三角形中位线相关练习题(可分三次完成,附答案)
利用三角形的中位线、中线、角平分线、中垂线解决圆锥曲线问题专项练习含答案(高考数学提分)
第4讲 利用三角形的中位线、中线、角平分线、中垂线解决圆锥曲线问题一.选择题(共10小题)1.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,||OF 为半径的圆上,则直线PF 的斜率是( )A B C .D .22.如图,从双曲线22221(0,0)x y a b a b-=>>的左焦点F 引圆222x y a +=的切线,切点为T ,延长FT 交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则||||MO MT -与b a -的大小关系为( )A .||||MO MT b a ->-B .||||MO MT b a -<-C .||||MO MT b a -=-D .以上三种可能都有3.从双曲线22221(0,0)x y a b a b-=>>的左焦点F 引圆222x y a +=的切线,切点为T ,延长FT交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则||||MO MT -等于()A .c a -B .b a -C .a b -D .c b -4.设1F ,2F 是双曲线22221(0,0)x y a b a b-=>>的两个焦点,点P 在双曲线上,已知1||PF 是2||PF 和12||F F 的等差中项,且12120F PF ∠=︒,则该双曲线的离心率为( )A .1B .32C .52D .725.已知点P 是椭圆22221(0,0)x y a b xy a b+=>>≠上的动点,1(,0)F c -、2(,0)F c 为椭圆的左、右焦点,O 为坐标原点,若M 是12F PF ∠的角平分线上的一点,且1F M MP ⊥,则||OM 的取值范围是( ) A .(0,)cB .(0,)aC .(,)b aD .(,)c a6.设1(,0)F c -,2(,0)F c 是双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点,点P 是C 右支上异于顶点的任意一点,PQ 是12F PF ∠的角平分线,过点1F 作PQ 的垂线,垂足为Q ,O 为坐标原点,则||OQ 的长为( ) A .定值a B .定值b C .定值cD .不确定,随P 点位置变化而变化7.圆锥曲线具有丰富的光学性质,从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点.直线:280l x y +-=与椭圆22:11612x y C +=相切于点P ,椭圆C 的焦点为1F ,2F ,由光学性质知直线1PF ,2PF 与l 的夹角相等,则12F PF ∠的角平分线所在的直线的方程为( ) A .210x y --=B .10x y -+=C .210x y -+=D .10x y --=8.根据圆锥曲线的光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线,平分该点与两焦点连线的夹角.请解决下面问题:已知1F ,2F 分别是双曲线22:12y C x -=的左、右焦点,若从点2F 发出的光线经双曲线右支上的点0(A x ,2)反射后,反射光线为射线AM ,则2F AM ∠的角平分线所在的直线的斜率为( )A .B .CD 9.设直线30(0)x y m m -+=≠与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A ,B ,若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是( )AB .32C .52 D1 10.椭圆22221(0)x y a b a b +=>>的右焦点为(,0)F c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是( ) ABCD .35二.多选题(共1小题)11.已知1F ,2F 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,C 的一条渐近线l 的方程为y =,且1F 到l的距离为点P 为C 在第一象限上的点,点Q 的坐标为(2,0),PQ 为12F PF ∠的平分线,则下列正确的是( )A .双曲线的方程为221927x y -=B .12||2||PF PF =C .12||36PF PF +=D .点P 到x三.填空题(共7小题)12.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,||OF 为半径的圆上,则||PF = ;P 点的坐标为 .13.已知F 是抛物线2y x =的焦点,A 、B 是该抛物线上的两点,||||3AF BF +=,则线段AB 的中点到y 轴的距离为 .14.抛物线22(0)y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为 .15.设抛物线22(0)y px p =>的焦点为F ,已知A ,B 为抛物线上的两个动点,且满足60AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为 .16.抛物线22(0)y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足90AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为 .17.已知1F 、2F 分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为(2,0),AM 为12F AF ∠的平分线,则2||AF = .18.如图,从椭圆的一个焦点1F 发出的光线射到椭圆上的点P ,反射后光线经过椭圆的另一个焦点2F ,事实上,点0(P x ,0)y 处的切线00221xx yy a b+=垂直于12F PF ∠的角平分线.已知椭圆22:143x y C +=的两个焦点是1F ,2F ,点P 是椭圆上除长轴端点外的任意一点,12F PF ∠的角平分线PT 交椭圆C 的长轴于点(,0)T t ,则t 的取值范围是 .四.解答题(共8小题)19.已知椭圆2222:1(0)x y E a b a b+=>>的左右焦点分别为:1(2,0)F -,2(2,0)F ,P 为椭圆E上除长轴端点外任意一点,△12PF F 周长为12. (1)求椭圆E 的方程;(2)作12F PF ∠的角平分线,与x 轴交于点(,0)Q m ,求实数m 的取值范围.20.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于该椭圆的另一个焦点2F 上.椭圆有光学性质:从一个焦点出发的光线,经过椭圆面反射后经过另一个焦点,即椭圆上任意一点P 处的切线与直线1PF 、2PF 的夹角相等.已知12BC F F ⊥,垂足为1F ,1||3F B m =,12||4F F cm =,以12F F 所在直线为x 轴,线段12F F 的垂直平分线为y 轴,建立如图的平面直角坐标系. (1)求截口BAC 所在椭圆C 的方程;(2)点P 为椭圆C 上除长轴端点和短轴端点外的任意一点.①是否存在m ,使得P 到2F 和P 到直线x m =的距离之比为定值,如果存在,求出的m 值,如果不存在,请说明理由;②若12F PF ∠的角平分线PQ 交y 轴于点Q ,设直线PQ 的斜率为k ,直线1PF 、2PF 的斜率分别为1k ,2k ,请问21k kk k +是否为定值,若是,求出这个定值,若不是,请说明理由.21.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>与直线:()l x m m R =∈,四点(3,1)-,(-0),(3,1)-,(中有三个点在椭圆C 上,剩余一个点在直线l 上.()I 求椭圆C 的方程;(Ⅱ)若动点P 在直线l 上,过P 作直线交椭圆C 于M ,N 两点,使得||||PM PN =,再过P 作直线l MN '⊥.证明直线l '恒过定点,并求出该定点的坐标.22.已知椭圆2222:1(0)x y C a b a b+=>>的左,右焦点分别为1F ,2F ,上顶点为B .Q 为抛物线224y x =的焦点,且10F B QB ⋅=,12120F F QF += (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过定点(0,4)P 的直线l 与椭圆C 交于M ,N 两点(M 在P ,N 之间),设直线l 的斜率为(0)k k >,在x 轴上是否存在点(,0)A m ,使得以AM ,AN 为邻边的平行四边形为菱形?若存在,求出实数m 的取值范围;若不存在,请说明理由.23.在①离心率12e =,②椭圆C 过点3(1,)2,③△12PF F这三个条件中任选一个,补充在下面(横线处)问题中,解决下面两个问题.设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、F ,过1F 且斜率为k 的直线l 交椭圆于P 、Q 两点,已知椭圆C的短轴长为,_____. (1)求椭圆C 的方程;(2)若线段PQ 的中垂线与x 轴交于点N ,求证:1||||PQ NF 为定值. 24.已知A ,B ,C 是椭圆22:14x W y +=上的三个点,O 是坐标原点.(Ⅰ)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积; (Ⅱ)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由. 25.已知过抛物线2:2(0)C y px p =>的焦点,斜率为1(A x ,1)y 和2(B x ,212)()y x x <两点,且9||2AB =.(1)求抛物线C 的方程; (2)若抛物线C 的准线为l ,焦点为F ,点P 为直线:20m x y +-=上的动点,且点P 的横坐标为a ,试讨论当a 取不同的值时,圆心在抛物线C 上,与直线l 相切,且过点P 的圆的个数.26.设抛物线2:4C y x =的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.。
(完整版)三角形的中位线经典练习题及其答案
八年级三角形的中位线练习题及其答案1.连结三角形___________的线段叫做三角形的中位线. 2.三角形的中位线______于第三边,并且等于_______. 3.一个三角形的中位线有_________条. 4。
如图△ABC 中,D 、E 分别是AB 、AC 的中点,则线段CD 是△ABC 的___, 线段DE 是△ABC _______5、如图,D 、E 、F 分别是△ABC 各边的中点 (1)如果EF =4cm ,那么BC =__cm 如果AB =10cm ,那么DF =___cm(2)中线AD 与中位线EF 的关系是___6.如图1所示,EF 是△ABC 的中位线,若BC=8cm ,则EF=_______cm .(1) (2) (3) (4)7.三角形的三边长分别是3cm ,5cm ,6cm ,则连结三边中点所围成的三角形的周长是_________cm . 8.在Rt △ABC 中,∠C=90°,AC=•5,•BC=•12,•则连结两条直角边中点的线段长为_______. 9.若三角形的三条中位线长分别为2cm ,3cm,4cm,则原三角形的周长为( ) A .4。
5cm B .18cm C .9cm D .36cm10.如图2所示,A ,B 两点分别位于一个池塘的两端,小聪想用绳子测量A ,B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A ,B 的点C ,找到AC ,BC 的中点D,E ,并且测出DE 的长为10m ,则A ,B 间的距离为( )A .15mB .25mC .30mD .20m11.已知△ABC 的周长为1,连结△ABC 的三边中点构成第二个三角形,•再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是( ) A 、20081 B 、20091 C 、220081 D 、22009112.如图3所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减少 C .线段EF 的长不变 D .线段EF 的长不能确定13.如图4,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB=6,AC=4,则四边形AEDF•的周长是( ) A .10 B .20 C .30 D .4014.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC .15.已知矩形ABCD 中,AB =4cm ,AD =10cm ,点P 在边BC 上移动,点E 、F 、G 、H 分别是AB 、AP 、DP 、DC 的中点。
2022年北师大版八下《 三角形的中位线》配套练习(附答案)
6.3 三角形的中位线1.如图,为测量池塘边A,B两点间的距离,小明在池塘的一侧选取一点O,测得OA,OB的中点分别是点D,E,且DE=14米,那么A,B间的距离是() A.18米B.24米C.28米D.30米2.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE =60°,那么∠C的度数为()A.50°B.60°C.70°D.80°3.如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,那么DE的长为()A.1 B.2 C. 3 D.1+ 34.如图,点D,E,F分别是△ABC各边的中点,连接DE,EF,DF.假设△ABC 的周长为10,那么△DEF的周长为____.5.如图,▱ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD 的周长为16 cm,那么△DOE的周长是____cm.6.如图,在△ABC中,D,E,F分别是BC,AC,AB的中点.(1)假设DE=10 cm,那么AB=____cm;(2)中线AD与中位线EF有什么特殊关系?证明你的猜测.7.我们把依次连接任意一个四边形各边中点得到的四边形叫做中点四边形.如图,在四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点,依次连接各边中点得到中点四边形EFGH.(1)这个中点四边形EFGH的形状是___________;(2)请证明你的结论.8.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=30°,那么∠PFE的度数是()A.15°B.20°C.25°D.30°9.如图,在四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么以下结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不变D.线段EF的长与点P的位置有关10.如图,EF是△ABC的中位线,BD平分∠ABC交EF于点D,假设DE=2,那么EB=____.11.如图,△ABC的周长是1,连接△ABC三边的中点构成第2个三角形,再连接第2个三角形三边中点构成第3个三角形,依此类推,第2021个三角形的周长为________.12.如图,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH 是平行四边形.13.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,AB=10,BC=15,MN=3.(1)求证:BN=DN;(2)求△ABC的周长.14.如图,在▱ABCD中,AE=BF,AF,BE相交于点G,CE,DF相交于点证:GH∥BC且GH=12BC.15.如图,在▱ABCD中,E是CD的中点,F是AE的中点,FC与BE相交于点证:GF=GC.方法技能:1.三角形有三条中位线,每条中位线都与第三边有相应的位置关系和数量关系,位置关系可证明两直线平行,数量关系可证明线段相等或倍分关系.2.三角形的三条中位线将原三角形分为四个全等的小三角形,每个小三角形的周长都等于原三角形周长的一半.3.当题目中有中点时,特别是有两个中点且都在一个三角形中,可直接利用三角形中位线定理.易错提示:对三角形中位线的意义理解不透彻而出错答案:1. C2. C3. A4. 55. 86. (1) 20(2) 解:AD与EF互相平分.证明:∵D,E,F分别为BC,AC,AB的中点,∴DE∥AB,DE=12AB,AF=12AB,∴DE=AF,∴四边形AFDE是平行四边形,∴AD与EF互相平分7. (1) 平行四边形(2) 解:连接AC,由三角形中位线性质得,EF∥AC且EF=12AC,GH∥AC且GH=12AC,∴EF綊GH,∴四边形EFGH是平行四边形8. D9. C10. 211.1 2202112. 解:连接BD,∵E,H分别是AB,AD的中点,∴EH是△ABD的中位线,∴EH=12BD,EH∥BD,同理可证FG=12BD,FG∥BD,∴EH綊FG,∴四边形EFGH是平行四边形13. 解:(1)∵AN平分∠BAD,∴∠1=∠2,∵BN⊥AN,∴∠ANB=∠AND =90°,又∵AN=AN,∴△ABN≌△ADN(ASA),∴BN=DN(2)∵△ABN≌△ADN,∴AD=AB=10,∵DN=BN,点M是BC的中点,∴MN是△BDC的中位线,∴CD=2MN=6,∴△ABC的周长=AB+BC+CD+AD=10+15+6+10=4114. 解:连接EF,证四边形ABEF,EFCD分别为平行四边形,从而得G是BE的中点,H是EC的中点,∴GH是△EBC的中位线,∴GH∥BC且GH=12BC15. 解:取BE的中点H,连接FH,CH,∵F是AE的中点,H是BE的中点,∴FH是△ABE的中位线,∴FH∥AB且FH=12▱ABCD中,AB∥DC,AB=DC,∴FH∥EC,又∵点E是DC的中点,∴EC=12DC=12AB,∴FH=EC,∴四边形EFHC是平行四边形,∴GF=GC.第1课时三角形的全等和等腰三角形的性质一.选择题〔共8小题〕1.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,那么添加的条件不能为〔〕A. BD=CE B. AD=AE C. DA=DE D. BE=CD2.等腰三角形的一个角是80°,那么它顶角的度数是〔〕A.80°B.80°或20°C.80°或50°D.20°3.实数x,y满足,那么以x,y的值为两边长的等腰三角形的周长是〔 〕A. 20或16 B. 20 C. 16 D. 以上答案均不对4.如图,在△ABC中,AB=AC,∠A=40°,BD为∠ABC的平分线,那么∠BDC的度数是〔 〕A. 60° B. 70° C. 75° D. 80°5.