2020届高三数学立体几何专项训练(文科)

合集下载

【高考数学大题精做】专题05 立体几何中最值问题(第三篇)(解析版)

【高考数学大题精做】专题05 立体几何中最值问题(第三篇)(解析版)

【高考数学大题精做】第三篇 立体几何专题05 立体几何中最值问题【典例1】【河南省非凡吉创联盟2020届调研】如图,AB 是圆柱的直径,PA 是圆柱的母线,3AB =,PA =,点C 是圆柱底面圆周上的点.(1)求三棱锥P ABC -体积的最大值;(2)若1AC =,D 是线段PB 上靠近点P 的三等分点,点E 是线段PA 上的动点,求CE ED +的最小值. 【思路引导】(1)三棱锥的高为定值,要根据三棱锥体积公式13V Sh =可知,要使得体积最大,就要底面积最大,又因为边AB 为定值,故当C 到AB 的距离取得最大值时,底面积最大,故此时棱锥的体积最大;(2)反向延长AB 至C ',使得,,C D E '三点共线,三点共线时,距离最短,则C D '为CE ED +最小值. 【详解】(1)三棱锥P ABC -高h =,3AB =,点C 到AB 的最大值为底面圆的半径32,则三棱锥P ABC -体积的最大值等于1133322⨯⨯⨯=. (2)将PAC ∆绕着PA 旋转到PAC '使其共面,且C '在AB 的反向延长线上,连接C D ',C D '与PA 的交点为E ,此时CE ED +最小,为C D ';由3AB =,PA =且易知PA AB ⊥,由勾股定理知6PB =,因为12AB PB =,所以30APB ∠=o ,则60DBC ∠='o ,243BD PB ==; 134C B C A AB '+=+'==,则BDC '∆是边长为4的等边三角形,故4C D '=,所以CE ED +的最小值等于4.【典例2】【江西省新余市第四中学2020届月考】 已知梯形ABCD 中,AD ∥BC ,∠ABC =∠BAD =2π,AB=BC=2AD=4,E 、F 分别是AB 、CD 上的点,EF ∥BC ,AE =x ,G 是BC 的中点.沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(1)若以F 、B 、C 、D 为顶点的三棱锥的体积记为()f x ,求()f x 的最大值; (2)当 ()f x 取得最大值时,求二面角D -BF -C 的余弦值. 【思路引导】(1)由AEFD ⊥平面EBCF ,////EF BC AD ,可得AE EF ⊥,进而由面面垂直的性质定理得到AE ⊥平面EBCF ,进而建立空间坐标系E xyz -,可得()D BCF A BFC f x V V --==的解析式,根据二次函数的性质,易求出()f x 有最大值;(2)根据(1)的结论平面BCF 的一个法向量为()20,0,1n =u u v ,利用向量垂直数量积为零列方程组求出平面BDF 的法向量,代入向量夹角公式即可得到二面角D BF C --的余弦值.解:(1)∵平面AEFD ⊥平面EBCF ,AE ⊥EF,∴AE ⊥面平面EBCF ,AE ⊥EF,AE ⊥BE,又BE ⊥EF,故可如图建立空间坐标系E -xy z .则A (0,0,2),B (2,0,0),G (2,2,0),D (0,2,2), E (0,0,0)∵AD ∥面BFC ,所以()f x =V A -BFC =13BFC S AE ∆⋅ ()114432x x ⋅⋅⋅-⋅ ()22882333x =--+≤,即2x =时()f x 有最大值为83.(2)设平面DBF 的法向量为()1,,n x y z =u v,∵AE=2, B (2,0,0),D (0,2,2),F (0,3,0),∴()2,3,0,BF =-u u u v BD =u u u v (-2,2,2),则1100n BD n BF ⎧⋅=⎪⎨⋅=⎪⎩u v u u u vu v u u u v ,即()()()(),,2,2,20,,2,3,00x y z x y z ⎧⋅-=⎪⎨⋅-=⎪⎩,2220230x y z x y -++=⎧⎨-+=⎩ 取x =3,则y =2,z =1,∴()13,2,1n u v=面BCF 的一个法向量为()20,0,1n =u u v则cos<12,n n u v u u v>=121214n n n n u v u u v u v u u v ⋅=⋅. 由于所求二面角D -BF -C的平面角为钝角,所以此二面角的余弦值为:-14【典例3】【北京市昌平区2020届模拟】如图,在长方体ABCD -A 1B 1C 1D 1中,E ,H 分别是棱A 1B 1,D 1C 1上的点(点E 与B 1不重合),且EH ∥A 1D 1. 过EH 的平面与棱BB 1,CC 1相交,交点分别为F ,G .(I )证明:AD ∥平面EFGH ;(II ) 设AB=2AA 1="2" a .在长方体ABCD -A 1B 1C 1D 1内随机选取一点.记该点取自几何体A 1ABFE -D 1DCGH 内的概率为p ,当点E ,F 分别在棱A 1B 1上运动且满足EF=a 时,求p 的最小值.【思路引导】 解法一:(I ) 证明:在长方体ABCD -A 1B 1C 1D 1中,AD ∥A 1D 1 又∵EH ∥A 1D 1,∴AD ∥EH. ∵AD ¢平面EFGH EH 平面EFGH ∴AD//平面EFGH.(II ) 设BC=b ,则长方体ABCD -A 1B 1C 1D 1的体积V=AB·AD·AA 1=2a 2b , 几何体EB 1F -HC 1G 的体积V 1=(1/2EB 1 ·B 1F )·B 1C 1=b/2·EB­1·B 1 F ∵EB 12+ B 1 F 2=a 2∴EB 12+ B 1 F 2≤ (EB 12+ B 1 F 2)/2 = a 2 / 2,当且仅当EB­1=B 1F=2a 时等号成立 从而V 1≤ a 2b /4 .故 p=1-V 1/V ≥22412a ba b-=78 解法二:(I ) 同解法一(II ) 设BC=b ,则长方体ABCD -A 1B 1C 1D 1的体积V=AB·AD·AA 1=2a 2b , 几何体EB 1F -HC 1G 的体积V 1=(1/2 EB­1·B 1 F )·B 1C 1=b/2 EB­1·B 1 F设∠B 1EF=θ(0°≤θ≤90°),则EB­1=" a" cosθ,B 1 F ="a" sinθ 故EB­1·B 1 F = a 2sinθcosθ=,当且仅当sin 2θ=1即θ=45°时等号成立.从而214a bV ≤ ∴p=1- V 1/V≥22412a ba b-=78,当且仅当sin 2θ=1即θ=45°时等号成立.所以,p 的最小值等于7/81. 【广东省佛山市第一中学2020届月考】如图,正方体1111ABCD A B C D -的棱长为a ,E F 、分别为AB BC 、上的点,且AE BF x ==.(1)当x 为何值时,三棱锥1B BEF -的体积最大? (2)求异面直线1A E 与1B F 所成的角的取值范围. 【思路引导】(1)首先得到体积函数,然后利用均值不等式确定取得最值时x 的值即可;(2)首先作出异面直线1A E 与1B F 所成的角,然后结合余弦定理求得角的余弦值取值范围,最后利用余弦值的范围确定异面直线1A E 与1B F 所成的角的取值范围. 【详解】 (1),当2ax =时,三棱锥1B BEF -的体积最大. (2)在AD 上取点H 使AH =BF =AE ,则,,,所以1HA E∠(或补角)是异面直线1A E 与1B F 所成的角;在Rt △1A AH 中,1A H =在Rt △1A AE 中,1A E =在Rt △HAE 中,HE ==,在△1HA E 中,222111112A H A E EH cosHA E A H A E +-=⋅ 222a a x=+, 因为0x a <≤,所以22222a x a a <+≤,222112a x a≤<+,1112cosHA E ≤<,1π03HA E <∠≤ 2.【安徽省安庆市2020届模拟】如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,2,AB EB ==(1)求证:DE ⊥平面ADC ;(2)设AC x =,(x)V 表示三棱锥B ACE -的体积,求函数(x)V 的解析式及最大值. 【思路引导】(1)要证(1)要证DE ⊥平面ADC ,需证BC ⊥平面ADC ,需证DC BC BC AC ⊥⊥,,用综合法书写即可.(2)由(1)可知BE ⊥平面ABC ,所以体积为13ABC BE S ⨯, AC x BC EB ===,均值不等式求解最大值.详解:(1)证明:∵四边形DCBE 为平行四边形,∴CD ∥BE ,BC ∥DE . ∵DC ⊥平面ABC ,BC ⊂平面ABC ,∴DC ⊥BC . ∵AB 是圆O 的直径,∴BC ⊥AC ,且DC ∩AC =C . ∴BC ⊥平面ADC .∵DE ∥BC ,∴DE ⊥平面ADC ; (2)∵DC ⊥平面ABC ,∴BE ⊥平面ABC . 在Rt △ABE 中,AB =2,EB =3√.在Rt △ABC 中,∵AC =x ,BC =4−x 2−−−−−√(0<x <2). ∴S △ABC =12AC ⋅BC =12x ⋅4−x 2−−−−−√, ∴V (x )=VE −ABC =3√6x ⋅4−x 2−−−−−√,(0<x <2).∵x 2(4−x 2)⩽(x 2+4−x 22)2=4,当且仅当x 2=4−x 2,即x =2√时,取等号, ∴x =2√时,体积有最大值为3√3.3.【浙江省金华市十校2020届模拟】如图,在三棱锥P ABC -中,AB BC =,AP PC =,60ABC ∠=︒,AP PC ⊥,直线BP 与平面ABC 成30°角,D 为AC 的中点,PQ PC λ=u u u v u u u v,(0,1)λ∈.(Ⅰ)若PB PC >,求证:平面ABC ⊥平面PAC ;(Ⅰ)若PC PB <,求直线BQ 与平面PAB 所成角的正弦值的取值范围. 【思路引导】由题意可得直线BP 与平面ABC 所成角是PBD ∠,即30PBD ∠=︒.设2AC a =,则BD =,PD a =,由余弦定理得PB a =或2a .(Ⅰ)若PB PC >,则2PB a =,由勾股定理可得PD DB ⊥,又PD AC ⊥,据此可得PD ⊥平面ABC ,平面PAC ⊥平面ABC .(Ⅰ)若PB PC <,则PB a =,故PQ a =,BQ =,设Q h 是Q 到面PAB 的距离,C h 是C 到面PAB 的距离,则Q C h h λ=,由等体积法可得7C h a =,7Q h a λ=.设直线BQ 与平面PAB 所成角为α,则sin α=,据此可得直线BQ 与平面PAB 所成角的正弦值的取值范围为0,7⎛ ⎝⎭.试题解析:∵AB BC =,AP PC =,D 为AC 的中点,∴BD AC ⊥,PD AC ⊥,∴AC ⊥平面PBD , ∴直线BP 与平面ABC 所成角是PBD ∠,30PBD ∠=︒. 设2AC a =,则BD =,PD a =,由余弦定理得PB a =或2a .(Ⅰ)若PB PC >,则2PB a =,∴在PBD ∆中222PD DB PB +=.∴PD DB ⊥, 又PD AC ⊥,AC DB D ⋂=,∴PD ⊥平面ABC ,∴平面PAC ⊥平面ABC . (Ⅰ)若PB PC <,∴PB a =,∵PQ PC λ=u u u v u u u v,∴PQ a =,BQ =,设Q h 是Q 到面PAB 的距离,C h 是C 到面PAB 的距离,则Q C h h λ=,由等体积法:)2112323C aa a h ⋅=⋅,∴7C h a =,∴7Q h a λ=. 设直线BQ 与平面PAB 所成角为α,则HQsin BQα==a=7=.∵()0,1λ∈10,2⎛⎫ ⎪⎝⎭.∴0sin α<<故直线BQ 与平面PAB所成角的正弦值的取值范围为0,7⎛ ⎝⎭. 4.【北京市城六区2019届高三模拟】已知三棱锥P ABC -(如图1)的平面展开图(如图2)中,四边形ABCD的正方形,△ABE 和△BCF 均为正三角形,在三棱锥P ABC -中: (I)证明:平面PAC ⊥平面ABC ; (Ⅰ)求二面角A PC B --的余弦值; (Ⅰ)若点M 在棱PC 上,满足CMCP λ=,12[,]33λ∈,点N 在棱BP 上,且BM AN ⊥,求BN BP的取值范围.【思路引导】第一问取AC 中点O ,根据等腰三角形的性质求得PO AC ⊥,根据题中所给的边长,利用勾股定理求得PO OB ⊥,利用线面垂直的判定定理以及面面垂直的判定定理得到结果;第二问根据题中所给的条件建立空间直角坐标系,写出相应的点的坐标,求得面的法向量,利用法向量所成角的余弦值得出结果;第三问利用向量间的关系,利用向量垂直的条件,利用向量的数量积等于0,得出所求的比值μ与λ的关系式,利用函数的有关知识求得结果. (Ⅰ)方法1:设AC 的中点为O ,连接BO ,PO . 由题意PA PB PC ===,1PO =,1AO BO CO ===因为在PAC ∆中,PA PC =,O 为AC 的中点 所以PO AC ⊥,因为在POB ∆中,1PO =,1OB =,PB =所以PO OB ⊥因为AC OB O ⋂=,,AC OB ⊂平面ABC 所以PO ⊥平面ABC 因为PO ⊂平面PAC 所以平面PAC ⊥平面ABC 方法2:设AC 的中点为O ,连接BO ,PO .因为在PAC ∆中,PA PC =,O 为AC 的中点 所以PO AC ⊥,因为PA PB PC ==,PO PO PO ==,AO BO CO == 所以POA ∆≌POB ∆≌POC ∆ 所以90POA POB POC ∠=∠=∠=︒ 所以PO OB ⊥因为AC OB O ⋂=,,AC OB ⊂平面ABC 所以PO ⊥平面ABC 因为PO ⊂平面PAC 所以平面PAC ⊥平面ABC 方法3:设AC 的中点为O ,连接PO ,因为在PAC ∆中,PA PC =, 所以PO AC ⊥设AB 的中点Q ,连接PQ ,OQ 及OB . 因为在OAB ∆中,OA OB =,Q 为AB 的中点 所以OQ AB ⊥.因为在PAB ∆中,PA PB =,Q 为AB 的中点 所以PQ AB ⊥.因为PQ OQ Q ⋂=,,PQ OQ ⊂平面OPQ所以AB ⊥平面OPQ因为OP ⊂平面OPQ所以OP AB ⊥因为AB AC A ⋂=,,AB AC ⊂平面ABC所以PO ⊥平面ABC因为PO ⊂平面PAC所以平面PAC ⊥平面ABC(Ⅰ)由PO ⊥平面ABC ,OB AC ⊥,如图建立空间直角坐标系,则()0,0,0O ,()1,0,0C ,()0,1,0B ,()1,0,0A -,()0,0,1P 由OB ⊥平面APC ,故平面APC 的法向量为()0,1,0OB =u u u v 由()1,1,0BC =-u u u v ,()1,0,1PC =-u u u v设平面PBC 的法向量为(),,n x y z =v ,则由00n BC n PC ⎧⋅=⎨⋅=⎩u u u vu u u v 得:00x y x z -=⎧⎨-=⎩令1x =,得1y =,1z =,即()1,1,1n =vcos ,nOBn OB n OB ⋅===⋅u u u vv u u u v v u u u v v由二面角A PC B --是锐二面角,所以二面角A PC B --的余弦值为3(Ⅰ)设BN BP μ=u u u v u u u v ,01μ≤≤,则()()()1,1,01,0,11,1,BM BC CM BC CP λλλλ=+=+=-+-=--u u u u v u u u v u u u u v u u u v u u u v ()()()1,1,00,1,11,1,AN AB BN AB BP μμμμ=+=+=+-=-u u u v u u u v u u u v u u u v u u u v 令0BM AN ⋅=u u u u v u u u v得()()()11110λμλμ-⋅+-⋅-+⋅= 即1111λμλλ==-++,μ是关于λ的单调递增函数, 当12,33λ⎡⎤∈⎢⎥⎣⎦时,12,45μ⎡⎤∈⎢⎥⎣⎦, 所以12,45BN BP ⎡⎤∈⎢⎥⎣⎦。

2020届高考数学压轴必刷题 专题08立体几何与空间向量(文理合卷)(含答案)

2020届高考数学压轴必刷题 专题08立体几何与空间向量(文理合卷)(含答案)

