1a2≤34,∴1a2≥14,∴a2≤4,又∵a2-1>0,∴a2>1,∴1<a≤2,故长轴长2<2a≤4.【思路点拨】利用离心率的定义建立不等关系. 【答案】2<2a≤4能力型师生共研7.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为32,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为________. 【知识点】椭圆的几何性质.【解题过程】设椭圆G的标准方程为x2a2+y2b2=1(a>b>0),半焦距为c,则⎩⎨⎧2a =12,c a =32,∴⎩⎨⎧a =6,c =3 3. ∴b 2=a 2-c 2=36-27=9, ∴椭圆G 的方程为x 236+y 29=1.【思路点拨】利用椭圆a,b,c 三者关系以及椭圆定义解题. 【答案】x 236+y 29=18.椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A 、B .当△F AB 的周长最大时,△F AB 的面积是________. 【知识点】椭圆的几何性质.【解题过程】如图,当直线x =m ,过右焦点(1,0)时,△F AB 的周长最大,由⎩⎪⎨⎪⎧x =1,x 24+y 23=1,解得y =±32,∴|AB |=3.∴S =12×3×2=3.【思路点拨】数形结合解题. 【答案】3 探究型 多维突破9.已知点P (x 0,y 0)是椭圆x 28+y 24=1上一点,A 点的坐标为(6,0),求线段P A 中点M 的轨迹方程.【知识点】椭圆的几何性质.【解题过程】设M (x ,y ),则⎩⎪⎨⎪⎧x 0+62=x ,y 0+02=y ,∴⎩⎨⎧x 0=2x -6,y 0=2y .∵点P 在椭圆x 28+y 24=1上,∴x 208+y 24=1.把⎩⎨⎧x 0=2x -6,y 0=2y 代入x 208+y 204=1,得22(26)(2)184x y -+=, 即22(3)12x y -+=为所求.【思路点拨】相关点转移法求轨迹.【答案】22(3)12x y -+=.10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1和F 2,离心率e =22,连接椭圆的四个顶点所得四边形的面积为4 2. (1)求椭圆C 的标准方程;(2)设A 、B 是直线l :x =22上的不同两点,若AF 1→·BF 2→=0,求|AB |的最小值. 【知识点】椭圆的几何性质.【解题过程】(1)由题意得:⎩⎪⎨⎪⎧e =c a =22,a 2=b 2+c 2,S =12ab =42,解得:⎩⎨⎧a =2,b =2,c = 2.所以椭圆的标准方程为:x 24+y 22=1.(2)由(1)知,F 1、F 2的坐标分别为F 1(-2,0)、F 2(2,0),设直线l :x =22上的不同两点A 、B 的坐标分别为A (22,y 1)、B (22,y 2),则AF 1→=(-32,-y 1)、BF 2→=(-2,-y 2),由AF 1→·BF 2→=0得y 1y 2+6=0,即y 2=-6y 1,不妨设y 1>0,则|AB |=|y 1-y 2|=y 1+6y 1≥26,当y 1=6、y 2=-6时取等号,所以|AB |的最小值是2 6.【思路点拨】建立目标函数解与圆锥曲线有关的最值问题,是常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值得方法确定最值. 【答案】(1)x 24+y 22=1;(2)2 6. 自助餐1.过椭圆x 24+y 23=1的焦点的最长弦和最短弦的长分别为( ) A.8,6 B.4,3 C.2, 3 D.4,2 3 【知识点】椭圆的几何性质.【解题过程】椭圆过焦点的弦中最长的是长轴,最短的为垂直于长轴的弦(通径)是2b 2a .∴最长的弦为2a =4,最短的弦为2b 2a =2×32=3,故选B. 【思路点拨】利用椭圆的几何性质量的关系解题. 【答案】B2.设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且,12:2:1PF PF =则△F 1PF 2的面积等于( ) A.5 B.4 C.3 D.1 【知识点】椭圆的几何性质.【解题过程】由椭圆方程,得a =3,b =2,c =5,∴|PF 1|+|PF 2|=2a =6,又12:2:1PF PF =,∴|PF 1|=4,|PF 2|=2,由22+42=(25)2可知,△F 1PF 2是直角三角形,故△F 1PF 2的面积为12|PF 1|·|PF 2|=12×4×2=4,故选B. 【思路点拨】充分利用椭圆的定义求出三角形三边解题. 【答案】B3.已知A ={1,2,4,5},a ,b ∈A ,则方程x 2a 2+y 2b 2=1表示焦点在y 轴上的椭圆的概率为( )A.34B.38C.316D.12 【知识点】椭圆的几何性质.【解题过程】∵a ,b ∈A ,∴不同的方程x 2a 2+y 2b 2=1共有16个. 由题意a 2<b 2,∴a =1时,b =2,4,5;a =2时,b =4,5; a =4时,b =5,共6个,∴所求概率P =616=38. 【思路点拨】注意椭圆的焦点在y 轴上. 【答案】B4.已知F 1(-3,0),F 2(3,0)是椭圆x 2a 2+y 2b 2=1(a >b >0)两个焦点,P 在椭圆上,∠F 1PF 2=α,且当α=2π3时,△F 1PF 2的面积最大,则椭圆的标准方程为( ) A.x 212+y 23=1 B.x 214+y 25=1 C.x 215+y 26=1 D.x 216+y 27=1 【知识点】椭圆的几何性质.【解题过程】∵当P 在短轴端点时,S △F 1PF 2最大,∴∠PF 1F 2=π6,∴tan π6=bc ,∵c =3,∴b =3,∴a 2=b 2+c 2=12,椭圆方程为x 212+y 23=1.【思路点拨】利用几何关系. 【答案】A5.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标. 【知识点】椭圆的几何性质.【解题过程】椭圆方程可化为x 2m +y 2m m +3=1,∵(2)33m m m m m m +-=>++,∴m >m m +3.即a 2=m ,b 2=mm +3,c ==.由e =32得,m +2m +3=32,∴m =1. ∴椭圆的标准方程为x 2+y 214=1,∴a =1,b =12,c =32.∴椭圆的长轴长为2,短轴长为1;两焦点坐标分别为F 1(-32,0),F 2(32,0);四个顶点分别为A 1(-1,0),A 2(1,0),B 1(0,-12),B 2(0,12). 【思路点拨】利用离心率的定义建立关系.6.已知椭圆上横坐标等于焦点横坐标的点,它到x 轴的距离等于短半轴长的23,求椭圆的离心率.【知识点】椭圆的几何性质.【解题过程】解法一:设焦点坐标为F 1(-c,0),F 2(c,0),M 是椭圆上一点,依题意设M 点坐标为(c ,23b ).在Rt △MF 1F 2中,|F 1F 2|2+|MF 2|2=|MF 1|2, 即4c 2+49b 2=|MF 1|2, 而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理,得3c 2=3a 2-2ab . 又c 2=a 2-b23b =2a .∴b 2a 2=49.∴e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=59,∴e =53.解法二:设M(c,23b),代入椭圆方程,得c2a2+4b29b2=1,∴c2a2=59,∴ca=53,即e=53.【思路点拨】利用椭圆的几何关系结合椭圆离心率的定义解题.。

高中数学选修2-1优质学案10:2.2.2 椭圆的简单几何性质(一)

高中数学选修2-1优质学案10:2.2.2 椭圆的简单几何性质(一)