等腰三角形的两边长分别是3和5,那么该三角形的周长是〔 〕A. 8 B. 9 C. 10或12 D. 11或136.如图,给出以下四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有〔 〕A .1组B .2组C .3组D .4组7.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个局部, 那么这个等腰三角形的底边长为〔 〕A. 7 B. 11 C. 7或11 D. 7或108.等腰三角形一腰上的高与另一腰的夹角为30°,那么顶角的度数为〔 〕A. 60° B. 120° C. 60°或150° D. 60°或120°二.填空题〔共10小题〕9.等腰三角形的一个内角为80°,那么另两个角的度数是 _________ .10.如图,AB∥CD,AB=AC,∠ABC=68°,那么∠ACD= _________ .第10题 第11题 第12题 第13题11.如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,那么∠B= _________ °.12.如图,AB∥CD,AE=AF,CE交AB于点F,∠C=110°,那么∠A=________°.13.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,那么BD=_________ .14.如图,在△ABC中,AB=AD=DC,∠BAD=32°,那么∠BAC=_________ °.第14题 第15题 第16题 第17题 第18题15.如图,AB与CD交于点O,OA=OC,OD=OB ,∠A=50°,∠B=30°,那么∠D的度数为_____.16.如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,那么∠BDC的度数为_________.17.如图,在△ABC中,AB=AC,点D为BC边的中点,∠BAD=20°,那么∠C=_________ .18.如图,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上一点,且BE=BP ,CP=CF,那么∠EPF=_________ 度.三.解答题〔共5小题〕19.:如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE.20.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:〔1〕△ABD≌△ACD;〔2〕BE=CE.21.如下图,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB 的位置关系,并给出证明.22.如图,在△ABC中,D、E分别是AC和AB上的点,BD与CE相交于点O,给出以下四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.〔1〕上述四个条件中,由哪两个条件可以判定AB=AC?〔用序号写出所有的情形〕〔2〕选择〔1〕小题中的一种情形,说明AB=AC.23.〔1〕如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、A C于点D、E.判断DE=DB+EC是否成立?为什么?〔2〕如图,假设点F是∠ABC的平分线和外角∠ACG的平分线的交点,其他条件不变,请猜测线段DE、DB、EC之间有何数量关系?证明你的猜测.参考答案一、CBBCDCCD二、9、50°,50°或80°,20°;10、44;11、65;12、40;13、3;14、69;15、30°;16、72;17、70;18、50三、19、证明:∵AB=AC,∴∠B=∠C.∵OD⊥AB,OE⊥AC,∴∠ODB=∠OEC=90°.∵O是底边BC上的中点,∴OB=OC,在△OBD与△OCE中,∴△OBD≌△OCE〔AAS〕.∴BD=CE.∵AB=AC,∴AB﹣BD=AC﹣CE.即AD=AE.20、证明:〔1〕∵D是BC的中点,∴BD=CD,在△A BD和△ACD中,,∴△ABD≌△ACD〔SSS〕;…〔4分〕〔2〕由〔1〕知△ABD≌△ACD,∴∠BAD=∠CAD,即∠BAE=∠CAE,在△ABE和△ACE中,∴△ABE≌△ACE 〔SAS〕,∴BE=CE〔全等三角形的对应边相等〕.〔其他正确证法同样给分〕…〔4分〕21、解:OE⊥AB.证明:在△B A C和△ABD中,,∴△BAC≌△ABD〔SAS〕.∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB.答:OE⊥AB.22、〔1〕答:有①③、①④、②③、②④共4种情形.〔2〕解:选择①④,证明如下:∵OB=OC,∴∠OBC=∠OCB,又∵∠EBO=∠DCO,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AC=AB.②④理由是:在△BEO和△CDO中∵,∴△BEO≌△CDO,∴∠EBO=∠DCO,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC,23、解:〔1〕成立;∵△ABC中BF、CF平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠4.∵DE∥BC,∴∠2=∠3,∠4=∠6.∴∠1=∠3,∠6=∠5.根据在同一个三角形中,等角对等边的性质,可知:BD=DF,EF=CE.∴DE=DF+EF=BD+CE.故成立.〔2〕∵BF分∠ABC,∴∠DBF=∠FBC.∵DF∥BC,∴∠DFB=∠FBC.∴∠ABF=∠DFB,∴BD=DF.∵CF平分∠AC G,∴∠ACF=∠FCG.∵DF∥BC,∴∠DFC=∠FCG.∴∠ACF=∠DFC,∴CE=EF.∵EF+DE=DF,即DE+EC=BD.。
2021年九年级数学中考一轮复习专题突破训练:三角形的中位线(附答案)
2021年九年级数学中考一轮复习专题突破训练:三角形的中位线(附答案)1.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()A.B.1C.D.72.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为P A,PB的中点,对下列各值:①线段MN的长;②△P AB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤3.如图,四边形ABCD中,∠A=90°,AB=,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.3B.4C.4.5D.54.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是()A.线段EF的长逐渐增长B.线段EF的长逐渐减小C.线段EF的长始终不变D.线段EF的长与点P的位置有关5.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.36.如图,△ABC的面积是12,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG 的面积是()A.4.5B.5C.5.5D.67.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.4B.3C.D.28.如图,在△ABC中,BD、CE是角平分线,AM⊥BD于点M,AN⊥CE于点N.△ABC 的周长为30,BC=12.则MN的长是()A.15B.9C.6D.39.如图,在四边形ABCD中,已知AB=CD,M、N、P分别是AD、BC、BD的中点∠ABD =20°,∠BDC=70°,则∠NMP的度数为()A.50°B.25°C.15°D.20°10.如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F 位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3B.4C.2D.311.如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE12.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.10B.8C.6D.513.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7B.9C.10D.1114.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC =15,MN=3,则AC的长是()A.12B.14C.16D.1815.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC 的周长是()A.6B.12C.18D.2416.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE 并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.17.如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD 上,P为AE的中点,连接PG,则PG的长为.18.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为.19.如图,已知AB=10,P是线段AB上的动点,分别以AP、PB为边在线段AB的同侧作等边△ACP和△PDB,连接CD,设CD的中点为G,当点P从点A运动到点B时,则点G移动路径的长是.20.如图,∠ACB=90°,D为AB中点,连接DC并延长到点E,使CE=CD,过点B 作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为.21.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为.22.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.23.如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长.24.在四边形ABCD中,对角线AC⊥BD且AC=6、BD=8,E、F分别是边AB、CD的中点,则EF=.25.如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN=.26.如图,在四边形ABDC中,E、F、G、H分别为AB、BC、CD、DA的中点,并且E、F、G、H四点不共线.当AC=6,BD=8时,四边形EFGH的周长是.27.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,点M为边AC的中点,点N 为边BC上任意一点,若点C关于直线MN的对称点C′恰好落在△ABC的中位线上,则CN的长为.28.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD =BC,∠FPE=100°,则∠PFE的度数是.29.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF =BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.30.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.31.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.32.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,求DF的长.33.如图,在四边形ABCD中,AC⊥BD,BD=12,AC=16,E,F分别为AB,CD的中点,求EF的长.34.在△ABC中,E是AC边上一点,线段BE垂直∠BAC的平分线于D点,点M为BC边的中点,连接DM.(1)求证:DM=CE;(2)若AD=6,BD=8,DM=2,求AC的长.35.如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点.(1)求证:四边形EGFH是菱形;(2)若AB=,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积.36.如图,E、F、G、H分别为四边形ABCD四边之中点.(1)求证:四边形EFGH为平行四边形;(2)当AC、BD满足时,四边形EFGH为菱形.当AC、BD满足时,四边形EFGH为矩形.当AC、BD满足时,四边形EFGH为正方形.37.如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=(AC﹣AB);(2)如图2,写出线段AB、AC、EF的数量关系,并证明你的结论.38.已知:△ABC中,AB=10.(1)如图①,若点D、E分别是AC、BC边的中点,求DE的长;(2)如图②,若点A1,A2把AC边三等分,过A1,A2作AB边的平行线,分别交BC 边于点B1,B2,求A1B1+A2B2的值;(3)如图③,若点A1,A2,…,A10把AC边十一等分,过各点作AB边的平行线,分别交BC边于点B1,B2,…B10.根据你所发现的规律,直接写出A1B1+A2B2+…+A10B10的结果.参考答案1.解:∵AD是△ABC角平分线,CG⊥AD于F,∴△AGC是等腰三角形,∴AG=AC=3,GF=CF,∵AB=4,AC=3,∴BG=1,∵AE是△ABC中线,∴BE=CE,∴EF为△CBG的中位线,∴EF=BG=,故选:A.2.解:∵点A,B为定点,点M,N分别为P A,PB的中点,∴MN是△P AB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;P A、PB的长度随点P的移动而变化,所以,△P AB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.3.解:如图,连结DN,∵DE=EM,FN=FM,∴EF=DN,当点N与点B重合时,DN的值最大即EF最大,在Rt△ABD中,∵∠A=90°,AD=3,AB=3,∴BD===6,∴EF的最大值=BD=3.故选A.4.解:连接AR,∵矩形ABCD固定不变,R在CD的位置不变,∴AD和DR不变,∵由勾股定理得:AR=,∴AR的长不变,∵E、F分别为AP、RP的中点,∴EF=AR,即线段EF的长始终不变,故选:C.5.解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19﹣BC=19﹣7=12,∴DE=BE+CD﹣BC=5,∴MN=DE=.故选:C.6.解:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CE是△ACD的中线,AF是△ABE的中线,AG是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选:A.7.解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=2.故选:D.8.证明:∵△ABC的周长为30,BC=12.∴AB+AC=30﹣BC=18.延长AN、AM分别交BC于点F、G.如图所示:∵BM为∠ABC的角平分线,∴∠CBM=∠ABM,∵BM⊥AG,∴∠ABM+∠BAM=90°,∠G+∠CBM=90°,∴∠BAM=∠AGB,∴AB=BG,∴AN=GN,同理AC=CF,AM=MF,∴MN为△AFG的中位线,GF=BG+CF﹣BC,∴MN=(AB+AC﹣BC)=(18﹣12)=3.故选:D.9.解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,∴PN,PM分别是△CDB与△DAB的中位线,∴PM=AB,PN=DC,PM∥AB,PN∥DC,∵AB=CD,∴PM=PN,∴△PMN是等腰三角形,∵PM∥AB,PN∥DC,∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,∴∠MPN=∠MPD+∠NPD=20°+(180﹣70)°=130°,∴∠PMN==25°.故选:B.10.解:取BC的中点G,连接EG,∵E是AC的中点,∴EG是△ABC的中位线,∴EG=AB==4,设CD=x,则EF=BC=2x,∴BG=CG=x,∴EF=2x=DG,∵EF∥CD,∴四边形EGDF是平行四边形,∴DF=EG=4,故选:B.11.解:∵DE是△ABC的中位线,∴E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵,∴△ADE≌△CFE(AAS),∴DE=FE.故选:B.12.解:平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小.∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴CD=DB,∴OD是△ABC的中位线,∴OD=AB=3,∴DE=2OD=6.故选:C.13.解:∵BD⊥DC,BD=4,CD=3,由勾股定理得:BC==5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG=BC=EF,EH=FG=AD,∵AD=6,∴EF=HG=2.5,EH=GF=3,∴四边形EFGH的周长是EF+FG+HG+EH=2×(2.5+3)=11.故选:D.14.解:延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN,在△ABN与△AEN中,∵,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE,又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故选:C.15.解:∵D、E分别是AB、AC的中点,∴AD=AB,AE=AC,DE=BC,∴△ABC的周长=AB+AC+BC=2AD+2AE+2DE=2(AD+AE+DE)=2×6=12.故选:B.16.解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'E=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;17.解:方法1、延长GE交AB于点O,作PH⊥OE于点H.则PH∥AB.∵P是AE的中点,∴PH是△AOE的中位线,∴PH=OA=(3﹣1)=1.∵直角△AOE中,∠OAE=45°,∴△AOE是等腰直角三角形,即OA=OE=2,同理△PHE中,HE=PH=1.∴HG=HE+EG=1+1=2.