2020届高考数学压轴必刷题专题08立体几何与空间向量(文理合卷)1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π【解答】解:如图,由P A=PB=PC,△ABC是边长为2的正三角形,可知三棱锥P﹣ABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心,连接BO并延长,交AC于G,则AC⊥BG,又PO⊥AC,PO∩BG=O,可得AC⊥平面PBG,则PB⊥AC,∵E,F分别是P A,AB的中点,∴EF∥PB,又∠CEF=90°,即EF⊥CE,∴PB⊥CE,得PB⊥平面P AC,∴正三棱锥P﹣ABC的三条侧棱两两互相垂直,把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D.半径为,则球O的体积为.故选:D.2.【2019年浙江08】设三棱锥V﹣ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P﹣AC﹣B的平面角为γ,则()A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β【解答】解:方法线段AO上,作DE⊥AC于E,易得PE∥VG,过P作PF∥AC于F,过D作DH∥AC,交BG于H,则α=∠BPF,β=∠PBD,γ=∠PED,则cosαcosβ,可得β<α;tanγtanβ,可得β<γ,方法由最大角定理可得β<γ'=γ;方法易得cosα,可得sinα,sinβ,sinγ,故选:B.3.【2018年新课标1理科12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长,α截此正方体所得截面最大值为:6.故选:A.4.【2018年新课标3理科10】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.54【解答】解:△ABC为等边三角形且面积为9,可得,解得AB=6,球心为O,三角形ABC的外心为O′,显然D在O′O的延长线与球的交点如图:O′C,OO′2,则三棱锥D﹣ABC高的最大值为:6,则三棱锥D﹣ABC体积的最大值为:18.故选:B.5.【2018年浙江08】已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1【解答】解:∵由题意可知S在底面ABCD的射影为正方形ABCD的中心.过E作EF∥BC,交CD于F,过底面ABCD的中心O作ON⊥EF交EF于N,连接SN,取AB中点M,连接SM,OM,OE,则EN=OM,则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO.显然,θ1,θ2,θ3均为锐角.∵tanθ1,tanθ3,SN≥SO,∴θ1≥θ3,又sinθ3,sinθ2,SE≥SM,∴θ3≥θ2.故选:D.6.【2018年上海15】《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×4=8,当A1ACC1为底面矩形,有4个满足题意,当A1AEE1为底面矩形,有4个满足题意,故有8+4+4=16故选:D.7.【2017年新课标2理科10】已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.【解答】解:【解法一】如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN AB1,NP BC1;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×()=7,∴AC,∴MQ;在△MQP中,MP;在△PMN中,由余弦定理得cos∠MNP;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.【解法二】如图所示,补成四棱柱ABCD﹣A1B1C1D1,求∠BC1D即可;BC1,BD,C1D,∴BD2,∴∠DBC1=90°,∴cos∠BC1D.故选:C.8.【2017年浙江09】如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),B(3,﹣3,0).Q,R,,(0,3,6),(,6,0),,.设平面PDR的法向量为(x,y,z),则,可得,可得,取平面ABC的法向量(0,0,1).则cos,取α=arccos.同理可得:β=arccos.γ=arccos.∵.∴α<γ<β.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG.设OD=h.则tanα.同理可得:tanβ,tanγ.由已知可得:OE>OG>OF.∴tanα<tanγ<tanβ,α,β,γ为锐角.∴α<γ<β.故选:B.9.【2016年新课标1理科11】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD =m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.10.【2016年新课标3理科10】在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB =6,BC=8,AA1=3,则V的最大值是()A.4πB.C.6πD.【解答】解:∵AB⊥BC,AB=6,BC=8,∴AC=10.故三角形ABC的内切圆半径r2,又由AA1=3,故直三棱柱ABC﹣A1B1C1的内切球半径为,此时V的最大值,故选:B.11.【2015年浙江理科08】如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α【解答】解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.12.【2014年新课标1理科12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6 C.4D.4【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC6,AD=4,显然AC最长.长为6.故选:B.13.【2014年新课标2理科11】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.【解答】解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,如图:BC的中点为O,连结ON,,则MN0B是平行四边形,BM与AN所成角就是∠ANO,∵BC=CA=CC1,设BC=CA=CC1=2,∴CO=1,AO,AN,MB,在△ANO中,由余弦定理可得:cos∠ANO.故选:C.14.【2014年上海理科16】如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,P i(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()A.1 B.2 C.3 D.4【解答】解:,则•()=||2,∵,∴•||2=1,∴•(i=1,2,…,8)的不同值的个数为1,15.【2014年北京理科07】在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1【解答】解:设A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),则各个面上的射影分别为A',B',C',D',在xOy坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S1.在yOz坐标平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1,),S2=.在zOx坐标平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(0,1,),S3,则S3=S2且S3≠S1,故选:D.16.【2013年浙江理科10】在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则()A.平面α与平面β垂直B.平面α与平面β所成的(锐)二面角为45°C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60°【解答】解:设P1=fα(P),则根据题意,得点P1是过点P作平面α垂线的垂足∵Q1=fβ[fα(P)]=fβ(P1),∴点Q1是过点P1作平面β垂线的垂足同理,若P2=fβ(P),得点P2是过点P作平面β垂线的垂足因此Q2=fα[fβ(P)]表示点Q2是过点P2作平面α垂线的垂足∵对任意的点P,恒有PQ1=PQ2,∴点Q1与Q2重合于同一点由此可得,四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角∵∠P1Q1P2是直角,∴平面α与平面β垂直17.【2012年新课标1理科11】已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1,∴OO1,∴高SD=2OO1,∵△ABC是边长为1的正三角形,∴S△ABC,∴V三棱锥S﹣ABC.故选:C.18.【2012年浙江理科10】已知矩形ABCD,AB=1,BC.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直【解答】解:如图,AE⊥BD,CF⊥BD,依题意,AB=1,BC,AE=CF,BE=EF=FD,A,若存在某个位置,使得直线AC与直线BD垂直,则∵BD⊥AE,∴BD⊥平面AEC,从而BD⊥EC,这与已知矛盾,排除A;B,若存在某个位置,使得直线AB与直线CD垂直,则CD⊥平面ABC,平面ABC⊥平面BCD取BC中点M,连接ME,则ME⊥BD,∴∠AEM就是二面角A﹣BD﹣C的平面角,此角显然存在,即当A在底面上的射影位于BC的中点时,直线AB与直线CD垂直,故B正确;C,若存在某个位置,使得直线AD与直线BC垂直,则BC⊥平面ACD,从而平面ACD⊥平面BCD,即A在底面BCD上的射影应位于线段CD上,这是不可能的,排除CD,由上所述,可排除D故选:B.19.【2010年新课标1理科10】设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B.C.D.5πa2【解答】解:根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选:B.20.【2010年北京理科08】如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上,动点P,Q分别在棱AD,CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积()A.与x,y,z都有关B.与x有关,与y,z无关C.与y有关,与x,z无关D.与z有关,与x,y无关【解答】解:从图中可以分析出,△EFQ的面积永远不变,为面A1B1CD面积的,而当P点变化时,它到面A1B1CD的距离是变化的,因此会导致四面体体积的变化.故选:D.21.【2019年新课标3理科16】学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD﹣A1B1C1D1挖去四棱锥O﹣EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D打印所用原料密度为0.9g/cm3.不考虑打印损耗,制作该模型所需原料的质量为g.【解答】解:该模型为长方体ABCD﹣A1B1C1D1,挖去四棱锥O﹣EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H,分别为所在棱的中点,AB=BC=6cm,AA1=4cm,∴该模型体积为:V O﹣EFGH=6×6×4=144﹣12=132(cm3),∵3D打印所用原料密度为0.9g/cm3,不考虑打印损耗,∴制作该模型所需原料的质量为:132×0.9=118.8(g).故答案为:118.8.22.【2018年新课标2理科16】已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为5,则该圆锥的侧面积为.【解答】解:圆锥的顶点为S,母线SA,SB所成角的余弦值为,可得sin∠ASB.△SAB的面积为5,可得sin∠ASB=5,即5,即SA=4.SA与圆锥底面所成角为45°,可得圆锥的底面半径为:2.则该圆锥的侧面积:π=40π.故答案为:40π.23.【2017年新课标1理科16】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.【解答】解法一:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h,3,则V,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V4cm3,∴体积最大值为4cm3.故答案为:4cm3.解法二:如图,设正三角形的边长为x,则OG,∴FG=SG=5,SO=h,∴三棱锥的体积V,令b(x)=5x4,则,令b′(x)=0,则4x30,解得x=4,∴(cm3).故答案为:4cm3.24.【2017年新课标3理科16】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最小值为60°;其中正确的是.(填写所有正确结论的编号)【解答】解:由题意知,a、b、AC三条直线两两相互垂直,画出图形如图,不妨设图中所示正方体边长为1,故|AC|=1,|AB|,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆,以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,则D(1,0,0),A(0,0,1),直线a的方向单位向量(0,1,0),||=1,直线b的方向单位向量(1,0,0),||=1,设B点在运动过程中的坐标中的坐标B′(cosθ,sinθ,0),其中θ为B′C与CD的夹角,θ∈[0,2π),∴AB′在运动过程中的向量,(cosθ,sinθ,﹣1),||,设与所成夹角为α∈[0,],则cosα|sinθ|∈[0,],∴α∈[,],∴③正确,④错误.设与所成夹角为β∈[0,],cosβ|cosθ|,当与夹角为60°时,即α,|sinθ|,∵cos2θ+sin2θ=1,∴cosβ|cosθ|,∵β∈[0,],∴β,此时与的夹角为60°,∴②正确,①错误.故答案为:②③.25.【2016年浙江理科14】如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.【解答】解:如图,M是AC的中点.①当AD=t<AM时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AE,DM t,由△ADE∽△BDM,可得,∴h,V,t∈(0,)②当AD=t>AM时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AH,DM=t,由等面积,可得,∴,∴h,∴V,t∈(,2)综上所述,V,t∈(0,2)令m∈[1,2),则V,∴m=1时,V max.另解:由于PD=DA,PB=BA,则对于每一个确定的AD,都有△PDB绕DB在空间中旋转,则PD⊥AC时体积最大,则只需考察所有PD⊥AC时的最大,设PD=DA=h,则V S底h h•sin30°•(2h)•2,二次函数求最值可知h时体积最大为.故答案为:.26.【2015年浙江理科13】如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.【解答】解:连结ND,取ND的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME EN,MC=2,又∵EN⊥NC,∴EC,∴cos∠EMC.故答案为:.27.【2014年浙江理科17】如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A 观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)【解答】解:∵AB=15m,AC=25m,∠ABC=90°,∴BC=20m,过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ,设BP′=x,则CP′=20﹣x,由∠BCM=30°,得PP′=CP′tan30°(20﹣x),在直角△ABP′中,AP′,∴tanθ•,令y,则函数在x∈[0,20]单调递减,∴x=0时,取得最大值为.若P′在CB的延长线上,PP′=CP′tan30°(20+x),在直角△ABP′中,AP′,∴tanθ•,令y,则y′=0可得x时,函数取得最大值,故答案为:.28.【2013年上海理科13】在xOy平面上,将两个半圆弧(x﹣1)2+y2=1(x≥1)和(x﹣3)2+y2=1(x ≥3),两条直线y=1和y=﹣1围成的封闭图形记为D,如图中阴影部分,记D绕y轴旋转一周而成的几何体为Ω.过(0,y)(|y|≤1)作Ω的水平截面,所得截面积为4π8π.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为.【解答】解:因为几何体为Ω的水平截面的截面积为48π,该截面的截面积由两部分组成,一部分为定值8π,看作是截一个底面积为8π,高为2的长方体得到的,对于4,看作是把一个半径为1,高为2π的圆柱平放得到的,如图所示,这两个几何体与Ω放在一起,根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等,即Ω的体积为π•12•2π+2•8π=2π2+16π.故答案为2π2+16π.29.【2013年北京理科14】如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为.【解答】解:如图所示,取B1C1的中点F,连接EF,ED1,∴CC1∥EF,又EF⊂平面D1EF,CC1⊄平面D1EF,∴CC1∥平面D1EF.∴直线C1C上任一点到平面D1EF的距离是两条异面直线D1E与CC1的距离.过点C1作C1M⊥D1F,∵平面D1EF⊥平面A1B1C1D1.∴C1M⊥平面D1EF.过点M作MP∥EF交D1E于点P,则MP∥C1C.取C1N=MP,连接PN,则四边形MPNC1是矩形.可得NP⊥平面D1EF,在Rt△D1C1F中,C1M•D1F=D1C1•C1F,得.∴点P到直线CC1的距离的最小值为.故答案为30.【2012年上海理科14】如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD =AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.【解答】解:作BE⊥AD于E,连接CE,则AD⊥平面BEC,所以CE⊥AD,由题设,B与C都是在以AD为焦点的椭球上,且BE、CE都垂直于焦距AD,AB+BD=AC+CD=2a,显然△ABD≌△ACD,所以BE=CE.取BC中点F,∴EF⊥BC,EF⊥AD,要求四面体ABCD的体积的最大值,因为AD是定值,只需三角形EBC的面积最大,因为BC是定值,所以只需EF最大即可,当△ABD是等腰直角三角形时几何体的体积最大,∵AB+BD=AC+CD=2a,∴AB=a,所以EB,EF,所以几何体的体积为:.故答案为:.1.【2018年新课标3文科12】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.54【解答】解:△ABC为等边三角形且面积为9,可得,解得AB=6,球心为O,三角形ABC的外心为O′,显然D在O′O的延长线与球的交点如图:O′C,OO′2,则三棱锥D﹣ABC高的最大值为:6,则三棱锥D﹣ABC体积的最大值为:18.故选:B.2.【2017年新课标3文科10】在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC【解答】解:法一:连B1C,由题意得BC1⊥B1C,∵A1B1⊥平面B1BCC1,且BC1⊂平面B1BCC1,∴A1B1⊥BC1,∵A1B1∩B1C=B1,∴BC1⊥平面A1ECB1,∵A1E⊂平面A1ECB1,∴A1E⊥BC1.故选:C.法二:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,则A1(2,0,2),E(0,1,0),B(2,2,0),D(0,0,0),C1(0,2,2),A(2,0,0),C(0,2,0),(﹣2,1,﹣2),(0,2,2),(﹣2,﹣2,0),(﹣2,0,2),(﹣2,2,0),∵•2,2,0,6,∴A1E⊥BC1.故选:C.3.【2016年新课标1文科11】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD =m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.4.【2016年新课标3文科11】在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB =6,BC=8,AA1=3,则V的最大值是()A.4πB.C.6πD.【解答】解:∵AB⊥BC,AB=6,BC=8,∴AC=10.故三角形ABC的内切圆半径r2,又由AA1=3,故直三棱柱ABC﹣A1B1C1的内切球半径为,此时V的最大值,故选:B.5.【2015年新课标1文科11】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:4πr2πr22r×2πr+2r×2rπr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.6.【2015年新课标2文科10】已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O 的半径为R,此时V O﹣ABC=V C﹣AOB36,故R=6,则球O的表面积为4πR2=144π,故选:C.7.【2013年新课标1文科11】某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积22×π×4=8π所以这个几何体的体积是16+8π;故选:A.8.【2013年北京文科08】如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个【解答】解:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,则A(3,0,0),B(3,3,0),C(0,3,0),D(0,0,0),A1(3,0,3),B1(3,3,3),C1(0,3,3),D1(0,0,3),∴(﹣3,﹣3,3),设P(x,y,z),∵(﹣1,﹣1,1),∴(2,2,1).∴|P A|=|PC|=|PB1|,|PD|=|P A1|=|PC1|,|PB|,|PD1|.故P到各顶点的距离的不同取值有,3,,共4个.故选:B.9.【2010年北京文科08】如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上.点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,A1E=y(x,y大于零),则三棱锥P﹣EFQ的体积()A.与x,y都有关B.与x,y都无关C.与x有关,与y无关D.与y有关,与x无关【解答】解:三棱锥P﹣EFQ的体积与点P到平面EFQ的距离和三角形EFQ的面积有关,由图形可知,平面EFQ与平面CDA1B1是同一平面,故点P到平面EFQ的距离是P到平面CDA1B1的距离,且该距离就是P到线段A1D的距离,此距离只与x有关,因为EF=1,点Q到EF的距离为线段B1C的长度,为定值,综上可知所求三棱锥的体积只与x有关,与y无关.故选:C.10.【2019年新课标3文科16】学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD﹣A1B1C1D1挖去四棱锥O﹣EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D打印所用原料密度为0.9g/cm3.不考虑打印损耗,制作该模型所需原料的质量为g.【解答】解:该模型为长方体ABCD﹣A1B1C1D1,挖去四棱锥O﹣EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H,分别为所在棱的中点,AB=BC=6cm,AA1=4cm,∴该模型体积为:V O﹣EFGH=6×6×4=144﹣12=132(cm3),∵3D打印所用原料密度为0.9g/cm3,不考虑打印损耗,∴制作该模型所需原料的质量为:132×0.9=118.8(g).故答案为:118.8.11.【2019年新课标1文科16】已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为,那么P到平面ABC的距离为.【解答】解:∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为,过点P作PD⊥AC,交AC于D,作PE⊥BC,交BC于E,过P作PO⊥平面ABC,交平面ABC于O,连结OD,OC,则PD=PE,∴CD=CE=OD=OE1,∴PO.∴P到平面ABC的距离为.故答案为:.12.【2018年新课标2文科16】已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°.若△SAB的面积为8,则该圆锥的体积为.【解答】解:圆锥的顶点为S,母线SA,SB互相垂直,△SAB的面积为8,可得:,解得SA =4,SA与圆锥底面所成角为30°.可得圆锥的底面半径为:2,圆锥的高为:2,则该圆锥的体积为:V8π.故答案为:8π.13.【2017年新课标1文科16】已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为.【解答】解:三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,可知三角形SBC与三角形SAC都是等腰直角三角形,设球的半径为r,可得,解得r=3.球O的表面积为:4πr2=36π.故答案为:36π.14.【2013年新课标1文科15】已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.【解答】解:设球的半径为R,∵AH:HB=1:2,∴平面α与球心的距离为R,∵α截球O所得截面的面积为π,∴d R时,r=1,故由R2=r2+d2得R2=12+(R)2,∴R2∴球的表面积S=4πR2.故答案为:.15.【2011年新课标1文科16】已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.【解答】解:不妨设球的半径为:4;球的表面积为:64π,圆锥的底面积为:12π,圆锥的底面半径为:2;由几何体的特征知球心到圆锥底面的距离,求的半径以及圆锥底面的半径三者可以构成一个直角三角形由此可以求得球心到圆锥底面的距离是,所以圆锥体积较小者的高为:4﹣2=2,同理可得圆锥体积较大者的高为:4+2=6;所以这两个圆锥中,体积较小者的高与体积较大者的高的比值为:.故答案为:。

精选2020高考数学《立体几何初步》专题模拟题(含答案)

精选2020高考数学《立体几何初步》专题模拟题(含答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,平面α⊥平面β,,,A B AB αβ∈∈与两平面α、β所成的角分别为4π和6π。

过A 、B 分别作两平面交线的垂线,垂足为'A 、',B 若AB=12,则''A B =( A )A'B'A B βα(A )4 (B )6 (C )8 (D )9(2006全国2文)2.设三棱柱ABC-A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为( )(A )16V (B )14V (C )13V (D )12V (2005全国3文)3.如图,在三棱柱C B A ABC '''-中,点E 、F 、H 、K 分别为C A '、B C '、B A '、C B ''的中点,G 为ΔABC 的重心从K 、H 、G 、B '中取一点作为P ,使得该棱柱恰有2条棱与平面PEF 平行,则P 为A .KB .HC .GD .B '(2005湖北理)4.已知直线m 、n 与平面βα,,给出下列三个命题: ①若;//,//,//n m n m 则αα ②若;,,//m n n m ⊥⊥则αα③若.,//,βαβα⊥⊥则m m其中真命题的个数是( )A .0B .1C .2D .3(2005福建理)5.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=BC=23,则球心到平面ABC 的距离为( )A .1B .2C .3D .2(2004全国4文11)6.ABC ∆的顶点在平面α内,A 、C 在α的同一侧,AB 、BC 与α所成的角分别是30和45.若AB =3,BC=AC =5,则AC 与α所成的角为( )(A )60(B )45(C )30(D )15(2005全国2文) 7.把两半径为2的铁球熔化成一个球,则这个大球的半径应为 A 4 B 22 C 322 D 34 8.1.有下列四个命题:①过平面外一点平行于此平面的所有直线必在同一平面内;②平行于同一平面的两条直线平行;③过平面外一点作与该平面平行的平面,有且只有一个;④分别在两个平行平面内的两条直线一定平行。

高三数学立体几何专项练习题及答案

高三数学立体几何专项练习题及答案

高三数学立体几何专项练习题及答案一、选择题1. 下列哪个几何体的所有面都是三角形?A. 正方体B. 圆柱体C. 正六面体D. 球体答案:C2. 一个有8个面的多面体,其中6个面是正方形,另外2个面是等边三角形,它的名字是?A. 正八面体B. 正十二面体C. 正二十面体D. 正二十四面体答案:C3. 空间中任意一点到四个角落连线的垂直距离相等的四棱锥称为?A. 正四棱锥B. 圆锥台C. 四棱锥D. 无法确定答案:C4. 任意多面体的面数与顶点数、棱数的关系是?A. 面数 + 顶点数 = 棱数 + 2B. 面数 + 棱数 = 顶点数 + 2C. 顶点数 + 棱数 = 面数 + 2D. 顶点数 + 面数 = 棱数 + 2答案:A5. 求下列多面体的棱数:(1)正六面体(2)正八面体(3)正十二面体答案:(1)正六面体的棱数为 12(2)正八面体的棱数为 24(3)正十二面体的棱数为 30二、填空题1. 下列说法正确的是:一棱锥没有底面时,它的底面是一个______。