2.2.2 椭圆的简单几何性质(一)学习目标1.掌握椭圆的几何性质,了解椭圆标准方程中a 、b 、c 的几何意义.(重点)2.会用椭圆的几何意义解决相关问题.(难点) 基础·初探教材整理1 椭圆的简单几何性质焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程 x 2a 2+y 2b 2=1(a >b >0) ________ 范围 ________________顶点 A 1(-a,0),A 2(a,0) B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a )B 1(-b,0),B 2(b,0)轴长 短轴长=________,长轴长=________ 焦点 F 1(-c,0),F 2(c,0)F 1(0,-c ),F 2(0,c )焦距 |F 1F 2|=________对称性对称轴为________,对称中心为________1.椭圆x 281+y 245=1的长轴长为( )A.81B.9C.18D.452.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的2倍,则m 的值为( ) A.12 B.2 C.14 D.4 教材整理2 离心率 阅读教材,完成下列问题.1.定义:椭圆的焦距与长轴长的比________称为椭圆的________.2.性质:离心率e 的范围是________.当e 越接近于1时,椭圆________;当e 越接近于________时,椭圆就越接近于圆. 预习自测1.椭圆x 216+y 28=1的离心率为________.2.已知椭圆的两焦点为F 1、F 2,A 为椭圆上一点,且AF 1→·AF 2→=0,∠AF 2F 1=60°,则该椭圆的离心率为________. 合作探究类型1 根据椭圆的方程研究其几何性质例1 设椭圆方程mx 2+4y 2=4m (m >0)的离心率为12,试求椭圆的长轴的长和短轴的长、焦点坐标及顶点坐标. 名师指导1.已知椭圆的方程讨论性质时,若不是标准形式的先化成标准形式,再确定焦点的位置,进而确定椭圆的类型.2.焦点位置不确定的要分类讨论,找准a 与b ,正确利用a 2=b 2+c 2求出焦点坐标,再写出顶点坐标.同时要注意长轴长、短轴长、焦距不是a ,b ,c ,而应是a ,b ,c 的两倍. 跟踪训练1.已知椭圆C 1:x 2100+y 264=1,设椭圆C 2与椭圆C 1的长轴长、短轴长分别相等,且椭圆C 2的焦点在y 轴上.(1)求椭圆C 1的长半轴长、短半轴长、焦点坐标及离心率; (2)写出椭圆C 2的方程,并研究其性质.类型2 由几何性质求椭圆的方程 例2 求适合下列条件的椭圆的标准方程:(1)椭圆过点(3,0),离心率e =63; (2)在x 轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为8. 名师指导1.用几何性质求椭圆的标准方程通常采用的方法是待定系数法.2.根据已知条件求椭圆的标准方程的思路是“选标准,定参数”,即先明确焦点的位置或分类讨论.一般步骤是:①求出a 2,b 2的值;②确定焦点所在的坐标轴;③写出标准方程.3.在求解a 2、b 2时常用方程(组)思想,通常由已知条件与关系式a 2=b 2+c 2,e =ca 等构造方程(组)加以求解. 跟踪训练2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,一个焦点的坐标是(3,0),则椭圆的标准方程为( ) A.x 29+y 216=1 B.x 225+y 216=1 C.x 216+y 225=1 D.x 216+y 29=1 探究共研型探究点椭圆的离心率探究1 已知F 是椭圆的左焦点,A ,B 分别是其在x 轴正半轴和y 轴正半轴上的顶点,P 是椭圆上的一点,且PF ⊥x 轴,OP ∥AB ,怎样求椭圆的离心率?探究2 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-c,0),A (-a,0),B (0,b )是两个顶点,如果F 1到直线AB 的距离为b7,求椭圆的离心率e .例3 若椭圆长轴的长度、短轴的长度和焦距成等差数列,求该椭圆的离心率. 名师指导求e 的值或范围问题就是寻求它们的方程或不等式,具体如下: 1.若已知a ,c 可直接代入e =ca 求得;2.若已知a ,b ,则使用e =1-b 2a2求解; 3.若已知b ,c ,则求a ,再利用1或2求解;4.若已知a ,b ,c 的关系,可转化为关于离心率e 的方程不等式求值范围.跟踪训练3.若过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为________. 课堂检测1.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与椭圆x 225+y 216=1有相同的长轴,椭圆x 2a 2+y 2b 2=1(a >b >0)的短轴长与y 221+x 29=1的短轴长相等,则( )A.a 2=15,b 2=16B.a 2=9,b 2=25C.a 2=25,b 2=9或a 2=9,b 2=25D.a 2=25,b 2=92.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1 B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=13.已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率于________.4.求适合下列条件的椭圆的标准方程:(1)过点(3,0),离心率e=6 3;(2)焦距为8,在y轴上的一个焦点与短轴两端点的连线互相垂直.——★参考答案★——基础·初探[答案]y2a2+x2b2=1(a>b>0)-a≤x≤a且-b≤y≤b-b≤x≤b且-a≤y≤a2b2a2c坐标轴原点预习自测 1.[答案] C[解析] 由标准方程知a =9,故长轴长2a =18. 2.[答案] C [解析] 方程化为x 2+y 21m=1,长轴长为2m ,短轴长为2,由题意,2m =2×2,∴m =14. 教材整理2 离心率 阅读教材,完成下列问题. 1.[答案] ca 离心率2.[答案] (0,1) 越扁 0 预习自测 1.[答案]22[解析] ∵a 2=16,b 2=8, ∴e =1-816=22. 2.[答案]3-1[解析] ∵AF 1→·AF 2→=0, ∴AF 1⊥AF 2,且∠AF 2F 1=60°. 设|F 1F 2|=2c ,∴|AF 1|=3c ,|AF 2|=c .由椭圆定义知:3c +c =2a ,即(3+1)c =2a . ∴e =c a =23+1=3-1.合作探究类型1 根据椭圆的方程研究其几何性质 例1 解:椭圆方程可化为x 24+y 2m=1.(1)当0<m <4时,a =2,b =m ,c =4-m ,∴e =ca =4-m 2=12,∴m =3,∴b =3,c=1,∴椭圆的长轴的长和短轴的长分别是4,23,焦点坐标为F 1()-1,0,F 2()1,0,顶点坐标为A 1()-2,0,A 2()2,0,B 1(0,-3),B 2(0,3).(2)当m >4时,a =m ,b =2,∴c =m -4,∴e =c a =m -4m=12,解得m =163,∴a =433,c =233,∴椭圆的长轴的长和短轴的长分别为833,4,焦点坐标为F 1⎝⎛⎭⎫0,-233,F 2⎝⎛⎭⎫0,233,顶点坐标为A 1⎝⎛⎭⎫0,-433,A 2⎝⎛⎭⎫0,433,B 1(-2,0),B 2(2,0).跟踪训练1. 解:(1)由椭圆C 1:x 2100+y 264=1可得其长半轴长为10,短半轴长为8,焦点坐标(6,0),(-6,0),离心率e =35.(2)椭圆C 2:y 2100+x 264=1.性质:①范围:-8≤x ≤8,-10≤y ≤10; ②对称性:关于x 轴、y 轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0); ④离心率:e =35.类型2 由几何性质求椭圆的方程 例2 解:(1)若焦点在x 轴上,则a =3, ∵e =c a =63,∴c =6,∴b 2=a 2-c 2=9-6=3. ∴椭圆的方程为x 29+y 23=1.若焦点在y 轴上,则b =3, ∵e =c a=1-b 2a2=1-9a 2=63,解得a 2=27. ∴椭圆的方程为y 227+x 29=1.∴所求椭圆的方程为x 29+y 23=1或y 227+x 29=1.(2)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0).如图所示,△A 1F A 2为等腰直角三角形,OF 为斜边A 1A 2的中线(高),且|OF |=c ,|A 1A 2|=2b , ∴c =b =4,∴a 2=b 2+c 2=32,故所求椭圆的方程为x 232+y 216=1.跟踪训练 2.[答案] B[解析] 由题意,得⎩⎪⎨⎪⎧2a +2b =18,c =3,a 2=b 2+c 3,解得⎩⎪⎨⎪⎧a =5,b =4.因为椭圆的焦点在x 轴上, 所以椭圆的标准方程为x 225+y 216=1.探究共研型探究点椭圆的离心率探究1 【提示】 如图,设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),P (-c ,m ).∵OP ∥AB , ∴△PFO ∽△BOA , ∴c a =m b, ①又P (-c ,m )在椭圆上, ∴c 2a 2+m 2b2=1. ②将①代入②,得2c 2a 2=1,即e 2=12,∴e =22.探究2 【提示】 由A (-a,0),B (0,b ),得直线AB 的斜率为k AB =ba ,故AB 所在的直线方程为y -b =ba x ,即bx -ay +ab =0.又F 1(-c,0),由点到直线的距离公式可得d =|-bc +ab |a 2+b 2=b7,∴7·(a -c )=a 2+b 2.又b 2=a 2-c 2,整理,得8c 2-14ac +5a 2=0, 即8⎝⎛⎭⎫c a 2-14c a+5=0. ∴8e 2-14e +5=0,∴e =12或e =54(舍去).综上可知,椭圆的离心率e =12.例3 解:由题意得:2b =a +c , ∴4b 2=(a +c )2, 又∵a 2=b 2+c 2,∴4(a 2-c 2)=a 2+2ac +c 2, 即3a 2-2ac -5c 2=0, ∴3-2·c a -5·⎝⎛⎭⎫c a 2=0, 即5·⎝⎛⎭⎫c a 2+2·c a-3=0, ∴e =c a =35.跟踪训练 3.[答案]33[解析] 由题意,△PF 1F 2为直角三角形,且∠F 1PF 2=60°,所以|PF 2|=2|PF 1|. 设|PF 1|=x ,则|PF 2|=2x ,|F 1F 2|=3x ,又|F 1F 2|=2c ,所以x =2c 3. 即|PF 1|=2c 3,|PF 2|=4c3. 由椭圆的定义知,|PF 1|+|PF 2|=2a ,所以2c 3+4c 3=2a ,即e =c a =33.课堂检测 1.[答案] D[解析] 由题意得,椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,且2a =10,a =5,2b =6,b =3,故a 2=25,b 2=9. 2.[答案] D[解析] 右焦点为F (1,0)说明两层含义:椭圆的焦点在x 轴上,c =1.又离心率为c a =12,故a=2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y 23=1.3.[答案] 45[解析] 根据题意得2b =6,a +c =9或a -c =9(舍去). 所以a =5,c =4,故e =c a =45.4.解:(1)当椭圆的焦点在x 轴上时, 因为a =3,e =63, 所以c =6,从而b 2=a 2-c 2=3, 所以椭圆的标准方程为x 29+y 23=1;当椭圆的焦点在y 轴上时,因为b =3,e =63, 所以a 2-b 2a =63,所以a 2=27.所以椭圆的标准方程为y 227+x 29=1.综上可知,所求椭圆的标准方程为x 29+y 23=1或y 227+x 29=1.(2)设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0),由已知,得c =4,b =4,则a 2=b 2+c 2=32,故所求椭圆的标准方程为y 232+x 216=1.。

新人教A版(选修2-1)《椭圆的简单几何性质》word教案

新人教A版(选修2-1)《椭圆的简单几何性质》word教案

学校: 临清一中 学科:数学 编写人:杨晓辉 审稿人:张林2.2.2椭圆的简单几何性质【教学目标】1. 掌握椭圆的范围、对称性、顶点、离心率、理解a,b,c,e 的几何意义。