∴在Rt△PHG中,PG===.故答案是:.方法2、如图1,延长DA,GP相交于H,∵四边形ABCD和四边形EFCG是正方形,∴EG∥BC∥AD,∴∠H=∠PGE,∠HAP=∠GEP,∵点P是AE的中点,∴AP=EP,∴△AHP≌△EGP,∴AH=EG=1,PG=PH=HG,∴DH=AD+AH=4,DG=CD﹣CG=2,根据勾股定理得,HG==2,∴PG=,故答案为.18.解:∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF=×10=5cm.故答案为:5.19.解:如图,分别延长AC、BD交于点H,过G作MN∥AB,分别交AH于M,BH于N,∵△APC和△BPD是等边三角形,∴∠A=∠B=60°,∴△AHB是等边三角形,∵∠A=∠DPB=60°,∴AH∥PD,∵∠B=∠CP A=60°,∴BH∥PC,∴四边形CPDH为平行四边形,∴CD与HP互相平分.∵G为CD的中点,∴G正好为PH中点,∵△ABH是等边三角形,∴在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为△HAB的中位线MN.∴MN=AB=5,即G的移动路径长为5.故答案为:5.20.解:∵点D是AB的中点,BF∥DE,∴DE是△ABF的中位线.∵BF=10,∴DE=BF=5.∵CE=CD,∴CD=5,解得CD=4.∵△ABC是直角三角形,∴AB=2CD=8.故答案为:8.21.解:∵DE为△ABC的中位线,∠AFB=90°,∴DE=BC,DF=AB,∵AB=6,BC=8,∴DE=×8=4,DF=×6=3,∴EF=DE﹣DF=4﹣3=1.故答案为:1.22.解:∵DE为△ABC的中位线,∴AD=BD,∵∠AFB=90°,∴DF=AB=2.5,∵DE为△ABC的中位线,∴DE=BC=4,∴EF=DE﹣DF=1.5,故答案为:1.5.23.解:∵△ABC的周长是26,BC=10,∴AB+AC=26﹣10=16,∵∠ABC的平分线垂直于AE,∴在△ABQ和△EBQ中,,∴△ABQ≌△EBQ,∴AQ=EQ,AB=BE,同理,AP=DP,AC=CD,∴DE=BE+CD﹣BC=AB+AC﹣BC=16﹣10=6,∵AQ=DP,AP=DP,∴PQ是△ADE的中位线,∴PQ=DE=3.故答案是:3.24.解:如图,取BC的中点G,连接EG、FG,∵E、F分别是边AB、CD的中点,∴EG∥AC且EG=AC=×6=3,FG∥BD且FG=BD=×8=4,∵AC⊥BD,∴EG⊥FG,∴EF===5.故答案为:5.25.解:连接CM,∵M、N分别是AB、AC的中点,∴NM=CB,MN∥BC,又CD=BD,∴MN=CD,又MN∥BC,∴四边形DCMN是平行四边形,∴DN=CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=3,∴DN=3,故答案为:3.26.解:∵F,G分别为BC,CD的中点,∴FG=BD=4,FG∥BD,∵E,H分别为AB,DA的中点,∴EH=BD=4,EH∥BD,∴FG∥EH,FG=EH,∴四边形EFGH为平行四边形,∴EF=GH=AC=3,∴四边形EFGH的周长=3+3+4+4=14,故答案为:1427.解:取BC、AB的中点H、G,连接MH、HG、MG.如图1中,当点C′落在MH上时,设NC=NC′=x,由题意可知:MC=MC′=2,MH=,HC′=,HN=﹣x,在Rt△HNC′中,∵HN2=HC′2+NC′2,∴(﹣x)2=x2+()2,解得x=.如图2中,当点C′落在GH上时,设NC=NC′=x,在Rt△GMC′中,MG=CH=,MC=MC′=2,∴GC′=,∵△HNC′∽△GC′M,∴=,∴=,∴x=.如图3中,当点C′落在直线GM上时,易证四边形MCNC′是正方形,可得CN=CM=2.此时点C′在中位线GM的延长线上,不符合题意舍弃.综上所述,满足条件的线段CN的长为或.故答案为为或.28.解:∵P是对角线BD的中点,E是AB的中点,∴EP=AD,同理,FP=BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,故答案为:40°.29.(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE BC,∵延长BC至点F,使CF=BC,∴DE=FC;(2)解:∵DE FC,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.30.证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠F AH=∠FHA,∵∠DAH+∠F AH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠DEF.31.(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=AD,在RT△ABC中,∵M是AC中点,∴BM=AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN=32.解:延长CF交AB于点G,∵AE平分∠BAC,∴AF垂直平分CG,∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=BG=(AB﹣AG)=(AB﹣AC)=2.33.解:如图,取BC边的中点G,连接EG、FG.∵E,F分别为AB,CD的中点,∴EG是△ABC的中位线,FG是△BCD的中位线,∴EG AC,FG BD.又BD=12,AC=16,AC⊥BD,∴EG=8,FG=6,EG⊥FG,∴在直角△EGF中,由用勾股定理,得EF===10,即EF的长度是10.34.(1)证明:在△ADB和△ADE中,,∴△ADB≌△ADE(ASA)∴AE=AB,BD=DE,∵BD=DE,BM=MC,∴DM=CE;(2)解:在Rt△ADB中,AB==10,∴AE=10,由(1)得,CE=2DM=4,∴AC=CE+AE=14.35.(1)证明:∵在四边形ABCD中,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点,∴EG∥AB,EG=AB,HF∥AB,HF=AB,∴EG∥HE,EG=HE,∴四边形EGFH是平行四边形.又EH=CD,AB=CD,∴EG=EH,∴平行四边形EGFH是菱形;(2)解:∵四边形ABCD中,G、F、H分别是BD、BC、AC的中点,∴GF∥DC,HF∥AB.∴∠GFB=∠DCB,∠HFC=∠ABC.∴∠HFC+∠GFB=∠ABC+∠DCB=90°.∴∠GFH=90°.∴菱形EGFH是正方形.∵AB=,∴EG=AB=.∴正方形EGFH的面积=()2=.36.(1)证明:如图,连接BD,∵E、F、G、H分别为四边形ABCD四边之中点,∴EH是△ABD的中位线,FG是△BCD的中位线,∴EH∥BD且EH=BD,FG∥BD且FG=BD,∴EH∥FG且EH=FG,∴四边形EFGH为平行四边形;(2)解:连接AC,同理可得EF∥AC且EF=AC,所以,AC=BD时,四边形EFGH为菱形;AC⊥BD时,四边形EFGH为矩形;AC=BD且AC⊥BD时,四边形EFGH为正方形.故答案为:AC=BD;AC⊥BD;AC=BD且AC⊥BD.37.(1)证明:如图1中,∵AE⊥BD,∴∠AED=∠AEB=90°,∴∠BAE+∠ABE=90°,∠DAE+∠ADE=90°,∵∠BAE=∠DAE,∴∠ABE=∠ADE,∴AB=AD,∵AE⊥BD,∴BE=DE,∵BF=FC,∴EF=DC==(AC﹣AB).(2)结论:EF=(AB﹣AC),理由:如图2中,延长AC交BE的延长线于P.∵AE⊥BP,∴∠AEP=∠AEB=90°,∴∠BAE+∠ABE=90°,∠P AE+∠APE=90°,∵∠BAE=∠P AE,∴∠ABE=∠APE,∴AB=AP,∵AE⊥BD,∴BE=PE,∵BF=FC,∴EF=PC=(AP﹣AC)=(AB﹣AC).38.解:(1)∵D、E分别是AC、BD的中点,且AB=10,∴DE=AB=5;(2)设A1B1=x,则A2B2=2x.∵A1、A2是AC的三等分点,且A1B1∥A2B2∥AB,∴A2B2是梯形A1ABB1的中位线,即:x+10=4x,得x=,∴A1B1+A2B2=10;(3)同理可得:A1B1+A2B2+…+A10B10=。
八年级数学三角形中位线培优专题训练
八年级数学三角形中位线培优专题训练一、内容提要1. 三角形中位线平行于第三边,并且等于第三边的一半。
梯形中位线平行于两底,并且等于两底和的一半。
2. 中位线性质定理的结论,兼有位置和大小关系,可以用它判定平行,计算线段的长度,确定线段的和、差、倍关系。
3. 运用中位线性质的关键是从出现的线段中点,找到三角形或梯形,包括作出辅助线。
4. 中位线性质定理,常与它的逆定理结合起来用。
它的逆定理就是平行线截比例线段定理及推论,①一组平行线在一直线上截得相等线段,在其他直线上截得的线段也相等 ②经过三角形一边中点而平行于另一边的直线,必平分第三边 ③经过梯形一腰中点而平行于两底的直线,必平分另一腰 5. 有关线段中点的其他定理还有: ①直角三角形斜边中线等于斜边的一半②等腰三角形底边中线和底上的高,顶角平分线互相重合 ③对角线互相平分的四边形是平行四边形 ④线段中垂线上的点到线段两端的距离相等 因此如何发挥中点作用必须全面考虑。
二、例题例1. 已知:△ABC 中,分别以AB 、AC 为斜边作等腰直角三角形ABM 和CAN ,P 是BC 的中点。
求证:PM =PN证明:作ME ⊥AB ,NF ⊥AC ,垂足E ,F ∵△ABM 、△CAN 是等腰直角三角形∴AE =EB=ME ,AF =FC =NF ,根据三角形中位线性质 PE =21AC =NF ,PF =21AB =MEPE ∥AC ,PF ∥AB∴∠PEB =∠BAC =∠PFC 即∠PEM =∠PFN∴△PEM ≌△PFN ∴PM =PN例2.已知△ABC 中,AB =10,AC =7,AD 是角平分线,CM ⊥AD 于M ,且N 是BC 的中点。
求MN 的长。
分析:N 是BC 的中点,若M 是另一边中点, 则可运用中位线的性质求MN 的长, 根据轴称性质作出△AMC 的全等三角形即可。
辅助线是:延长CM 交AB 于E (证明略 例3.如图已知:△ABC 中,AD 是角平分线,BE =CF ,M 、N 分别是BC 和EF 的中点 求证:MN ∥AD 证明一:连结EC ,取EC 的中点P ,连结PM 、PNP NMP ∥AB ,MP =21AB ,NP ∥AC ,NP =21AC ∵BE =CF ,∴MP =NP∴∠3=∠4=2MPN-180∠∠MPN +∠BAC =180(两边分平行的两个角相等或互补)∴∠1=∠2=2MPN-180∠ , ∠2=∠3∴NP ∥AC ∴MN ∥AD证明二:连结并延长EM 到G ,使MG =ME 连结CG ,FG则MN ∥FG ,△MCG ≌△MBE ∴CG =BE =CF ∠B =∠BCG∴AB ∥CG ,∠BAC +∠FCG =180∠CAD =21(180-∠FCG ) ∠CFG =21(180-∠FCG )=∠CAD ∴ MN ∥AD 例4. 已知:△ABC 中,AB =AC ,AD 是高,CE 是角平分线,EF ⊥BC 于F ,GE ⊥CE交CB 的延长线于G 求证:FD =41CG 证明要点是:延长GE 交AC 于H , 可证E 是GH 的中点过点E 作EM ∥GC 交HC 于M ,则M 是HC 的中点,EM ∥GC ,EM =21GC由矩形EFDO 可得FD =EO =21EM =41GC三、练习1. 如图11,M 、P 分别为△ABC 的AB 、AC 上 的点,且AM=BM ,AP=2CP ,BP 与CM 相交于N ,已知PN=1,则PB 的长为 ( ) A. 2 B. 3 C .4 D. 52. 如图12,△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 的中点,AB=10,则MD 的长为 ( )A. 10B. 8 C .6 D. 53. 如图13,△ABC 是等边三角形,D 、E 、F 分别是AB 、BC 、AC 的中点,P 为不同于B 、E 、C 的BC 上的任意一点,△DPH 为等边三角形.连接FH ,则EP 与FH 的大小关系是 ( ) A. E P>FH B. EP=FH C. EP<FH D.不确定4. 如图14,在△ABC 中,AD 平分∠BAC ,BD ⊥AD ,DE ∥AC ,交AB 于E ,若AB=5,则DE 的长为 .C5. 如图15,△ABC中,AB=4,AC=7,M为BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于.6. 如图25,P为△ABC内一点,∠P AC=∠PBC,PM⊥AC于M,PN⊥BC于N.D是AB的中点.求证:DM=DN7. 如图16,在△ABC中,D、E是AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点,直线MN分别交AB、AC于P、Q.求证:AP=AQ8. 如图17,BE、CF是△ABC的角平分线,AN⊥BE于N,AM⊥CF于M.求证:MN∥BC.9. 如图18,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD于M.求证:AB+AC=2AM10.如图19,四边形ABCD中,G、H分别是AD、BC的中点,AB=CD.BA、CD的延长线交HG的延长线于E、F.求证:∠BEH=∠CFH.1. 如图20,在△ABC中,∠ABC=2∠C,AD平分∠BAC,过BC的中点M作ME⊥AD,交BA的延长线于E,交AD的延长线于F.求证:12BE BD.2. 如图21,在△ABC中,AB<AC,P为AC上的点,CP=AB,K为AP的中点,M为BC的中点,MK的延长线交BA的长线于N.求证:AN=AK.3. 如图22,分别以△ABC的边AC、BC为腰,A、B为直角顶点,作等腰直角△ACE和等腰直角△BCD,M为ED的中点.求证:AM⊥BM.4. 如图23,点O是四边形ABCD内一点,∠AOB=∠COD=1200,AO=BO,CO=DO,E、F、G分别为AB、CD、BC的中点.求证:△EFG为等边三角形.5. 如图24,△ABC中,M是AB的中点,P是AC的中点,D是MB的中点,N是CD的中点,Q是MN的中点,直线PQ交MB于K.求证:K是DB的中点.6. 如图25,P为△ABC内一点,∠P AC=∠PBC,PM⊥AC于M,PN⊥BC于N.D是AB的中点.求证:DM=DN图21 图22 图23 图24 图257. 如图26,AP是△ABC的角平分线,D、E分别是AB、AC上的点,且BD=CE.又G、H分别为BC、DE的中点.求证:HG∥AP.8. 如图27,已知△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=900,如图(a),连接DE,设M为DE的中点.(1)求证:MB=MC;(2)设∠BAD=∠CAE,固定△ABD,让Rt△ACE绕顶点A在平面内旋转到图(b)的位置,试问MB=MC是否成立?并证明其结论.9. 已知△ABC面积为S,作直线l∥BC,交AB于D,交AC于E,若△BED的积为K.求证:S≥4K.10.如图28,在△ABC中,AB=AC,D是BC边上的一点,E是线段AD上的一点.且∠BED=2∠CED=∠BAC.求证:BD=2CD.图26 图27。
鲁教版八年级数学上册《三角形的中位线》同步训练(附答案)
鲁教版八年级数学上册《三角形的中位线》同步训练(附答案)1.如图,四边形ABCD中,AD=BC,点P是对角线BD的中点,E、F分别是AB、CD的中点,若∠EPF=130°,则∠PEF的度数为()A.25°B.30°C.35°D.50°2.如图,四边形ABCD的对角线AC,BD相交于点O,AC⊥BD,E,F分别是AB,CD的中点,若AC=BD=2,则EF的长是()A.2B.C.D.3.如图,在△ABC中,点D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.2B.3C.6D.44.如图,四边形ABCD中,AD∥BC,AD=2,BC=5,点E,F分别是对角线AC,BD的中点,则EF的长为()A.1B.1.5C.2.5D.3.55.如图,△ABC的周长为4,点D,E,F分别是AB,BC,CA的中点,则△DEF的周长是()A.1B.2C.3D.46.如图,已知在△ABC中,D,E,F分别是边BC,CA,AB的中点.AB=10,AC=8,则四边形AFDE的周长等于()A.18B.16C.14D.127.如图所示,在△ABC中,BC>AC,点D在BC上,DC=AC=10,且=,作∠ACB 的平分线CF交AD于点F,CF=8,E是AB的中点,连接EF,则EF的长为.8.如图,在△ABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D.若BC=4,则CD的长是多少?9.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=10,求EF的长.10.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE =30°,DF=3,DE=2,求FC的长度.11.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AE平分∠CAB,CE⊥AE于点E,延长CE交AB于点D.(1)求证:CE=DE;(2)若点F为BC的中点,求EF的长.12.如图,在△ABC中,AD是中线,AE是角平分线,点F在AE上,∠CF A=90°,试判断DF与AB的位置关系,并说明理由.13.如图,D、E、F分别是△ABC三边中点,AH⊥BC于H.求证:(1)∠BDF=∠BAC;(2)DF=EH.14.如图,在四边形ABCD中,AD=BC,E、F分别是边DC、AB的中点,FE的延长线分别AD、BC的延长线交于点H、G,求证:∠AHF=∠BGF.15.如图,点O是△ABC内一点,连接OB、OC,线段AB、OB、OC、AC的中点分别为D、E、F、G.(1)判断四边形DEFG的形状,并说明理由;(2)若M为EF的中点,OM=2,∠OBC和∠OCB互余,求线段BC的长.16.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.(1)求证:DE=CF;(2)求EF的长.17.如图,在△ABC中,AB=AC,点D是边AB上一点,DE∥BC交AC于点E,连接BE,点F、G、H分别为BE、DE、BC的中点.(1)求证:FG=FH;(2)当∠A为多少度时,FG⊥FH?并说明理由.18.已知:如图,四边形ABCD中,对角线AC=BD,E,F为AB、CD中点,连EF交BD、AC于P、Q求证:OP=OQ.19.如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=(AC﹣AB);(2)如图2,△ABC中,AB=9,AC=5,求线段EF的长.参考答案1.