答案:点2. 铅垂线是指从一个多面体的一个顶点到与它相对的棱上所作的垂线,它与该棱垂足的连线相交于该多面体的______上。

答案:中点3. 对正八面体,下列说法不正确的是:_____条对角线与_____两两垂直。

答案:六,相邻面三、计算题1. 一个棱锥的底面是一个边长为6cm的正三角形,其高为8cm。

求棱锥体积。

解答:底面积 S = (1/2) ×底边长 ×高 = (1/2) × 6 × 8 = 24 cm²棱锥体积 V = (1/3) × S ×高 = (1/3) × 24 × 8 = 64 cm³所以,棱锥的体积为64 cm³。

2. 一个正四棱锥的底面是一个边长为10cm的正方形,其高为12cm。

求四棱锥的体积。

解答:底面积 S = 边长² = 10² = 100 cm²四棱锥体积 V = (1/3) × S ×高 = (1/3) × 100 × 12 = 400 cm³所以,四棱锥的体积为400 cm³。

立体几何 解答题专项训练-2022届高三数学三轮冲刺复习

立体几何 解答题专项训练-2022届高三数学三轮冲刺复习
(1)求证:EF⊥平面BCF;
(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与平面FCB所成锐二面角最大?并求此时锐二面角的余弦值。
16、在四棱锥P﹣ABCD中,侧面PAB为等边三角形,底面ABCD为直角梯形,AB∥CD,∠DAB=90°,PB=PC=2,CD=AD=1,E为线段AB的中点,过直线CE的平面与线段PA,PD分别交于点M,N.
(1)求证:MN⊥PB;
(2)若直线PC与平面CEMN所成的角的余弦值为 ,求 的值.
17、如图所示,正方形 所在平面与梯形 所在平面垂直, , , , .
(1)求证:EF∥平面SAD.
(2)若G为线段AB上一动点,求平面EFG与平面ABCD间最小锐二面角的余弦值.
15、如图1所示,在矩形 中, , , 为 中点,将 沿 折起,使点 到点 处,且平面 平面 ,如图2所示.
(1)求证: ;
(2)在棱 上取点 ,使平面 平面 ,求直线 与平面 所成角的正弦值.
立体几何解答题专项训练
1、在如图所示的几何体中,四边形 是正方形,四边形 是梯形, , ,平面 平面 ,且 .
(1)求证: 平面 ;
(2)求平面 与平面 所成角的大小;
(3)已知点 在棱 上,且异面直线 与 所成角的余弦值为 ,求点 到平面 的距离.
2、如图,在梯形ABCD中,AB∥CD,∠BCD= ,四边形ACFE为矩形,且CF⊥平面ABCD,AB=CD=BC=CF=1。
(1)证明:平面 平面 .
(2)若 ,求二面角 的余弦值.
11、如图1,已知 为等边三角形,四边形 为平行四边形, ,把 沿 向上折起,使点E到达点P位置,如图2所示;且平面 平面 .
(1)证明: ;
(2)在(1)的条件下求二面角 的余弦值.

高三数学习题集:解析几何与立体几何综合练习

高三数学习题集:解析几何与立体几何综合练习

高三数学习题集:解析几何与立体几何综合练

解析几何与立体几何是高中数学中的重要内容之一,对于高三学生来说,掌握这两个领域的知识和技巧至关重要。

为了帮助同学们更好地复习与训练,以下是一些解析几何与立体几何综合练习题。

一、解析几何部分
1. 已知点A(2,3)、B(5,7),求直线AB的斜率和方程。

2. 设直线L1过点A(1,2),斜率为1,求L1与x轴、y轴的交点坐标。

3. 已知直线L2的方程为y=2x-3,求L2与y轴的交点坐标。

4. 设四边形ABCD的顶点分别为A(1,2)、B(4,5)、C(6,1)、D(3,-2),求四边形ABCD的周长和面积。

二、立体几何部分
1. 已知圆柱体的高为8cm,底面直径为6cm,求圆柱体的表面积和体积。

2. 设正方体的边长为3cm,求正方体的表面积和体积。

3. 设棱长为5cm的正六面体A,另有一条边长为4cm的直线段BC平行于A的一条棱,求BC与正六面体A的交点坐标。

4. 已知圆锥的高为12cm,底面半径为4cm,求圆锥的表面积和体积。

以上是一些解析几何与立体几何的综合练习题,希望同学们能够认真思考并灵活运用所学知识来解答这些问题。

通过不断练习,相信你们对解析几何与立体几何的理解和掌握会更上一层楼,为应对高考数学提供有力的支持。

加油!。

2020高三数学立体几何专项训练文科

2020高三数学立体几何专项训练文科

2020高三数学立体几何专项训练文科1.在四棱锥P-ABCD中,底面ABCD为矩形,PA垂直于平面ABCD,E是PD的点。

Ⅰ) 证明PB平行于平面AEC。

Ⅱ) 设AP=1,AD=3,求三棱锥P-ABD的体积V和A点到平面PBD的距离。

2.在四棱锥P-ABCD中,AB平行于CD且AB等于2CD,E为PB的中点。

1) 证明CE平行于平面PAD。

2) 是否存在一点F在线段AB上,使得平面PAD平行于平面CEF?若存在,证明结论;若不存在,说明理由。

3.在四棱锥P-ABCD中,平面PAC垂直于平面ABCD,且PA垂直于AC且等于AD等于2,四边形ABCD满足BC平行于AD,AB垂直于AD且等于1,点E和F分别为侧棱PB和PC上的点,且PEPF等于λ(λ不等于0)。

1) 证明EF平行于平面PAD。

2) 当λ等于2时,求点D到平面AFB的距离。

4.四棱柱ABCD-A1B1C1D1的底面ABCD是正方形。

1) 证明平面A1BD平行于平面CD1B1.2) 若平面ABCD与平面B1D1C相交于直线l,证明B1D1平行于l。

5.在平行四边形ABCD外一点P,PC的中点为M,在DM上取一点G,过G与AP作平面交平面BDM于H。

证明AP平行于GH。

6.在四棱锥P-ABCD中,PA垂直于底面ABCD,AB垂直于AD,AC垂直于CD,且∠ABC等于60度,PA等于AB等于BC,E是PC的中点。

证明:1) CD垂直于AE;2) PD垂直于平面ABE。

7.在四棱锥P-ABCD中,平面PAB垂直于平面ABCD,四边形ABCD为正方形,△PAB为等边三角形,E是PB的中点,平面AED与棱PC交于点F。

1) 证明AD平行于EF;2) 证明PB垂直于平面AEFD;3) 设四棱锥P-AEFD的体积为V1,四棱锥P-ABCD的体积为V2,求V1和V2的值。

8.在四棱锥P-ABCD中,底面ABCD是边长为a,∠DAB 等于60度的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,G为AD的中点。

江苏省2020届高三数学内部专题10.1 立几的基本定理、平面的基本性质

江苏省2020届高三数学内部专题10.1 立几的基本定理、平面的基本性质

第十章 立体几何§10.1 立几的基本定理、平面的基本性质【典题导引】例1.(1)以下四个命题中,正确的命题是________.①不共面的四点中,其中任意三点不共线;②若点,A B C D ,,共面,点,A B C E ,,共面,则,A B C D E ,,,共面; ③若直线,a b 共面,直线,a c 共面,则直线,b c 共面; ④依次首尾相接的四条线段必共面.(2)在正方体1111ABCD A B C D -中,,P Q R ,分别是11,AB AD B C ,的中点,那么正方体的过 P Q R ,,的截面图形是________边形.【跟踪】 下列如图所示是正方体和正四面体,P Q R S 、、、分别是所在棱的中点,则四个点共面的图形是________.例2.如图在正方体1111ABCD A B C D -中,E F 、分别是AB 和1AA 的中点.求证:(1)1E C D F 、、、四点共面; (2)1CE D F DA 、、三线共点.例3.在正方体1111ABCD A B C D -中,对角线1A C 与平面1BDC 交于点O ,AC BD ,交于点M ,求证:点1,C O M ,共线.例4.如图,正方体1111ABCD A B C D -中,E 为棱1DD 的中点. (1)求证:1//BD 平面ACE ;(2)求证:平面ACE ⊥平面11BB D .ABCD 1A 1B 1C 1DE【课后巩固】1.在平行六面体1111ABCD A B C D -中,既与AB 共面又与1CC 共面的棱的条数为________.2.给出以下命题:①和一条直线都相交的两条直线在同一平面内;②三条两两相交的直线在同一平面内;③有三个不同公共点的两个平面重合;④两两平行的三条直线确定三个平面.其中正确命题的个数是________.3.123,l l l ,是空间三条不同的直线,给出下列四个命题: ①122313,//l l l l l l ⊥⊥⇒; ②122313,//l l l l l l ⊥⇒⊥;③123123////l l l l l l ⇒,,共面; ④123,l l l ,共点123,l l l ⇒,共面. 其中正确命题的序号是________.4.在正方体1111ABCD A B C D -中,,E F 分别是棱1111,A B A D 的中点,则1A B 与EF 所成角的大小为________.5.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.6.如图,在正方体1111ABCD A B C D -中,,M N 分别为棱111,C D C C 的中点,有以下四个结论:①直线AM 与1CC 是相交直线;②直线AM 与BN 是平行直线; ③直线BN 与1MB 是异面直线; ④直线AM 与1DD 是异面直线. 其中正确的结论为________(注:把你认为正确的结论的序号都填上).7.对于不同的直线,m n 和不同的平面,,αβγ,有如下四个命题: ①若//m α,m n ⊥,则n α⊥; ②若m α⊥,m n ⊥,则//n α; ③若αβ⊥,γβ⊥,则//αγ;④若m α⊥,//m n ,n β⊂,则αβ⊥. 其中是真命题的是________.8.在正方体1111ABCD A B C D -中,,E F 分别为棱11,AA CC 的中点,则在空间中与三条直线11,,A D EF CD 都相交的直线有________条.9.如图,四边形ABEF 和ABCD 都是直角梯形,90BAD FAB ∠=∠=︒,12BC AD =且//BC AD ,12BE FA =且//BE FA ,,G H 分别为FA FD ,的中点.(1)证明:四边形BCHG 是平行四边形;(2),C D F E ,,四点是否共面?为什么?10.如图,正方体1111ABCD A B C D -中,E 为棱1DD 的中点. (1)求证:1//BD 平面ACE ;(2)求证:平面ACE ⊥平面11BB D .11.如图,在直四棱柱ABCD ﹣A 1B 1C 1D 1中, E ,F 分别是AB ,BC 的中点,A 1C 1 与B 1D 1交于点O .(1)求证:A 1,C 1,F ,E 四点共面;(2)若底面ABCD 是菱形,且OD ⊥A 1E ,求证:OD ⊥平面A 1C 1FE .(第11图)1EABA B C D 1A 1B 1C 1D E。

2020届高考数学专题:立体几何计算问题(答案不全)

2020届高考数学专题:立体几何计算问题(答案不全)

立体几何中的计算问题1.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;2.直观图——是观察着站在某一点观察一个空间几何体而画出的图形。

直观图通常是在平行投影下画出的空间图形。

3斜二测法:1.画直观图时,把它画成对应的轴'',''o x o y ,取'''45(135)x o y o r ∠=︒︒,它们确定的平面表示水平平面;2.在坐标系'''x o y 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。

结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的4倍. 例1.下列命题:①如果一个几何体的三视图是完全相同的,那么这个几何体是正方体;②如果一个几何体的主视图和俯视图都是矩形,那么这个几何体是长方体; ③如果一个几何体的三视图都是矩形,那么这个几何体是长方体;④如果一个几何体的主视图和左视图都是等腰梯形,那么这个几何体是圆台.其中正确的是( )A .①②B .③C .②③D .④ 2、异面直线所成的角(1)定义:a 、b 是两条异面直线,经过空间任意一点O ,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值范围:0°<θ≤90°. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小.例2.在长方体1111ABCD A B C D -中,11BC CC ==,13AD B π∠=,则直线1AB 与1BC 所成角的余弦值为( )ABCD【答案】D例3.直三棱柱ABC ﹣A 1B 1C 1中,若∠BAC=90°,AB=AC=AA 1,则异面直线 BA 1与AC 1所成的角为( ) A .60°B .90°C .120°D .150°例4.在四面体ABCD 中,AC 与BD 的夹角为30°,2AC =,BD =M ,N 分别是AB ,CD 的中点,则线段MN 的长度为________. 【答案】13.二面角 找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法 (iii)三垂线法(Ⅳ)根据特殊图形的性质 (4)求二面角大小的常见方法先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.例5.已知正三棱锥底面边长为2,侧棱长为3,则它的侧面与底面所成二面角的余弦值为________.【答案】12例6.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,E .F 分别为1A B ,1A C 的中点,D 为11B C 上的点,且11A D B C ⊥.(1)求证://EF 平面ABC . (2)求证:平面1A FD ⊥平面11BCC B .(3)若三棱柱所有棱长都为a ,求二面角111A B C C --的平面角的余弦值.【答案】(1)见解析;(2)见解析;(3)74.空间几何体的表面积、体积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+ 圆锥的表面积:2S rl r ππ=+圆台的表面积:22Srl r Rl Rππππ=+++扇形的面积公式2211=36022n R S lr r πα==扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积 :V S h =⨯底,锥体的体积 :13V S h =⨯底台体的体积 :1)3V S S h =+⨯下上( ,球体的体积:343V R π= 点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法: 1)直接利用定义求①找到(或作出)表示距离的线段; ②抓住线段(所求距离)所在三角形解之.2)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.例8.在长、宽、高分别为a b c ,,的长方体中,以它的各面的中心为顶点可得到一个八面体,则该八面体的体积为________.【答案】16abc例9.如图,在上、下底面对应边的比为1:2的三棱台中,过上底面的一边作一个平行于棱的平面11A B EF ,则这个平面分三棱台成两部分的体积之比为( ).A .1:2B .2:3C .3:4D .4:5【答案】C例10.如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA=AD=4,AB=2,以BD 的中点O 为球心、BD 为直径的球面交PD 于点M.⑴求证:平面ABM ⊥平面PCD ; (2)求点O 到平面ABM 的距离.【答案】(1)见解析(2)3例11.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,//FD EA,且112FD EA==.(1)求多面体EABCDF的体积;(2)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.【答案】(1)103V=多面体;(2)见解析.5.与球有关的组合体7-2 球的结构特征⑴球心与截面圆心的连线垂直于截面;⑵截面半径等于球半径与截面和球心的距离的平方差:r2 = R2– d2★7-3 球与其他多面体的组合体的问题球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是:⑴根据题意,确定是内接还是外切,画出立体图形;⑵找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图;⑶将立体问题转化为平面几何中圆与多边形的问题;例11.已知棱长为a的正四面体,其内切球的半径为r,外接球的半径为R,则:r R= ________.【答案】1:3例12.已知棱长为a的正方体,甲球是正方体的内切球,乙球是正方体的外接球,丙球与正方体的各棱都相切,则甲、乙、丙三球的表面积之比为().A.91:3:4B.1:3:2C.D.31:2【答案】B例13.已知,,,S A B C是球O表面上的点,SA⊥平面,,1,ABC AB BC SA AB BC⊥===则球O的体积为__________.例14.已知一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球.求:圆锥内切球的体积.(2)2563Vπ=立体几何中的计算问题一、三视图1.将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.【答案】B2.如图所示,A O B '''∆表示水平放置的AOB ∆的直观图,B '在x '轴上,A O ''与x '轴垂直,且2A O ''=,则AOB ∆的OB 边上的高为______.【答案】二、线线角3.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( ) A.3B.3C.4D.4【答案】D4.如图所示为一个正方体的展开图.对于原正方体,给出下列结论: ①AB 与EF 所在直线平行; ②AB 与CD 所在直线异面; ③MN 与BF 所在直线成60︒角;④MN 与CD 所在直线互相垂直. 其中正确结论的序号是________. 【答案】②④5.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1AA AB AC ==,AB AC ⊥,M 是1CC 的中点,Q 是BC 的中点,点P 在11A B 上,则直线PQ 与直线AM 所成的角为( ). A .30° B .45︒C .60︒D .90︒【答案】D 三、二面角问题二面角:关键是找出二面角的平面角。