2. 初步利用椭圆的几何性质解决问题。

教学重点:掌握椭圆的范围、对称性、顶点、离心率。

教学难点:利用椭圆的几何性质解决问题。

【教学过程】预习检查、总结疑惑:察看导学案做的情况情景导入、展示目标:由于方程与函数都是描述图形和图像上的点所满足的关系的,二者之间存在着必然的联系,因此我们可以用类比研究函数图像的方法,根据椭圆的定义,图形和方程来研究椭圆的几何性质.师:代数中研究函数图象时都需要研究函数的哪些性质?生:需要研究函数的定义域、值域、奇偶性、单调性等性质.师:由于方程f(x ,y)=0与函数y=f(x)都是描述图形和图象上的点所满足的关系的,二者之间存在着必然的联系(当然也有区别,例如:在函数中,对每一个自变量x 都有唯一的函数值y 与之对应,而方程中x 、y 的关系则较为复杂.),因此我们可以用类比研究函数图象的方法,根据椭圆的定义、图形和标准方程来研究椭圆的几何性质.师:好,现在我们有3个工具,即:椭圆的两个定义、图形及其标准方程,下面我们就分别从研究定义、图形和方程出发看看能获得哪些性质.合作探究、精讲点拨。

探究一 观察椭圆)0(12222>>=+b a by a x 的形状, 你能从图形上看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?1 、范围 :(1)从图形上看,椭圆上点的横坐标的范围是_________________。

椭圆上点的纵坐标的范围是.____________________。

(2)由椭圆的标准方程)0(12222>>=+b a by a x 知 ① 22a x ____1,即____ ≤≤x ____;② 22b y ____ 1;即__≤≤y ___因此)0(12222>>=+b a by a x 位于直线___________和__________围成的矩形里。

高中数学选修2-1优质学案11:2.2.2 椭圆的简单几何性质(一)

高中数学选修2-1优质学案11:2.2.2 椭圆的简单几何性质(一)

2.2.2 椭圆的简单几何性质(一)教材新知入门答辩图中椭圆的标准方程为x2a2+y2b2=1(a>b>0).问题1:椭圆具有对称性吗?问题2:可以求出椭圆与坐标轴的交点坐标吗?问题3:椭圆方程中x,y的取值范围是什么?问题4:当a的值不变,b逐渐变小时,椭圆的形状有何变化?新知自解(1)椭圆的简单几何性质:(2)当椭圆的离心率越,则椭圆越扁;当椭圆的离心率越,则椭圆越接近于圆.归纳领悟1.椭圆的范围从图形上看非常直观,就是椭圆上点的横坐标、纵坐标的取值范围.利用椭圆的范围可解决有关求范围或最值问题.设P(x,y)为椭圆x2a2+y2b2=1(a>b>0)上任意一点,由图形易知当x=0时,|OP|取得最小值b,此时P位于椭圆短轴端点处;当x=±a时,|OP|取得最大值a,这时P位于长轴端点处.2.椭圆的顶点是它与坐标轴的交点,所以必有两个顶点与焦点在同一条直线上,且这两个顶点对应的线段为椭圆的长轴,因此椭圆的长轴恒在焦点所在的坐标轴上.3.椭圆中的基本关系:①焦点、中心和短轴端点连线构成直角三角形,三边满足a2=b2+c2;②焦点到长轴邻近顶点的距离为a-c(又称近地距离),到长轴另一顶点的距离为a+c(常称为远地距离).热点考向考点一椭圆的简单的几何性质例1求椭圆4x2+9y2=36的长轴长、焦距、焦点坐标、顶点坐标和离心率.一点通已知椭圆的方程讨论其性质时,应先将方程化成标准形式,不确定的要分类讨论,找准a与b,才能正确地写出焦点坐标、顶点坐标等.题组集训1.若椭圆x2a2+y2=1的焦点在x轴上,长轴长是短轴长的两倍,则椭圆的离心率为()A.32 B.12C.22 D.522.已知椭圆x2+(m+3)y2=m(m>0)的离心率e=32,求m的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.考点二利用椭圆的几何性质求标准方程 例2 求适合下列条件的椭圆的标准方程: (1)长轴长是10,离心率是45;(2)在x 轴上的一个焦点,与短轴两个端点的连线互相垂直,且焦距为6.一点通 利用性质求椭圆的标准方程,通常采用待定系数法.其关键是根据已知条件确定其标准方程的形式并列出关于参数的关系式,利用解方程(组)求得参数. 题组集训3.已知椭圆的中心在坐标原点,焦点在x 轴上,且长轴长为12,离心率为13,则椭圆的方程是( ) A.x 2144+y 2128=1 B.x 236+y 220=1 C.x 232+y 236=1D.x 236+y 232=1 4.求适合下列条件的椭圆的标准方程:(1)与椭圆4x 2+9y 2=36有相同的焦距,且离心率为55; (2)长轴长是短轴长的2倍,且过点(2,-4).考点三椭圆的离心率问题例3 如图所示,F 1,F 2分别为椭圆的左、右焦点,M 为椭圆上一点,且MF 2⊥F 1F 2,∠MF 1F 2=30°.试求椭圆的离心率.一点通 求离心率的值或取值范围是一类重要问题,解决这类问题通常有两种办法: (1)直接求出a 和c 的值,套用公式e =ca求得离心率;(2)根据题目条件提供的几何关系,建立参数a ,b ,c 之间的关系式,结合椭圆定义以及a 2=b 2+c 2等,消去b ,得到a 和c 之间的关系,从而求得离心率的值或范围. 题组集训5.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P .若uuu r A P =2u u u rPB ,则椭圆的离心率是( ) A.32B.22C.13D.126.设椭圆的两个焦点分别为F 1,F 2,过F 2作椭圆长轴的垂线与椭圆相交,其中的一个交点为P .若△F 1PF 2为等腰直角三角形,则椭圆的离心率是________. 方法小结1.已知椭圆的方程讨论性质时,若不是标准形式,应先化成标准形式.2.根据椭圆的几何性质,可以求椭圆的标准方程,其基本思路是“先定型,再定量”,常用的方法是待定系数法.在椭圆的基本量中,能确定类型的量有焦点、顶点,而不能确定类型的量有长轴长、短轴长、离心率e 、焦距.3.求椭圆的离心率要注意函数与方程的思想、数形结合思想的应用. 创新演练1.椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为( )A .(±13,0)B .(0,±10)C .(0,±13)D .(0,±69)2.若中心在原点,焦点在x 轴上的椭圆的长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ) A.x 281+y 272=1 B.x 281+y 29=1 C.x 281+y 245=1D.x 281+y 236=1 3.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A.12B.23C.34D.454.已知椭圆x 25+y 2m =1的离心率e =105,则m 的值为( )A .3B .3或253C . 5D .15或51535.如果椭圆的对称轴为坐标轴,短轴的一端点与两焦点的连线组成一个正三角形,焦点在x 轴上,且a -c =3,则椭圆的方程是________.6.直线x +2y -2=0经过椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点和一个顶点,则该椭圆的离心率等于________.7.如图所示,F 1,F 2分别为椭圆的左、右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率.8.如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率;(2)若2AF u u u r =2 2F B u u u r ,1AF u u u r ·AB uu u r =32,求椭圆的方程.——★ 参 考 答 案 ★——教材新知 入门答辩问题1:提示:有.椭圆是以原点为对称中心的中心对称图形,也是以x 轴,y 轴为对称轴的轴对称图形.问题2:提示:可以,令y =0得x =±a ,故A 1(-a,0),A 2(a,0),同理可得B 1(0,-b ),B 2(0,b ).问题3:提示:x ∈[-a ,a ],y ∈[-b ,b ]. 问题4:提示:b 越小,椭圆越扁. 新知自解(2)接近于1 接近于0 热点考向考点一椭圆的简单的几何性质例1 解:将椭圆方程变形为x 29+y 24=1,∴a =3,b =2,∴c =a 2-b 2=9-4= 5.∴椭圆的长轴长和焦距分别为2a =6,2c =25, 焦点坐标为F 1(-5,0),F 2(5,0),顶点坐标为A 1(-3,0),A 2(3,0),B 1(0,-2),B 2(0,2), 离心率e =c a =53.题组集训 1.[答案]A[解析]由椭圆方程知长轴长为2a ,短轴长为2, ∴2a =2×2=4,∴a =2,∴c =22-12=3, ∴e =c a =32.2.解:椭圆方程可化为x 2m +y 2mm +3=1.∵m -m m +3=m (m +2)m +3>0,∴m >mm +3,即a 2=m ,b 2=m m +3,c =a 2-b 2=m (m +2)m +3. 由e =32得m +2m +3=32,∴m =1.∴椭圆的标准方程为x 2+y 214=1.∴a =1,b =12,c =32.∴椭圆的长轴长为2,短轴长为1; 两焦点分别为F 1(-32,0),F 2(32,0); 四个顶点分别为A 1(-1,0),A 2(1,0),B 1(0,-12),B 2(0,12).考点二利用椭圆的几何性质求标准方程例2 解:(1)设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0).由已知得2a =10,a =5.e =c a =45,∴c =4.∴b 2=a 2-c 2=25-16=9.∴椭圆的标准方程为x 225+y 29=1或x 29+y 225=1.(2)依题意可设椭圆方程为x 2a 2+y 2b2=1(a >b >0).如图所示,△A 1F A 2为一等腰直角三角形,OF 为斜边A 1A 2的中线(高),且|OF |=c ,|A 1A 2|=2b ,∴c =b =3,∴a 2=b 2+c 2=18, 故所求椭圆的标准方程为x 218+y 29=1.题组集训 3.[答案]D[解析]由题意2a =12,∴a =6.又e =c a =13,∴c =2,∴b 2=62-22=32,∴椭圆方程是x 236+y 232=1. 4.解:(1)将方程4x 2+9y 2=36化为x 29+y 24=1,可得椭圆焦距为2c =2 5.又因为离心率e =55,即55=5a ,所以a =5,从而b 2=a 2-c 2=25-5=20. 若椭圆焦点在x 轴上,则其标准方程为x 225+y 220=1;若椭圆焦点在y 轴上,则其标准方程为y 225+x 220=1.(2)依题意2a =2·2b ,即a =2b .若椭圆焦点在x 轴上,设其方程为x 2a 2+y 2b 2=1(a >b >0),则有⎩⎪⎨⎪⎧a =2b ,4a 2+16b 2=1.解得⎩⎪⎨⎪⎧a 2=68,b 2=17,所以标准方程为x 268+y 217=1.若椭圆焦点在y 轴上,设其标准方程为y 2a 2+x 2b 2=1(a >b >0),则有⎩⎪⎨⎪⎧a =2b ,16a 2+4b 2=1,解得⎩⎪⎨⎪⎧a 2=32,b 2=8.所以标准方程为x 28+y 232=1.考点三椭圆的离心率问题例3 解:设椭圆的半长轴、半短轴、半焦距分别为a ,b ,c .因为MF 2⊥F 1F 2,所以△MF 1F 2为直角三角形.又∠MF 1F 2=30°,所以|MF 1|=2|MF 2|,|F 1F 2|=32|MF 1|. 而由椭圆定义知|MF 1|+|MF 2|=2a , 因此|MF 1|=4a 3,|MF 2|=2a 3,∴2c =32×4a 3,即c a =33, 即椭圆的离心率是33. 题组集训 5.[答案]D[解析]∵uuu r A P =2u u u r PB ,∴|uuu r A P |=2|u u u rPB |. 又∵PO ∥BF ,∴|P A ||AB |=|AO ||AF |=23,即a a +c =23,∴e =c a =12.6.[答案]2-1[解析]由题意知PF 2⊥F 1F 2,且△F 1PF 2为等腰直角三角形,所以|PF 2|=|F 1F 2|=2c ,|PF 1|=2·2c ,从而2a =|PF 1|+|PF 2|=2c (2+1),所以e =2c 2a =12+1=2-1.创新演练 1.[答案]D[解析]由题意知椭圆焦点在y 轴上,且a =13,b =10, 则c =a 2-b 2=69,故焦点坐标为(0,±69). 2.[答案]A[解析]由已知得a =9,2c =13·2a ,∴c =13a =3.又焦点在x 轴上,∴椭圆方程为x 281+y 272=1.3.[答案]C[解析]由题意可得|PF 2|=|F 1F 2|, ∴2(32a -c )=2c ,∴3a =4c ,∴e =34.4.[答案]B[解析]由椭圆的标准方程,易知m >0且m ≠5. ①若0<m <5,则a 2=5,b 2=m . 由m 5=1-(105)2=35,得m =3. ②若m >5,则a 2=m ,b 2=5. 由5m =1-(105)2=35,得m =253. 所以m 的值为3或253.5.[答案]x 212+y 29=1[解析]如图所示,cos ∠OF 2A =cos 60°=|OF 2||AF 2|,即c a =12.又a -c =3, ∴a =23,c =3, ∴b 2=(23)2-(3)2=9.∴椭圆的方程是x 212+y 29=1.6.[答案]255[解析]由题意知椭圆焦点在x 轴上, ∴在直线x +2y -2=0中, 令y =0得c =2;令x =0得b =1. ∴a =b 2+c 2= 5.∴e =c a =255.7.解:法一:设椭圆的长半轴、短半轴、半焦距长分别为a ,b ,c ,则焦点为F 1(-c,0),F 2(c,0),M 点的坐标为(c ,23b ),则△MF 1F 2为直角三角形. 在Rt △MF 1F 2中, |F 1F 2|2+|MF 2|2=|MF 1|2, 即4c 2+49b 2=|MF 1|2.而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理得3c 2=3a 2-2ab . 又c 2=a 2-b 2,所以3b =2a .所以b 2a 2=49.∴e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=59, ∴e =53. 法二:设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则M (c ,23b ).代入椭圆方程,得c 2a 2+4b 29b 2=1,所以c 2a 2=59,所以c a =53,即e =53.8.解:(1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形, 所以有OA =OF 2,即b =c . 所以a =2c ,e =c a =22.(2)由题意知A (0,b ),F 1(-c,0),F 2(c,0).高中数学选修2-1学案11 其中,c =a 2-b 2,设B (x ,y ). 由2AF u u u r =22F B u u u r ⇔(c ,-b )=2(x -c ,y ),解得x =3c 2,y =-b 2,即B (3c 2,-b 2). 将B 点坐标代入x 2a 2+y 2b 2=1,得94c 2a 2+b 24b 2=1, 即9c 24a 2+14=1,解得a 2=3c 2.①又由1AF u u u r ·AB uu u r =(-c ,-b )·(3c 2,-3b 2)=32 ⇒b 2-c 2=1,即有a 2-2c 2=1.② 由①②解得c 2=1,a 2=3, 从而有b 2=2.所以椭圆方程为x 23+y 22=1.。