解:∵P、F分别是BD、CD的中点,∴PF=BC,同理可得:PE=AD,∵AD=BC,∴PF=PE,∵∠EPF=130°,∴∠PEF=∠PFE=×(180°﹣130°)=25°,故选:A.2.解:取BC的中点G,AD的中点H,连接EG、GF、FH、HE,∵E,G分别是AB,BC的中点,AC=2∴EG=AC=1,EG∥AC,同理:FH=AC,FH∥AC,EG=AC,GF∥BD,GF=BD=1,∴四边形EGFH为平行四边形,∵AC=BD,∴GE=GF,∴平行四边形EGFH为菱形,∵AC⊥BD,EG∥AC,GF∥BD,∴EG⊥GF,∴菱形EGFH为正方形,∴EF=EG=,故选:D.3.解:∵D,E分别是BC,AC的中点,∴DE∥AB,∴∠BFD=∠ABF,∵BF平分∠ABC,∴∠DBF=∠ABF,∴∠BFD=∠DBF,∴DF=DB=BC==3,故选:B.4.解:∵取DC中点G,连结FG、EG,如图所示:∵点E,F分别是对角线AC,BD的中点,∴FG∥BC,EG∥AD,∵AD∥BC,∴EG∥BC,FG∥EG,∴E、F、G三点共线,∴FG是△BCD的中位线,∴FG=BC=2.5,∵AD∥BC,∴EG∥AD,∴EG是△ACD的中位线,∴EG=AD=1,∴EF=FG﹣EG=1.5.故选:B.5.解:∵△ABC的周长为4,∴AB+AC+BC=4,∵点D,E,F分别是AB,BC,CA的中点,∴EF=AB,DE=AC,DF=BC,∴△DEF的周长=EF+DE+DF=×(AB+AC+BC)=2,故选:B.6.解:∵D,E,F分别是边BC,CA,AB的中点.AB=10,AC=8,∴DE=AB=5,DF=AC=4,AF=AB=5,AE=AC=4,∴四边形AFDE的周长=AF+DF+DE+AE=5+5+4+4=18,故选:A.7.解:∵DC=AC=10,∠ACB的平分线CF交AD于F,∴F为AD的中点,CF⊥AD,∴∠CFD=90°,∵DC=10,CF=8,∴DF==6,∴AD=2DF=12,∵=,∴BD=8,∵点E是AB的中点,∴EF为△ABD的中位线,∴EF=BD=4,故答案为:4.8.解:∵M,N分别是AB和AC的中点,∴MN是△ABC的中位线,∴MN=BC=2,MN∥BC,∴∠NME=∠D,∠MNE=∠DCE,∵点E是CN的中点,∴NE=CE,在△MNE和△DCE中,,∴△MNE≌△DCE(AAS),∴CD=MN=2.9.解:∵AD=AC,AE⊥CD,∴CE=ED,∵F是BC的中点,∴EF是△CDB的中位线,∴EF=BD=×10=5.10.解:∵AF⊥BC,点D是边AB的中点,DF=3,∴AB=2DF=6.∵点D,E分别是边AB,AC的中点,∴DE∥BC,∴∠B=∠ADE=30°,∴AF=AB=3,由勾股定理得,BF===3,∴FC=BC﹣BF=.11.(1)证明:∵AE平分∠CAB,∴∠CAE=∠BAE,∵CE⊥AE,∴∠AEC=∠AED=90°,在△AEC和△AED中,,∴△AEC≌△AED(ASA),∴CE=DE;(2)在Rt△ABC中,∵AC=6,BC=8,∴,∵△AEC≌△AED,∴AD=AC=6,∴BD=AB﹣AD=4,∵点E为CD中点,点F为BC中点,∴.12.解:DF∥AB.理由如下:如图,延长CF交AB于点G,∵AE是角平分线,∴∠GAF=∠CAF,在△AGF和△ACF中,∴△AGF≌△ACF(ASA),∴GF=CF,即点F是GC的中点,∵AD是△ABC的中线,∴点D是BC的中点∴DF是△BCG的中位线,∴DF∥AB.13.证明:(1)∵D、F分别是AB、BC边中点,∴DF是△ABC的中位线,∴DF∥AC,DF=AC,∴∠BDF=∠BAC;(2)∵AH⊥BC于H,E是AC的中点,∴EH=AC,∴DF=EH.14.证明:连接BD,取BD的中点P,连接EP,FP,∵E、F、P分别是DC、AB、BD边的中点,∴EP是△BCD的中位线,PF是△ABD的中位线,∴PF=AD,PF∥AD,EP=BC,EP∥BC,∴∠H=∠PFE,∠BGF=∠FEP,∵AD=BC,∴PE=PF,∴∠PEF=∠PFE,∴∠AHF=∠BGF.15.解:(1)四边形DEFG是平行四边形,理由如下:∵E、F分别为线段OB、OC的中点,∴EF=BC,EF∥BC,同理DG=BC,DG∥BC,∴EF=DG,EF∥DG,∴四边形DEFG是平行四边形;(2)∵∠OBC和∠OCB互余,∴∠BOC=90°,∵M为EF的中点,OM=2,∴EF=2OM=4,∴BC=2EF=8.16.解:(1)∵D、E分别为AB、AC的中点,∴DE∥BC,DE=BC,∵EF∥CD∴四边形DEFC是平行四边形,∴DE=CF.(2)∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.17.(1)证明:∵AB=AC.∴∠ABC=∠ACB,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴AD=AE,∴DB=EC,∵点F、G、H分别为BE、DE、BC的中点,∴FG是△EDB的中位线,FH是△BCE的中位线,∴FG=BD,FH=CE,∴FG=FH;(2)解:延长FG交AC于N,∵FG是△EDB的中位线,FH是△BCE的中位线,∴FH∥AC,FN∥AB,∵FG⊥FH,∴∠A=90°,∴当∠A=90°时,FG⊥FH.18.证明:取BC中点G,连EG、FG,∵E,G为AB、BC中点,∴EG=AC,EG∥AC,∴∠FEG=∠OQP,同理,FG=BD,FG∥BD,∴∠EFG=∠OPQ,∵AC=BD,∴EG=FG,∴∠FEG=∠EFG,∴∠OPQ=∠OQP,∴OP=OQ.19.(1)证明:在△AEB和△AED中,,∴△AEB≌△AED(ASA)∴BE=ED,AD=AB,∵BE=ED,BF=FC,∴EF=CD=(AC﹣AD)=(AC﹣AB);(2)解:分别延长BE、AC交于点H,在△AEB和△AEH中,,∴△AEB≌△AEH(ASA)∴BE=EH,AH=AB=9,∵BE=EH,BF=FC,∴EF=CH=(AH﹣AC)=2.。
中考数学总复习《构造三角形中位线模型解题》专项提升练习题(附答案)
中考数学总复习《构造三角形中位线模型解题》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________一、三角形中位线的概念和性质1.连接三角形两边中点的线段叫做三角形的中位线2.三角形中位线定理:三角形的中位线平行于第三遍,且等于第三边的一半3.隐含中点的条件:等腰三角形三线合一(顶角的角平分线底边的中垂线),平行四边形对角线的交点。
例1.如图,点D、E分别为△ABC的边AB、AC的中点,点F在DE的延长线上,CF∥BA,若BC=8,则EF=( ) A.4 B.8 C.5 D.3例2.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠EPF=136°,则∠EFP的度数是( ) A.68° B.34° C.22° D.44°二、连接两点构造三角形的中位线例3.如图,在四边形ABCD中,∠A=90°,AB=12,AD=5.点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF的最大值是.4例4.如图1,已知点E ,F ,G ,H 分别是四边形ABCD 的边AB ,BC ,CD ,DA 的中点,根据以下思路可以证明四边形EFGH 是平行四边形:如图2,将图1中的点C 移动至与点E 重合的位置,F ,G ,H 仍是BC ,CD ,DA 的中点,求证:四边形CFGH 是平行四边形.三.已知角平分线+垂直构造中位线例5.如图,AD 为ABC 中BAC ∠的外角平分线,BD AD ⊥于D ,E 为BC 中点5DE =,3AC =则AB 长为( )A .8.5B .8C .7.5D .7例6.如图,在△ABC 中,∠ABC =90°,在边AC 上截取AD =AB ,连接BD ,过点A 作AE ⊥BD 于点E ,F 是边BC 的中点,连接EF.若AB =5,BC =12,求EF 的长度.例7.如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,点E为BC的中点,求DE的长.四.倍长法构造三角形的中位线例8.如图,在△ABC中,∠ABC=90°,BA=BC,△BEF为等腰直角三角形,∠BEF=90°,M为AF的中点.求证ME=12CF.例9.如图,在△ABC中,∠ABC=90°,AB=BC,BD⊥AC于点D,CE平分∠ACB,交AB于点E,交BD于点F.求证:(1)△BEF是等腰三角形;(2)BD=12(BC+BF).五.已知一边中点,取另一边中点构造三角形的中位线例10.如图,四边形ABCD中,点E,F分别是边AB,CD的中点,且AD=6,BC=10,则线段EF的长可能为( )A.7B.8.5C.9D.10六.已知两边中点,取第三边中点构造三角形的中位线例11.如图,菱形ABCD 的对角线AC BD ,相交于点O .E ,F 分别是AD OC ,的中点,若1207BAD EF ∠=︒=,ABCD 的周长为( )A .8B .16C .3D .3例12.如图,已知四边形ABCD 中AC BD ⊥,AC=6,8BD =点E 、F 分别是边AD 、BC 的中点,连接EF ,则EF 的长是 __.强化训练题一.选择题1.如图 在△ABC 中 AB =4 BC =5 AC =8.点D E F 分别是相应边上的中点 则四边形DFEB 的周长等于( )A .8B .9C .12D .132.如图 △ABC 中 AB =AC =12 BC =10 AD 平分∠BAC 交BC 于点D 点E 为AC 的中点 连接DE 则△CDE 的周长为( )A .11B .17C .18D .163.如图 在ABC 中 45B ∠=︒ 60C ∠=︒ AD BC ⊥于点D 6BD = 若E F 分别为AB BC 的中点 则EF 的长为( )A 2B 6C 6D 34.如图 ABCD 的对角线AC BD 交于点O AE 平分BAD ∠交BC 于点E且60ADC ∠=︒ 12AB BC = 连接OE .下列结论中不成立的是( )A .30CAD ∠=︒B .ABCD S AB AC =⋅ C .OB AB =D .14OE BC =5.如图 四边形ABCD 中 ∠B =90° AB =8 BC =6 点M 是对角线AC 的中点 点N 是AD 边的中点 连结BM MN 若BM =3MN 则线段CD 的长是( )A .53B .3C .103D .56.已知三角形三边长分别为7cm 8cm 9cm 作三条中位线组成一个新的三角形 同样方法作下去 一共做了五个新的三角形 则这五个新三角形的周长之和为( )A .46.5cmB .22.5cmC .23.25cmD .以上都不对7.如图 在ABC 中 AE 平分BAC ∠ BE AE ⊥于点E 点F 是BC 的中点 若10AB = 6AC = 则EF 的长为( )A .2B .3C .4D .58.如图 在四边形ABCD 中 点E F 分别为AD DC 的中点 连接EB BF EF △EBF 的面积为 S 1 .点G 为四边形ABCD 外一点 连接AG BG EG FG 使得AG =BC ∠GAB =∠ABC △EGF 的面积为 S 2 则 S 1 与 S 2 满足的关系是( )A .S 1 = S 2B .2 S 1 =3 S 2C .3 S 1 =4 S 2D .3 S 1 =2 S 29.如图 平行四边形ABCD 中 O 为对角线交点 DP 平分ADC ∠ CP 平分BCD ∠ 7AB = 10AD = 则OP 的长为( )A .1.5B .2C .2.5D .310.如图 ▱ABCD 的顶点A D 分别在直角∠MON 的两边OM ON 上运 动(不与点O 重合) ▱ABCD 的对角线AC BD 相交于点P 连接OP 若OP=5 则▱ABCD 的周长最小值是( )A .20B .25C .10D .15二 填空题11.如图 在平行四边形ABCD 中 E 是CD 的中点 F 是AE 的中点 CF 交BE 于点G 若BE =8 则GE = .12.如图 DE 为△ABC 的中位线 点F 在DE 上 且∠AFC 为直角 若AC =6cm BC =8cm 则DF 的长为 .13.如图已知三角形纸片ABC第1次折叠使点B落在BC边上的点B'处折痕AD交BC于点D;第2次折叠使点A落在点D处折痕MN交AB'于点P.若12BC=则MP与MN的和是_________.14.如图在▱ABCD中AC是对角线∠ACD=90°点E是BC的中点AF平分∠BAC CF⊥AF于点F连接EF.已知AB=5BC=13则EF的长为.15.如图在Rt△ABC中∠ACB=90°AC=BC=6 点D是AC边上的一点且AD=2 以AD为直角边作等腰直角三角形ADE连接BE并取BE的中点F连接CF则CF的长为.16.如图 EF是△ABC的中位线 O是EF上一点且满足OE=2OF.则△ABC的面积与△AOC的面积之比为.17.如图□ABCD的顶点C在等边△BEF的边BF上点E在AB的延长线上 G为DE的中点连接CG.若AD=5 AB=CF=3 则CG的长为.三.解答题18.如图△ABC的中线BE CF相交于G且AB=12 AC=16 BC=20 求GC的长.19.如图在平行四边形ABCD中对角线AC BD、相交于点O点E是边BC中点连接OE并延长至点F使EF OE、.连接BF CF(1)求证:四边形OBFC是平行四边形;(2)求证:OF CD∥.20.如图四边形ABCD为平行四边形 E为AD上的一点连接EB并延长使BF=BE 连接EC并延长使CG=CE连接FG H为FG的中点连接DH(1)求证:四边形AFHD为平行四边形;(2)若CB=CE∠EBC=75°∠DCE=10°求∠DAB的度数.21.如图,点B为AC上一点,分别以AB,BC为边在AC同侧作等边三角形ABD和等边三角形BCE,点P,M,N分别为AC,AD,CE的中点.(1)求证:PM=PN;(2)求∠MPN的度数.22.如图,在△ABC中,AB=AC,AD⊥BC于点D,点P是AD的中点,延长BP交AC于点N,求证:AN=13AC.23.(1)如图1 在四边形ABCD中AB=CD E F分别是AD BC的中点连接FE 并延长分别与BA CD的延长线交于点M N.求证:∠BME=∠CNE;(提示:取BD的中点H连接FH HE作辅助线)(2)如图2 在△ABC中F是BC边的中点D是AC边上一点E是AD的中点直线FE交BA的延长线于点G若AB=DC=2 ∠FEC=45°求FE的长度.24.【发现与证明】如图在四边形ABCD中 E F G H是各边中点对角线AC BD相交于点O I J是AC BD的中点连接EF EH HG GF EI GI EJ FJ IJ GJ IH.结论1:四边形EFGH是平行四边形;结论2:四边形EJGI是平行四边形;结论3:S四边形EFGH =12S四边形ABCD;……(1)请选择其中一个结论加以证明(只需证明一个结论).(2)【探究与应用】(★温馨提示:以下问题可以直接使用上述结论)①如图1 在四边形ABCD中 F H分别为边AB DC的中点连结HF.已知AD=6 BC=4线段HF的取值范围是 .②如图2 在四边形ABCD中点E F G H分别是AB BC CD DA的中点连接EG FH交于点O EG=8cm FH=6cm ∠EOF=60°求S四边形ABCD.答案部分:例1.A ∵点D E 分别为△ABC 的边AB AC 的中点 ∴DE 是△ABC 的中位线 ∴DE ∥BC ,DE =12BC =4.∴DF ∥BC ∵DF ∥BC ,CF ∥BA∴四边形BCFD 是平行四边形 ∴DF =BC =8,∴EF =DF -DE =4.例2.C ∵P 是BD 的中点,E 是AB 的中点 ∴PE =12AD ,同理,PF =12BC ∵AD =BC ,∴PE =PF∴∠EFP =12×(180°-∠EPF )=22°. 故选C.例3.答案 6.5解:如图,连接DN DB∵点E F 分别为DM MN 的中点 ∴EF 是△MDN 的中位线 ∴EF =12DN当N与点B重合时,DN最大,此时EF的值最大∵∠A=90°,AB=12,AD=5∴DB=√AD2+AB2=13,∴EF的最大值为6.5 故答案为6.5.例4.证明如图,连接BD∵C,H分别是AB,DA的中点∴CH是△ABD的中位线BD∴CH∥BD,CH=12BD同理,FG∥BD,FG=12∴CH∥FG,CH=FG∴四边形CFGH是平行四边形.例5.D解:延长BD CA交于点F∠的外角平分线∵AD为ABC中BAC∴FAD BAD∠=∠∵BD AD⊥∴90∠=∠=︒ADF ADB在ABD△和AFD△中FAD BAD AD ADADF ADB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABD AFD △≌△ ∴AB AF = BD DF = 又E 为BC 中点 5DE = ∴210CF DE == 又3AC =∴7AF CF AC AB =-==. 故选:D .例6.解: 在△ABC 中,∠ABC =90°,AB =5,BC =12 则AC =√AB 2+BC 2=√52+122=13 ∵AD =AB =5∴DC =AC -AD =13-5=8 ∵AD =AB ,AE ⊥BD ,∴BE =ED ∵BF =FC ,∴EF =12DC =4.解:如图,延长BD 交AC 于点F ,∵AD 平分∠BAC ,∴∠BAD =∠CAD .∵BD ⊥AD ∴∠ADB =∠ADF又∵AD =AD ,∴△ADB ≌△ADF (ASA ).∴AF =AB =6,BD =FD .∵AC =10,∴CF =AC -AF =10-6=4.∵E 为BC 的中点,∴DE 是△BCF 的中位线.∴DE =12CF =12×4=2.例8.证明:如图,延长FE 至N ,使EN =EF ,连接BN ,AN ,则ME =12AN . ∵EF =EN ,∠BEF =90°,∴BE 垂直平分FN . ∴BF =BN .∴∠BNF =∠BFN . ∵△BEF 为等腰直角三角形,∠BEF =90°,∴∠BFN =45°.∴∠BNF =45°. ∴∠FBN =90°,即∠FBA +∠ABN =90°.又∠FBA +∠CBF =90° ∴∠CBF =∠ABN .在△BCF 和△BAN 中,∵BF =BN ,∠CBF =∠ABN ,BC =BA∴△BCF ≌△BAN (SAS ).∴CF =AN .∴ME =12AN =12CF .例9.(1)证明:在△ABC 中,∵AB =BC ,∠ABC =90°,∴∠ACB =45°. ∵CE 平分∠ACB ,∴∠ECB =∠ACE =22.5°.∴∠BEF =∠CFD =∠BFE =67.5°.∴BE =BF ,即△BEF 是等腰三角形. (2)解:如图,延长AB 至点M ,使得BM =AB ,连结CM .易知D 是AC 的中点∴BD ∥MC ,BD =12MC .∴∠BFE =∠MCE .由(1)得∠BEF =∠BFE ,BE =BF ,∴∠BEF =∠MCE .∴ME =MC .∵BM =AB =BC ,∴BD =12MC =12ME =12(MB +BE )=12(BC +BF ).例10.A 如图,连接BD ,取BD 的中点H ,连接HF ,HE∵点E ,H 分别是AB ,BD 的中点,∴EH 是△ABD 的中位线,∴EH =12AD =3 同理可得FH =12BC =5,∴EF ≤FH +EH =8,故选A .