2020届高三数学复习专题三《立体几何》学案

2020届高三数学复习专题三《立体几何》学案

专题三立体几何第1讲立体几何中的平行与垂直问题一、回归教材:1. (必修2P77习题1改编)设a,b,c表示不同的直线,α表示平面,下列命题中正确的是()A. 若a∥b,a∥α,则b∥αB. 若a⊥b,b⊥α,则a⊥αC. 若a⊥c,b⊥c,则a∥bD. 若a⊥α,b⊥α,则a∥b2. (必修2P53习题1改编)给出下列命题,其中错误命题的个数为()①若直线a与平面α不平行,则a与平面α内的所有直线都不平行;②若直线a与平面α不垂直,则a与平面α内的所有直线都不垂直;③若异面直线a,b不垂直,则过a的任何平面与b都不垂直;④若直线a和b共面,直线b和c共面,则直线a和直线c共面.A. 1B. 2C. 3D. 43. (必修2P82习题5改编)如图,在正四棱锥S-ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,给出下列四个结论:①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC.其中恒成立的结论是()A. ①③B. ③④C. ①②D. ②③④二、举题故法例1.(1) (2019·全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A. BM=EN,且直线BM,EN是相交直线B. BM≠EN,且直线BM,EN是相交直线C. BM=EN,且直线BM,EN是异面直线D. BM≠EN,且直线BM,EN是异面直线(2) 设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下面四个命题:①若α⊥β,β⊥γ,则α∥γ;②若α⊥β,m⊂α,n⊂β,则m⊥n;③若m∥α,n⊂α,则m∥n;④若α∥β,γ∩α=m,γ∩β=n,则m∥n. 其中正确命题的序号是()A. ①④B. ①②C. ④D. ②③④变式:(1) 已知互不重合的直线a,b,互不重合的平面α,β,给出下列四个命题,其中错误的命题是()A. 若a∥α,a∥β,α∩β=b,则a∥bB. 若α⊥β,a⊥α,b⊥β,则a⊥bC. 若α⊥β,α⊥γ,β∩γ=a,则a⊥αD. 若α∥β,a∥α,则a∥β(2) 在直三棱柱ABC-A′B′C′中,∠ABC=90°,AB=4,BC=2,BB′=5,则异面直线AC′与B′C所成角的余弦值为________.例2.如图,在三棱柱ABC-A1B1C1中,AB=AC,A1C⊥BC1,AB1⊥BC1,D,E分别是AB1和BC的中点.(1) 求证:DE∥平面ACC1A1;(2) 求证:AE⊥平面BCC1B1.变式:如图,在直三棱柱ABC-A1B1C1中,AB⊥AC,AC=AA1,D是棱AB的中点.(1) 求证:BC1∥平面A1CD;(2) 求证:BC1⊥A1C.例3. (2019·皖南八校三联)如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,点M 为PB 的中点,底面ABCD 为梯形,AB ∥CD ,AD ⊥CD ,AD =CD =PC =12AB .(1) 求证:CM ∥平面P AD ; (2) 若四棱锥P -ABCD 的体积为4,求点M 到平面P AD 的距离.变式:(2019·青岛二模)如图,在圆柱W 中,点O 1,O 2分别为上、下底面的圆心,平面MNFE 是轴截面,点H 在上底面圆周上(异于N ,F ),点G 为下底面圆弧ME 的中点,点H 与点G 在平面MNFE 的同侧,圆柱W 的底面半径为1,高为2.(1) 若平面FNH ⊥平面NHG ,求证:NG ⊥FH ;(2) 若直线O 1H ∥平面FGE ,求点H 到平面FGE 的距离.【巩固提升练习】1. (2019·全国卷Ⅱ)设α,β为两个平面,则α∥β的充要条件是()A. α内有无数条直线与β平行B. α内有两条相交直线与β平行C. α,β平行于同一条直线D. α,β垂直于同一平面2. 设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是()A. 若α⊥β,m⊥α,则m∥βB. 若m∥α,nα,则m∥nC. 若α∩β=m,n∥α,n∥β,则m∥nD. 若α⊥β,且α∩β=m,点A∈α,直线AB⊥m,则AB⊥β3. (2019·西安三检)将正方形ABCD沿对角线AC折起,并使得平面ABC垂直于平面ACD,直线AB与CD所成的角为()A. 90°B. 60°C. 45°D. 30°4. (2019·安庆示范中学联考)在正方体ABCDA1B1C1D1中,E为棱CD上一点,且CE=2DE,F为棱AA1的中点,且平面BEF与DD1交于点G,则B1G与平面ABCD所成角的正切值为()A.212 B.26 C.5212 D.5265. 已知直线m,n和平面α,β,且mα,nβ,则“m∥β,n∥α”是“α∥β”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)6. 已知直线a,b表示两条不同的直线,α表示一个平面,有下列几个命题:①若在直线a上存在不同的两点到α的距离相等,则a∥α;②若a⊥b,b∥α,则a⊥α;③若a∥α,b α,则a∥b;④若a与α所成的角和b与α所成的角相等,则a∥b;⑤若a∥b,b⊥α,则a⊥α.其中正确的命题是________.(填序号)7. (2019·中原名校联考)如图,在正四面体ABCD中,E是棱AD上靠近点D的一个三等分点,则异面直线AB和CE所成角的余弦值为________.8. (2019·全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图(1)).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图(2)是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________.9. (2019·莆田二模)如图,在多面体ABCC1B1A1中,四边形BB1C1C为矩形,AB=BC=5,CC1⊥平面ABC,AA1∥CC1,2AA1=CC1=AC=2,E,F分别是A1C1,AC的中点,G是线段BB1上的任一点.(1) 求证:AC⊥EG;(2) 求三棱锥FEA1G的体积.10. (2019·蚌埠一检)如图,在四棱锥P ABCD中,AC与BD交于点O,△ABC为直角三角形,△ACD,△P AB,△PBC均为等边三角形.(1) 求证:PO⊥BD;(2) 求二面角APDC的余弦值.第2讲 立体几何中的计算问题一、回归教材:1. (选修2-1P92练习7)如图,在正三棱柱ABC -A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成角的大小为( )A. 60°B. 90°C. 105°D. 75°2. 2. (选修2-1P118复习题7)已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 的值是( )A. 1B. 15C. 35D. 753. (选修2-1P107练习2)如图,60°的二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =2,AC =3,BD =4,则CD 的长为________.4. (选修2-1P105例1)如图,一个结晶体的形状为平行六面体,其中以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60°,则AC 1AB=________.第1题 第2题 第3题二、举题故法 例1.(2019·宣城二调)如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD ∥CB ,∠ADC =90°,平面P AD ⊥底面ABCD ,Q 为AD 的中点,BC =12AD ,M 是棱PC 上的点. (1) 求证:平面PQB ⊥平面P AD ;(2)若P A =PD =2,BC =1,CD =3,异面直线AP 与BM 所成角的余弦值为277,求PM PC的值.例2.(2019·深圳适应性测试)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PD=PB,H为PC上的点,过AH的平面分别交PB,PD于点M,N,且BD∥平面AMHN.(1) 求证:MN⊥PC;(2) 当H为PC的中点,P A=PC=3AB,P A与平面ABCD所成的角为60°时,求AD与平面AMHN所成角的正弦值.例3. (2019·全国卷Ⅰ)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1) 求证:MN∥平面C1DE;(2) 求二面角A-MA1-N的正弦值.变式:(2019·长沙一模)如图,圆O 的直径AB =6,C 为圆周上一点,BC =3,平面P AC 垂直于圆O 所在的平面,直线PC 与圆O 所在平面所成角为60°,P A ⊥PC .(1) 求证:AP ⊥平面PBC ;(2) 求二面角P -AB -C 的余弦值.例4. (2019·宁德二检)如图,在四棱锥P -ABCD 中,AB ∥DC ,∠ADC =π2,AB =AD =12CD =2,PD =PB =6,PD ⊥BC . (1) 求证:平面PBD ⊥平面PBC ;(2) 在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为π3?若存在,求CM CP的值;若不存在,请说明理由.【巩固提升练习】1. 如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE ⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥E C.(1) 求证:平面AEC⊥平面AFC;(2) 求直线AE与直线CF所成角的余弦值.2. (2019·郴州二检)如图,在四棱锥SABCD中,底面ABCD是正方形,对角线AC与BD交于点F,侧面SBC是边长为2的等边三角形,E为SB的中点.(1) 求证:SD∥平面AEC;(2) 若侧面SBC⊥底面ABCD,求斜线AE与平面SBD所成角的正弦值.3. 如图,在四棱锥P ABCD 中,底面ABCD 是边长为2的菱形,∠DAB =60°,∠ADP =90°,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(1) 在棱AB 上是否存在一点E ,使得AF ∥平面PCE ?并说明理由;(2) 当二面角DFCB 的余弦值为24时,求直线PB 与平面ABCD 所成的角.4. (2019·怀化三模)如图,在斜三棱柱ABCA 1B 1C 1中,侧面A 1ABB 1⊥底面ABC ,侧棱A 1A 与底面ABC 所成的角为60°,AA 1=AB =2,底面△ABC 是以∠ABC 为直角的等腰直角三角形,点G 为△ABC 的重心,点E 在BC 1上,且BE =13BC 1. (1) 求证:GE ∥平面A 1ABB 1;(2) 求平面B 1GE 与平面ABC 所成锐二面角的余弦值.115. 如图,在直三棱柱ABCA 1B 1C 1中,点D 是棱B 1C 1的中点.(1) 求证:AC 1∥平面A 1BD ;(2)若AB =AC =2 ,BC =BB 1=2,在棱AC 上是否存在点M ,使二面角BA 1DM 的大小为45°?若存在,求出AM AC的值;若不存在,请说明理由.6. (2019·长沙二模)如图,四棱锥P ABCD 的底面是直角梯形,AB ∥DC ,AB ⊥BC ,△P AB 和△PBC 是两个边长为2的正三角形,DC =4,O 为AC 的中点,E 为PB 的中点.(1) 求证:OE ∥平面PCD ;(2) 在线段DP 上是否存在一点Q ,使直线BQ 与平面PCD 所成角的正弦值为23?若存在,求出点Q 的位置;若不存在,请说明理由.。

立体几何中的截面解析版

立体几何中的截面解析版

专题13 立体几何中的截面1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体〔包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等〕,得到的平面图形,叫截面。

其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。

最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。

2、正六面体的根本斜截面:3、圆柱体的根本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。

技能1.结合线、面平行的判定定理与性质性质求截面问题; 技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;技能3.猜测法求最值问题:要灵活运用一些特殊图形与几何体的特征,"动中找静〞:如正三角形、正六边形、正三棱锥等;技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。

例1 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能...是〔〕分析考虑过球心的平面在转动过中,平面在球的内接正方体上截得的截面不可能是大圆的内接正方形,应选D 。

例2 如图,在透明的塑料制成的长方体ABCD-A 1B 1C 1D 1容器内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜程度的不同,有以下四个命题: ① 水的局部始终呈棱柱状; ② 水面EFGH 的面积不改变; ③ 棱A 1D 1始终与水面EFGH 平行;ACBD④ 当容器倾斜到如图5〔2〕时,BE·BF 是定值; 其中正确的命题序号是______________分析当长方体容器绕BC 边转动时,盛水局部的几何体始终满足棱柱定义,故①正确;在转动过程中EH//FG ,但EH 与FG 的距离EF 在变,所以水面EFGH 的面积在改变,故②错误;在转动过程中,始终有BC//FG//A 1D 1,所以A 1D 1//面EFGH ,③正确;当容器转动到水局部呈直三棱柱时如图5〔2〕,因为BC BF BE V ⋅⋅=21水是定值,又BC 是定值,所以BE·BF 是定值,即④正确。

立体几何测试题(文科)

立体几何测试题(文科)

立体几何文科试题一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、设有直线m 、n 和平面α、β.下列四个命题中,正确的是( )A.若m ∥α,n ∥α,则m ∥nB.若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC.若α⊥β,m ⊂α,则m ⊥βD.若α⊥β,m ⊥β,m ⊄α,则m ∥α 2、已知直线,l m与平面αβγ,,满足//l l m βγαα=⊂ ,,和mγ⊥,则有A .αγ⊥且l m⊥ B .αγ⊥且//m β C .//m β且lm⊥ D .//αβ且αγ⊥3.若()0,1,1a =- ,()1,1,0b = ,且()a b a λ+⊥,则实数λ的值是( )A .-1 B.0 C.1 D.-24、已知平面α⊥平面β,α∩β= l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是( ) A. AB ∥m B. AC ⊥m C. AB ∥β D. AC ⊥β5一个几何体的三视图及长度数据如图,则几何体的表面积与体积分别为()3,27+A ()328,+B()2327,+C ()23,28+D6、已知长方体的表面积是224cm ,过同一顶点的三条棱长之和是6cm ,则它的对角线长是( )A. B. 4cm C. D.7、已知圆锥的母线长5l cm =,高4h cm =,则该圆锥的体积是____________3cmA. 12π B 8π C. 13π D. 16π8、某几何体的三视图如图所示,当ba +取最大值时,这个几何体的体积为 ( )A .61 B .31 C .32 D .219、已知,,,A B C D 在同一个球面上,,AB BCD ⊥平面,BC CD ⊥若6,AB =AC =8A D =,则,B C 两点间的球面距离是 ( )A. 3πB. 43π C. 23π D. 53π10、四面体A B C D 的外接球球心在C D 上,且2C D =,3=AB ,在外接球面上A B ,两点间的球面距离是( ) A .π6B .π3C .2π3D .5π611、半径为2cm 的半圆纸片做成圆锥放在桌面上,一阵风吹倒它,它的最高处距桌面( ) A .4cmB .2cmC .cm 32D .cm 312、 有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示.如果记3的对面的数字为m ,4的对面的数字为n ,那么m+n 的值为( ) A .3B .7C .8D .11二.填空题:本大题共4个小题。

高三数学专项训练:立体几何解答题(三)(文科)

高三数学专项训练:立体几何解答题(三)(文科)

中,CA CB =,1AB AA =,160BAA Ð=。

(Ⅰ)证明:1AB A C ^;(Ⅱ)若2AB CB ==,16A C =高三数学专项训练:立体几何解答题(三)(文科)1.如图,在.如图,在四棱锥四棱锥A-BCDE 中,侧面∆ADE 是等边三角形,底面BCDE 是等腰是等腰梯形梯形,且CD ∥BE,DE=2BE,DE=2,,CD=4,60CDE Ð=° ,M 是DE 的中点,F 是AC 的中点,且AC=4AC=4,,求证:(1)平面ADE ADE⊥平面⊥平面BCD;BCD;(2)FB (2)FB∥平面∥平面ADE. ADE.2.(本小题满分12分)如图,分)如图,三棱柱三棱柱111ABC A B C -,求三棱柱111ABC A B C -的体积。

45..如图,三棱锥P ABC -中,90ABC °Ð=,PA ABC ^底面(Ⅰ)求证:PAC PBC ^平面平面;(Ⅱ)若AC BC PA ==,M 是PB 的中点,求AM 3.如图,在.如图,在四棱锥四棱锥P -ABCD 中,中,PD PD PD⊥⊥平面ABCD ABCD,,AB AB∥∥DC DC,已知,已知BD BD==2AD 2AD==2PD 2PD==8,AB =2DC 2DC==(Ⅰ)设M 是PC 上一点,证明:平面MBD MBD⊥平面⊥平面PAD PAD;;(Ⅱ)若M 是PC 的中点,求棱锥P -DMB 的体积.4与平面PBC 所成角的所成角的正切正切值5中,CB DA 、是梯形的高,2AE BF ==,22AB =,现将梯形沿CB DA 、折起,使//EF AB ,且2E F A B =如图所示,已知M N P 、、(1)求证://MN6^PA 底面ABCD ,F E ,分别是PB AC ,的中点的中点. . .PFEDC B A(1)求证://EF 平面PCD ;(2)求证:平面^PBD 平面PAC ;(3)若AB PA =,求PD 与平面PAC 所成的角的大小所成的角的大小. . ..如图,在等腰.如图,在等腰梯形梯形CDEF ,得一简单,得一简单组合组合体ABCDEF 分别为,,AF BD EF 的中点平面BCF ;(2)求证:AP ^平面DAE ..如图,.如图,四棱锥四棱锥ABCD P -的底面ABCD 为正方形,7中,2AB BC =,点M 在边CD 上,点F 在边AB 上,且DF AM^,垂足为E ,若将ADM D 沿AM 折起,使点ABCM D -¢.(Ⅰ)求证:F D AM p ,求直线D8.如图,在四棱锥-P .如图,在.如图,在矩形矩形ABCD D 位于D ¢位置,连接B D ¢,C D ¢得四棱锥¢^;(Ⅱ)若3p =¢ÐEF D ,直线F D ¢与平面ABCM 所成角的大小为3A ¢与平面ABCM 所成角的所成角的正弦正弦值.值.ABCD 中,四边形ABCD 是菱形,PA PC =,E 为PB 的中点.(Ⅰ)求证:PD ∥平面AEC ;(Ⅱ)求证:平面AEC ^平面PBD .-的中点,E 为PA 的中点.的中点.ADO C PBEMNC C 1B 1A 1BA9.如图,在直.如图,在直三棱柱三棱柱ABC ABC--A 1B 1C 1中,点M 是A 1B 的中点,点N 是B 1C 的中点,连接MN MN(Ⅰ)证明:(Ⅰ)证明:MN//MN//MN//平面平面ABC ABC;; (Ⅱ)若AB=1AB=1,,AC=AA 1=3,BC=2BC=2,求二面角,求二面角A —A 1C —B 的余弦值的大小值的大小1010..如图,四棱锥P ABCD 的底面是直角的底面是直角梯形梯形,//AB CD ,AB AD ^,PAB D 和PADD 是两个边长为2的正三角形,4DC =,O 为BD (Ⅰ)求证:PO ^平面ABCD ;(Ⅱ)求证://OE 平面PDC ;(Ⅲ)求(Ⅲ)求直线直线CB 与平面PDC 所成角的所成角的正弦正弦值.11中,底面ABED 、090ADC Ð=,12BC CD AD ==,PA PD =,,EF .A B C -中,点D 是BC 的中点的中点..(Ⅰ)求证(Ⅰ)求证: : AD ^平面11BCC B ;(Ⅱ)求证(Ⅱ)求证: : 1A C 平面1AB D .A BCDA 1B 1C 1.在.在四棱锥四棱锥P ABCD -为直角为直角梯形梯形,//BC AD 为,AD PC 的中点.(1)求证://PA 平面BEF ;(2)求证:AD PB ^1212.如图,正.如图,正.如图,正三棱柱三棱柱111ABC13.如图,在多面体ABCDFE 中,四边形ABCD 是矩形,AB ∥EF , 902=Ð=EAB EF AB,(1)若G 点是DC )求证:BAF DAF 面面^.(3)若,2,1===AB AD AE ,平面ABCD ABFE 平面^.中点,求证:AED FG 面//.(2求的体积三棱锥AFC D -.∴,3AM DE AM ^=,∵在∆DMC 中,中,DM=1DM=1DM=1,,60CDE Ð=°,CD=4,CD=4,,∴22241241cos6013MC =+-´´×°= ,即MC=13.在∆AMC 中,222222(3)(13)4AM MC AC +=+==∴AM AM⊥⊥MC,MC,又∵,AM DE ^MC DE M = , , ∴∴AM ^平面BCD,BCD,∵AM Í平面ADE, ADE, ∴平面∴平面ADE ADE⊥平面⊥平面BCD.BCD.(2)取DC 的中点N ,连结FN,NB,FN,NB,∵F,N 分别是AC AC,,DC 的中点,∴的中点,∴FN FN FN∥∥AD,AD,由因为由因为FN Ë平面ADE,AD Í平面ADE, ADE, ∴∴FN FN∥平面∥平面ADE,ADE,∵N 是DC 的中点,∴的中点,∴BC=NC=2BC=NC=2BC=NC=2,又,又60CDE Ð=°,∴∆BCN 是等边三角形,∴是等边三角形,∴BN BN BN∥∥DE,DE, 由BN Ë平面ADE,ED Í平面ADE, ADE, ∴∴BN BN∥平面∥平面ADE,ADE,∵FN BN N = , , ∴平面∴平面ADE ADE∥平面∥平面FNB,FNB,∵FB Í平面FNB, FNB, ∴∴FB FB∥平面∥平面ADE.ADE.考点:考点:1.1. 1.直线与平面垂直的判定;直线与平面垂直的判定;直线与平面垂直的判定;2.2.2.平面一平面垂直的判定;平面一平面垂直的判定;平面一平面垂直的判定;3.3.3.直线与平面平行的判定直线与平面平行的判定直线与平面平行的判定..2.(1)取AB 的中点O ,连接1OC O 、1OA O 、1A B ,因为CA=CB CA=CB,所以,所以OC AB ^,由于AB=AA 1,∠,∠BA A BA A 1=600,所以1OA AB ^,所以AB ^平面1OAC ,因为1A C Ì平面1OAC ,所以AB AB⊥⊥A 1C ;(2)因为221A C OC =因为ABC D 为等边三角形,所以3CO =,底面积1232232S =´´=高三数学专项训练:立体几何解答题(三)(文科)参考答案1.(1)证明详见解析;(2)证明详见解析 【解析】【解析】试题分析:(1)首先根据直线与平民啊垂直的)首先根据直线与平民啊垂直的判定定理判定定理证明AM ^平面BCD,BCD,然后再根据平面垂直的判定定理证明平面ADE ADE⊥平面⊥平面BCD BCD;;(2),取DC 的中点N ,首先证FN ∥平面ADE,ADE,然后再证∴然后再证∴然后再证∴BN BN BN∥平面∥平面ADE,ADE,再根据平面与平民啊平行的判定定理证明∴平面再根据平面与平民啊平行的判定定理证明∴平面ADE ∥平面FNB,FNB,最后由面面平行的性质即可最后由面面平行的性质即可最后由面面平行的性质即可..试题解析:(1)∵∆ADE 是等边三角形,,M 是DE 的中点,的中点,,所以,所以体积体积123323V =´´=(Ⅱ)163P DMB V -=. 【解析】【解析】试题分析:试题解析:(I )证明:在ABD D 中,由于4,8,45A D B D A B ===,所以222AD BD AB +=.故AD BD ^。