湘教版高中数学选修2-1《椭圆的简单几何性质》教案2

湘教版高中数学选修2-1《椭圆的简单几何性质》教案2

椭圆的简单几何性质教学目标:(1)通过对椭圆标准方程的讨论,理解并掌握椭圆的几何性质;(2)能够根据椭圆的标准方程求焦点、顶点坐标、离心率并能根据其性质画图;(3)培养学生分析问题、解决问题的能力,并为学习其它圆锥曲线作方法上的准备.教学重点:椭圆的几何性质,通过几何性质求椭圆方程并画图教学难点:椭圆离心率的概念的理解.教学方法:讲授法课型:新授课一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.椭圆的标准方程.二、讲授新课:(一)通过提出问题、分析问题、解决问题激发学生的学习兴趣,在掌握新知识的同时培养能力.[在解析几何里,是利用曲线的方程来研究曲线的几何性质的,我们现在利用焦点在x 轴上的椭圆的标准方程来研究其几何性质.] 已知椭圆的标准方程为:)0(12222>>=+b a by a x 1.范围[我们要研究椭圆在直角坐标系中的范围,就是研究椭圆在哪个区域里,只要讨论方程中x ,y 的范围就知道了.]问题1 方程中x 、y 的取值范围是什么?由椭圆的标准方程可知,椭圆上点的坐标(x,y )都适合不等式22a x ≤1, 22by ≤1 即 x 2≤a 2, y 2≤b 2所以 |x|≤a , |y|≤b即 -a≤x≤a, -b≤y≤b这说明椭圆位于直线x =±a, y =±b 所围成的矩形里。

2.对称性复习关于x轴,y轴,原点对称的点的坐标之间的关系:点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x, y);点(x,y)关于原点对称的点的坐标为(-x,-y);问题2 在椭圆的标准方程中①以-y代y②以-x代x③同时以-x代x、以-y代y,你有什么发现?(1)在曲线的方程里,如果以-y代y方程不变,那么当点P(x,y)在曲线上时,它关于x的轴对称点P’(x,-y)也在曲线上,所以曲线关于x轴对称。