例11.B 解:取CD 的中点G 连接EG FG点E 为AD 的中点 点F 为OC 的中点12EG AC ∴=EG AC ∥ 12FG OD = //FG OD四边形ABCD 是菱形 120BAD ∠=︒AC BD ∴⊥ 60ADC ∠=︒ 1302ODC ADC ∠=∠=︒EG GF ∴⊥ AD DC AC ==设CD x = 则12EG x = 3FG 7EF =22213()()(7)2x ∴+= 解得4x =4CD ∴=∴菱形ABCD的周长为:44416CD=⨯=故选:B.例12解:如图取AB的中点G连接EG FG∵E F分别是边AD CB的中点∴EG BD∥且118422EG BD==⨯=FG AC且116322FG AC==⨯=∵AC BD⊥∴EG FG⊥∴2222435EF EG FG=++=.故答案为:5.强化训练题一.选择题1.如图在△ABC中AB=4 BC=5 AC=8.点D E F分别是相应边上的中点则四边形DFEB的周长等于()A.8 B.9 C.12 D.13解:∵点D F分别是AB AC的中点∴DF=BC=2.5同理EF=AB=2∴四边形DFEB的周长=EF+FD+DB+BE=9故选:B .2.解:∵AB =AC AD 平分∠BAC ∴BD =DC =BC =5 ∵点E 为AC 的中点∴CE =AC =6 DE =AB =6 ∴△CDE 的周长=CD +CE +DE =17 故选:B . 3.A 解:45B ∠=︒ AD BC ⊥ABD ∴是等腰直角三角形 6AD BD ∴=60C ∠=︒30DAC ∴∠=︒12DC AC ∴=2233AD AC DC DC AC ∴-=36AC =22AC ∴=E F 分别为AB BC 的中点1122222EF AC ∴==⨯=故选:A . 4.C解:四边形ABCD 是平行四边形60ABC ADC ∴∠=∠=︒ 120BAD ∠=︒AE 平分BAD ∠60BAE EAD ∴∠=∠=︒ABE ∴是等边三角形AE AB BE ∴==AB =12BC AE ∴=12BC90BAC ∴∠=︒30CAD ∴∠=︒ 故A 正确; AC AB ⊥∴ABCDSAB AC =⋅ 故B 正确AB =12BC OB =12BDBD BC >AB OB ∴≠ 故C 错误; CE BE = CO OA = OE ∴=12ABOE ∴=14BC 故D 正确. 故选:C . 5.【答案】C6.已知三角形三边长分别为7cm 8cm 9cm 作三条中位线组成一个新的三角形 同样方法作下去 一共做了五个新的三角形 则这五个新三角形的周长之和为( ) A .46.5cmB .22.5cmC .23.25cmD .以上都不对解:由△ABC 三边长分别为7cm 8cm 9cm 三条中位线组成一个新的三角形 可知新三角形与原三角形相似 相似比是1:2 即:后一个三角形的周长都是前一个三角形周长的∵原三角形的周长=7+8+9=24 ∴这个新三角形的周长=×24=12 ∴这个五个新三角形的周长之和=24+×24+×24+×24+×24=23.25故选:C .7.A解:延长AC BE 交于点M∵AE 平分BAC ∠ BE AE ⊥∴90AEB AEM ∠=∠=︒ CAE BAE ∠=∠∵AE AE =∴ABE AME ≌∴10AB AM == BE EM =∵6AC =∴4CM AM AC =-=∵点F 是BC 的中点 BE EM =∴EF 为BCM 中位线 ∴122EF CM ==.故选:A .8.【答案】A解:连接 AC∵∠GAB =∠ABC∴AG ∥BC .又 AG = BC可知四边形 AGBC 是平行四边形∴AC ∥BG点 E F 分别为 AD DC 的中点∴EF 是△ ADC 的中位线∴EF ∥AC∴ EF ∥BG .∴点 B 与点 G 到 EF 的距离相等△EBF 与△ EGF 是同底等高的关系∴ S △ EBF = S △ EGF 即S1=S2故选: A9.A解:如图 延长DP 交BC 于点F四边形ABCD 是平行四边形AD BC ∴∥ OD OB = 7AB CD == 10BC AD ==180ADC BCD ∴∠+∠=︒ ADF CFD ∠=∠ DP 平分ADC ∠ CP 平分BCD ∠ADF CDF ∠=∠∴ FCP DCP ∠=∠90CDP DCP ∴∠+∠=︒ CDF CFD ∠=∠7DC CF ∴== DP PF =OP ∴是DBF 的中位线()()111107 1.5222OP BF BC CF ∴==-=-= 故选:A .10.解:如图 取 AD 的中点 H ,连接 PH , OH∵四边形 ABCD 是平行四边形 ∴AP = PC又∵点 H 是 AD 中点 LAOD =90°∴PH =- AB , OH =- AD∴OH + PH ≥ OP∴AB + AD ≥2OP∴四边形 ABCD 的周长最小值为20故选: A .二.填空题11.解:取 BE 的中点 M 连接 FM , CM∵F 为AE 的中点 M 为 BE 的中点∴MF =AB , FM // AB∵四边形 ABCD 是平行四边形∴DC = AB , DC // AB∵E 为 CD 的中点∴CE =DC∴ CE = FM , CE // FM .∴四边形 EFMC 是平行四边形∴EG = GM∵BM = EM = BE =x8=4∴ EG =x4=2故答案为:212.如图 DE 为△ABC 的中位线 点F 在DE 上 且∠AFC 为直角 若AC =6cmBC =8cm则DF 的长为 1cm .解:∵DE 为△ABC 的中位线∴DE =BC =4(cm )∵∠AFC 为直角 E 为AC 的中点∴FE =AC =3(cm )∴DF =DE ﹣FE =1(cm )故答案为:1cm .13.6解:如图2 由折叠得:AM MD = MN AD ⊥ AD BC ⊥ 连接GD∴GN BC∥GN是AD的垂直平分线∴AG DG=∴GAD GDA∠=∠∵90GBD GAD GDB GDA∠+∠=︒=∠+∠∴GBD GDB∠=∠∴GB GD=∴AG BG=同理可得:AN CN=∴GN是ABC的中位线而12BC=∴162GN BC==∵PM GM=∴6 MP MN GM MN GN+=+==.故答案为:6.14.【答案】7215.解:延长AE BC交于点H∵△ADE是等腰直角三角形∴∠HAC=45°AE=AD=2∴CH=AC=BC AH=AC=6∴EH=AH﹣AE=4∵BC=CH BF=FE∴FC=EH=2故答案为:2.16.【答案】3 (或3:1)】解: EF 是△ ABC 的中位线.. EF / BC , EF = BCOE =20F: OE =BC =BC设点 A 到 BC 的距离为 h则 S △ ABC = BC · h , S △ aoc =OE · h =BC · h =BC · h:△ ABC 的面积与△ AOC 的面积之比=3:1.故选: D .17.【答案】52解答】解:∵四边形 ABCD 是平行四边形∴AD = BC , CD = AB , DC / AB∵AD =5, AB = CF =3.∴CD =3, BC =5∴BF = BC + CF =8∵△ BEF 是等边三角形 G 为 DE 的中点∴BF = BE =8, DG = EG延长 CG 交 BE 于点 H∵DC / AB∴∠CDG=∠HEG在△ DCG 和△ EHG 中∠CDG=∠HEGDG = EG∠DGC =∠ EGH∴△ DCGR △ EHG ( ASA ).∴DC = EH , CG = HG∵ CD =3, BE =8∴HE =3, BH =5∵ LCBH =60°, BC = BH =5∴△CBH 是等边三角形∴CH = BC =5∴CG = CH =52故答案为:52三.解答题18.如图△ABC的中线BE CF相交于G且AB=12 AC=16 BC=20 求GC的长.解:∵AB=12 AC=16 BC=20∴AB2+AC2=BC2∴△ABC是直角三角形∴∠A=90°∵F是AB中点∴AF=6∴CF===2∵中线BE CF相交于G∴G是△ABC重心∴CG:GF=2:1∴CG=.19.(1)证明见解析(2)证明见解析(1)证明:∵点E是边BC中点∴BE CE=又∵EF OE=∴四边形OBFC是平行四边形;(2)证明:∵四边形ABCD是平行四边形对角线AC BD、相交于点O ∴点O是BD的中点又∵点E是边BC中点∴OE是BCD△的中位线∴OE CD即OF CD∥.20.【答案】(1)证明:∵BF=BE CG=CE∴BC为△FEG的中位线FG∴BC//FG BC=12又∵H是FG的中点∴FH=1FG2∴BC=FH .又∵四边形ABCD是平行四边形∴AD//BC AD=BC∴AD//FH AD=FH∴四边形AFHD是平行四边形;(2)解:∵四边形ABCD是平行四边形∴∠DAB=∠DCB∵CE=CB∴∠BEC=∠EBC=75°∴∠BCE=180°−75°−75°=30°∴∠DCB=∠DCE+∠BCE=10°+30°=40°∴∠DAB=40° .21.解:(1)如图,连接CD,AE.由三角形中位线定理可得PM∥12CD,PN∥12AE.∵△ABD和△BCE是等边三角形,∴AB=DB,BE=BC,∠ABD=∠CBE=60°∴∠ABE=∠DBC.∴△ABE≌△DBC,∴AE=DC.∴PM=PN.(2)如图,设PM交AE于F,PN交CD于G,AE交CD于H,AE交BD于Q.由(1)知△ABE≌△DBC,∴∠BAE =∠BDC.又∵∠DQH=∠BQA,∴∠AHD=∠ABD=60°,∴∠FHG=120°.22.证明:如图,取NC的中点H,连接DH过点H作HE∥AD,交BN的延长线于E.∵AB=AC,AD⊥BC,∴D为BC的中点.∵H为NC的中点,∴DH∥BN.又∵PD∥EH,∴四边形PDHE是平行四边形.∴HE=PD.∵P为AD的中点,∴AP=PD. ∴AP=EH.又∵HE∥AD,∴∠PAN=∠EHN,∠APN=∠HEN.∴△APN≌△HEN(ASA).∴AN=NH. ∴AN=NH=HC. ∴AN=13AC.23.(1)证明:连接BD取DB的中点H连接EH FH ∵E H分别是AD BD的中点∴EH∥AB EH=AB∴∠BME=∠HEF∵F H分别是BC BD的中点∴FH∥CD FH=CD∴∠CNE=∠HFE∵AB=CD∴HE=FH∴∠HEF=∠HFE∴∠BME=∠CNE;(2)连接BD取DB的中点H连接EH FH∵E F分别是AD BC的中点∴EH=AB FH=CD FH∥AC∴∠HFE=∠FEC=45°∵AB=CD=2∴HF=HE=1∴∠HEF=∠HFE=45°∴∠EHF=180°﹣∠HFE﹣HEF=90°∴.24.【答案】(1)解:结论1:四边形EFGH是平行四边形;证明:∵在四边形ABCD中 E F G H是各边中点∴EF为∆ABD的中位线∴EF∥BD EF=12BD同理可得GH∥BD GH=12BD∴GH∥EF GH=EF∴四边形EFGH是平行四边形;结论2:四边形EJGI是平行四边形;证明:∵E J G I分别为DA DB BC AC中点∴EJ为∆ABD的中位线∴EJ∥AB EJ=12AB同理可得IG∥AB IG=12AB∴EJ∥IG EJ=IG∴四边形EJGI是平行四边形;结论3:S四边形EFGH=12S四边形ABCD;证明:由结论1证明可得 EF=12BD GH=12BD∴∆AEF的高为∆ADB高的一半∆CHG的高为∆BCD高的一半∴S�AEF=14S�ADB S�CHG=14S�CDB同理:S�DEH=14S�DAC S�BFG=14S�BCA∴S四边形EFGH=S四边形ABCD−S�AEF−S�CHG−S�DEH−S�BFG=12S四边形ABCD;(2)解:①连接AC 取AC的中点E 连接FE HE∵点E F为AC AB的中点∴EF=12BC=2同理:EH=12AD=3第 31 页 共 31 页 ∴EH-EF<FH<EF+EH即1<EH<5故答案为:1<FH<5;②如图所示 连接EFGH 由结论1可得四边形EFGH 为平行四边形如图所示 过点E 作EM ∥FH 交GH 延长线于点M 过点G 作GN ⊥EM∵EF ∥GM EM ∥FH∴四边形FHME 为平行四边形∴FH=EM=6 ∠EOF=∠GEM=60° FE=HM∴∠EGN=30°∴EN=12EG =4∴GN =√EG 2−EN 2=4√3∴S �EGM =12EM ×GN =12√3由图可得S 四边形EFGH =S �EGM =12√3由结论3可得:S 四边形ABCD =2S 四边形EFGH =24√3.。
9.5《三角形的中位线》期末复习优生专题提升训练2020-2021学年苏科版八年级数学 下册
2021年苏科版八年级数学第9章《三角形的中位线》期末复习优生专题提升训练(附答案)1.如图,在△ABC中,AB=3,AC=5,AD平分∠BAC,AD⊥BF于点D,点E为BC的中点,连接DE,则DE的长是()A.0.5B.0.75C.1D.22.如图,在四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=23°,则∠PFE的度数为()A.23°B.25°C.30°D.46°3.如图,△ABC中,AB>AC,AE平分∠BAC,BD⊥AE于D,CE⊥AE于E,F为BC的中点,给出结论:①FD∥AC;②FE=FD;③AB﹣AC=DE;④∠BAC+∠DFE=180°.其中正确的是()A.①②B.①②③C.①②④D.①②③④4.如图,在△ABC中,点D、E、F分别是各边的中点,若△ABC的面积为16cm2,则△DEF的面积是()cm2.A.2B.4C.6D.85.如图,在△ABC中,BC=12,AC=16,∠C=90°,M是AC边上的中点,N是BC边上任意一点,且2CN<BC,若点C关于直线MN的对称点C'恰好落在△ABC的中位线上,则CN=.6.如图,△ABC中,∠A=60°,AC>AB>2,点D,E分别在边AB,AC上,且BD=CE =2,连接DE,点M是DE的中点,点N是BC的中点,线段MN的长为.7.如图,在△ABC中,AD是中线,AE是角平分线,点F在AE上,∠CF A=90°,试判断DF与AB的位置关系,并说明理由.8.如图,△ABC中,AD平分∠BAC,AD⊥BD,E为BC的中点.(1)求证:DE∥AC;(2)若AB=4,AC=6,求DE的长.9.在△ABC中,点M是边BC的中点,AD平分∠BAC,BD⊥AD,BD的延长线交AC于点E,AB=12,AC=20.(1)求证:BD=DE;(2)求DM的长.10.如图,等边△ABC的边长是4,D,E分别为AB,AC的中点,延长BC至点F,使CF =BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长;(3)求四边形DEFC的面积.11.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC 于点D,已知AB=10,AC=16.(1)求证:BN=DN;(2)求MN的长.12.如图,△ABC中,AB=8,AC=6,AD、AE分别是其角平分线和中线,过点C作CG ⊥AD于F,交AB于G,连接EF,求线段EF的长.13.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若四边形AEDF的周长为24,AB=15,求AC的长;(2)求证:EF垂直平分AD.14.探索与证明如图,在△ABC中,BD、CE分别是边AC、AB上的中线,BD与CE相交于点O,M、N分别是BO、CO的中点,顺次连接E、M、N、D四点.(1)求证:EMND是平行四边形;(2)探索:BC边上的中线是否过点O?为什么?15.如图,点D、E是Rt△ABC两直角边AB、AC上的一点,连接BE,已知点F、G、H 分别是DE、BE、BC的中点.(1)求∠FGH度数;(2)连CD,取CD中点M,连接GM,若BD=8,CE=6,求GM的长.16.如图,在四边形ABCD中,AC、BD相交于点O,E、F是AD、BC的中点,EF分别交AC、BD于M、N,且OM=ON.求证:AC=BD.17.如图1,在四边形ABCD中,AB=CD,E,F分别是BC,AD的中点,连接EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不需证明).小明的思路是:在图1中,连接BD,取BD的中点H,连接HE,HF,根据三角形中位线定理和平行线性质,可证得∠BME=∠CNE.问题:如图2,在△ABC中,AC>AB,D点在AC上,AB=CD,E,F分别是BC,AD 的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并证明.18.如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G,连接FG,延长AF、AG,与直线BC相交于M、N.(1)试说明:FG=(AB+BC+AC);(2)如图2,若BD、CE分别是△ABC的内角平分线,则线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想;(3)如图3,若BD为△ABC的内角平分线,CE为△ABC的外角平分线,则线段FG与△ABC三边的数量关系是.19.如图,AD为△ABC的中线,BE为△ABD的中线.(1)在△BED中作BD边上的高,垂足为F;(2)若△ABC的面积为20,BD=5.①△ABD的面积为,②求△BDE中BD边上的高EF的长;(3)过点E作EG∥BC,交AC于点G,连接EC、DG且相交于点O,若S△ABC=2m,又S△COD=n,求S△GOC.(用含m、n的代数式表示)20.在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.21.已知:如图,在△ABC中,AD平分∠BAC,CN⊥AD于E交AB于N,F是AC的中点,FE的延长线交BC于M.试判断BM=MC的正确性.如果正确,请给出证明过程;若不正确,请说明理由.22.如图,在▱ABCD中,E,F分别是AD、BC上的点,且DE=CF,BE和AF的交点为M,CE和DF的交点为N,求证:MN∥AD,MN=AD.23.如下图,已知BE、CD分别是△ABC的角平分线,并且AE⊥BE于E点,AD⊥DC于D点.求证:(1)DE∥BC;(2).参考答案1.解:∵在△ABC中,AD平分∠BAC,AD⊥BF,AB=3,∴点D是BF的中点,且AB=AF=3.∵AC=5,∴FC=AC﹣AF=5﹣3=2.又∵点E为BC的中点,∴DE是△BFC的中位线,∴DE=FC==1.故选:C.2.解:在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=23°,∴∠PEF=∠PFE=23°.故选:A.3.解:延长CE交AB于G,延长BD交AC延长线于H,∵AE平分∠GAC,AE⊥GC,∴AG=AC,GE=CE,同理可得,AB=AH,BD=HD,∵BF=CF,BD=HD,∴DF∥CH,即DF∥AC,故①正确,∴DF=CH,∵GE=CE,BF=CF,∴EF=BG,∵GB=AB﹣AG=AH﹣AC=CH,即GB=CH,∴GB=CH,即EF=DF,故②正确,∴AB﹣AC=AB﹣AG=BG,过G作GI⊥BH于I,∵∠GED=∠EDI=∠GID=90°,∴四边形GIDE是矩形,∴GI=ED,∴BG>GI=ED,∴AB﹣AC>DE,故③错误;∵EF∥BG,DF∥HC,∴∠FED=∠BAD,∠FDE=∠HAD,∴∠FED+∠FDE=∠BAD+∠HAD=∠BAC,∵∠FED+∠FDE+∠EFD=180°,∴∠BAC+∠EFD=180°,故④正确;故选:C.4.