2020届成都市高三文科数学复习—极坐标参数方程与空间几何

2020届成都市高三文科数学复习—极坐标参数方程与空间几何

2020届成都市高三文科数学复习—解答题专练重点:极坐标与参数方程 空间几何 三角函数 数列 概率统计1、在直角坐标系xOy中,过点32P ⎫⎪⎪⎭作倾斜角为α的直线l 与曲线22:1C x y +=相交于不同的两点,M N 。

(1)写出直线l 的参数方程;(2)求11PM PN+的取值范围。

2.在平面直角坐标系xOy 中,倾斜角为2παα⎛⎫≠⎪⎝⎭的直线l的参数方程为2cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数)与曲线C :2cos sin x y θθ=⎧⎨=⎩(θ为参数)相交于不同的两点A,B.(1)若3πα=,求线段AB 的中点M 的坐标;(2)已知点(P .若2PA PB PO ⋅=,求直线l 的斜率.3. 在平面直角坐标系xOy 中曲线221:1C x y +=经伸缩变换222x xy y⎧=⎨=⎩后得到曲线2C ,在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线3C 的极坐标方程为86sin ρρθ-=-.(1)求曲线2C 的参数方程和3C 的直角坐标方程;(2)设M 为曲线2C 上的一点,又M 向曲线3C 引切线,切点为N ,求||MN 的最大值.4. 以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为()2213sin 4ρθ+=.(1)求曲线C 的参数方程;(2)若曲线与x 轴的正半轴及y 轴的正半轴分别交于点A ,B ,在曲线C 上任取一点P ,且点P 在第一象限,求四边形OAPB 面积的最大值.5. 已知直线l的参数方程为3 2.x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin ,[0,2)ρθθ=∈π.(Ⅰ)求直线l 与曲线C 的直角坐标方程;(Ⅱ)在曲线C 上求一点D ,使得它到直线l 的距离最短.6.已知曲线C的参数方程为21x y αα⎧=+⎪⎨=⎪⎩(α为参数),以直角坐标系原点O 为极点,x 轴正半轴为极轴建立极坐标系.(Ⅰ)求曲线C 的极坐标方程;(Ⅱ)设12::63l l ππθθ==,,若l 1 、l 2与曲线C 相交于异于原点的两点 A 、B ,求△AOB 的面积.7.在直角坐标坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴,建立极坐标系, 圆C 的极坐标方程为cos 4ρθ=.(Ⅰ)M 为曲线C16OP ⋅=,求点P 的轨迹方程C 1;(2)设点A 的极坐标为2,3π⎛⎫⎪⎝⎭,点B 在曲线C 1上,求三角形OAB 面积的最大值;8.在平面直角坐标系xOy 中,已知直线l 的参数方程为2cos 324sin3x t y t ππ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是4ρ=。

2020高考精品系列之数学(文)专题11 立体几何解答题(原卷版)

2020高考精品系列之数学(文)专题11 立体几何解答题(原卷版)

专题11立体几何解答题考纲解读三年高考分析1、对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.对于探索性问题用向量法比较容易入手.一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若有解且满足题意则存在,若有解但不满足题意或无解则不存在.2、空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.3、空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两互相垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.垂直关系的证明和平行关系的证明是考查的重点,解题时常用到平行判定定理、垂直判定定理、垂直性质定理、平行性质定理,考查学生的数学逻辑推理能力、数学运算能力、直观想象能力,题型以选择填空题和解答题为主,中等难度.1、直线、平面平行的判定及其性质是高考中的重点考查内容,涉及线线平行、线面平行、面面平行的判定及其应用等内容.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.2、直线、平面垂直的判定及其性质是高考中的重点考查内容,涉及线线垂直、线面垂直、面面垂直的判定及其应用等内容.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.1.【2019年天津文科17】如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面P AC⊥平面PCD,P A⊥CD,CD=2,AD=3.(Ⅰ)设G,H分别为PB,AC的中点,求证:GH∥平面P AD;(Ⅱ)求证:P A⊥平面PCD;(Ⅲ)求直线AD与平面P AC所成角的正弦值.2.【2019年新课标3文科19】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.3.【2019年新课标2文科17】如图,长方体ABCD﹣A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E﹣BB1C1C的体积.4.【2019年新课标1文科19】如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.5.【2019年北京文科18】如图,在四棱锥P﹣ABCD中,P A⊥平面ABCD,底面ABCD为菱形,E 为CD的中点.(Ⅰ)求证:BD⊥平面P AC;(Ⅱ)若∠ABC=60°,求证:平面P AB⊥平面P AE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面P AE?说明理由.6.【2018年新课标2文科19】如图,在三棱锥P﹣ABC中,AB=BC=2,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.7.【2018年新课标1文科18】如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC 为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ DA,求三棱锥Q﹣ABP的体积.8.【2018年新课标3文科19】如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.9.【2018年北京文科18】如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面P AB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.10.【2018年天津文科17】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.11.【2017年新课标2文科18】如图,四棱锥P﹣ABCD中,侧面P AD为等边三角形且垂直于底面ABCD,AB=BC AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面P AD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.12.【2017年新课标1文科18】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面P AB⊥平面P AD;(2)若P A=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.13.【2017年新课标3文科19】如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.14.【2017年北京文科18】如图,在三棱锥P﹣ABC中,P A⊥AB,P A⊥BC,AB⊥BC,P A=AB=BC =2,D为线段AC的中点,E为线段PC上一点.(1)求证:P A⊥BD;(2)求证:平面BDE⊥平面P AC;(3)当P A∥平面BDE时,求三棱锥E﹣BCD的体积.15.【2017年天津文科17】如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD =1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.1.【2019年湖南省娄底市高三上学期期末】如图1,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,22AB CD BC ==,BD 为梯形对角线,将梯形中的ABD ∆部分沿AB 翻折至ABE 位置,使ABE∆所在平面与原梯形所在平面垂直(如图2).(1)求证:平面AED ⊥平面BCE ;(2)探究线段EA 上是否存在点P ,使//EC 平面PBD ?若存在,求出EPEA;若不存在说明理由. 2.【四川省威远中学2020届高三上学期第一次月考】如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.(1)若D 为线段AC 的中点,求证:AC ⊥平面PDO ; (2)求三棱锥P -ABC 体积的最大值; (3)若,点E 在线段PB 上,求CE +OE 的最小值.3.【2019年山西重点中学协作体高三暑假联考】如图,在等腰梯形ABCD 中,AB CD ∥,1AD DC CB ===,60ABC =︒,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =.(1)求证:BC ⊥平面ACFE ; (2)求多面体ABCDEF 的体积.4.【2020年四川省雅安市雨城区雅安中学高三上学期开学摸底】如图,已知多面体ABCDEF 中,ABD ∆、ADE ∆均为正三角形,平面ADE ⊥平面ABCD ,AB CD EF P P ,::2:3:4AD EF CD =. (Ⅰ)求证:BD ⊥平面BFC ; (Ⅱ)若2AD =,求该多面体的体积.5.【安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试】如图所示,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,160,CBB A ∠=o在侧面11BB C C 上的投影恰为1B C 的中点O .(1) 证明:1B C AB ⊥; (2) 若1ACAB ⊥,且三棱柱111ABC A B C -的体积为38,求三棱柱111ABC A B C -的高.6.【湖南省衡阳市第八中学2020届高三上学期月考(二)】如图,在五面体ABCDFE 中,侧面ABCD 是正方形,ABE ∆是等腰直角三角形,点O 是正方形ABCD 对角线的交点EA EB =,26AD EF ==且//EF AD .(1)证明://OF 平面ABE ;(2)若侧面ABCD 与底面ABE 垂直,求五面体ABCDFE 的体积.7.【江西省南昌市2020届高三上学期开学摸底考试】如图,已知直三棱柱111ABC A B C -中,AB AC ⊥,12AB AC AA ===,E 是BC 的中点,F 是1A E 上一点,且12A F FE =.(Ⅰ)证明:AF⊥平面1A BC ;(Ⅱ)求三棱锥11C A FC -的体积.8.【2020年安徽省江淮十校高三第一次联考】如图,在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥底面ABCD ,2SA AB ==,AE SC ⊥,垂足为E ,点A 在面SDC 上的投影为F 。

四川省成都市龙泉驿区2020届高三统一模拟考生数学(文史类)参考答案

四川省成都市龙泉驿区2020届高三统一模拟考生数学(文史类)参考答案




··················································· 1,
2分
又因为解集为 (, 1] [1, ) ,
所以 1 1 2 .································································5 分

122 3
4 3

所以三棱锥 P DBE 的体积为 4 . 3
…………… 12 分
e 20.解:(1)由已知可得 b
c a
1

3 2

a2 b2 c2

∴a 2,b 1,
∴椭圆 的方程 x2 y2 1. 4
…………… 4 分
(2)设点 P、Q 的坐标分别为 x1, y1 , x2 , y2 ,弦 PQ 的中点为 Rx0 , y0 ,
,2 4, .······································································ 10 分
(其它解法的参照相应步骤给分)
4
四边形 FABE 为平行四边形.
…………… 4 分
BE / / AF , AF 平面 PAD , EF 平面 PAD
BE // 面PAD
…………… 6 分
(2)作 BH PC 于 H, 在等腰梯形 PABC 中, AB // PC, AD PC , AB AD 2,PC 6 ,
(2)不等式 f (x) x a 0 x 3 x a 1 ,··························6 分