(2)如果以-x代x方程方程不变,那么说明曲线的对称性怎样呢?[曲线关于y轴对称。

高中数学选修2-1精品教案2:2.2.2 椭圆的简单几何性质教学设计

高中数学选修2-1精品教案2:2.2.2 椭圆的简单几何性质教学设计

2.2.2 椭圆的简单几何性质
【学情分析】:
学生已经掌握了椭圆的概念、标准方程的概念,也能够运用标准方程中的a,b,c的关系解决题目,但还不够熟练。

另外对于求轨迹方程、解决直线与椭圆关系的题目,还不能很好地分析、解决。

【三维目标】:
1、知识与技能:
①进一步强化学生对于椭圆标准方程中a,b,c关系理解,并能运用到解题当中去。

②强化求轨迹方程的方法、步骤。

③解决直线与椭圆的题目,强化数形结合的运用。

2、过程与方法:
通过习题、例题的练讲结合,达到学生熟练解决椭圆有关问题的能力。

3、情感态度与价值观:
通过一部分有难度的题目,培养学生克服困难的毅力。

【教学重点】:
知识与技能②③
【教学难点】:
知识与技能②③
【课前准备】:
学案。

2019-2020学年苏教版选修2-1 椭圆的简单几何性质 学案

2019-2020学年苏教版选修2-1          椭圆的简单几何性质  学案

椭圆的简单几何性质图中椭圆的标准方程为 x 2a 2+y 2b 2=1(a >b >0). 问题1:椭圆具有对称性吗?提示:有.椭圆是以原点为对称中心的中心对称图形,也是以x 轴,y 轴为对称轴的轴对称图形.问题2:可以求出椭圆与坐标轴的交点坐标吗?提示:可以,令y =0得x =±a ,故A 1(-a,0),A 2(a,0),同理可得B 1(0,-b ),B 2(0,b ). 问题3:椭圆方程中x ,y 的取值范围是什么? 提示:x ∈[-a ,a ],y ∈[-b ,b ].问题4:当a 的值不变,b 逐渐变小时,椭圆的形状有何变化? 提示:b 越小,椭圆越扁.(1)椭圆的简单几何性质:(2)当椭圆的离心率越接近于1,则椭圆越扁;当椭圆的离心率越接近于0,则椭圆越接近于圆.1.椭圆的范围从图形上看非常直观,就是椭圆上点的横坐标、纵坐标的取值范围.利用椭圆的范围可解决有关求范围或最值问题.设P (x ,y )为椭圆x 2a 2+y 2b 2=1(a >b >0)上任意一点,由图形易知当x =0时,|OP |取得最小值b ,此时P 位于椭圆短轴端点处;当x =±a 时,|OP |取得最大值a ,这时P 位于长轴端点处.2.椭圆的顶点是它与坐标轴的交点,所以必有两个顶点与焦点在同一条直线上,且这两个顶点对应的线段为椭圆的长轴,因此椭圆的长轴恒在焦点所在的坐标轴上.3.椭圆中的基本关系:①焦点、中心和短轴端点连线构成直角三角形,三边满足a 2=b 2+c 2;②焦点到长轴邻近顶点的距离为a -c (又称近地距离),到长轴另一顶点的距离为a +c (常称为远地距离).第一课时 椭圆的简单几何性质[例1] [思路点拨] 化为标准方程,确定焦点的位置及a ,b ,c 的值,再研究相应几何性质. [精解详析] 将椭圆方程变形为x 29+y 24=1,∴a =3,b =2, ∴c =a 2-b 2=9-4= 5.∴椭圆的长轴长和焦距分别为2a =6,2c =25, 焦点坐标为F 1(-5,0),F 2(5,0),顶点坐标为A 1(-3,0),A 2(3,0),B 1(0,-2),B 2(0,2),离心率e =c a =53.[一点通] 已知椭圆的方程讨论其性质时,应先将方程化成标准形式,不确定的要分类讨论,找准a与b ,才能正确地写出焦点坐标、顶点坐标等.1.若椭圆x2a 2+y 2=1的焦点在x 轴上,长轴长是短轴长的两倍,则椭圆的离心率为( )A.32B.12C.22D.52解析:由椭圆方程知长轴长为2a ,短轴长为2, ∴2a =2×2=4,∴a =2,∴c = 22-12=3,∴e =c a =32.答案:A2.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.解:椭圆方程可化为x 2m +y 2mm +3=1.∵m -m m +3=m (m +2)m +3>0,∴m >mm +3,即a 2=m ,b 2=mm +3,c =a 2-b 2=m (m +2)m +3. 由e =32得m +2m +3=32,∴m =1. ∴椭圆的标准方程为x 2+y 214=1.∴a =1,b =12,c =32.∴椭圆的长轴长为2,短轴长为1;两焦点分别为F 1(-32,0),F 2(32,0); 四个顶点分别为A 1(-1,0),A 2(1,0),B 1(0,-12),B 2(0,12).[例(1)长轴长是10,离心率是45;(2)在x 轴上的一个焦点,与短轴两个端点的连线互相垂直,且焦距为6.[思路点拨] 解答本题可先由已知信息判断焦点所在坐标轴并设出标准方程,再利用待定系数法求参数a ,b ,c .[精解详析] (1)设椭圆的方程为 x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0). 由已知得2a =10,a =5.e =c a =45,∴c =4.∴b 2=a 2-c 2=25-16=9.∴椭圆的标准方程为x 225+y 29=1或x 29+y 225=1.(2)依题意可设椭圆方程为x 2a 2+y 2b2=1(a >b >0).如图所示,△A 1F A 2为一等腰直角三角形,OF 为斜边A 1A 2的中线(高),且|OF |=c ,|A 1A 2|=2b ,∴c =b =3,∴a 2=b 2+c 2=18, 故所求椭圆的标准方程为x 218+y 29=1.[一点通] 利用性质求椭圆的标准方程,通常采用待定系数法.其关键是根据已知条件确定其标准方程的形式并列出关于参数的关系式,利用解方程(组)求得参数.3.已知椭圆的中心在坐标原点,焦点在x 轴上,且长轴长为12,离心率为13,则椭圆的方程是( )A.x 2144+y 2128=1 B.x 236+y 220=1 C.x 232+y 236=1D.x 236+y 232=1解析:由题意2a =12,∴a =6.又e =c a =13,∴c =2,∴b 2=62-22=32,∴椭圆方程是x 236+y 232=1.答案:D4.求适合下列条件的椭圆的标准方程:(1)与椭圆4x 2+9y 2=36有相同的焦距,且离心率为55; (2)长轴长是短轴长的2倍,且过点(2,-4).解:(1)将方程4x 2+9y 2=36化为x 29+y 24=1,可得椭圆焦距为2c =2 5.又因为离心率e=55,即55=5a ,所以a =5,从而b 2=a 2-c 2=25-5=20. 若椭圆焦点在x 轴上,则其标准方程为x 225+y 220=1;若椭圆焦点在y 轴上,则其标准方程为y 225+x 220=1.(2)依题意2a =2·2b ,即a =2b .若椭圆焦点在x 轴上,设其方程为x 2a 2+y 2b2=1(a >b >0),则有⎩⎪⎨⎪⎧a =2b ,4a 2+16b 2=1.解得⎩⎪⎨⎪⎧a 2=68,b 2=17,所以标准方程为x 268+y 217=1.若椭圆焦点在y 轴上,设其标准方程为y 2a 2+x 2b2=1(a >b >0),则有⎩⎪⎨⎪⎧a =2b ,16a 2+4b 2=1,解得⎩⎪⎨⎪⎧a 2=32,b 2=8.所以标准方程为x 28+y 232=1.[例3] 如图所示,F 1,F 2分别为椭圆的左、右焦点,M 为椭圆上一点,且MF 2⊥F 1F 2,∠MF 1F 2=30°.试求椭圆的离心率.[思路点拨] 通过已知条件MF 2⊥F 1F 2,∠MF 1F 2=30°,得到Rt △MF 1F 2中边的关系,结合椭圆的定义建立参数a ,b ,c 之间的关系,进而求出椭圆的离心率.[精解详析] 设椭圆的半长轴、半短轴、半焦距分别为a ,b ,c .因为MF 2⊥F 1F 2,所以△MF 1F 2为直角三角形.又∠MF 1F 2=30°,所以|MF 1|=2|MF 2|,|F 1F 2|=32|MF 1|. 而由椭圆定义知|MF 1|+|MF 2|=2a , 因此|MF 1|=4a 3,|MF 2|=2a3,∴2c =32×4a 3,即c a =33, 即椭圆的离心率是33. [一点通] 求离心率的值或取值范围是一类重要问题,解决这类问题通常有两种办法: (1)直接求出a 和c 的值,套用公式e =ca求得离心率;(2)根据题目条件提供的几何关系,建立参数a ,b ,c 之间的关系式,结合椭圆定义以及a 2=b 2+c 2等,消去b ,得到a 和c 之间的关系,从而求得离心率的值或范围.5.已知椭圆x 2a 2+y2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x轴,直线AB 交y 轴于点P .若A P =2PB ,则椭圆的离心率是( )A.32B.22C.13D.12解析:∵A P =2PB ,∴|A P |=2|PB |. 又∵PO ∥BF ,∴|P A ||AB |=|AO ||AF |=23,即aa +c =23,∴e =c a =12.答案:D6.设椭圆的两个焦点分别为F 1,F 2,过F 2作椭圆长轴的垂线与椭圆相交,其中的一个交点为P .若△F 1PF 2为等腰直角三角形,则椭圆的离心率是________.解析:由题意知PF 2⊥F 1F 2,且△F 1PF 2为等腰直角三角形,所以|PF 2|=|F 1F 2|=2c ,|PF 1|=2·2c ,从而2a =|PF 1|+|PF 2|=2c (2+1),所以e =2c 2a =12+1=2-1.答案:2-11.已知椭圆的方程讨论性质时,若不是标准形式,应先化成标准形式.2.根据椭圆的几何性质,可以求椭圆的标准方程,其基本思路是“先定型,再定量”,常用的方法是待定系数法.在椭圆的基本量中,能确定类型的量有焦点、顶点,而不能确定类型的量有长轴长、短轴长、离心率e 、焦距.3.求椭圆的离心率要注意函数与方程的思想、数形结合思想的应用.1.椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为( )A .(±13,0)B .(0,±10)C .(0,±13)D .(0,±69)解析:由题意知椭圆焦点在y 轴上,且a =13,b =10, 则c =a 2-b 2=69,故焦点坐标为(0,±69).答案:D2.若中心在原点,焦点在x 轴上的椭圆的长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )A.x 281+y 272=1 B.x 281+y 29=1 C.x 281+y 245=1D.x 281+y 236=1 解析:由已知得a =9,2c =13·2a ,∴c =13a =3.又焦点在x 轴上,∴椭圆方程为x 281+y 272=1.答案:A3.(2012·新课标全国卷)设F 1,F 2是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A.12B.23C.34D.45解析:由题意可得|PF 2|=|F 1F 2|, ∴2(32a -c )=2c ,∴3a =4c ,∴e =34. 答案:C4.已知椭圆x 25+y 2m =1的离心率e =105,则m 的值为( )A .3B .3或253C. 5D.15或5153解析:由椭圆的标准方程,易知m >0且m ≠5. ①若0<m <5,则a 2=5,b 2=m . 由m 5=1-(105)2=35,得m =3. ②若m >5,则a 2=m ,b 2=5. 由5m =1-(105)2=35,得m =253. 所以m 的值为3或253.答案:B5.如果椭圆的对称轴为坐标轴,短轴的一端点与两焦点的连线组成一个正三角形,焦点在x 轴上,且a -c =3,则椭圆的方程是________.解析:如图所示,cos ∠OF 2A =cos 60°=|OF 2||AF 2|,即c a =12.又a -c =3, ∴a =23,c =3, ∴b 2=(23)2-(3)2=9.∴椭圆的方程是x 212+y 29=1.答案:x 212+y 29=16.直线x +2y -2=0经过椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点和一个顶点,则该椭圆的离心率等于________.解析:由题意知椭圆焦点在x 轴上, ∴在直线x +2y -2=0中, 令y =0得c =2;令x =0得b =1. ∴a =b 2+c 2= 5.∴e =c a =255.答案:2557.如图所示,F 1,F 2分别为椭圆的左、右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率.解:法一:设椭圆的长半轴、短半轴、半焦距长分别为a ,b ,c ,则焦点为F 1(-c,0),F 2(c,0),M 点的坐标为(c ,23b ),则△MF 1F 2为直角三角形. 在Rt △MF 1F 2中, |F 1F 2|2+|MF 2|2=|MF 1|2, 即4c 2+49b 2=|MF 1|2.而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a .所以b 2a 2=49.∴e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=59,∴e =53. 法二:设椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 则M (c ,23b ).代入椭圆方程,得c 2a 2+4b 29b 2=1,所以c 2a 2=59,所以c a =53,即e =53.8.如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率;(2)若2AF =2 2F B ,1AF ·AB =32,求椭圆的方程.解:(1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形, 所以有OA =OF 2,即b =c . 所以a =2c ,e =c a =22.(2)由题意知A (0,b ),F 1(-c,0),F 2(c,0). 其中,c =a 2-b 2,设B (x ,y ).由2AF =22F B ⇔(c ,-b )=2(x -c ,y ), 解得x =3c 2,y =-b 2,即B (3c 2,-b2).将B 点坐标代入x 2a 2+y 2b 2=1,得94c 2a 2+b 24b 2=1,即9c 24a 2+14=1, 解得a 2=3c 2.①又由1AF ·AB =(-c ,-b )·(3c 2,-3b 2)=32⇒b 2-c 2=1,即有a 2-2c 2=1.② 由①②解得c 2=1,a 2=3, 从而有b 2=2.所以椭圆方程为x 23+y 22=1.。