解:∵点D、F分别是AB,AC的中点,∴DF∥BC,DF=BC,∴DF∥BE,∵E是BC的中点,∴BE=BC,∴DF=BE,∴四边形BEFD是平行四边形,∴BD=EF,在△BDE和△FED中,,∴△BDE≌△FED(SSS),同理可证△DAF≌△FED,△EFC≌△FED,即△BDE≌△DAF≌△EFC≌△FED,∴S△DEF=S△ABC=×16=4(cm2),故选:B.5.解:在△ABC中,BC=12,AC=l6,∠C=90°,则由勾股定理知AB===20.取BC、AB的中点H、G,连接MH、HG、MG.如图1中,当点C′落在MH上时,设NC=NC′=x,由题意可知:MC=MC′=8,MH=10,HC′=2,HN=6﹣x,在Rt△HNC′中,∵HN2=HC′2+NC′2,∴(6﹣x)2=x2+22,解得x=.如图2中,当点C′落在GH上时,设NC=NC′=x,在Rt△GMC′中,MG=CH=6,MC=MC′=8,∴GC′=2,∵∠NHC'=∠C'GM=90°,∠NC'M=90°,∴∠HNC'+∠HC'N=∠GC'M+∠HC'N=90°,∴∠HNC'=∠CGC'M,∴x=.如图3中,当点C′落在直线GM上时,易证四边形MCNC′是正方形,可得CN=CM =4.∴C'M>GM,此时点C′在中位线GM的延长线上,不符合题意.综上所述,满足条件的线段CN的长为或.故答案为:或.6.解:如图,作CH∥AB,连接DN,延长DN交CH于H,连接EH,作CJ⊥EH于J.∵BD∥CH,∴∠B=∠NCH,∵BN=CN,∠DNB=∠KNC,∵△DNB≌△HNC(ASA),∴BD=CH,DN=NH,∵BD=EC=2,∴EC=CH=2,∵∠A+∠ACH=180°,∠A=60°,∴∠ECH=120°,∵CJ⊥EH,∴EJ=JH=,∴EH=2EJ=2,∵DM=ME,DN=NH,∴MN=EH=.故答案为.7.解:DF∥AB.理由如下:如图,延长CF交AB于点G,∵AE是角平分线,∴∠GAF=∠CAF,在△AGF和△ACF中,∴△AGF≌△ACF(ASA),∴GF=CF,即点F是GC的中点,∵AD是△ABC的中线,∴点D是BC的中点∴DF是△BCG的中位线,∴DF∥AB.8.(1)证明:延长BD交AC于H,在△ADB和△ADH中,,∴△ADB≌△ADH,∴BD=HD,又E为BC的中点.∴DE∥AC;(2)解:∵△ADB≌△ADH,∴AH=AB=4,∴CH=AC﹣AH=2,∵BD=HD,又E为BC的中点,∴DE=CH=1.9.(1)证明:∵AD平分∠BAC,∴∠BAD=∠DAE.∵AD⊥BD,∴∠ADB=∠ADE=90°.在△ADB与△ADE中,∴△ADB≌△ADE,∴BD=DE.(2)∵△ADB≌△ADE,∴AE=AB=12,∴EC=AC﹣AE=8.∵M是BC的中点,BD=DE,∴DM=EC=4.10.解:(1)在△ABC中,∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE=BC,∵CF=BC,∴DE=CF.(2)∵AC=BC,AD=BD,∴CD⊥AB,∵BC=4,BD=2,∴CD==2,∵DE∥CF,DE=CF,∴四边形DEFC是平行四边形,∴EF=CD=2.(3)过点D作DH⊥BC于H.∵∠DHC=90°,∠DCB=30°,∴DH=DC=,∵DE=CF=2,∴S四边形DEFC=CF•DH=2×=2.11.证明:(1)∵AN平分∠BAC∴∠1=∠2,∵BN⊥AN∴∠ANB=∠AND,在△ABN和△ADN中,,∴△ABN≌△ADN(ASA)∴BN=DN;(2)∵△ABN≌△ADN∴AD=AB=10,DN=NB,∴CD=AC﹣AD=16﹣10=6,又∵点M是BC中点,∴MN是△BDC的中位线,∴MN=CD=3.12.解:在△AGF和△ACF中,,∴△AGF≌△ACF(ASA),∴AG=AC=6,GF=CF,则BG=AB﹣AG=8﹣6=2.又∵BE=CE,∴EF是△BCG的中位线,∴EF=BG=1.13.(1)解:∵AD是高,E、F分别是AB、AC的中点,∴DE=AE=AB,DF=AF=AC,∴AE+DE=AB=15,AF+DF=AC,∵四边形AEDF的周长为24,AB=15,∴AC=24﹣15=9;(2)证明:∵DE=AE,DF=AF,∴点E、F在线段AD的垂直平分线上,∴EF垂直平分AD.14.(1)证明:△ABC的边AC、AB上的中线BD、CE相交于点O,M、N分别是BO、CO 的中点,∴ED∥BC且ED=BC,MN∥BC且MN=BC,∴ED∥MN且ED=MN,∴四边形MNDE是平行四边形.(2)BC边上的中线过点O,理由如下:作BC边上的中线AF,交BD于M,连接DF,∵BD、AF是边AC、BC上的中线,∴DF∥BA,DF=BA.∴BD=3DM,∵BO=BD,∴O和M重合,即BC边上的中线一定过点O.15.解:(1)∵F、G、H分别是DE、BE、BC的中点,∴FG∥DB,GH∥EC.∴∠DBE=∠FGE,∠EGH=∠AEG.∠FGH=∠FGE+∠EGH=∠ABE+∠BEA=180°﹣∠A=180°﹣90°=90°.(2)如图所示:连接FM、HM.∵M、H分别是BC和DC的中点,∴MH∥BD,MH=.同理:GF∥BD,GF=.∴四边形FGHM为平行四边形.∵G、H、M分别是BE、BC、DC的中点,∴GH==3,,由(1)可知:∠FGH=90°,∴四边形FGHM为矩形.∴∠GHM=90°.∴GM==5.16.证明:取AB和CD的中点分别为G、H,连接EG、GF、FH、EH,则EH∥AC,EH=AC,HF∥BD,FH=BD,∴∠3=∠2,∠1=∠4,∵OM=ON,∴∠1=∠2,同理∠EFH=∠GFE=∠1=∠2,∴∠4=∠EFH,∴EH=HF,∵EH=AC,FH=BD,∴AC=BD.17.解:判断△AGD是直角三角形.证明:如图连接BD,取BD的中点H,连接HF、HE,∵F是AD的中点,∴HF∥AB,HF=AB,∴∠1=∠3,同理,HE∥CD,HE=CD,∴∠2=∠EFC,∵AB=CD,∴HF=HE,∴∠1=∠2,∵∠EFC=60°,∴∠3=∠EFC=∠AFG=60°,∴△AGF为等边三角形,∵AF=FD,∴GF=FD,∴∠FGD=∠FDG=30°,∴∠AGD=90°,即△AGD是直角三角形.18.解:(1)∵BD⊥AF,在△ABF和△MBF中,∴△ABF≌△MBF(ASA)∴MB=AB∴AF=MF,同理:CN=AC,AG=NG,∴FG是△AMN的中位线∴FG=MN,=(MB+BC+CN),=(AB+BC+AC).(2)图(2)中,FG=(AB+AC﹣BC)解:如图(2),延长AF、AG,与直线BC相交于M、N,∵AF⊥BD,∠ABF=∠MBF,∴∠BAF=∠BMF,在△ABF和△MBF中∵,∴△ABF≌△MBF(ASA)∴MB=AB,AF=MF,同理:CN=AC,AG=NG∴FG=MN,=(BM+CN﹣BC),=(AB+AC﹣BC),答:线段FG与△ABC三边的数量关系是FG=(AB+AC﹣BC).(3)解:FG=(AC+BC﹣AB),理由是:∵AF⊥BD,∠ABF=∠MBF,∴∠BAF=∠BMF,在△ABF和△MBF中∵,∴△ABF≌△MBF(ASA)∴MB=AB,AF=MF,同理:CN=AC,AG=NG∴FG=MN,=(CN+BC﹣BM),=(AC+BC﹣AB).故答案为:FG=(AC+BC﹣AB).19.解:(1)作EF⊥BD垂足为F,(2)①∵AD为△ABC的中线,∴S△ABD=S△ABC,∵△ABC的面积为20,∴△ABD的面积为10;②∵BE为△ABD的中线,∴S△BDE=S△ABD=5,∵BD=5,∴EF的长=2;③∵EG∥BC,BE为△ABD的中线,∴EG是△ACD的中位线,∴DG是△ACD的中线,∴S△BDE=S△CDG,S△BDE=S△CDG=S△ABD=S△ABC=,∴S△GDC=,又∵S△COD=n,∴S△GOC=S△GDC﹣S△COD=.20.解:(1)FH与FC的数量关系是:FH=FC.证明如下:延长DF交AB于点G,由题意,知∠EDF=∠ACB=90°,DE=DF,∴DG∥CB,∵点D为AC的中点,∴点G为AB的中点,且,∴DG为△ABC的中位线,∴.∵AC=BC,∴DC=DG,∴DC﹣DE=DG﹣DF,即EC=FG.∵∠EDF=90°,FH⊥FC,∴∠1+∠CFD=90°,∠2+∠CFD=90°,∴∠1=∠2.∵△DEF与△ADG都是等腰直角三角形,∴∠DEF=∠DGA=45°,∴∠CEF=∠FGH=135°,∴△CEF≌△FGH,∴CF=FH.(2)FH与FC仍然相等.理由:由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG=BC,DC=AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC.21.解:结论BM=MC正确.证明过程如下:∵AD平分∠BAC,∴∠NAE=∠CAE.∵CE⊥AD,∴∠AEN=∠AEC=90°.∵AE=AE,∴△ANE≌△ACE.∴NE=CE.∵F为AC的中点,∴AF=CF.∴EF∥AB.∵AF=CF,∴BM=MC.22.证明:连接EF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵DE=CF,∴AE=BF.∴四边形ABFE和四边形CDEF都是平行四边形.∴BM=ME,CN=NE.∴MN是△BCE的中位线.∴MN∥AD,MN=AD.23.证明:(1)延长AD、AE,交BC于F、G;∵BE⊥AG,∴∠AEB=∠BEG=90°;∵BE平分∠ABG,∴∠ABE=∠GBE;∴∠BAE=∠BGE;∴△ABG是等腰三角形;∴AB=BG,E是AG中点;同理可得:AC=CF,D是AF中点;∴DE是△AFG的中位线;∴DE∥BC.(2)由(1)知DE是△AFG的中位线,∴DE=FG;∵FG=BG+CF﹣BC,且AB=BG,AC=CF;∴FG=AB+AC﹣BC,即DE=(AB+AC﹣BC).。
鲁教版八年级数学上册5.3三角形的中位线基础达标训练题3(附答案)
鲁教版八年级数学上册5.3三角形的中位线基础达标训练题3(附答案)一.选择题(共10小题)1.如图在△ABC中,D、E分别是AB、AC的中点,若△ABC的周长为16,则△ADE的周长为()A.6B.7C.8D.92.如图,在四边形ABCD中,AD=BC,E、F、G分别是AB、CD、AC的中点,若∠DAC =15°,∠ACB=87°,则∠FEG等于()A.39°B.18°C.72°D.36°3.如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=4,F为CE的中点,连接DF,则AF的长等于()A.2B.3C.D.24.如图,在△ABC中,AB=4,BC=8,AC=6,D、E分别是BC、CA的中点,则△DEC 的周长为()A.18B.8C.10D.95.如图,已知△ABC中,点M是BC边上的中点,AN平分∠BAC,BN⊥AN于点N,若AB=7,MN=3,则AC的长为()A.14B.13C.12D.116.如图,在△ABC中,点M为BC的中点,AD为△ABC的外角平分线,且AD⊥BD,若AB=6,AC=9,则MD的长为()A.3B.C.5D.7.如图,Rt△AMC中,∠C=90°,∠AMC=30°,N,B分别是MC,AC的中点,CN=2cm,则AM的长度为()A.4cm B.8cm C.9cm D.6cm8.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A.12B.14C.16D.189.如图,在△ABC中,∠C=90°,E,F分别是AC,BC上两点,AE=16,BF=12,点P,Q,D分别是AF,BE,AB的中点,则PQ的长为()A.10B.8C.2D.2010.如图,A,B两地被池塘隔开,小明先在直线AB外选一点C,然后步测出AC,BC的中点M,N,并步测出MN的长为6.5m.由此,他可以知道A.B间的距离为()A.12m B.12.5m C.13m D.13.5m二.填空题(共10小题)11.如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若AB=10,BC=8,则EF的长是.12.已知等边三角形ABC的一条中位线的长是3cm,则△ABC的周长是cm.13.如图,在四边形ABCD中,E,F分别是AD,BC的中点,G,H分别是BD,AC的中点,当AB=CD时,四边形GFHE是.14.如图,在△ABC中,∠ACB=60°,点D,E分别是AB,AC的中点,点F在线段DE 上,连结AF,CF.若CF恰好平分∠ACB,且CF=,则AC的长为.15.如图,已知在△ABC中,D、E分别是AB、AC的中点,F、G分别是AD、AE的中点,且FG=2cm,则BC的长度是cm.16.如图,△ABC中,AB=7cm,BC=6cm,AC=5cm,D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长等于cm.17.如图,在△ABC中,AC=10,D,E分别是AB,AC的中点.F是DE上一点,连结AF、CF.若∠AFC=90°,DF=1,则BC的长为.18.如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若AB=12,BC=9,则EF的长是.19.已知一个三角形的周长为10cm,则连接各边中点所得的三角形的周长为cm.20.如图,A,B两地被池塘隔开,小石通过下面的方法测出A,B间的距离:先在AB外选一点C,然后通过测量找到AC,BC的中点D,E,并测量出DE的长为20m,由此他就知道了A,B间的距离为m,小石的依据是.三.解答题(共8小题)21.如图:D、E是△ABC边AB,AC的中点,O是△ABC内一动点,F、G是OB,OC的中点.判断四边形DEGF的形状,并证明.22.已知:在△ABC中,D是AB的中点,DE∥BC,交AC于点E.求证:DE是△ABC的中位线.23.如图,点D、E、F分别是△ABC各边中点.求证:四边形ADEF是平行四边形.24.补充完整三角形中位线定理,并加以证明:(1)三角形中位线定理:三角形的中位线;(2)已知:如图,DE是△ABC的中位线,求证:DE∥BC,DE=BC.25.如图,在四边形ABCD中,AC⊥BD,BD=12,AC=16,E,F分别为AB,CD的中点,求EF的长.26.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD =BC,∠PEF=18°.求∠PFE的度数.27.如图,△ABC的中线AE与中位线DF相交于点O、试问AE与DF是否互相平分?为什么?28.如图,在△ABC中,D、E分别是AC、AB的中点,BD为角平分线.求证:(1)∠EBD=∠EDB;(2)BE=BC.参考答案与试题解析一.选择题(共10小题)1.如图在△ABC中,D、E分别是AB、AC的中点,若△ABC的周长为16,则△ADE的周长为()A.6B.7C.8D.9【解答】解:∵D、E分别是AB和AC的中点,∴DE∥BC,且DE=BC,即=,∴△ADE∽△ABC,∴=,∴△ADE的周长是:×16=8.故选:C.2.如图,在四边形ABCD中,AD=BC,E、F、G分别是AB、CD、AC的中点,若∠DAC =15°,∠ACB=87°,则∠FEG等于()A.39°B.18°C.72°D.36°【解答】解:∵F、G分别是CD、AC的中点,∴FG∥AD,FG=AD,∴∠FGC=∠DAC=15°,∵E、G分别是AB、AC的中点,∴GE∥BC,GE=BC,∴∠EGC=180°﹣∠ACB=93°,∴∠EGF=108°,∵AD=BC,∴GF=GE,∴∠FEG=×(180°﹣108°)=36°,故选:D.3.如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=4,F为CE的中点,连接DF,则AF的长等于()A.2B.3C.D.2【解答】解:∵F为CE的中点,D为BC的中点,∴DF=BE=2,DF∥BE,∴∠ADF=90°,∴AF===2,故选:D.4.如图,在△ABC中,AB=4,BC=8,AC=6,D、E分别是BC、CA的中点,则△DEC 的周长为()A.18B.8C.10D.9【解答】解:∵D、E分别是BC、CA的中点,∴DE=AB=2,EC=AC=3,CD=CB=4,∴△DEC的周长=2+3+4=9,故选:D.5.如图,已知△ABC中,点M是BC边上的中点,AN平分∠BAC,BN⊥AN于点N,若AB=7,MN=3,则AC的长为()A.14B.13C.12D.11【解答】解:延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND,∴AD=AB=8,BN=ND,∵M是△ABC的边BC的中点,∴DC=2MN=6,∴AC=AD+CD=13,故选:B.6.如图,在△ABC中,点M为BC的中点,AD为△ABC的外角平分线,且AD⊥BD,若AB=6,AC=9,则MD的长为()A.3B.C.5D.【解答】解:延长BD交CA的延长线于E,∵AD为∠BAC的平分线,BD⊥AD,∴BD=DE,AB=AE=6,∴CE=AC+AE=8+6=15,又∵M为△ABC的边BC的中点,∴DM是△BCE的中位线,∴MD=CE=×15=7.5.故选:D.7.如图,Rt△AMC中,∠C=90°,∠AMC=30°,N,B分别是MC,AC的中点,CN=2cm,则AM的长度为()A.4cm B.8cm C.9cm D.6cm【解答】解:∵CN=2cm,N,B分别是MC,AC的中点,∴CM=2CN=4,∵∠C=90°,∠AMC=30°,∴CM=AM,4=AM,∴AM=8,故选:B.8.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A.12B.14C.16D.18【解答】解:延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND,∴AD=AB=8,BN=ND,∵M是△ABC的边BC的中点,∴DC=2MN=6,∴AC=AD+CD=14,故选:B.9.如图,在△ABC中,∠C=90°,E,F分别是AC,BC上两点,AE=16,BF=12,点P,Q,D分别是AF,BE,AB的中点,则PQ的长为()A.10B.8C.2D.20【解答】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵点P,D分别是AF,AB的中点,∴PD=BF=6,PD∥BC,∴∠PDA=∠CBA,同理,QD=AE=8,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ==10,故选:A.10.如图,A,B两地被池塘隔开,小明先在直线AB外选一点C,然后步测出AC,BC的中点M,N,并步测出MN的长为6.5m.由此,他可以知道A.B间的距离为()A.12m B.12.5m C.13m D.13.5m【解答】解:∵点M,N分别是AC,BC的中点,∴AB=2MN=13(m),故选:C.二.