高三数学立体几何试题答案及解析

高三数学立体几何试题答案及解析

高三数学立体几何试题答案及解析1.如图,设为正四面体表面(含棱)上与顶点不重合的一点,由点到四个顶点的距离组成的集合记为,如果集合中有且只有个元素,那么符合条件的点有()A.个B.个C.个D.个【答案】C【解析】分以下两种情况讨论:(1)点到其中两个点的距离相等,到另外两点的距离分别相等,且这两个距离不等,此时点位于正四面体各棱的中点,符合条件的有个点;(2)点到其中三个点的距离相等,到另外一点的距离与它到其它三点的距离不相等,此时点在正四面体各侧面的中心点,符合条件的有个点,故选C.【考点】新定义2.在等腰三角形中,点是边上异于的一点,光线从点出发,经发射后又回到原点(如图).若光线经过的中心,则等于()A.B.C.D.【答案】D;【解析】以A为原点,AB所在直线为x轴,AC所在直线为y轴建立直角坐标系,所以等腰三角形ABC的中心坐标为,因为光线从点出发,经发射后又回到原点,故点P为三角新ABC的中心在底边AB上的投影,所以AP=.3.已知三棱锥的三视图,则该三棱锥的体积是()A.B.C.D.【答案】B【解析】如图所示,,点P在侧面ABC的射影为O,.∴该三棱锥的体积.故选:B.【考点】由三视图求面积、体积.4.(本题满分12分)如图,在三棱锥底面ABC,且SB=分别是SA、SC的中点.(Ⅰ)求证:平面平面BCD;(Ⅱ)求二面角的平面角的大小.【答案】(Ⅰ)证明过程详见解析;(Ⅱ).【解析】(Ⅰ)已知SB、AB、BC两两互相垂直,故可建立空间直角坐标系如下图.根据线段长度可求出相应点的坐标,从而可推出,则,所以平面平面BCD.(Ⅱ)求出两个平面的法向量,利用法向量夹角与二面角平面角的关系求出平面角的大小.试题解析:(Ⅰ).又因,所以建立如上图所示的坐标系.所以A(2,0,0),,D(1,0,1),,S(0,0,2)易得,,,又,又又因,所以平面平面BCD.(Ⅱ)又设平面BDE的法向量为,则所以又因平面SBD的法向量为所以所以二面角的平面角的大小为.【考点】•平面与平面的垂直的证明 二面角大小的求法.5.(本小题满分12分)直三棱柱中,,,分别是、的中点,,为棱上的点.(1)证明:;(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.【答案】(1)证明见解析;(2)存在,点为中点.【解析】(1)先证明AB⊥AC,然后以A为原点建立空间直角坐标系A-xyz,则能写出各点坐标,由共线可得D(λ,0,1),所以,即DF⊥AE;(2)通过计算,面DEF的法向量为可写成,=(3,1+2λ,2(1-λ)),又面ABC的法向量=(0,0,1),令,解出λ的值即可.试题解析:(1)证明:,又,面又面以为原点建立如图所示的空间直角坐标系则,,,,设,且,即:(2)假设存在,设面的法向量为,则即:令由题可知面的法向量平面与平面所成锐二面角的余弦值为即:或(舍)当点为中点时,满足要求.【考点】1、二面角的平面角及求法;2、直线与平面垂直的性质.【方法点晴】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.6.已知是矩形,分别是线段的中点,平面.(1)求证:平面;(2)若在棱上存在一点,使得平面,求的值.【答案】(1)详见解析;(2)【解析】(1)通过证明,然后再利用线面垂直的判定定理,即可证明平面;(2)过作交于,则平面,且.再过作交于,所以平面,且,所以平面平面,进而满足题意.试题解析:(1)在矩形中,因为,点是的中点,所以.所以,即.又平面,所以,所以平面.(2)过作交于,则平面,且.再过作交于,所以平面,且.所以平面平面,所以平面,从而点满足.【考点】1.线面垂直的判定定理;2.面面平行的判定定理和性质定理.7.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】B【解析】根据三视图知几何体的下面是一个圆柱,上面是圆柱的一半,所以.故应选B.【考点】空间几何体的三视图.8.(2015•汕头二模)某师傅用铁皮制作一封闭的工件,其三视图如图所示(单位长度:cm,图中水平线与竖线垂直),则制作该工件用去的铁皮的面积为(制作过程铁皮的损耗和厚度忽略不计)()A.100(3+)cm2B.200(3+)cm2C.300(3+)cm2D.300cm2【答案】A【解析】本题以实际应用题为背景考查立体几何中的三视图.由三视图可知,该几何体的形状如图,它是底面为正方形,各个侧面均为直角三角形[的四棱锥,用去的铁皮的面积即该棱锥的表面积解:由三视图可知,该几何体的形状如图,它是底面为正方形,各个侧面均为直角三角形的四棱锥,用去的铁皮的面积即该棱锥的表面积,其底面边长为10,故底面面积为10×10=100,与底面垂直的两个侧面是全等的直角,两直角连年长度分别为10,20,故它们的面积皆为100,另两个侧面也是全等的直角三角形,两直角边中一边是底面正方形的边长10,另一边可在与底面垂直的直角三角形中求得,其长为=10,故此两侧面的面积皆为50,故此四棱锥的表面积为S=100(3+)cm2.故选:A【考点】由三视图求面积、体积.9.如图,在直四棱柱中,底面是边长为1的正方形,侧棱,是侧棱的中点.(1)求证:平面⊥平面;(2)求二面角的正切值.【答案】(1)见解析;(2).【解析】(1)易证得为等腰直角三角形,从而得到,又由直四棱柱的性质可得到,进而可使问题得证;(2)方法一:过点作于,过作于,则就是二面角的平面角,然后在中求得,从而求得,再在中求得,最后在中即可求得所求二面角的正切值;方法二:以为原点建立空间直角坐标系,分别求得平面与平面的一个法向量,从而利用空间夹角公式求解即可.试题解析:(1)证明:如图,在矩形中,E为中点且,,所以,所以为等腰直角三角形,所以.在直四棱柱中,因为底面是边长为1的正方形,所以平面.又因为平面,所以,所以平面又因为平面,所以平面⊥平面(2)解:方法一:因为平面,所以平面⊥平面,所以只需在平面内过点作于,而平面.如图,过作于,连接,则就是二面角的平面角.在中,,所以.在中,在中,.所以二面角的平面角的正切值大小为方法二:以为原点,,,分别为轴建立如图所示的空间直角坐标系.由题意,,,,,,,,,设平面的一个法向量为,则,同理可得,平面的一个法向量为,代入公式有:,所以二面角的平面角的正切值大小为【考点】1、空间垂直关系的判定;2、二面角.10.(2015秋•扬州期末)已知正四棱锥底面边长为,体积为32,则此四棱锥的侧棱长为.【答案】5【解析】利用体积求出正四棱锥的高,求出底面对角线的长,然后求解侧棱长.解:正四棱锥底面边长为,体积为32,可得正四棱锥的高为h,=32,解得h=3,底面对角线的长为:4=8,侧棱长为:=5.故答案为:5.【考点】棱柱、棱锥、棱台的体积;点、线、面间的距离计算.11.(2010•江苏二模)如图,在四边形ABCD中,CA=CD=AB=1,=1,sin∠BCD=.(1)求BC的长;(2)求四边形ABCD的面积;(3)求sinD的值.【答案】(1)BC=;(2);(3)【解析】(1)根据题意可分别求得AC,CD和AB,利用=1,利用向量的数量积的性质求得cos∠BAC的值,进而求得∠BAC,进而利用余弦定理求得BC的长.(2)根据(1)可求得BC2+AC2=AB2.判断出∴∠ACB=,进而在直角三角形中求得cos∠ACD的值,利用同角三角函数的基本关系气的sin∠ACD,然后利用三角形面积公式求得三角形ABC和ACD的面积,二者相加即可求得答案.(3)在△ACD中利用余弦定理求得AD的长,最后利用正弦定理求得sinD的值.解:(1)由条件,得AC=CD=1,AB=2. ∵=1,∴1×2×cos ∠BAC=1.则cos ∠BAC=.∵∠BAC ∈(0,π),∴∠BAC=.∴BC 2=AB 2+AC 2﹣2AB•ACcos ∠BAC=4+1﹣2×2×=3.∴BC=.(2)由(1)得BC 2+AC 2=AB 2. ∴∠ACB=.∴sin ∠BCD==. ∵∠ACD ∈∈(0,π),∴.∴S △ACD =×1×1×=. ∴S 四边形ABCD =S △ABC +S △ACD =.(3)在△ACD 中,AD 2=AC 2+DC 2﹣2AC•DCcos ∠ACD=1+1﹣2×1×1×=. ∴AD=.∵,∴. 【考点】解三角形的实际应用.12. (2014•阳泉二模)某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的体积为( )A .B .3πC .D .π【答案】C【解析】由于正视图、侧视图、俯视图都是边长为1的正方形,所以此四面体一定可以放在棱长为1的正方体中,所以此四面体的外接球即为此正方体的外接球,由此能求出此四面体的外接球的体积.解:由于正视图、侧视图、俯视图都是边长为1的正方形, 所以此四面体一定可以放在正方体中, 所以我们可以在正方体中寻找此四面体. 如图所示,四面体ABCD 满足题意,所以此四面体的外接球即为此正方体的外接球,由题意可知,正方体的棱长为1,所以外接球的半径为R=,所以此四面体的外接球的体积V==.故选C.【考点】由三视图求面积、体积.13.如图,一竖立在水平对面上的圆锥形物体的母线长为,一只小虫从圆锥的底面圆上的点出发,绕圆锥表面爬行一周后回到点处,则该小虫爬行的最短路程为,则圆锥底面圆的半径等于()A.B.C.D.【答案】C【解析】作出该圆锥的侧面展开图,如下图所示:该小虫爬行的最短路程为,由余弦定理可得,∴.设底面圆的半径为,则有,∴.故C项正确.【考点】圆锥的计算,平面展开——最值问题.【方法点晴】本题主要考查了圆锥的计算及有关圆锥的侧面展开的应用,着重考查了求立体图形中两点之间的曲线段的最短线路长,解答此类问题一般应把几何体的侧面展开,展在一个平面内,构造直角三角形,从而求解两点间的线段的长度,用到的知识为:圆锥的弧长等于底面周长,本题的解答中圆锥的侧面展开图是一个三角形,此扇形的弧长等于圆锥的面周长,扇形的半径等于圆锥的母线长,体现了“化曲面为平面”的思想方法.14.已知三棱锥中,,,,,则此三棱锥的外接球的表面积为()A.B.C.D.【答案】C【解析】如图,设是的外心,是三棱锥外接球球心,则平面,由已知平面,则,,,,所以.,所以,.故选C.【考点】棱锥的外接球,球的表面积.15.如图,一个空间几何体的正视图、侧视图都是面积为,一个内角为的菱形,俯视图为正方形,那么这个几何体的表面积为()A.B.C.D.【答案】D【解析】因为一个空间几何体的正视图、侧视图都是面积为,且一个内角为的菱形,所以菱形的边长为,由三视图可得,几何体是由两个底面正方形的正四棱锥组合而成,底面边长为,侧棱长为,所以几何体的表面积为:,故选D.【考点】1、三视图;2、多面体的表面积.16.已知直三棱柱中,,侧面的面积为,则直三棱柱外接球表面积的最小值为.【答案】【解析】根据题意,设,则有,从而有其外接球的半径为,所以其比表面积的最小值为.【考点】1、几何体的外接球;2、基本不等式;3、球的体积和表面积.【方法点睛】设,则有,利用直三棱柱中,,从而直三棱柱外接球的半径为,所以其比表面积的最小值为.根据直三棱柱中,,侧面的面积为,设,,利用均值不等式,确定直三棱柱外接球的半径的最小值是关键.17.在体积为的四面体中,平面,,,,则长度的所有值为.【答案】或【解析】由题意得因此由余弦定理得:或,因此或【考点】三棱锥体积,余弦定理18.如图,正四棱锥的底面一边长为,侧面积为,则它的体积为________.【答案】【解析】设侧面三角形的高为,则,解之可得,故棱锥的高为,所以棱锥的体积为,答案应填:.【考点】正四棱锥的侧面面积和体积公式.19.如图,在正方体中分别为棱的中点,用过点的平面截去该正方体的上半部分,则剩余几何体(下半部分)的左视图为()【答案】C【解析】通过观察剩余几何体(下半部分),可以发现C图才正确,故选C.【考点】1、直观图;2、三视图.20.如图,已知三棱柱的所有棱长都是2,且.(1)求证:点在底面内的射影在的平分线上;(2)求棱柱的体积.【答案】(1)证明见解析;(2).【解析】(1)通过作图的方式先作出的射影,只需求到距离相等即是所求,利用三角形全等即可;(2)底面是等边三角形,面积容易求得,其高为,(1)可知,,,可得到,则此可求出.试题解析:(1)证明:过作平面,垂足为,作,垂足为,连接,则,,故平面,故,同理,过作,连接,则.∵,,∴,∴≌,∴,∴是的角平分线,即点在底面内的射影在的平分线上.(2)解:由(1)可知,,,在中,,∴,∴三棱柱的体积为【考点】线面垂直、几何体的体积.【易错点晴】破解线面垂直关系的技巧(1)解答此类问题的关键在于熟练把握空间垂直关系的判定与性质,注意平面图形中的一些线线垂直关系的灵活利用,这是证明空间垂直关系的基础.(2)由于“线线垂直”“线面垂直”“面面垂直”之间可以相互转化,因此整个证明过程围绕着线面垂直这个核心而展开,这是化解空间垂直关系难点的技巧所在.21.如图,梯形中,,分别是的中点,矩形所在的平面与所在的平面互相垂直,且.(1)证明:平面;(2)证明:平面;(3)若二面角为,求直线与平面所成角的大小.【答案】(1)证明见解析(2)证明见解析;(3).【解析】(1)根据平面与平面垂直的性质定理证平面,又,从而可证得平面;(2)取中点,连接,先证得为平行四边形,进而可得,再根据直线与平面平行的判定定理即可证得平面;(3)连接交于,连接,证明平面,则即为直线与平面所成角,再通过解求得的大小.试题解析:(1)平面.(2)取中点,连接,.(3)为二面角的平面角,.由(1)知,中,,,∴,∴,∴与平面成角.【考点】1、线面垂直的判定;2、线面平行的判定;3、线面角的求法.【方法点晴】本题主要考查的是线面垂直、平行判定和线面角的求法,属于中档题.证明线面垂直的方法主要有定义法,判定定理法;证明线面平行的关键是证明线线平行,证明线线平行常用的方法是利用三角形、梯形的中位线,对应线段成比例,构造平行四边形,平行线的传递性,线面垂直的性质定理,面面平行的性质定理.求线面角的一般步骤是:一作出线面角,二证明,三求线面角的大小.22.如图,在正方形中,点分别是的中点,将分别沿、折起,使两点重合于.(Ⅰ)求证:平面⊥平面;(Ⅱ)求二面角的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ).【解析】(Ⅰ)要证明面面垂直,可以先证明线面垂直,即可以先证明直线,进而可证明平面⊥平面;(Ⅱ)可以用传统方法也可以用向量方法,用传统方法时,可按照“作、算、证”的步骤,并结合余弦定理即可求二面角的余弦值.向量法关键是要建立适当的直角坐标系,并正确地求出二平面的法向量,进而可得到二面角的余弦值.试题解析:(Ⅰ)证明:连接交于,连接.在正方形中,点是的中点,点是的中点,所以,所以,因此,所以在等腰中,是的中点,且.因此在等腰中,,从而平面.又平面,所以平面平面.即平面平面.(Ⅱ)方法一:在正方形中,连接,交于.设正方形的边长为.由于点是的中点,点是的中点.所以,于是,从而,所以.于是,在翻折后的几何体中,为二面角的平面角.在正方形中,解得,,所以,在中,,由余弦定理得.所以,二面角的余弦值为.方法二:由题知两两互相垂直,故以为原点,向量方向分别为轴的正方向,建立如图的空间直角坐标系.设正方形边长为,则,所以,设为平面的一个法向量,由,得,令,得,又由题知是平面的一个法向量,所以,所以,二面角的余弦值为.【考点】1、面面垂直;2、二面角的平面角.23.如图4,在边长为4的菱形中,,点分别是边的中点,,沿将翻折到,连接,得到如图5的五棱锥,且.(1)求证:;(2)求四棱锥的体积.【答案】(1)证明见解析;(2).【解析】(1)由三角形的中位线定理,证得,再由菱形的对角线互相垂直,证得,即可得到,再由已知可得,然后利用线面垂直的判定得到答案;(2)设,连接,结合已知可得,通过解直角三角形求得平面,然后求出梯形的面积,代入棱锥的体积公式得到答案.试题解析:(1)证明:∵分别是边的中点,∴∵菱形对角线互相垂直,∴,∴∴,∵平面,平面,∴平面,∴平面,∴(2)设,连接,∵,∴为等边三角形,∴,在中,在中,,∴∵平面,平面,∴平面,∴,∴四棱锥的体积【考点】直线与平面垂直的判定;几何体的体积的计算.24.如图,棱形与正三角形的边长均为2,它们所在平面互相垂直,,且.(1)求证:;(2)若,求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】(1)依据线面平行的判定定理,需要在平面找到一条直线与直线平行即可.因为平面平面,则过点作于,连接,证明四边形为平行四边形即可;(2)由(1)知平面,又,为等边三角形,,分别以所在直线为轴建立如图所示空间直角坐标系,分别求出平面和平面的法向量即可.试题解析:(1)如图,过点作于,连接,,可证得四边形为平行四边形,平面(2)连接,由(1),得为中点,又,为等边三角形,分别以所在直线为轴建立如图所示空间直角坐标系,则,设平面的法向量为,由即,令,得设平面的法向量为由即,令,得所以,所以二面角的余弦值是【考点】1.线面平行的判定定理;2.利用空间向量求二面角.25.一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图可知,该几何体为半个圆柱加一个长方体的组合体,故其体积为【考点】三视图,几何体的体积26.如图所示,在三棱柱ABC—A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(1)证明:平面BDC1⊥平面BDC;(2)平面BDC1分此棱柱为两部分,求这两部分体积的比.【答案】(1)证明见解析;(2).【解析】(1)由题意易证平面,再由面面垂直的判定定理即可得平面平面;(2)设棱锥的体积为,易求,三棱柱的体积为,于是可得,从而得到答案.试题解析:(1)证明:由题设知BC⊥CC1,BC⊥AC,CC1∩AC=C,所以BC⊥平面ACC1A1.又DC1⊂平面ACC1A1,所以DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,所以∠CDC1=90°,即DC1⊥DC.又DC∩BC=C,所以DC1⊥平面BDC.又DC1⊂平面BDC1,故平面BDC1⊥平面BDC.(2)设棱锥B—DACC1的体积为V1,AC=1.由题意得V1=××1×1=.又三棱柱ABC—A1B1C1的体积V=1,所以(V-V1)∶V1=1∶1.故平面BDC1分此棱柱所得两部分体积的比为1∶1.【考点】平面与平面垂直的判定;棱信的结构特征;棱柱、棱锥、棱台的体积.【易错点睛】(1)两平面垂直,在一个平面内垂直于交线的直线必垂直于另一个平面.这是把面面垂直转化为线面垂直的依据.运用时要注意“平面内的直线”.(2)两个相交平面同时垂直于第三个平面,那么它们的交线也垂直于第三个平面,此性质是在课本习题中出现的,在不是很复杂的题目中要对此进行证明.27.如图1,,,过动点作,垂足在线段上且异于点,连接,沿将折起,使(如图2所示).(Ⅰ)当的长为多少时,三棱锥的体积最大;(Ⅱ)当三棱锥的体积最大时,设点分别为棱的中点,试在棱上确定一点,使得,并求与平面所成角的大小.【答案】(I);(II)是的靠近点的一个四等分点,大小为.【解析】(I)设,利用三棱锥体积公式求得体积的表达式为,利用导数或者基本不等式求出其最大值.(II)以为坐标原点建立空间直角坐标系,设,利用求出,然后利用法向量求出与平面所成角的大小为.试题解析:解析:(Ⅰ)方法一:在图1所示的中,设,则.由,知,为等腰直角三角形,所以.由折起前知,折起后(如图2),,,且.所以平面.又,所以.于是,当且仅当,即时,等号成立,故当,即时,三棱锥的体积最大.方法二:同方法一,得.令,由,且,解得.当时,;当时,.所以当时,取得最大值.故当时,三棱锥的体积最大.(Ⅱ)方法一:以为原点,建立如图所示的空间直角坐标系.由(Ⅰ)知,当三棱锥的体积最大时,.于是可得,,且.设,则,因为等价于,解得,.所以当(即是的靠近点的一个四等分点)时,. 设平面的一个法向量为,由,及,得可取.设与平面所成角的大小为,则由,可得,即.故与平面所成角的大小为.方法二:由(Ⅰ)知,当三棱锥的体积最大时,,如图b,取的中点,连结,则.由(Ⅰ)知平面,所以平面.如图c,延长至点使得,连,则四边形为正方形,所以.取的中点,连结,又为的中点,则,所以.因为平面,又平面,所以.又,所以平面.又平面,所以.因为当且仅当,而点是唯一的,所以点是唯一的.即当(即是的靠近点的一个四等分点)时,.连结,由计算得,所以与是两个共底边的全等的等腰三角形,如图d所示,取的中点,连接,则平面.在平面中,过点作于,则平面,故是与平面所成的角.在中,易得,所以是正三角形,故,故与平面所成角的大小为.【考点】空间向量与立体几何.28.如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且,.求证:(1)直线DE平面A1C1 F;(2)平面B1DE⊥平面A1C1F.【答案】(1)详见解析(2)详见解析【解析】(1)利用线面平行判定定理证明线面平行,而线线平行的寻找往往结合平面几何的知识,如中位线的性质等;(2)利用面面垂直判定定理证明,即从线面垂直出发给予证明,而线面垂直的证明,往往需要多次利用线面垂直性质定理与判定定理.试题解析:证明:(1)在直三棱柱中,在三角形ABC中,因为D,E分别为AB,BC的中点,所以,于是,又因为DE平面平面,所以直线DE//平面.(2)在直三棱柱中,因为平面,所以,又因为,所以平面.因为平面,所以.又因为,所以.因为直线,所以【考点】直线与直线、直线与平面、平面与平面的位置关系【名师】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直;(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.29.某四面体的三视图如图,则该四面体四个面中最大的面积是()A.B.C.D.【答案】D【解析】将该几何体放入边长为的正方体中,由三视图可知该四面体为有由直观图可知,最大面积为三角形的面积,在三角形中,所以面积故选D.【考点】1、几何体的三视图;2、三角形的面积公式.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,有时还需要将不规则几何体补形成常见几何体,来增加直观图的立体感.30.如图,在四棱锥中,是边长为的正三角形,底面.(1)求证:;(2)已知是上一点, 且平面.若,求点到平面的距离.【答案】(1)见解析;(2)1.【解析】(1)连接交于,然后利用线面垂直的性质与已知条件证得平面,由此推出,从而通过解三角形推出,进而推出平面,可使问题得证;(2)取的中点, 连接,当为的中点,根据等腰三角形的性质可推出,然后结合中位线定理推出平面,由此可求出点到平面的距离.试题解析:(1)证明:连接交于,底面,平面,则,即,即平面.(2)取的中点, 连接,当为的中点时,平面,证明如下:,由(1) 得,则,则是的中点,平面平面,平面,平面.底面点到平面的距离等于.【考点】1、空间直线与直线的位置关系;2、线面平行的判定定理;3、点到平面的距离.【方法点睛】解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间的垂直关系进行转化,转化时要正确运用相关的定理,找出足够的条件进行推理;证明线面平行时,通常利用中位定理得到线线平行,从而推出面面平行,进而推出线面平行.31.已知正三角形边长为2,将它沿高翻折,使点与点间的距离为,此时四面体的外接球的表面积为 .【答案】。

高三数学专项训练:立体几何解答题(文科)(一)

高三数学专项训练:立体几何解答题(文科)(一)
(Ⅰ)求证:BE⊥平面PAD;
(Ⅱ)求证:EF∥平面PAB;
21.
(本小题满分12分)如图,已知 平面 , 平面 , 为等边三角形, , 为 中点.
(1)求证: 平面 ;
(2)求证:平面 平面 ;
(3)求直线 与平面 所成角的正弦值.
22.如图,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD﹦60°,E是CD中点,
(Ⅰ)求证: 平面 ;
(Ⅱ)求三棱锥 的体积.
11.如图,在三棱锥 中,侧面 与侧面 均为等边三角形, , 为 中点.
(Ⅰ)证明: 平面 ;
(Ⅱ)求异面直线BS与AC所成角的大小.
12.(本题满分12分)
如图,已知AB 平面ACD,DE∥AB,△ACD是正三角形, ,且F是CD的中点.
(Ⅰ)求证AF∥平面BCE;
(1)求证:B1C∥平面AC1M;
(2)求证:平面AC1M⊥平面AA1B1B.
44.(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形, BCD=60 ,E是CD的中点,PA 底面ABCD,PA=2。
(1)证明:平面PBE 平面PAB;
(2)求PC与平面PAB所成角的余弦值.
(Ⅰ)求证:EF//平面PAD;
(Ⅱ)求三棱锥C—PBD的体积。
15.右图为一组合体,其底面 为正方形, 平面 , ,且
(Ⅰ)求证: 平面 ;
(Ⅱ)求四棱锥 的体积;
(Ⅲ)求该组合体的表面积.
16.四棱锥 中,底面 为平行四边形,侧面 底面 , 为 的中点,已知 ,
(Ⅰ)求证: ;
(Ⅱ)在 上求一点 ,使 平面 ;
(Ⅲ)求三棱锥 的体积.
17.(本小题满分12分) 在三棱柱 中,底面是边长为 的正三角形,点 在底面 上的射影 恰是 中点.