高中数学选修2-1 第二章 第二节《2.2椭圆》全套教案

高中数学选修2-1 第二章 第二节《2.2椭圆》全套教案

2.2椭圆课时分配:1.第一课椭圆及其标准方程1个课时2.第二课椭圆的简单几何性质1个课时2.2.1椭圆及其标准方程【教材分析】圆锥曲线被安排在第二章中,以“圆锥曲线与方程”的标题出现,其包含曲线与方程、椭圆、双曲线、抛物线四部分内容。

本节是整个解析几何部分的重要基础知识。

椭圆的定义与初中时学生学习的圆的定义具有相通之处,就是“点动成线”的原理。

通过学习,让学生理解当点运动的规则(遵循的几何关系)发生变化的时候,则画出的曲线的形状也会不同。

高中阶段,在《直线和圆的方程》的学习过程中,学生对坐标法(解析法)思想有了一定程度的认识;在“曲线与方程”和“方程与曲线”的概念中,学生进一步明确了坐标法及其研究曲线的方程的一般步骤。

从本节课开始,又将研究曲线的方法拓展到椭圆,又是继续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好研究方法和研究思想的准备。

它的学习方法对整个这一章具有导向和引领作用,所以椭圆是学生学习解析几何由浅入深的一个台阶,它在整章中具有承前启后的作用。

【教学目标】知识与技能目标: 1.准确理解椭圆的定义,明确焦点、焦距的概念,掌握椭圆的标准方程及其推导过程;2.根据条件确定椭圆的标准方程;过程与方法目标: 1.通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义;在探索椭圆标准方程的过程中,培养学生观察、辨析、归纳和抽象概括问题的能力.2.提高运用坐标法解决几何问题的能力和运算求解和数据处理的能力。

情感态度与价值观目标:通过提炼归纳椭圆的定义的过程,让学生学会将问题抽象成数学问题,并透过运动的现象把握事物的本质;通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美。

通过讨论椭圆方程推导的过程中养成学生扎实严谨的科学态度。

教学重点和难点1.重点:体会椭圆的形成过程,感受求曲线方程的基本方法,掌握椭圆的标准方程及其推导方法。

2.难点:椭圆标准方程的推导(尤其是遇到的根式化简的过程与方法)法与学法(一)教法为了使学生更主动地参与到课堂教学中,体现以学生为主体的探究性学习和因材施教的原则,故采用自主探究法。

人教A版高中数学选修2-1教案椭圆的简单几何性质(1)

人教A版高中数学选修2-1教案椭圆的简单几何性质(1)

又221||OF c a b =+,△F 1OB 边OF 1上的高为B y ,而B y 的最大值是b ,所以△F 1OB 的面积最大值为12
cb 。

所以△F 1AB 的面积最大值为cb 。

点评:抓住△F 1AB 中c OF =||1为定值,以及椭圆是中心对称图形。

(2)易知A (3,2)在椭圆内,B (-4,0)是椭圆的左焦点(如图),则右焦点为F (4,0)。

连PB ,PF 。

由椭圆的定义知:||||10PB PF +=,
所以||10||PB PF =-,
||||||10||10(||||)PA PB PA PF PA PF +=+-=+-所以。

由平面几何知识,||||||||PA PF AF -≤,即||10|)||(|max AF PB PA +=+, 而22
||(34)(20)5AF =-+-=, 所以510|)||(|max +=+PB PA 。

点评:由△PAF 成立的条件||||||||AF PF PA <-,再延伸到特殊情形P 、A 、F 共线,从而得出||||||||AF PF PA ≤-这一关键结论。

三、课堂小结
1、椭圆的几何性质。

2、运用椭圆的几何性质求离心率、简单的最值。

四、作业:教师安排同步练习
教学后记:。

2.1.椭圆的简单几何性质-湘教版选修2-1教案

2.1.椭圆的简单几何性质-湘教版选修2-1教案

2.1.椭圆的简单几何性质-湘教版选修2-1教案1. 椭圆的定义椭圆是一个平面图形,它是一个固定点 F1 和 F2 与平面上所有点 P1 的距离的和相等的点 P 的集合,这个距离的和为2a。

我们称 F1 与 F2 分别为椭圆的焦点,a 为长轴的长度,它的一半b 为短轴的长度,两个焦点的距离为2c,有 a^2 = b^2+ c^2。

2. 椭圆的几何性质(1)椭圆的两条主轴椭圆有两条主轴,长轴是椭圆的最长轴,中心到末端的距离是 a,短轴是椭圆的最短轴,中心到末端的距离是 b。

(2)椭圆的中心椭圆的中心是两个焦点 F1 和 F2 的中垂线上的一点,这个点到椭圆上任一点的距离的平均值相等。

(3)椭圆的离心率椭圆的离心率是一个用以描述椭圆形状的常数,它的值为 e = c/a。

离心率 e表示椭圆形状的扁平程度,当 e = 0 时,椭圆为圆,当 0 < e < 1 时,椭圆为扁椭圆,当 e = 1 时,椭圆为长方形,当 e > 1 时,椭圆为超椭圆。

(4)椭圆的焦距定理椭圆的焦距定理是指,如果一个点 P 在椭圆上,那么它到两个焦点 F1 和 F2的距离之差等于椭圆的长轴的长度,即 PF1 - PF2 = 2a。

(5)椭圆的切线和法线椭圆上任一点的切线是通过这个点的一条直线,它与椭圆相切于这个点。

椭圆上任一点处的切线是斜率唯一的。

椭圆的法线是垂直于切线且通过这个点的一条直线。

(6)椭圆的对称性椭圆有两条动轴,分别为长轴和短轴,动轴就是将椭圆两两对称的直线。

椭圆在它的动轴处是对称的。

(7)椭圆的面积椭圆的面积是πab。

(8)椭圆的周长椭圆的周长是C = 4a(E(e,π/2) - sin(E(e,π/2))), 其中E(e,π/2) 是椭圆的第二型完全椭圆积分。

最新人教版高中数学选修2-1第二章《椭圆的简单几何性质》示范教案(第1课时)

最新人教版高中数学选修2-1第二章《椭圆的简单几何性质》示范教案(第1课时)