填空题(共10小题)11.如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若AB=10,BC=8,则EF的长是1.【解答】解:∵D、E分别是BC、AC的中点,∴DE=AB=5,DE∥AB,BD=BC=4,∴∠ABF=∠DFB,∵BF平分∠ABC,∴∠ABF=∠DBF,∴∠DBF=∠DFB,∴DF=DB=4,∴EF=DE﹣DF=1,故答案为:1.12.已知等边三角形ABC的一条中位线的长是3cm,则△ABC的周长是18cm.【解答】解:根据题意可知,△ABC的边长为2DE=6cm,因为△ABC是等边三角形,所以三边相等,所以△ABC的周长等于3×6=18cm.故答案为18.13.如图,在四边形ABCD中,E,F分别是AD,BC的中点,G,H分别是BD,AC的中点,当AB=CD时,四边形GFHE是菱形.【解答】解:∵E,G分别是AD,BD的中点,∴EG=AB,EG∥AB,同理,HF=AB,HF∥AB,∴EG=HF,EG∥HF,∴四边形GFHE是平行四边形,∵E,H分别是AD,AC的中点,∴EH=CD,∵AB=CD,∴EG=EH,∴平行四边形GFHE是菱形,故答案为:菱形.14.如图,在△ABC中,∠ACB=60°,点D,E分别是AB,AC的中点,点F在线段DE 上,连结AF,CF.若CF恰好平分∠ACB,且CF=,则AC的长为2.【解答】解:延长AF交BC于F,∵D,E分别是AB,AC的中点,∴DE∥BC,∵DE∥BC,AE=EC,∴AF=FH,∵CF恰好平分∠ACB,∠ACB=60°,∴CF⊥AF,∠CF A=30°,∴AC==2,故答案为:2.15.如图,已知在△ABC中,D、E分别是AB、AC的中点,F、G分别是AD、AE的中点,且FG=2cm,则BC的长度是8cm.【解答】解:如图,∵△ADE中,F、G分别是AD、AE的中点,∴DE=2FG=4cm,∵D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=8cm,故答案为:8.16.如图,△ABC中,AB=7cm,BC=6cm,AC=5cm,D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长等于12cm.【解答】解:∵D,E分别是AB,BC的中点,∴DE∥AC,DE=AC=2.5cm,同理,EF∥AB,EF=AB=3.5cm,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2×(2.5+3.5)=12(cm),故答案为:12.17.如图,在△ABC中,AC=10,D,E分别是AB,AC的中点.F是DE上一点,连结AF、CF.若∠AFC=90°,DF=1,则BC的长为12.【解答】解:∵∠AFC=90°,E是AC的中点,∴EF=AC=5,∴DE=DF+EF=5+1=6,∵D,E分别是AB,AC的中点,∴BC=2DE=12,故答案为:12.18.如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若AB=12,BC=9,则EF的长是 1.5.【解答】解:∵D、E分别是BC、AC的中点,∴DE=AB=6,DE∥AB,BD=BC=4.5,∴∠ABF=∠DFB,∵BF平分∠ABC,∴∠ABF=∠DBF,∴∠DBF=∠DFB,∴DF=DB=4.5,∴EF=DE﹣DF=6﹣4.5=1.5,故答案为:1.5.19.已知一个三角形的周长为10cm,则连接各边中点所得的三角形的周长为5cm.【解答】解:∵D、E、F分别为AB、BC、AC的中点,∴DE=AC,EF=AB,DF=BC,∵AB+BC+AC=10,∴DE+EF+FD=(AB+BC+AC)=5cm,故答案为:5.20.如图,A,B两地被池塘隔开,小石通过下面的方法测出A,B间的距离:先在AB外选一点C,然后通过测量找到AC,BC的中点D,E,并测量出DE的长为20m,由此他就知道了A,B间的距离为40m,小石的依据是三角形中位线定理.【解答】解:∵点D,E是AC,BC的中点,∴AB=2DE=40(m),小石的依据是三角形中位线定理,故答案为:40;三角形中位线定理.三.解答题(共8小题)21.如图:D、E是△ABC边AB,AC的中点,O是△ABC内一动点,F、G是OB,OC的中点.判断四边形DEGF的形状,并证明.【解答】解:四边形DEGF是平行四边形,理由如下:∵D、E是△ABC边AB,AC的中点,∴DE=BC,DE∥BC,∵F、G是OB,OC的中点,∴FGT=BC,FG∥BC,∴DE=FG,DE∥FG,∴四边形DEGF是平行四边形.22.已知:在△ABC中,D是AB的中点,DE∥BC,交AC于点E.求证:DE是△ABC的中位线.【解答】证明:∵D是AB的中点,∴AD=DB,∵DE∥BC,∴==1,∴AE=EC,即E是AC的中点,∵D是AB的中点,E是AC的中点,∴DE是△ABC的中位线.23.如图,点D、E、F分别是△ABC各边中点.求证:四边形ADEF是平行四边形.【解答】证明:∵D、E分别为AB、BC的中点,∴DE∥AC,∵E、F分别为BC、AC中点,∴EF∥AB,∴四边形ADEF是平行四边形.24.补充完整三角形中位线定理,并加以证明:(1)三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;(2)已知:如图,DE是△ABC的中位线,求证:DE∥BC,DE=BC.【解答】(1)解:三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;故答案为:平行于第三边,且等于第三边的一半;(2)证明:如图,延长DE到F,使FE=DE,连接CF,在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴∠A=∠ECF,AD=CF,∴CF∥AB,又∵AD=BD,∴CF=BD,∴四边形BCFD是平行四边形,∴DF∥BC,DF=BC,∴DE∥BC,DE=BC.25.如图,在四边形ABCD中,AC⊥BD,BD=12,AC=16,E,F分别为AB,CD的中点,求EF的长.【解答】解:如图,取BC边的中点G,连接EG、FG.∵E,F分别为AB,CD的中点,∴EG是△ABC的中位线,FG是△BCD的中位线,∴EG AC,FG BD.又BD=12,AC=16,AC⊥BD,∴EG=8,FG=6,EG⊥FG,∴在直角△EGF中,由用勾股定理,得EF===10,即EF的长度是10.26.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD =BC,∠PEF=18°.求∠PFE的度数.【解答】解:∵P、E、F分别是DB、AB、DC的中点,∴PF是△DCB的中位线、PE是△DAB的中位线,∴PF=BC,PE=AD,又∵BC=AD,∴PF=PE,又∵∠PEF=18°,∴∠PFE=∠PEF=18°.27.如图,△ABC的中线AE与中位线DF相交于点O、试问AE与DF是否互相平分?为什么?【解答】解:AE与DF互相平分.连接DE、EF.∵AE、DF分别是△ABC的中线与中位线,∴D、E、F分别是AB、AC、BC的中点,∴DE∥AC,EF∥AD.∴四边形ADEF是平行四边形,∴AE与DF互相平分.28.如图,在△ABC中,D、E分别是AC、AB的中点,BD为角平分线.求证:(1)∠EBD=∠EDB;BC.(2)BE=∴∠EBD=∠DBC,∵E、D是中点,∴ED是中位线,∴ED∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB;(2)由∠EBD=∠EDB得BE=DE,∵ED是中位线,∴ED=BC,∴BE=BC。
鲁教版八年级数学上册5.3三角形的中位线基础达标训练题4(附答案)
鲁教版八年级数学上册5.3三角形的中位线基础达标训练题4(附答案)一.选择题(共10小题)1.如图,在△ABC中,∠C=90°,E是CA延长线上一点,F是CB上一点,AE=12,BF =8,点P,Q,D分别是AF,BE,AB的中点,则PQ的长为()A.2B.4C.6D.32.如图,△ABC中,AB=9,D、E分别是AB、AC的中点,点F在DE上,且DF=3EF,当AF⊥BF时,BC的长是()A.9B.10.5C.12D.183.如图,在△ABC中,D、E分别是AB、AC的中点,BC=12,F是DE上一点,连接AF、CF,DE=3DF,若∠AFC=90°,则AC的长度为()A.4B.5C.8D.104.如图,△ABC称为第1个三角形,它的周长是1,以它的三边中点为顶点组成第2个三角形,再以第2个三角形的三边中点为顶点组成第3个三角形,以此类推,则第2019个三角形的周长为()A.B.C.D.5.如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=15m,则AB的长为()A.7.5m B.15m C.30m D.45m6.如图,在△ABC中,AB=3,BC=2,D、E、F分别为AB、BC、AC的中点,连接DF、FE,则四边形DBEF的周长是()A.5B.7C.9D.117.如图,四边形ABCD中,∠ADC=90°,AE=BE,BF=CF,连接EF,AD=3,CD=1,则EF的长为()A.B.C.D.8.如图,△ABC中,AB=6cm,BC=4cm,AC=5cm,E,F分别是AB和BC的中点,则EF=()A.2cm B.4cm C.6cm D.8cm9.如图,△ABC中,D,E分别是BC,AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.3B.4C.5D.610.如图,某校园内有一池塘,为得到池塘边的两棵树A,B间的距离,小亮测得了以下数据:∠A=∠CDE,AD=DC,DE=10m,则A,B间的距离是()A.10m B.15m C.20m D.25m二.填空题(共10小题)11.如图,在△ABC中,AB=AC.M、N分别是AB、AC的中点,D、E为BC上的点,连接DN、EM.若AB=5cm,BC=6cm,DE=3cm,则图中阴影部分的面积为cm2.12.如图,在△ABC中,AB=8,AC=12,点D、E、F分别是AB、BC、AC的中点,则四边形ADEF的周长为.13.如图,在△ABC中,点D、E分别是AB、AC的中点,连接BE,若AE=6,DE=5,∠BEC=∠C,则△BEC的周长是.14.在湖的两侧有A,B两个观湖亭,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为50米,则A,B之间的距离应为米.15.如图,小明作出了边长为2的第1个正△A1B1C1,算出了正△A1B1C1的面积.然后分别取△A1B1C1的三边中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积;用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积……,由此可得,第2个正△A2B2C2的面积是,第n个正△A n B n∁n的面积是.16.如图,EF为△ABC的中位线,∠B=50°,则∠EFC=.17.在△ABC中,点D、E是AB、AC两边的中点,点F是BC边上的一个动点,如果S△ABC=16,则S△DEF=.18.若三角形的周长为28cm,则它的三条中位线组成的三角形的周长是.19.如图,在△ABC中,AB=5,AC=7,BC=10,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,则PQ的长.20.如图,△ABC中,AB=8,AC=6,AD,AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则EF为.三.解答题(共8小题)21.如图,已知四边形ABCD中,AB=DC,E、F分别为AD与BC的中点,连结EF与BA 的延长线相交于N,与CD的延长线相交于M.求证:∠BNF=∠CMF.22.如图,在四边形ABCD中,AD=BC,E、F、G分别是AB、CD、AC的中点,若∠DAC =20°,∠ACB=66°,求∠FEG的度数.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8cm,E、F分别为边AC、AB的中点.(1)求∠A的度数;(2)求EF的长.24.如图,在△ABC中,点D在BC上,且DC=AC,CE⊥AD,垂足为E,点F是AB的中点.求证:EF∥BC.25.如图,在△ABC中,AB=AC,M,N分别是AB,AC的中点,D,E为BC上的点,连接DN,EM.若AB=13cm,BC=10cm,DE=5cm,求图中阴影部分的面积.26.如图,在△ABC中,点D,E分别是AB,AC边的中点,若把△ADE绕着点E顺时针旋转180°得到△CFE.求证:四边形DBCF是平行四边形.27.如图,在Rt△ABC中,∠C=90°(1)求作:△ABC的一条中位线,与AB交于D点,与BC交于E点,(保留作图痕迹,不写作法)(2)若AC=6,AB=10,连接CD,则DE=,CD=.28.如图:点E、F、G、H分别是线段AC、BD、BC、AD的中点,求证:四边形EGFH 是平行四边形.参考答案与试题解析一.选择题(共10小题)1.如图,在△ABC中,∠C=90°,E是CA延长线上一点,F是CB上一点,AE=12,BF =8,点P,Q,D分别是AF,BE,AB的中点,则PQ的长为()A.2B.4C.6D.3【解答】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵点P,D分别是AF,AB的中点,∴PD=BF=4,PD∥BF,∴∠ADP=∠ABC,同理,DQ=AE=6,∠ADQ=∠CAB,∴∠PDQ=∠ADP+∠ADQ=90°,由勾股定理得,PQ==2,故选:A.2.如图,△ABC中,AB=9,D、E分别是AB、AC的中点,点F在DE上,且DF=3EF,当AF⊥BF时,BC的长是()A.9B.10.5C.12D.18【解答】解:延长AF交BC于H,∵AF⊥BF,D是AB的中点,∴DF=AB=4.5,∵DF=3EF,∴EF=1.5,则DE=DF+EF=6,∵D、E分别是AB、AC的中点,∴BC=2DE=12,故选:C.3.如图,在△ABC中,D、E分别是AB、AC的中点,BC=12,F是DE上一点,连接AF、CF,DE=3DF,若∠AFC=90°,则AC的长度为()A.4B.5C.8D.10【解答】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC=6,∵DE=3DF,∴EF=4,∵∠AFC=90°,E是AC的中点,∴AC=2EF=8,故选:C.4.如图,△ABC称为第1个三角形,它的周长是1,以它的三边中点为顶点组成第2个三角形,再以第2个三角形的三边中点为顶点组成第3个三角形,以此类推,则第2019个三角形的周长为()A.B.C.D.【解答】解:根据三角形中位线定理可得第2个三角形的各边长都等于第1个三角形各边的一半,∵第1个三角形的周长是1,∴第2个三角形的周长=第1个三角形的周长1×=,第3个三角形的周长为=第2个三角形的周长×=()2,第4个三角形的周长为=第3个三角形的周长()2×=()3,…∴第2019个三角形的周长═()2018=.故选:B.5.如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=15m,则AB的长为()A.7.5m B.15m C.30m D.45m【解答】解:∵E、F是AC,BC中点,∴EF是△ABC的中位线,∴EF=AB,∵EF=15m,∴AB=30m.故选:C.6.如图,在△ABC中,AB=3,BC=2,D、E、F分别为AB、BC、AC的中点,连接DF、FE,则四边形DBEF的周长是()A.5B.7C.9D.11【解答】解:∵D、E、F分别为AB、BC、AC中点,∴DB=AB=1.5,BE=BC=1,DF=BC=1,EF=AB=1.5,∴四边形DBEF的周长=1.5+1.5+1+1=5,故选:A.7.如图,四边形ABCD中,∠ADC=90°,AE=BE,BF=CF,连接EF,AD=3,CD=1,则EF的长为()A.B.C.D.【解答】解:连接AC,∵∠ADC=90°,AD=3,CD=1,∴AC==,∵AE=BE,BF=CF,∴EF=AC=,故选:B.8.如图,△ABC中,AB=6cm,BC=4cm,AC=5cm,E,F分别是AB和BC的中点,则EF=()A.2cm B.4cm C.6cm D.8cm【解答】解:∵E,F分别是AB和BC的中点,∴EF=BC=2cm,故选:A.9.如图,△ABC中,D,E分别是BC,AC的中点,BF平分∠ABC,交DE于点F,若BC =6,则DF的长是()A.3B.4C.5D.6【解答】解:∵D,E分别是BC,AC的中点,∴DE∥AB,∴∠BFD=∠ABF,∵BF平分∠ABC,∴∠DBF=∠ABF,∴∠BFD=∠DBF,∴DF=DB=BC=3,故选:A.10.如图,某校园内有一池塘,为得到池塘边的两棵树A,B间的距离,小亮测得了以下数据:∠A=∠CDE,AD=DC,DE=10m,则A,B间的距离是()A.10m B.15m C.20m D.25m【解答】解:∵∠A=∠CDE,∴DE∥AB,∵AD=DC,∴CE=BE,∴DE是△CAB的中位线,∴AB=2DE=20m,答:A,B间的距离是20m,故选:C.二.填空题(共10小题)11.如图,在△ABC中,AB=AC.M、N分别是AB、AC的中点,D、E为BC上的点,连接DN、EM.若AB=5cm,BC=6cm,DE=3cm,则图中阴影部分的面积为6cm2.【解答】解:连接MN,作AF⊥BC于F,∵M、N分别是AB、AC的中点,∴MN=BC=3,MN∥BC,∴AF⊥MN,∵AB=AC,AF⊥BC,∴FC=BC=3,在Rt△AFC中,AF==4,图中阴影部分的三个三角形的底长都是3cm,高的和为4cm,∴图中阴影部分的面积=×3×4=6(cm2),故答案为:6.12.如图,在△ABC中,AB=8,AC=12,点D、E、F分别是AB、BC、AC的中点,则四边形ADEF的周长为20.【解答】解:∵点D、E、F分别是AB、BC、AC的中点,∴AD=AB=4,AF=AC=6,EF=AB=4,DE=AC=6,∴四边形ADEF的周长=4+6+4+6=20,故答案为:20.13.如图,在△ABC中,点D、E分别是AB、AC的中点,连接BE,若AE=6,DE=5,∠BEC=∠C,则△BEC的周长是26.【解答】解:∵点D、E分别是AB、AC的中点,∴BC=2DE=10,EC=AE=6,∵∠BEC=∠C,∴BE=BC=10,∴△BEC的周长=BE+BC+EC=26,故答案为:26.14.在湖的两侧有A,B两个观湖亭,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为50米,则A,B之间的距离应为100米.【解答】解:∵点D、E分别为AC、BC的中点,∴AB=2DE=100(米),故答案为:100.15.如图,小明作出了边长为2的第1个正△A1B1C1,算出了正△A1B1C1的面积.