2020高三数学--立体几何专题练习

2020高三数学--立体几何专题练习

【2020高三数学】 立体几何专题练习一.单选题(每题5分,共12题,共60分)1.在四面体ABCD 中,3AB BD AD CD ====,4AC BC ==,用平行于AB ,CD 的平面截此四面体,得到截面四边形EFGH ,则四边形EFGH 面积的最大值为( )A .43B .94C .92D .32.如图,四边形ABCD 是边长为1的正方形,MD ⊥ABCD ,NB ⊥ABCD .且MD =NB =1.则下列结论中:①MC ⊥AN②DB ∥平面AMN③平面CMN ⊥平面AMN④平面DCM ∥平面ABN所有假命题的个数是( )A .0B .1C .2D .33.已知互相垂直的平面αβ,交于直线l.若直线m ,n 满足m ∥α,n ⊥β,则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n4.设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是( )A .若,l ααβ⊥⊥,则l β⊂B .若//,//l ααβ,则l β⊂C .若,//l ααβ⊥,则l β⊥D .若//,l ααβ⊥,则l β⊥5.已知正四棱柱中,,则CD 与平面所成角的正弦值等于( )A .B .C .D .6.在Rt ABC V 中,90ABC ∠=o ,P 为V ABC 所在平面外一点,PA ⊥平面ABC ,则四面体P ABC -中直角三角形的个数为( )A .4B .3C .2D .17.已知直线//l α,直线a α⊂,则l 与α必定( )A .平行B .异面C .相交D .无公共点8.如图,各棱长均为a 的正三棱柱111ABC A B C -,M 、N 分别为线段1A B 、1B C 上的动点,且MN //平面11ACC A ,则这样的MN 有 ( )A .1条B .2条C .3条D .无数条9.正方体1111ABCD A B C D -中,直线AD 与平面11A BC 所成角正弦值为( )A .12B .32C .33D .6310. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,若E 是A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1D D .A 1D 111.已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )A .26B .36C .23D .2212.已知正方体1111ABCD A B C D -的棱长为2,P 是底面ABCD 上的动点,1PA PC ≥,则满足条件的点P 构成的图形的面积等于( )A.12B.4πC.44π-D.72二.填空题(每题5分,共20分)13.已知在直角梯形ABCD中,AB AD⊥,CD AD⊥,224AB AD CD===,将直角梯形ABCD沿AC折叠,使平面BAC⊥平面DAC,则三棱锥D ABC-外接球的体积为__________.14.设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且12SS=94,则12VV的值是________.15.长方体1111ABCD A B C D-中,12,1AB BC AA===,则1BD与平面1111DCBA所成的角的大小为________.16.如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BAC=90°,F是AC的中点,E是PC上的点,且EF⊥BC,则PEEC=________.三.解答题(17题10分,其余12分每题,共70分)17.如图所示,在三棱柱111ABC A B C-中,ABC△与111A B C△都为正三角形,且1AA⊥平面ABC,1F F,分别是11AC A C,的中点.求证:(1)平面11AB F∥平面1C BF;(2)平面11AB F⊥平面11ACC A.18.如图,在三棱锥P ABC-中,平面PAC⊥平面ABC,PACV为等边三角形,AB AC ⊥,D 是BC 的中点.(1)证明:AC PD ⊥;(2)若2AB AC ==,求D 到平面PAB 的距离.19.在长方体1111ABCD A B C D -中,1AB BC ==,12AA =,E 为1BB 中点.(1)证明:1AC D E ⊥.(2)求DE 与平面1AD E 所成角的正弦值.20.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD AB ⊥,//AB DC ,1AB =,2AD DC AP ===,点E 为棱PC 的中点.(1)证明://BE 面PAD ;(2)证明:面PBC ⊥面PDC ;(3)求直线PD 与面PBC 所成角的正弦值.21.如图,已知平面是正三角形,.(1)求证:平面平面;(2)求二面角的正切值..22.如图,在三棱锥P ABC -中,G 是棱PA 的中点,PC AC ⊥,且2PB AB AC BC ====, 1.PC =(Ⅰ)求证:直线BG ⊥平面PAC ;(Ⅱ)求二面角P AC B --的正弦值.【2020高三数学】立体几何专题练习参考答案 二.单选题(每题5分,共12题,共60分)1.【答案】B 【解析】设截面分别与棱,,,AD BD BC AC 交于点,,,E F G H .由直线//AB 平面EFGH , 且平面ABC I 平面EFGH GH =,平面ABD ⋂平面EFGH EF =得//GH AB ,//EF AB ,所以//GH EF ,同理可证//EH FG ,所以四边形EFGH 为平行四边形,又3AB BD AD CD ====,4AC BC ==,可证得AB CD ⊥,四边形EFGH 为矩形.设:::BF BD BG BC FG CD x ===,01x <<,则3FG x =,()31HG x =-,于是2199(1)9,0124EFGHS FG HG x x x x ⎛⎫=⋅=-=--+<< ⎪⎝⎭ 当12x =时,四边形EFGH 的面积有最大值94. 故选:B.2.【答案】B【解析】由题画出该几何体外接的正方体.对①,因为//MC EB ,AN EB ⊥,故MC ⊥AN 成立.故①正确.对②,因为//,DB MN MN ⊂平面AMN,故DB ∥平面AMN 成立.故②正确.对③,连接AC 易得A MNC -为正四面体.故平面CMN ⊥平面AMN 不成立.故③错误. 对④,正方体中平面DCM 与平面ABN 分别为前后两面,故④正确.故选:B3.【答案】C【解析】由题意知,l l αββ⋂=∴⊂,,n n l β⊥∴⊥Q .故选C .4.【答案】C【解析】对于A 、B 、D 均可能出现//l β,而对于C 是正确的.5.【答案】A【解析】设 ,面积为6.【答案】A【解析】由题意,知PA ⊥平面ABC 可得PAC PAB ∆∆,都是直角三角形,且PA BC ⊥, 又90ABC ∠=o ,所以V ABC 是直角三角形,且BC ⊥平面PAB ,所以BC PB ⊥,即PBC △为直角三角形.故四面体P ABC -中共有4个直角三角形.7.【答案】D【解析】已知直线//l α,所以直线l 与平面α无公共点,又由a α⊂,所以直线l 与平面a 无公共点,故选D .8.【答案】D【解析】由题意得112A B CB a==.在11,BA CB 上分别取,M N ,使1BM B N =,过,M N作11,MM AB NN BC ⊥⊥,垂足分别为11,M N ,则1111,MM AA NN BB P P ,故11111,BM B N BN BM BA BA BC BC==.由于111B N BM BA B C =,故11BM BN BA BC=,从而11M N AC P ,可得11M N P 平面11ACC A .又1MM P 平面11ACC A ,可得平面11MM N N P 平面11ACC A .由于MN ⊂平面11MM N N , 所以//MN 平面11ACC A ,从而满足条件的MN 有无数条.选D .9.【答案】C【解析】如图所示,正方体1111ABCD A B C D -中,直线AD 与11B C 平行,则直线AD 与平面11A BC 所成角正弦值即为11B C 与平面11A BC 所成角正弦值.因为11A BC ∆为等边三角形,则1B 在平面11A BC 即为11A BC ∆的中心,则11B C O ∠为11B C 与平面11A BC 所成角.可设正方体边长为1,显然36=2=33BO ⨯,因此2163=1()=33B O -,则1111103sin 3B BC O B C ∠==,故答案选C.10. 【答案】B【解析】以A 为原点,1AB AD AA ,,所在直线分别为x y z ,,轴建立空间直角坐标系,设正方体棱长为1,则()000A ,,,()110C ,,,()100B ,,,()010D ,,, ()1001A ,,,11122E ⎛⎫ ⎪⎝⎭,, 11122CE ⎛⎫∴=-- ⎪⎝⎭u u u v ,, ()110AC =u u u v ,,,()110BD =-u u u v ,,,()1011A D =-u u u u v ,,,()1001AA =-u u u v ,,110022CE BD ∴=-+=u u u v u u u v n 则CE BD ⊥u u u v u u u v 即CE BD ⊥故选B11.【答案】A【解析】根据题意作出图形:设球心为O ,过ABC 三点的小圆的圆心为O 1,则OO 1⊥平面ABC ,延长CO 1交球于点D ,则SD ⊥平面ABC .∵CO 1=233323⨯=, ∴116133OO =-=, ∴高SD=2OO 1=263,∵△ABC 是边长为1的正三角形,∴S △ABC =34, ∴132623436S ABC V -=⨯⨯=三棱锥.12.【答案】A 【解析】 如图,以,AB AD 为,x y 轴在平面ABCD 内建立平面直角坐标系,设(,)P x y ,由1PA PC ≥得22222(2)(2)2x y x y +≥-+-+,整理得30x y +-≥,设直线:30l x y +-=与正方形ABCD 的边交于点,M N ,则P 点在CMN ∆内部(含边界),易知(1,2)M ,(2,1)N ,∴1CM CN ==,111122CMN S ∆=⨯⨯=. 故选A .二.填空题(每题5分,共20分)13.【答案】323π 【解析】结合题意画出折叠后得到的三棱锥D ABC -如图所示,由条件可得在底面ACB ∆中,90,22ACB AC BC ∠=︒==。