2.2.2椭圆的简单几何性质整体设计教材分析利用已知条件求曲线的方程,利用方程研究曲线的性质和画图是解析几何的两大任务,利用方程研究椭圆的几何性质可以说是第一次,传统的教学过程往往是利用多媒体课件展示椭圆曲线,让学生观察、猜想椭圆的几何性质,然后再利用椭圆的标准方程进行证明,体现从感性到理性符合学生的认知规律等,也可以说是用方程研究椭圆曲线性质的一种思路,但未能很好地体现“利用方程研究曲线性质”的本质.因此,本节在教学一开始的问题设置就体现了利用方程研究曲线的意识,在三个性质的研究中一直是用方程的结构特征来得到性质,真正培养学生如何利用方程研究曲线性质的能力.同时,根据椭圆的简单几何性质的课时安排,第1课时不研究椭圆的离心率,保证了学生的研究时间;与直线方程和圆方程的类比能够使得学生掌握椭圆标准方程的特点,学生在自主探究过程中能够联想得到三角换元,说明该种教学方法还是符合学生的认知规律的,同时体现了教材的本质.课时安排:本节内容共需约3个课时.第一课时主要讲性质1~3;第二节讲性质4及应用;第三课时讲直线与椭圆的有关问题.第1课时教学设计(一)教学目标知识与技能掌握椭圆的范围、对称性、顶点,掌握a,b,c的几何意义以及a,b,c的相互关系,初步学习利用方程研究曲线性质的方法.过程与方法利用曲线的方程来研究曲线性质的方法是学习解析几何以来的第一次,通过初步尝试,使学生经历知识产生与形成的过程,不仅注意对研究结果的掌握和应用,更重视对研究方法的思想渗透及分析问题和解决问题能力的培养;以自主探究为主,通过体验数学发现和创造的历程,培养学生观察、分析、逻辑推理、理性思维的能力.情感、态度与价值观通过自主探究、交流合作使学生亲身体验探究的艰辛,从中体味合作与成功的快乐,由此激发其更加积极主动的学习精神和探索勇气;通过多媒体展示,让学生体会椭圆方程结构的和谐美和椭圆曲线的对称美,培养学生的审美习惯和良好的思维品质.重点难点教学重点:从知识上来讲,要掌握如何利用椭圆标准方程的结构特征研究椭圆的几何性质;从学生的体验来说,需要关注学生在探究椭圆性质的过程中思维的过程展现,如思维角度和思维方法.教学难点:椭圆几何性质的形成过程,即如何从椭圆标准方程的结构特征中抽象出椭圆的几何性质.通过本节课的教学力求使一个平淡的性质陈述过程成为一个生动而有价值的教学过程.学生主动交流合作、大胆探究的过程应是教学的难点.教学过程引入新课提出问题:方程16x 2+25y 2=400表示什么样的曲线,你能利用以前学过的知识画出它的图形吗?活动设计:情形1:列表、描点、连线进行作图,在取点的过程中想到了椭圆的范围问题; 情形2:求出椭圆曲线与坐标轴的四个交点,联想椭圆曲线的形状得到图形; 情形3:方程变形,求出a ,b ,c ,联想椭圆画法,利用绳子作图;情形4:只作第一象限内的图形,联想椭圆形状,对称得到其他象限内的图形.辨析与研讨:实物投影展示学生的画图过程,挖掘学生的原有认知,体现同学的思维差异,培养学生的思维习惯.设计意图:(1)问题设置来源于课本例题,选题目的有利于学生从多个角度进行思考和探索,培养学生的发散思维,第一问的解决体现了对二元二次方程的研究,为利用方程研究性质打下基础;(2)课堂教学体现学生自主探究知识的过程,问题的设置体现了研究问题角度的转变——用方程研究曲线性质的问题,同时使学生意识到椭圆的几何特征:范围、对称性、关键点;(3)实物投影展示学生的研究过程和研究成果,重在发现学生的思维差异和思维认识层次;(4)辨析过程中重视学生的思维起点,通过彼此交流,发现问题,共同探讨,得到统一的认识.点评:(1)能够抓住椭圆的几何特征、范围、对称性、关键点作图; (2)研究问题的方向发生了变化,利用方程研究曲线的几何性质;(3)本节课我们利用椭圆的标准方程来研究椭圆的几何性质,体现特殊到一般的思想方法.教师板书:椭圆的简单几何性质. 探求新知问题:学生思考:与直线方程和圆的方程相对比,椭圆标准方程x 2a 2+y 2b 2=1(a>b>0)有什么特点?(1)椭圆方程是关于x ,y 的二元二次方程;(2)方程的左边是平方和的形式,右边是常数1; (3)方程中x 2和y 2的系数不相等. 设计意图:类比直线方程和圆的方程能够使学生容易得到椭圆标准方程的特点,体现了新旧知识的联系与区别,符合学生的认知规律,同时为利用方程研究椭圆曲线的几何性质做好了准备.【问题1】自主探究:结合椭圆标准方程的特点,利用方程研究椭圆曲线的范围. 实物投影展示学生的解题过程,激励学生开拓思维. 学生活动过程:情形1:x 2a 2+y 2b 2=1变形为y 2b 2=1-x 2a 2≥0,x 2≤a 2≤-a ≤x ≤a.这就得到了椭圆在标准方程下x 的范围-a ≤x ≤a.同理,我们也可以得到y 的范围-b ≤y ≤b.情形2:可以把x 2a 2+y 2b 2=1看成sin 2α+cos 2α=1,利用三角函数的有界性来考虑x a ,yb 的范围.点评:你可能没有意识到,如果将a ,b 乘过去,就得到了⎩⎪⎨⎪⎧x =acosα,y =bsinα,这是我们以后要学习的椭圆方程的另外一种表达方式,椭圆的参数方程,有兴趣的同学下课后可以阅读有关内容.所以我们在研究问题的过程中,结果并不重要,重要的是放宽研究问题的思路,拓宽我们的思维角度.谁还有其他的方法?情形3:椭圆的标准方程表示两个非负数的和为1,那么这两个数都不大于1,所以x 2a 2≤1,同理可以得到y 的范围.情景4:利用学习过函数的定义域、值域,这对研究椭圆的范围有何启示呢?由x 2a 2+y 2b 2=1,则y =±ba a 2-x 2,可通过求这个函数的定义域、值域得范围. 但y =±ba a 2-x 2是函数吗? 学生(思考后)说不是.教师提问:怎么处理呢? 学生活动:把 y =b a a 2-x 2和y =-baa 2-x 2分别看作是一个函数. 先求函数y =b aa 2-x 2的定义域、值域.利用前面学习过的代数函数求定义域、值域的方法,可得 -a ≤x ≤a , 0≤y ≤b ,同样得 y =-b aa 2-x 2中 -a ≤x ≤a , -b ≤y ≤0 ,于是得到范围.教师总结:只需求 y =b aa 2-x 2(0≤x ≤a) 的定义域、值域即可,然后利用对称性可得范围. 通过前面的探讨,我们知道椭圆是有范围的,即它围在一个矩形框内.有了前面这几个性质,我们就可以很快地作出焦点在 x 轴上的椭圆的草图了.教师在黑板上示范作图(先找到标准方程所表示的椭圆与坐标轴的四个交点,画出矩形框,再用光滑曲线连接,并注意对称性).设计意图:(1)传统的研究椭圆的几何性质往往是利用图形直观得到性质,然后利用方程进行证明,没有真正体现出利用方程研究曲线几何性质的路子,因此在这里通过多媒体课件始终展示椭圆标准方程的特点,使学生在把握椭圆方程结构特征的基础上来研究椭圆曲线的几何性质;(2)通过开头问题的铺垫,学生的思维在这里体现得异常活跃,除了教材中得到范围的方法外,另外两种方法很多同学都能想到,使学生真正感受成功的喜悦;(3)多媒体课件展示椭圆的范围,体现数形结合思想. 结论:由椭圆方程中x ,y 的范围得到椭圆位于直线x =±a 和y =±b 所围成的矩形里. 【问题2】 自主探究:继续观察椭圆标准方程的特点,利用方程研究椭圆曲线的对称性.实物投影展示学生的解题过程,体现学生的思维认识: -x 代替x 后方程不变,说明椭圆关于y 轴对称;-y代替y后方程不变,说明椭圆曲线关于x轴对称;-x、-y代替x,y后方程不变,说明椭圆曲线关于原点对称.问题设置:从对称性的本质上入手,如何探究曲线的对称性?辨析与研讨:-x代替x后方程不变,就是用(-x,y)来代换方程中的(x,y),方程不变,(-x,y)和(x,y)关于y轴对称,两点坐标都满足方程,而(x,y)是曲线上任意一点,因此椭圆曲线关于y轴对称;其他同理.相关概念:在标准方程下,坐标轴是对称轴,原点是对称中心,椭圆的对称中心叫做椭圆的中心.设计意图:(1)抓住椭圆标准方程的特点不放松,引导学生探究如何利用方程研究椭圆的对称性;(2)在学生的表述过程中重视学生的思维方式,培养学生正确处理问题的思路,能够引导学生从对称性的本质上得到研究对称性的方法;(3)多媒体课件展示椭圆的对称性,使学生体会椭圆的对称美.【问题3】自主探究:再次观察椭圆标准方程的特点,利用方程求出椭圆曲线与对称轴的交点坐标.实物投影展示学生的解题过程,体现学生的思维认识:在椭圆的标准方程中,令x=0,得y=±b,令y=0,得x=±a.顶点概念:椭圆与对称轴的交点叫做椭圆的顶点.顶点坐标:A1(-a,0),A2(a,0),B1(0,b),B2(0,-b).相关概念:线段A1A2,B1B2分别叫做椭圆的长轴和短轴,它们的长分别等于2a,2b,a 和b分别叫做椭圆的长半轴长和短半轴长.在椭圆的定义中,2c表示焦距,这样,椭圆方程中的a,b,c就有了明显的几何意义.设置问题:在椭圆标准方程的推导过程中令a2-c2=b2能使方程简单整齐,其几何意义是什么?学生探究:c表示半焦距,b表示短半轴长,因此,连结顶点B2和焦点F2,可以构造一个直角三角形,在直角三角形内,|OF2|2=|B2F2|2-|OB2|2,即a2-c2=b2.多媒体展示特征三角形.设计意图:(1)利用方程研究椭圆的顶点坐标学生比较容易接受,相关概念也容易理解,关键是a2-c2=b2的几何意义,多媒体课件的展示体现了a,b,c的几何意义,从而得到a2-c2=b2的本质.运用新知活动设计:阅读课本例4,你有什么认识?活动成果:(1)利用方程研究椭圆的几何性质时,若椭圆的方程不是标准方程,首先应将方程化为标准方程,然后找出相应的a,b,c.(2)利用椭圆的几何性质,可以简化画图过程,保证图形的准确性.掌握画椭圆草图的基本步骤和注意事项:①以椭圆的长轴长、短轴长为邻边长,以原点为中心画矩形;②由矩形四边的中点确定椭圆的四个顶点;③用曲线将四个顶点连成一个椭圆;④画图时要注意它们的对称性及顶点附近的平滑性.设计意图:(1)学生阅读交流提高认识而不是教师讲解,能够使学生感悟知识的应用;(2)与开头相呼应,使学生认识到运用椭圆的简单几何性质能够简化作图过程.反思与评价:回顾知识的形成过程,同学交流,谈谈对本节课的认识:(1)知识与技能:椭圆的范围、对称性、顶点,初步学习了利用椭圆标准方程研究椭圆曲线性质的方法;(2)过程与方法:重视对研究方法的思想渗透及分析问题和解决问题能力的培养;以自主探究为主,通过体验数学发现和创造的历程,培养了我们观察、分析、逻辑推理、理性思维的能力;(3)情感、态度与价值观:善于观察,敢于创新,学会与人合作,感受到探究的乐趣,体会椭圆方程结构的和谐美和椭圆曲线的对称美,培养学生的审美习惯和良好的思维品质.设计意图:不会反思,就不会学习,通过反思,深化知识的形成过程,完善认知结构,掌握研究的方法和思路,拓宽思维角度,提高思维层次.课堂小结(1)椭圆的范围、长轴长、短轴长.(2)椭圆的对称性,对称轴、对称中心. 布置作业(1)反思知识的形成过程,掌握研究问题的方法;(2)研究y 2a 2+x 2b2=1(a>b>0)的范围、对称性、顶点;(3)课后延伸:同学们再来观察椭圆的结构特征“方程中x 2和y 2的系数不相等”,因此当x 2和y 2的系数发生变化时,椭圆的形状是如何随之变化的?设计意图:课后作业的设置体现了本节课研究方法的延伸,作业(1)强调研究方法的重要性,作业(2)是对学生学习效果的一种检验,作业(3)引导学生利用椭圆方程的结构特征自主研究椭圆的另一条性质——离心率;设计说明 1.课堂设计理念授人以鱼不如授人以渔.通过创设符合学生认知规律的问题情景,挖掘学生内在的研究问题的巨大潜能,使学生在做中学,学中思,亲身体会创造过程,充分展示思维差异,培养学生的自主探究能力,逻辑推理能力,提高学生的思维层次,掌握获取知识的方法和途径,真正体现学生学习知识过程中的主体地位.2.对教材的研究认识利用已知条件求曲线的方程,利用方程研究曲线的性质和画图是解析几何的两大任务,利用方程研究椭圆的几何性质可以说是第一次,传统的教学过程往往是利用多媒体课件展示椭圆曲线,让学生观察、猜想椭圆的几何性质,然后再利用椭圆的标准方程进行证明,体现从感性到理性符合学生的认知规律等,也可以说是用方程研究椭圆曲线性质的一种思路,但未能很好地体现“利用方程研究曲线性质”的本质.因此,在教学一开始的问题设置就体现了利用方程研究曲线的意识,在三个性质的研究中一直是用方程的结构特征来得到性质,真正培养学生如何利用方程研究曲线性质的能力.同时,根据椭圆的简单几何性质的课时安排,本节课不研究椭圆的离心率,保证了学生的研究时间;与直线方程和圆方程的类比能够使得学生掌握椭圆标准方程的特点,学生在自主探究过程中能够联想得到三角换元,说明该种教学方法还是符合学生的认知规律的,同时体现了教材的本质.3.课堂教学模式的设置自主探究是传统教学模式的一种补充,自主探究能够使学生成为研究问题的主人,能够培养学生的思维能力.数学是思维的科学,思维能力是数学的核心,教学过程的设计要能够体现教学本质;能够突出所学数学内容的本质;组织教学的过程要能触及学生的灵魂深处.因此,课堂教学中提倡问题教学,抓住学生的认识现实,恰当地创设问题情境,使学习者能够在课堂上进行积极有效的学习.4.课堂练习题的说明如何利用椭圆的标准方程研究椭圆的几何性质是本节课的主题,是进一步学习双曲线和抛物线的基础.为了不冲淡主题,课堂教学过程重在培养学生的研究方法,提高学生的思维能力.因此,在椭圆几何性质的其他课时中将适当增加相应的练习,强化学生对知识的掌握和应用.备课资料1.在下列方程所表示的曲线中,关于x轴、y轴都对称的是()A.x2=4y B.x2+2xy+y=0C.x2-4y2=5x D.9x2+y2=4答案:D2.设a,b,c分别表示同一椭圆的长半轴长,短半轴长,半焦距,则a,b,c的大小关系是…()A.a>b>c>0 B.a>c>b>0C.a>c>0,a>b>0 D.c>a>0,c>b>0答案:C(设计者:靳祥利)教学设计(二)整体设计教材分析教材分析:椭圆的简单几何性质是本章的第二节第二课时,它是解析几何基本思想方法的具体体现;是用代数方法研究直线与圆的某些性质的平行发展,为即将研究双曲线、抛物线的几何性质奠定基础.学情分析:学生已经积累了函数方程、三角、不等式等相关知识,前面也学习了直线与圆这一章,初步掌握了解析几何的基本方法.本节课是在学完椭圆的定义和标准方程的基础上,利用标准方程的结构特征来探究椭圆的简单几何性质.教学目标知识与技能掌握椭圆的范围、对称性、顶点和轴等性质,掌握方程中a、b、c 的几何意义以及相互关系,初步尝试利用椭圆标准方程的结构特征研究椭圆的几何性质.过程与方法学生通过自主探究,经历知识产生发展的过程,体验数学发现和创造的历程,进一步培养学生观察、分析、联想、类比等逻辑推理能力以及数形结合的思想方法,提高学生的数学素养.情感、态度与价值观通过学生自主探究、合作交流,使学生亲自体验研究知识的过程,从中体味成功的喜悦,由此激发学生积极主动的学习精神和探索勇气,培养学生的团队意识;通过计算、画图以及多媒体展示,使学生体会椭圆标准方程结构的和谐美和曲线的对称美,培养学生严谨的科学态度.重点难点教学重点:掌握椭圆的范围、对称性、顶点和轴的概念及其应用.教学难点:椭圆几何性质的形成过程,特别要关注学生在探究椭圆性质的过程中思维层次的展现和思维能力的提高.教法学法教学活动采用“问题探究式”的教学模式,把学生需要掌握的知识转化成问题,引导学生分组讨论.将学生分成8个学习小组,展开竞争,最后评选出2个优秀小组.利用自制教具以及幻灯片、几何画板等多媒体手段,激发学习兴趣,提高课堂效率.学生则采用自主探究、合作交流的“研讨式”学习方式去体验知识的形成过程,参与问题的发现、解决过程,从而达到掌握知识、提高能力的目的.本节课坚持“以人为本,主动发展”的教学理念,采用“问题——探究——交流——反思”的课堂活动模式,通过直观感悟、画图操作、代数推理、上台板演等形式,从几何问题出发,用代数方法研究曲线的性质,最终又回到几何问题中去,充分体现了数与形的结合,初步掌握利用方程结构特征研究曲线几何性质的方法,渗透了数学思想方法,突出了教学重点,突破了难点,教学目标基本完成.整节课力主把更多的时间、机会留给学生,把探索的机会让给学生;把体会成功后的快乐送给学生,让学生在操作中探索,在探索中领悟,在领悟中理解,以体会数学之美,探究之趣.(设计者:牛传勇,本教学设计获山东省优秀课评选二等奖.)。

湖南省邵阳市隆回县第二中学高中数学 2.1.2椭圆及其简单几何性质导学案(1)新人教A版选修1-1

湖南省邵阳市隆回县第二中学高中数学 2.1.2椭圆及其简单几何性质导学案(1)新人教A版选修1-1

湖南省邵阳市隆回县第二中学高中数学 2.1.2椭圆及其简单几何性质(1)导学案新人教A版选修1-1【学习目标】1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图.【自主学习】(认真自学课本P37-P39)问题1:椭圆的标准方程22221x ya b+=(0)a b>>,它有哪些几何性质呢?图形:范围:x:y:对称性:椭圆关于轴、轴和都对称;顶点:(),(),(),();长轴,其长为;短轴,其长为;离心率:刻画椭圆程度.椭圆的焦距与长轴长的比ca称为离心率,记cea=,且01e<<.问题2:类比问题1,回答椭圆221169y x+=的几何性质。

【合作探究】例1.(教材P40例4)求椭圆221625400x y+=的长轴和短轴的长、离心率、焦点和顶点的坐标.变式:若椭圆是22981x y +=呢? 小结:①先化为标准方程,找出,a b ,求出c ;②注意焦点所在坐标轴. 【目标检测】1.求适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,6a =,13e =; ⑵焦点在y 轴上,3c =,35e =;⑶经过点(3,0)P -,(0,2)Q -; ⑷长轴长等到于20,离心率等于35.2.若椭圆2215x y m+=的离心率105e =,则m 的值是 ( ). A .3 B .3或253C .15D .15或51533.短轴长为5,离心率23e =的椭圆两焦点为12,F F ,过1F 作直线交椭圆于,A B 两点,则2ABF ∆的周长为 ( ). A .3 B .6 C .12 D .24学习反思:本节课我学到了什么?本节课我的学习效率如何?本节课还有哪些我没学懂?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【学习目标】
1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;
2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图.
【自主学习】(认真自学课本P43-P46)
问题1:椭圆的标准方程22
221x y a b
+=(0)a b >>,它有哪些几何性质呢?
图形:
范围:x : y :
对称性:椭圆关于 轴、 轴和 都对称;
顶点:( ),( ),( ),( );
长轴,其长为 ;短轴,其长为 ;
离心率:刻画椭圆 程度.
椭圆的焦距与长轴长的比
c a 称为离心率, 记c e a
=
,且01e <<. 问题2:类比问题1,回答椭圆22
1169
y x +=的几何性质。

【合作探究】
例1.(教材P46例4)求椭圆221625400x y +=的长轴和短轴的长、离心率、焦点和顶点的坐标.
变式:若椭圆是22981x y +=呢?
小结:①先化为标准方程,找出,a b,求出c;
②注意焦点所在坐标轴.
【目标检测】
1.求适合下列条件的椭圆的标准方程:
⑴焦点在x轴上,6
a=,
1
3
e=;
⑵焦点在y轴上,3
c=,
3
5
e=;
⑶经过点(3,0)
P-,(0,2)
Q-;
⑷长轴长等到于20,离心率等于3
5

2.若椭圆
22
1
5
x y
m
+=
的离心率e=m的值是().
A.3B.3或25
3
C
D
3
,离心率
2
3
e=的椭圆两焦点为
12
,F F,过
1
F作直线交椭圆于,A B两点,则2
ABF
∆的周长为().A.3B.6C.12D.24
【作业布置】
任课教师自定。

相关文档
最新文档