2020届高三数学立体几何专项训练

2020届高三数学立体几何专项训练

2020届高三数学立体几何专题(文科)吴丽康2019-111.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的点.(Ⅰ)证明:PB2. 如图,四棱锥P­ABCD中,AB∥CD,AB=2CD,E为PB的中点.(1)求证:CE∥平面PAD;(2)在线段AB上是否存在一点F,使得平面PAD∥平面CEF若存在,证明你的结论,若不存在,请说明理由.3如图,在四棱锥P -ABCD 中,平面PAC ⊥平面ABCD ,且PA ⊥AC ,PA =AD =2,四边形ABCD 满足BC ∥AD ,AB ⊥AD ,AB =BC =1.点E ,F 分别为侧棱PB ,PC 上的点, 且PE PB =PF PC=λ(λ≠0). (1)求证:EF ∥平面PAD ;(2)当λ=12时,求点D 到平面AFB 的距离.4.如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形.(1)证明:平面A 1BD ∥平面CD 1B 1;(2)若平面ABCD ∩平面B 1D 1C =直线l ,证明:B 1D 1∥l .5..如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.6.如图,在四棱锥P­ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.7.(2018北京通州三模,18)如图,在四棱锥P-ABCD中,平面PA B⊥平面ABCD,四边形ABCD 为正方形,△PAB为等边三角形,E是PB中点,平面AED与棱PC交于点F.(1)求证:AD∥EF; (2)求证:PB⊥平面AEFD;(3)记四棱锥P-AEFD的体积为V1,四棱锥P-ABCD的体积为V2,直接写出的值.8...如图,在四棱锥P­ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,若G为AD的中点.(1)求证:BG⊥平面PAD;(2)求证:AD⊥PB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD并证明你的结论.9.(2016·高考北京卷)如图,在四棱锥P­ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点.在棱PB上是否存在点F,使得PA∥平面CEF说明理由.10..如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若AF⊥EF,求证:平面PAD⊥平面ABCD.11..如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,PA =AB =BC =3,AD =CD =1,∠ADC =120°,点M 是AC 与BD 的交点,点N 在线段PB 上,且PN =14PB . (1)证明:MN ∥平面PDC ;(2)求直线MN 与平面PAC 所成角的正弦值.12..(2016·高考四川卷)如图,在四棱锥PABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD .(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由;(2)证明:平面PAB ⊥平面PBD .13.(2016·高考江苏卷)如图,在直三棱柱ABC A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .14.【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB ο求三棱柱111C B A ABC -的高.15.(2017天津,文17)如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥ BC, PD⊥PB,AD=1,BC=3,CD=4,PD=2.(1)求异面直线AP与BC所成角的余弦值;(2)求证:PD⊥平面PBC;(3)求直线AB与平面PBC所成角的正弦值.16.(2016·高考浙江卷)如图,在三棱台ABC DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.17..(2018·全国Ⅲ)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC.(2)在线段AM上是否存在点P,使得MC∥平面PBD说明理由.立体几何中的翻折问题18...如图(1),在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a , E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图(2)中△A 1BE 的位置,得到四棱锥A 1­BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1­BCDE 的体积为362,求a 的值.19..如图1,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2, E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直, 如图2.在图2所示的几何体D -ABC 中:(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积.20.如图,长方体ABCD­A1B1C1D1中,AB=16,BC=10,AA1=8.点E,F分别在A1B1,D1C1上,过点E、F的平面α与此长方体的面相交,交线围成一个正方形EFGH.(1)求证:A1E=D1F;(2)判断A1D与平面α的关系.2020届高三数学立体几何专题(文科) 1解析:(Ⅰ)设AC的中点为O,连接EO. 在三角形PBD中,中位线EOV=(Ⅱ)∵AP=1,AD=-P ABD-11=32P ABD V PA AB AD ∴⋅⋅⋅AB 32AB =, 作AH ⊥PB 角PB 于H ,由题意可知BC ⊥平面PAB ,∴BC ⊥AH ,故AH ⊥平面PBC .又PA AB AH PB ⋅==A 点到平面PBC 2.(1)证明:如图所示,取PA 的中点H ,连接EH ,DH ,因为E 为PB 的中点, 所以EH ∥AB ,EH =12AB ,又AB ∥CD ,CD =12AB . 所以EH ∥CD ,EH =CD ,因此四边形DCEH 是平行四边形, 所以CE ∥DH , 又DH ⊂平面PAD ,CE ⊄平面PAD , 所以CE ∥平面PAD . (2)如图所示,取AB 的中点F ,连接CF ,EF , 所以AF =12AB ,又CD =12AB ,所以AF =CD ,又AF ∥CD ,所以四边形AFCD 为平行四边形,所以CF ∥AD ,又CF ⊄平面PAD ,所以CF ∥平面PAD ,由(1)可知CE ∥平面PAD , 又CE ∩CF =C ,故平面CEF ∥平面PAD , 故存在AB 的中点F 满足要求.3.(1)证明 ∵PE PB =PF PC=λ(λ≠0),∴EF ∥BC .∵BC ∥AD ,∴EF ∥AD .又EF ⊄平面PAD ,AD ⊂平面PAD ,∴EF ∥平面PAD . (2)解 ∵λ=12,∴F 是PC 的中点,在Rt△PAC 中,PA =2,AC =2,∴PC =PA 2+AC 2=6,∴PF =12PC =62.∵平面PAC ⊥平面ABCD ,且平面PAC ∩平面ABCD =AC ,PA ⊥AC ,PA ⊂平面PAC ,∴PA ⊥平面ABCD ,∴PA ⊥BC .又AB ⊥AD ,BC ∥AD ,∴BC ⊥AB ,又PA ∩AB =A ,PA ,AB ⊂平面PAB , ∴BC ⊥平面PAB , ∴BC ⊥PB ,∴在Rt△PBC 中,BF =12PC =62.连接BD ,DF ,设点D 到平面AFB 的距离为d ,在等腰三角形BAF 中,BF =AF =62,AB =1, ∴S △ABF =54,又S △ABD =1,点F 到平面ABD 的距离为1, ∴由V F -ABD =V D -AFB ,得13×1×1=13×d ×54,解得d =455,即点D 到平面AFB 的距离为455.4.证明 (1)由题设知BB 1∥DD 1且BB 1=DD 1,所以四边形BB 1D 1D 是平行四边形, 所以BD ∥B 1D 1.又BD ⊄平面CD 1B 1,B 1D 1⊂平面CD 1B 1, 所以BD ∥平面CD 1B 1.因为A 1D 1∥B 1C 1∥BC 且A 1D 1=B 1C 1=BC , 所以四边形A 1BCD 1是平行四边形,所以A 1B ∥D 1C .又A 1B ⊄平面CD 1B 1,D 1C ⊂平面CD 1B 1, 所以A 1B ∥平面CD 1B 1.又因为BD ∩A 1B =B ,BD ,A 1B ⊂平面A 1BD , 所以平面A 1BD ∥平面CD 1B 1. (2)由(1)知平面A 1BD ∥平面CD 1B 1,又平面ABCD ∩平面B 1D 1C =直线l , 平面ABCD ∩平面A 1BD =直线BD ,所以直线l ∥直线BD , 在四棱柱ABCD -A 1B 1C 1D 1中,四边形BDD 1B 1为平行四边形, 所以B 1D 1∥BD ,所以B 1D 1∥l .5.连接AC 交BD 于点O ,连接MO ,因为PM =MC ,AO =OC ,所以PA ∥MO ,因为PA⊄平面MBD,MO⊂平面MBD,所以PA∥平面MBD.因为平面PAHG∩平面MBD=GH,所以AP∥GH.6.[证明] (1)在四棱锥P­ABCD中,因为PA⊥底面ABCD,CD⊂平面ABCD,所以PA⊥CD,因为AC⊥CD,且PA∩AC=A,所以CD⊥平面PAC,而AE⊂平面PAC,所以CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.因为E是PC的中点,所以AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.而PD⊂平面PCD,所以AE⊥PD.因为PA⊥底面ABCD,所以PA⊥AB.又因为AB⊥AD且PA∩AD=A,所以AB⊥平面PAD,而PD⊂平面PAD,所以AB⊥PD.又因为AB∩AE=A,所以PD⊥平面ABE.7.(1)证明因为ABCD为正方形,所以AD∥BC.因为AD⊄平面PBC,BC⊂平面PBC,所以AD∥平面PBC.因为AD⊂平面AEFD,平面AEFD∩平面PBC=EF, 所以AD∥EF.(2)证明因为四边形ABCD是正方形,所以AD⊥AB.因为平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AD⊂平面ABCD,所以AD⊥平面PAB.因为PB⊂平面PAB,所以AD⊥PB.因为△PA B为等边三角形,E是PB中点,所以PB⊥AE.因为AE⊂平面AEFD,AD⊂平面AEFD,AE∩AD=A,所以PB⊥平面AEFD.(3)解由(1)知,V1=V C-AEFD,V E-ABC=V F-ADC=V C-AEFD=V1,∴V BC-AEFD=V1,则V P-ABCD=V1+V1=V1, ∴.8.[解] (1)证明:在菱形ABCD中,∠DAB=60°,G为AD的中点,所以BG⊥AD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以BG⊥平面PAD.(2)证明:如图,连接PG.因为△PAD为正三角形,G为AD的中点,所以PG⊥AD.由(1)知,BG⊥AD,又PG∩BG=G,所以AD⊥平面PGB.因为PB⊂平面PGB,所以AD⊥PB.(3)当F为PC的中点时,满足平面DEF⊥平面ABCD.证明如下:取PC的中点F,连接DE、EF、DF.在△PBC中,FE∥PB,在菱形ABCD中,GB∥DE.而FE⊂平面DEF,DE⊂平面DEF,EF∩DE=E,PB⊂平面PGB,GB⊂平面PGB,PB∩GB=B,所以平面DEF∥平面PGB.因为BG⊥平面PAD,PG⊂平面PAD,所以BG⊥PG.又因为PG⊥AD,AD∩BG=G,所以PG⊥平面ABCD.又PG⊂平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面ABCD.9.【解】(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.又因为DC⊥AC,且PC∩AC=C,所以DC⊥平面PAC.(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,所以PC⊥AB.又因为PC∩AC=C,所以AB ⊥平面PAC .又AB ⊂平面PAB ,所以平面PAB ⊥平面PAC . (3)棱PB 上存在点F ,使得PA ∥平面CEF . 理由如下:如图,取PB 中点F ,连接EF ,CE ,CF .又因为E 为AB 的中点,所以EF ∥PA . 又因为PA ⊄平面CEF ,且EF ⊂平面CEF ,所以PA ∥平面CEF .10.证明 (1)因为四边形ABCD 是矩形,所以AB ∥CD . 又AB ⊄平面PDC ,CD ⊂平面PDC ,所以AB ∥平面PDC , 又因为AB ⊂平面ABE ,平面ABE ∩平面PDC =EF ,所以AB ∥EF . (2)因为四边形ABCD 是矩形,所以AB ⊥AD . 因为AF ⊥EF ,(1)中已证AB ∥EF ,所以AB ⊥AF .又AB ⊥AD ,由点E 在棱PC 上(异于点C ),所以点F 异于点D , 所以AF ∩AD =A ,AF ,AD ⊂平面PAD ,所以AB ⊥平面PAD ,又AB ⊂平面ABCD ,所以平面PAD ⊥平面ABCD . 11.(1)证明 因为AB =BC ,AD =CD , 所以BD 垂直平分线段AC . 又∠ADC =120°,所以MD =12AD =12,AM =32. 所以AC =3.又AB =BC =3,所以△ABC 是等边三角形,所以BM =32,所以BM MD =3,又因为PN =14PB ,所以BM MD =BNNP =3,所以MN ∥PD .又MN ⊄平面PDC ,PD ⊂平面PDC , 所以MN ∥平面PDC .(2)解 因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA ,又BD ⊥AC ,PA ∩AC =A ,PA ,AC ⊂平面PAC ,所以BD ⊥平面PAC .由(1)知MN ∥PD ,所以直线MN 与平面PAC 所成的角即直线PD 与平面PAC 所成的角, 故∠DPM 即为所求的角.在Rt△PAD 中,PD =2,所以sin∠DPM =DM DP =122=14, 所以直线MN 与平面PAC 所成角的正弦值为14.12.【解】 (1)取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点.理由如下: 因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM ,所以四边形AMCB 是平行四边形,从而CM ∥AB . 又AB ⊂平面PAB ,CM ⊄平面PAB ,所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明:由已知,PA ⊥AB ,PA ⊥CD ,因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交.所以PA ⊥平面ABCD ,从而PA ⊥BD .连接BM , 因为AD ∥BC ,BC =12AD ,所以BC ∥MD ,且BC =MD .所以四边形BCDM 是平行四边形.所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面PAB . 又BD ⊂平面PBD ,所以平面PAB ⊥平面PBD . 13.[证明] (1)在直三棱柱ABCA 1B 1C 1中,A 1C 1∥AC .在△ABC 中,因为D ,E 分别为AB ,BC 的中点, 所以DE ∥AC ,于是DE ∥A 1C 1.又DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F , 所以直线DE ∥平面A 1C 1F . (2)在直三棱柱ABCA 1B 1C 1中,A 1A ⊥平面A 1B 1C 1.因为A 1C 1⊂平面A 1B 1C 1,所以A 1A ⊥A 1C 1.又A 1C 1⊥A 1B 1,A 1A ⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1,A 1A ∩A 1B 1=A 1, 所以A 1C 1⊥平面ABB 1A 1.因为B 1D ⊂平面ABB 1A 1,所以A 1C 1⊥B 1D .又B 1D ⊥A 1F ,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F ,A 1C 1∩A 1F =A 1, 所以B 1D ⊥平面A 1C 1F .因为直线B 1D ⊂平面B 1DE ,所以平面B 1DE ⊥平面A 1C 1F14.证明:(Ⅰ)连接 BC 1,则O 为B 1C 与BC 1的交点,∵AO ⊥平面BB 1C 1C . ∴AO ⊥B 1C , …2分 因为侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,…4分 ∴BC 1⊥平面ABC 1,∵AB平面ABC 1,故B 1C ⊥AB . …6分(Ⅱ)作OD ⊥BC ,垂足为D ,连结AD ,∵AO ⊥BC ,∴BC ⊥平面AOD ,又BC 平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD , 作OH ⊥AD ,垂足为H ,∴OH ⊥平面ABC . …9分 ∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得OD =34, 由于AC ⊥AB 1,∴11122OA B C ==,∴227AD OD OA =+=由 OH·AD=OD·OA ,可得OH=2114,又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为21, 所以三棱柱ABC-A 1B 1C 1的高高为217。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届高三数学立体几何专题(文科)吴丽康 2019-111.如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的点. (Ⅰ)证明:PB // 平面AEC ;(Ⅱ)设AP=1,AD =,三棱锥P -ABD 的体积V =,求A 点到平面PBD 的距离.2. 如图,四棱锥P -ABCD 中,AB ∥CD ,AB =2CD ,E 为PB 的中点. (1)求证:CE ∥平面P AD ;(2)在线段AB 上是否存在一点F ,使得平面P AD ∥平面CEF ? 若存在,证明你的结论,若不存在,请说明理由.3如图,在四棱锥P -ABCD 中,平面P AC ⊥平面ABCD ,且P A ⊥AC ,P A =AD =2,四边形ABCD 满足BC ∥AD ,AB ⊥AD ,AB =BC =1.点E ,F 分别为侧棱PB ,PC 上的点, 且PE PB =PFPC=λ(λ≠0). (1)求证:EF ∥平面P AD ;(2)当λ=12时,求点D 到平面AFB 的距离.3434.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD∥平面CD1B1;(2)若平面ABCD∩平面B1D1C=直线l,证明:B1D1∥l.5..如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.6.如图,在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.7.(2018北京通州三模,18)如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,四边形ABCD为正方形,△PAB为等边三角形,E是PB中点,平面AED与棱PC交于点F.(1)求证:AD∥EF; (2)求证:PB⊥平面AEFD;(3)记四棱锥P-AEFD的体积为V1,四棱锥P-ABCD的体积为V2,直接写出V1的值.V28...如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面P AD为正三角形,其所在平面垂直于底面ABCD,若G为AD的中点.(1)求证:BG⊥平面P AD;(2)求证:AD⊥PB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD?并证明你的结论.9.(2016·高考北京卷)如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面P AC;(2)求证:平面P AB⊥平面P AC;(3)设点E为AB的中点.在棱PB上是否存在点F,使得P A∥平面CEF?说明理由.10..如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若AF⊥EF,求证:平面P AD⊥平面ABCD.11..如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,P A =AB =BC =3,AD =CD =1,∠ADC =120°,点M 是AC 与BD 的交点,点N 在线段PB 上,且PN =14PB .(1)证明:MN ∥平面PDC ;(2)求直线MN 与平面P AC 所成角的正弦值.12..(2016·高考四川卷)如图,在四棱锥P ABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由; (2)证明:平面P AB ⊥平面PBD .13.(2016·高考江苏卷)如图,在直三棱柱ABC A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1. 求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .14.【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.15.(2017天津,文17)如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥ BC, PD⊥PB,AD=1,BC=3,CD=4,PD=2.(1)求异面直线AP与BC所成角的余弦值;(2)求证:PD⊥平面PBC;(3)求直线AB与平面PBC所成角的正弦值.16.(2016·高考浙江卷)如图,在三棱台ABC DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.17..(2018·全国Ⅲ)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC.(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.立体几何中的翻折问题18...如图(1),在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图(2)中△A 1BE 的位置,得到四棱锥A 1­BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1­BCDE 的体积为362,求a 的值.19..如图1,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2,E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直, 如图2.在图2所示的几何体D -ABC 中: (1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积.20.如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8.点E ,F 分别在A 1B 1,D 1C 1上,过点E 、F 的平面α与此长方体的面相交,交线围成一个正方形EFGH . (1)求证:A 1E =D 1F ;(2)判断A 1D 与平面α的关系.2020届高三数学立体几何专题(文科)1解析:(Ⅰ)设AC 的中点为O , 连接EO . 在三角形PBD 中,中位线EO //PB ,且EO 在平面AEC 上,所以PB //平面AEC . (Ⅱ)∵AP =1,3AD =,-3P ABD V =, -11=32P ABD V PA AB AD ∴⋅⋅⋅33==AB ,∴32AB =, 作AH ⊥PB 角PB 于H ,由题意可知BC ⊥平面P AB ,∴BC ⊥AH ,故AH ⊥平面PBC .又313PA AB AH PB ⋅==,故A 点到平面PBC 的距离313. 2.(1)证明:如图所示,取P A 的中点H ,连接EH ,DH ,因为E 为PB 的中点, 所以EH ∥AB ,EH =12AB ,又AB ∥CD ,CD =12AB . 所以EH ∥CD ,EH =CD ,因此四边形DCEH 是平行四边形, 所以CE ∥DH , 又DH ⊂平面P AD ,CE ⊄平面P AD , 所以CE ∥平面P AD . (2)如图所示,取AB 的中点F ,连接CF ,EF , 所以AF =12AB ,又CD =12AB ,所以AF =CD ,又AF ∥CD ,所以四边形AFCD 为平行四边形,所以CF ∥AD ,又CF ⊄平面P AD ,所以CF ∥平面P AD ,由(1)可知CE ∥平面P AD , 又CE ∩CF =C ,故平面CEF ∥平面P AD , 故存在AB 的中点F 满足要求.3.(1)证明 ∵PE PB =PFPC =λ(λ≠0),∴EF ∥BC .∵BC ∥AD ,∴EF ∥AD .又EF ⊄平面P AD ,AD ⊂平面P AD ,∴EF ∥平面P AD . (2)解 ∵λ=12,∴F 是PC 的中点,在Rt △P AC 中,P A =2,AC =2,∴PC =P A 2+AC 2=6,∴PF =12PC =62.∵平面P AC ⊥平面ABCD ,且平面P AC ∩平面ABCD =AC ,P A ⊥AC ,P A ⊂平面P AC ,∴P A ⊥平面ABCD ,∴P A ⊥BC .又AB ⊥AD ,BC ∥AD ,∴BC ⊥AB ,又P A ∩AB =A ,P A ,AB ⊂平面P AB ,∴BC ⊥平面P AB , ∴BC ⊥PB ,∴在Rt △PBC 中,BF =12PC =62.连接BD ,DF ,设点D 到平面AFB 的距离为d ,在等腰三角形BAF 中,BF =AF =62,AB =1, ∴S △ABF =54,又S △ABD =1,点F 到平面ABD 的距离为1, ∴由V F -ABD =V D -AFB ,得13×1×1=13×d ×54,解得d =455,即点D 到平面AFB 的距离为455. 4.证明 (1)由题设知BB 1∥DD 1且BB 1=DD 1,所以四边形BB 1D 1D 是平行四边形, 所以BD ∥B 1D 1.又BD ⊄平面CD 1B 1,B 1D 1⊂平面CD 1B 1,所以BD ∥平面CD 1B 1.因为A 1D 1∥B 1C 1∥BC 且A 1D 1=B 1C 1=BC , 所以四边形A 1BCD 1是平行四边形,所以A 1B ∥D 1C .又A 1B ⊄平面CD 1B 1,D 1C ⊂平面CD 1B 1, 所以A 1B ∥平面CD 1B 1.又因为BD ∩A 1B =B ,BD ,A 1B ⊂平面A 1BD , 所以平面A 1BD ∥平面CD 1B 1. (2)由(1)知平面A 1BD ∥平面CD 1B 1,又平面ABCD ∩平面B 1D 1C =直线l , 平面ABCD ∩平面A 1BD =直线BD ,所以直线l ∥直线BD , 在四棱柱ABCD -A 1B 1C 1D 1中,四边形BDD 1B 1为平行四边形, 所以B 1D 1∥BD ,所以B 1D 1∥l .5.连接AC 交BD 于点O ,连接MO ,因为PM =MC ,AO =OC ,所以P A ∥MO , 因为P A ⊄平面MBD ,MO ⊂平面MBD ,所以P A ∥平面MBD . 因为平面P AHG ∩平面MBD =GH ,所以AP ∥GH .6.[证明] (1)在四棱锥P -ABCD 中,因为P A ⊥底面ABCD , CD ⊂平面ABCD ,所以P A ⊥CD ,因为AC ⊥CD ,且P A ∩AC =A , 所以CD ⊥平面P AC ,而AE ⊂平面P AC ,所以CD ⊥AE . (2)由P A =AB =BC ,∠ABC =60°,可得AC =P A . 因为E 是PC 的中点,所以AE ⊥PC .由(1)知AE ⊥CD ,且PC ∩CD =C ,所以AE ⊥平面PCD . 而PD ⊂平面PCD ,所以AE ⊥PD . 因为P A ⊥底面ABCD ,所以P A ⊥AB .又因为AB ⊥AD 且P A ∩AD =A ,所以AB ⊥平面P AD ,而PD ⊂平面P AD ,所以AB ⊥PD . 又因为AB ∩AE =A ,所以PD ⊥平面ABE .7.(1)证明 因为ABCD 为正方形,所以AD ∥BC.因为AD ⊄平面PBC,BC ⊂平面PBC,所以AD ∥平面PBC.因为AD ⊂平面AEFD,平面AEFD ∩平面PBC=EF, 所以AD ∥EF. (2)证明 因为四边形ABCD 是正方形,所以AD ⊥AB.因为平面PAB ⊥平面ABCD,平面PAB ∩平面ABCD=AB,AD ⊂平面ABCD, 所以AD ⊥平面PAB.因为PB ⊂平面PAB,所以AD ⊥PB. 因为△PAB 为等边三角形,E 是PB 中点,所以PB ⊥AE.因为AE ⊂平面AEFD,AD ⊂平面AEFD,AE ∩AD=A,所以PB ⊥平面AEFD. (3)解 由(1)知,V 1=V C-AEFD ,V E-ABC =V F-ADC =23V C-AEFD =23V 1,∴V BC-AEFD =53V 1,则V P-ABCD =V 1+53V 1=83V 1, ∴V 1V 2=38.8.[解] (1)证明:在菱形ABCD 中,∠DAB =60°,G 为AD 的中点,所以BG ⊥AD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以BG ⊥平面P AD .(2)证明:如图,连接PG .因为△P AD 为正三角形,G 为AD 的中点, 所以PG ⊥AD .由(1)知,BG ⊥AD ,又PG ∩BG =G ,所以AD ⊥平面PGB . 因为PB ⊂平面PGB ,所以AD ⊥PB .(3)当F 为PC 的中点时,满足平面DEF ⊥平面ABCD . 证明如下:取PC 的中点F ,连接DE 、EF 、DF . 在△PBC 中,FE ∥PB ,在菱形ABCD 中,GB ∥DE .而FE ⊂平面DEF ,DE ⊂平面DEF ,EF ∩DE =E ,PB ⊂平面PGB ,GB ⊂平面PGB , PB ∩GB =B ,所以平面DEF ∥平面PGB .因为BG ⊥平面P AD ,PG ⊂平面P AD ,所以BG ⊥PG . 又因为PG ⊥AD ,AD ∩BG =G ,所以PG ⊥平面ABCD . 又PG ⊂平面PGB ,所以平面PGB ⊥平面ABCD , 所以平面DEF ⊥平面ABCD .9.【解】 (1)证明:因为PC ⊥平面ABCD ,所以PC ⊥DC .又因为DC ⊥AC ,且PC ∩AC =C ,所以DC ⊥平面P AC . (2)证明:因为AB ∥DC ,DC ⊥AC ,所以AB ⊥AC .因为PC ⊥平面ABCD ,所以PC ⊥AB .又因为PC ∩AC =C , 所以AB ⊥平面P AC .又AB ⊂平面P AB ,所以平面P AB ⊥平面P AC . (3)棱PB 上存在点F ,使得P A ∥平面CEF . 理由如下:如图,取PB 中点F ,连接EF ,CE ,CF .又因为E 为AB 的中点,所以EF ∥P A . 又因为P A ⊄平面CEF ,且EF ⊂平面CEF ,所以P A ∥平面CEF .10.证明 (1)因为四边形ABCD 是矩形,所以AB ∥CD . 又AB ⊄平面PDC ,CD ⊂平面PDC ,所以AB ∥平面PDC , 又因为AB ⊂平面ABE ,平面ABE ∩平面PDC =EF ,所以AB ∥EF . (2)因为四边形ABCD 是矩形,所以AB ⊥AD . 因为AF ⊥EF ,(1)中已证AB ∥EF ,所以AB ⊥AF .又AB ⊥AD ,由点E 在棱PC 上(异于点C ),所以点F 异于点D , 所以AF ∩AD =A ,AF ,AD ⊂平面P AD ,所以AB ⊥平面P AD ,又AB ⊂平面ABCD ,所以平面P AD ⊥平面ABCD . 11.(1)证明 因为AB =BC ,AD =CD , 所以BD 垂直平分线段AC . 又∠ADC =120°,所以MD =12AD =12,AM =32. 所以AC =3.又AB =BC =3,所以△ABC 是等边三角形,所以BM =32,所以BM MD =3,又因为PN =14PB ,所以BM MD =BNNP =3,所以MN ∥PD .又MN ⊄平面PDC ,PD ⊂平面PDC , 所以MN ∥平面PDC .(2)解 因为P A ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥P A , 又BD ⊥AC ,P A ∩AC =A ,P A ,AC ⊂平面P AC ,所以BD ⊥平面P AC .由(1)知MN ∥PD ,所以直线MN 与平面P AC 所成的角即直线PD 与平面P AC 所成的角, 故∠DPM 即为所求的角.在Rt △P AD 中,PD =2,所以sin ∠DPM =DM DP =122=14, 所以直线MN 与平面P AC 所成角的正弦值为14.12.【解】 (1)取棱AD 的中点M (M ∈平面P AD ),点M 即为所求的一个点.理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM , 所以四边形AMCB 是平行四边形,从而CM ∥AB .又AB ⊂平面P AB ,CM ⊄平面P AB ,所以CM ∥平面P AB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明:由已知,P A ⊥AB ,P A ⊥CD ,因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交. 所以P A ⊥平面ABCD ,从而P A ⊥BD .连接BM ,因为AD ∥BC ,BC =12AD ,所以BC ∥MD ,且BC =MD . 所以四边形BCDM 是平行四边形.所以BM =CD =12AD ,所以BD ⊥AB . 又AB ∩AP =A ,所以BD ⊥平面P AB .又BD ⊂平面PBD ,所以平面P AB ⊥平面PBD .13.[证明] (1)在直三棱柱ABC A 1B 1C 1中,A 1C 1∥AC .在△ABC 中,因为D ,E 分别为AB ,BC 的中点,所以DE ∥AC ,于是DE ∥A 1C 1.又DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F ,所以直线DE ∥平面A 1C 1F .(2)在直三棱柱ABC A 1B 1C 1中,A 1A ⊥平面A 1B 1C 1.因为A 1C 1⊂平面A 1B 1C 1,所以A 1A ⊥A 1C 1.又A 1C 1⊥A 1B 1,A 1A ⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1,A 1A ∩A 1B 1=A 1,所以A 1C 1⊥平面ABB 1A 1.因为B 1D ⊂平面ABB 1A 1,所以A 1C 1⊥B 1D .又B 1D ⊥A 1F ,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F ,A 1C 1∩A 1F =A 1, 所以B 1D ⊥平面A 1C 1F .因为直线B 1D ⊂平面B 1DE ,所以平面B 1DE ⊥平面A 1C 1F14.证明:(Ⅰ)连接 BC 1,则O 为B 1C 与BC 1的交点,∵AO ⊥平面BB 1C 1C . ∴AO ⊥B 1C , …2分因为侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,…4分∴BC 1⊥平面ABC 1,∵AB ⊂平面ABC 1,故B 1C ⊥AB . …6分(Ⅱ)作OD ⊥BC ,垂足为D ,连结AD ,∵AO ⊥BC ,∴BC ⊥平面AOD ,又BC ⊂平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD ,作OH ⊥AD ,垂足为H ,∴OH ⊥平面ABC . …9分∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得OD =34, 由于AC ⊥AB 1,∴11122OA B C ==,∴227AD OD OA =+=, 由 OH·AD=OD·OA ,可得OH=2114,又O 为B 1C 的中点, 所以点B 1到平面ABC 的距离为217, 所以三棱柱ABC-A 1B 1C 1的高高为21。

相关文档
最新文档