然后分别取△A1B1C1的三边中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积;用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积……,由此可得,第2个正△A2B2C2的面积是,第n个正△A n B n∁n的面积是.【解答】解:正△A1B1C1的边长=2,∴正△A1B1C1的面积=×2×2×=,∵点A2、B2、C2分别为△A1B1C1的三边中点,∴A2B2=A1B1,A2C2=A1C1,B2C2=B1C1,∴△A2B2C2∽△A1B1C1,相似比为,∴△A2B2C2与△A1B1C1的面积比为,∴正△A2B2C2的面积为,…则第n个正△A n B n∁n的面积为,故答案为:;.16.如图,EF为△ABC的中位线,∠B=50°,则∠EFC=50°.【解答】解:∵EF为△ABC的中位线,∴EF∥AB,∴∠EFC=∠B=50°,故答案为:50°.17.在△ABC中,点D、E是AB、AC两边的中点,点F是BC边上的一个动点,如果S△ABC=16,则S△DEF=4.【解答】解:作AH⊥BC于H,交DE于G,∵点D、E是AB、AC两边的中点,∴DE=BC,DE∥BC,∴GH=AH,∵S△ABC=16,∴×BC×AH=16,∴S△DEF=×DE×GH=×BC×AH=4,故答案为:4.18.若三角形的周长为28cm,则它的三条中位线组成的三角形的周长是14cm.【解答】解:∵△ABC的周长为28,∴AB+AC+BC=28,∵点D、E、F分别是BC、AB、AC的中点,∴EF=BC,DF=AB,DE=AC,∴△DEF的周长=DE+EF+DF=(AC+BC+AB)=14(cm),故答案为:14cm.19.如图,在△ABC中,AB=5,AC=7,BC=10,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,则PQ的长1.【解答】解:在△ABQ和△EBQ中,,∴△ABQ≌△EBQ(ASA),∴BE=AB=5,AQ=QE,同理CD=AC=7,AP=PD,∴DE=CD﹣CE=CD﹣(BC﹣BE)=2,∵AP=PD,AQ=QE,∴PQ=DE=1,故答案为:1.20.如图,△ABC中,AB=8,AC=6,AD,AE分别是其角平分线和中线,过点C作CG ⊥AD于F,交AB于G,连接EF,则EF为1.【解答】解:∵AD平分∠ABC,CG⊥AD,∴∠GAF=∠CAF,∠AFG=∠AFC在△AGF和△ACF中,,∴△AGF≌△ACF(ASA),∴AG=AC=6,GF=CF,则BG=AB﹣AG=8﹣6=2.又∵BE=CE,∴EF是△BCG的中位线,∴EF=BG=1.故答案为:1.三.解答题(共8小题)21.如图,已知四边形ABCD中,AB=DC,E、F分别为AD与BC的中点,连结EF与BA 的延长线相交于N,与CD的延长线相交于M.求证:∠BNF=∠CMF.【解答】证明:连结AC,取AC的中点K,连结EK,FK∵AE=ED,AK=KC∴EK∥DC,.同理FK∥AB,∴.∴∠FEK=∠EFK∵EK∥DC∴∠CMF=∠FEK∵FK∥AB∴∠BNF=∠EFK∴∠BNF=∠CMF22.如图,在四边形ABCD中,AD=BC,E、F、G分别是AB、CD、AC的中点,若∠DAC =20°,∠ACB=66°,求∠FEG的度数.【解答】解:∵AD=BC,E,F,G分别是AB,CD,AC的中点,∴GF是△ACD的中位线,GE是△ACB的中位线,又∵AD=BC,∴GF=GE,∠FGC=∠DAC=20°,∠AGE=∠ACB=66°,∴∠FGE=∠FGC+∠EGC=20°+(180°﹣66°)=134°,∴∠FEG=(180°﹣∠FGE)=23°.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8cm,E、F分别为边AC、AB的中点.(1)求∠A的度数;(2)求EF的长.【解答】解:(1)如图,∵在Rt△ABC中,∠C=90°,∠B=60°,∴∠A=90°﹣∠B=30°,即∠A的度数是30°;(2)∵由(1)知,∠A=30°.∴在Rt△ABC中,∠C=90°,∠A=30°,AB=8cm,∴BC=AB=4cm.又E、F分别为边AC、AB的中点,∴EF是△ABC的中位线,∴EF=BC=2cm.24.如图,在△ABC中,点D在BC上,且DC=AC,CE⊥AD,垂足为E,点F是AB的中点.求证:EF∥BC.【解答】证明:∵AC=DC CE⊥AD,∴AE=ED,又∵F为AB中点,∴EF为△ABD中位线,∴EF∥BD,即EF∥BC.25.如图,在△ABC中,AB=AC,M,N分别是AB,AC的中点,D,E为BC上的点,连接DN,EM.若AB=13cm,BC=10cm,DE=5cm,求图中阴影部分的面积.【解答】解:连接MN.∵M,N分别是AB,AC的中点,∴MN是△ABC的中位线,∴MN∥BC,且MN=BC=5cm;过点A作AF⊥BC于F.则AF⊥MN,AF==12cm(勾股定理).∵图中阴影部分的三个三角形的底长都是5cm,且高的和为12cm;∴S阴影=×5×12=30cm2.26.如图,在△ABC中,点D,E分别是AB,AC边的中点,若把△ADE绕着点E顺时针旋转180°得到△CFE.求证:四边形DBCF是平行四边形.【解答】证明:∵△ADE绕着点E顺时针旋转180°得到△CFE(1分)∴点D、E、F在一条直线上,且DF=2DE(3分)∵点D,E分别是AB,AC边的中点∴DE是△ABC的中位线(5分)∴BC=2DE,且BC∥DE(7分)∴DF∥BC∴四边形DBCF是平行四边形(9分)27.如图,在Rt△ABC中,∠C=90°(1)求作:△ABC的一条中位线,与AB交于D点,与BC交于E点,(保留作图痕迹,不写作法)(2)若AC=6,AB=10,连接CD,则DE=3,CD=5.【解答】解:(1)如图.(2)∵DE是△ABC的中位线,∴DE=AC,∵AC=6,∴DE=3,∵AB=10,CD是Rt△斜边上的中线等于斜边的一半,∴CD=5,故答案为:3,5.28.如图:点E、F、G、H分别是线段AC、BD、BC、AD的中点,求证:四边形EGFH 是平行四边形.【解答】证明:如图,连接AB,CD.∵点E、F、G、H分别是线段AC、BD、BC、AD的中点,∴EG∥AB,HF∥AB,GF∥DC,EH∥DC,∴GE∥HF,GF∥EH,∴四边形EGFH是平行四边形.。
三角形的中位线(专项练习)-2020-2021学年八年级数学下册基础知识专项讲练(华东师大版)
专题18.6 三角形的中位线(专项练习)一、单选题1.如图,AD 为△ABC 中△ BAC 的外角平分线,BD△AD 于D ,E 为BC 中点,DE=5,AC=3,则AB 长为()A .8.5B .8C .7.5D .72.顺次连接矩形各边中点得到的四边形是( )A .平行四边形B .矩形C .菱形D .正方形 3.如图,在四边形ABCD 中,AD BC =,BC ,E 、F 、G 分别是AB 、CD 、AC 的中点,若10DAC ∠=︒,66ACB ∠=︒,则FEO ∠等于( )A .76°B .56°C .38°D .28° 4.如图,在四边形ABCD 中,点P 是边CD 上的动点,点Q 是边BC 上的定点,连接AP PQ ,,EF ,分别是AP PQ ,的中点,连接EF .点P 在由C 到D 运动过程中,线段EF 的长度( )A .保持不变B .逐渐变小C .先变大,再变小D .逐渐变大5.ABC 中,D 、E 分别为AB 、AC 边的中点,若BC=8cm ,则DE 为( ) A .16cm B .8cm C .4cm D .2cm6.在Rt ABC △中,90,13,5ACB AB AC ︒∠===,点D 是AB 上一动点,作//DE AC ,且2DE =,连结,BE CD P Q ,,分别是BE DC 、的中点连结PQ ,则PQ 长为( )A B .C .6 D .6.57.如图,已知△ABC 中,点M 是BC 边上的中点,AN 平分△BAC ,BN△AN 于点N ,若AB =8,MN =2,则AC 的长为( )A .12B .11C .10D .98.如图,将三角形纸片ABC 沿过,AB AC 边中点D 、E 的线段DE 折叠,点A 落在BC 边上的点F 处,下列结论中,一定正确的个数是( )△BDF 是等腰三角形 △12DE BC = △四边形ADFE 是菱形 △2BDF FEC A ∠+∠=∠A .1B .2C .3D .4二、填空题9.如图,在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,点D ,E 分别是AB 和AC 边的中点,若4CD =,则DE =__________.10.如图,,,D E F 分别是ABC ∆各边的中点,AH 是高,,5AB AC ED ≠=,判断AD ________AH (大小),FHC ∆是___________(类别),四边形AEDF 是______________________(类别)11.如图,在Rt △ABC 中,△ACB =90°,点D 、E 、F 分别为AB 、AC 、AD 的中点,若AB =12,则EF 的长为__________.12.如图,CD 是ABC ∆的中线,点E 、F 分别是AC 、DC 的中点,3BD =,则EF =_________.13.如图,在ABC中,AB=AC,AM BC⊥,延长AC到点D,连接BD,取BD的中点N,连接MN.若AB=3,AD=5,则MN=_______________.14.如图,在△ABC中,D是AC边的中点,且BD△AC,ED△BC,ED交AB于点E,若AC=4,BC=6,则△ADE的周长为______.15.如图,△ABC的中位线DE=6cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为_____cm2.16.如图,在ABC中,△ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=13BD,连接DM、DN、MN.若AB=4,则DN=_____.17.如图,在ABC∆中,D、E分别为BC、AC的中点,且ABC的面积为16,则ADE 的面积是______.18.如图,面积为16的菱形ABCD 中,点O 为对角线的交点,点E 是边BC 的中点,过点E 作EF BD ⊥ 于点F ,EG AC ⊥于点G ,则四边形EFOG 的面积为__.19.如图,在菱形ABCD 中,45B ∠=︒,BC =E ,F 分别是边CD ,BC 上的动点,连接AE ,EF ,G ,H 分别为AE ,EF 的中点,连接GH ,则GH 的最小值为________.20.如图,有一块形状为Rt △ABC 的斜板余料,△A =90°,AB =6cm ,AC =8cm ,要把它加工成一个形状为□DEFG 的工件,使GF 在边BC 上,D 、E 两点分别在边AB 、AC 上,若点D 是边AB 的中点,则DEFG 的面积为_________2cm .21.如图,在平行四边形纸片ABCD 中,2cm AB =,将纸片沿对角线AC 对折至CF ,交AD 边于点E ,此时BCF △恰为等边三角形,则图中折叠重合部分的面积是________.22.如图,在ABC 中,点D E 、分别在边AB 、 AC 上,//DE BC ,将ADE 沿直线DE 翻折后与 FDE 重合,DF 、EF 分别与边BC 交于点M 、N ,如果 8DE =,23AD AB =,那么MN 的长是 _____ .23.如图,△ABC 是边长为1的等边三角形,取BC 边中点E ,作ED △AB ,EF △AC ,得到四边形EDAF ,它的周长记作C 1;取BE 中点E 1,作E 1D 1△FB ,E 1F 1△EF ,得到四边形E 1D 1FF 1,它的周长记作C 2.照此规律作下去,则C 2020=__.24.如图,在Rt ABC △中,90A ︒∠=,2AB =,点D 是BC 边的中点,点E 在AC 边上,若45DEC ︒∠=,那么DE 的长是__________.三、解答题25.在正方形ABCD 中,点E 是边CD 的中点,点P 是边AD 上一点(与点A 、D 不重合),射线PE 与BC 的延长线交于点Q .(1)如图,求证:PE QE =;(2)如图,连接PB ,PB PQ =,过点E 作//EF BC 交PB 于点F ,连接AF ,在不添加任何辅助线的情况下,请直接写出与线段AF 相等的所有线段.26.如图,在ABC 中,AB AC =,E ,F 分别是BC ,AC 的中点,连接EF ,以AC 为斜边作直角三角形ADC ,连接DE 、DF .(1)求证:FE FD =.(2)若24CAD CAB ∠=∠=︒,求EDF ∠的度数.27.如图,在△ABC 中,点D ,E 分别是BC ,AC 的中点,延长BA 至点F ,使得AF =12AB ,连接DE ,AD ,EF ,DF .(1)求证:四边形ADEF 是平行四边形;(2)若AB =6,AC =8,BC =10,求EF 的长.28.如图,等边ABC ∆中,D ,E 分别是AB ,AC 的中点,延长BC 到点F ,使12CF BC =,连结DE ,CD ,EF .(1)求证:四边形DCFE 是平行四边形;(2)若等边ABC ∆的边长为6,求EF 的长.29.如图,在ABC 中,D E 、分别是AB AC 、的中点,延长DE 到点,F 使得,EF BE =连接CF .若EC 平分BEF ∠.(1)求证:四边形BCFE 是菱形;(2)若8,120AC BCF =∠=︒,求菱形BCFE 的面积.参考答案1.D【分析】延长BD、CA交于点F,易证△ADF≌△ADB(ASA),则BD=DF,AB=AF,得到点D为BF中点,即DE为△BCF的中位线,再根据已知线段的长度,即可顺利求得AB的长.【详解】解:如图,分别延长BD、AC交于点F,△AD为△ABC中△BAC的外角平分线,△△FAD=△BAD,△BD△AD,△△FDA=△BDA=90°,在△BDA和△FDA中,FAD BAD AD ADFDA BDA ∠=∠⎧⎪=⎨⎪∠=∠⎩,△△BDA≌△FDA(ASA),△AB=AF,BD=FD,即D为BF的中点,△E为BC中点,△DE为△BCF的中位线,△DE=5,AC=3,△CF=2DE=2⨯5=10,△AF=CF-AC=10-3=7.△AB=AF=7.故选D.【点拨】本题考查三角形的综合,涉及的知识点有全等三角形的判定,中位线定理等,难度一般,是中考的常考知识点,正确作出辅助线并证明全等是顺利解题的关键.2.C【分析】根据三角形的中位线定理,得新四边形各边都等于原四边形的对角线的一半,进而可得连接对角线相等的四边形各边中点得到的四边形是菱形.【详解】解:如图,矩形ABCD 中,,AC BD ∴=,,,E F G H 分别为四边的中点,1//,,2EF BD EF BD ∴=1//,,2GH BD GH BD = 1,2FG AC = //,,EF GH EF GH ∴=∴ 四边形ABCD 是平行四边形, 11,,,22AC BD EF BD FG AC === ,EF FG ∴=∴ 四边形EFGH 是菱形.故选C .【点拨】本题主要考查了矩形的性质、菱形的判定,以及三角形中位线定理,关键是掌握三角形的中位线定理及菱形的判定.3.D 【分析】利用EG 、FG 分别是ABC ∆和ADC ∆两个三角形的中位线,求出EG FG =,从而得出FGC ∠和EGC ∠,再根据EG FG =,利用三角形内角和定理即可求出FEG ∠的度数.【详解】解:△E 、F 、G 分别是AB 、CD 、AC 的中点, △EG 、FG 分别是ABC ∆和ADC ∆两个三角形的中位线, △//EG BC ,//FG AD ,且22AD BCEG FG ===, △10FGC DAC ∠=∠=︒,180114EGC ACB ∠=︒-∠=︒, △124EGF FGC EGC ∠=∠+∠=︒, 又△EG FG =, △()()111801801242822FEG EGF ∠=-∠=-︒=︒︒︒. 故本题答案为:D . 【点拨】本题考查了三角形内角和定理,等腰三角形的判定与性质,三角形中位线定理.解决本题的关键是正确理解题意,熟练掌握三角形中位线定理,通过等腰三角形的性质找到相等的角. 4.A 【分析】连接AQ ,则可知EF 为△PAQ 的中位线,可知EF =12AQ ,可知EF 不变. 【详解】 如图,连接AQ ,△E 、F 分别为PA 、PQ 的中点, △EF 为△PAQ 的中位线, △EF =12AQ , △Q 为定点,△AQ 的长不变, △EF 的长不变, 故选:A .【点拨】本题主要考查三角形中位线定理,掌握三角形中位线平行第三边且等于第三边的一半是解题的关键. 5.C 【分析】先画出图形,再根据三角形的中位线定理即可得. 【详解】由题意,画出图形如下:点D 、E 分别为AB 、AC 边的中点,DE ∴是ABC 的中位线, 1184()22DE BC cm ∴==⨯=, 故选:C . 【点拨】本题考查了三角形的中位线定理,熟记三角形的中位线定理是解题关键. 6.A 【分析】由勾股定理得出,取BD 中点F ,连接PF 、QF ,证出PF 是△BDE的中位线,FQ是△BCD的中位线,由三角形中位线定理得出PF△ED,PF=12DE=1,FQ△BC,FQ=12BC=6,证出PF△FQ,再由勾股定理求出PQ即可.【详解】解:△△ACB=90°,AB=13,AC=5,,取BD中点F,连接PF、QF,如图所示:△P、Q分别是BE、DC的中点,△PF是△BDE的中位线,FQ是△BCD的中位线,△PF△ED,PF=12DE=1,FQ△BC,FQ=12BC=6,△DE△AC,AC△BC,△PF△FQ,==故选:A.【点拨】本题考查了三角形中位线定理、勾股定理、平行线的性质;熟练掌握勾股定理,由三角形中位线定理得出PF△ED,FQ△BC是解题的关键.7.A【分析】延长BN交AC于D,证明△ANB△△AND,根据全等三角形的性质、三角形中位线定理计算即可.【详解】解:延长BN交AC于D,在△ANB 和△AND 中,90NAB NAD AN ANANB AND ∠∠⎧⎪⎨⎪∠∠︒⎩====, △△ANB△△AND , △AD=AB=8,BN=ND , △M 是△ABC 的边BC 的中点, △DC=2MN=4, △AC=AD+CD=12, 故选:A . 【点拨】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半. 8.C 【分析】根据菱形的判定和等腰三角形的判定,采用排除法,逐条分析判断. 【详解】 解:△△DE △BC ,△△ADE =△B ,△EDF =△BFD , 又△△ADE △△FDE ,△△ADE =△EDF ,AD =FD ,AE =CE , △△B =△BFD ,△△BDF 是等腰三角形,故△正确; 同理可证,△CEF 是等腰三角形, △BD =FD =AD ,CE =FE =AE , △DE 是△ABC 的中位线,△DE =12BC ,故△正确; △△B =△BFD ,△C =△CFE ,又△△A +△B +△C =180°,△B +△BFD +△BDF =180°,△C +△CFE +△CEF =180°, △△BDF +△FEC =2△A ,故△正确.而无法证明四边形ADFE 是菱形,故△错误. 所以一定正确的结论个数有3个, 故选:C . 【点拨】本题考查了菱形的判定,中位线定理,等腰三角形的判定和性质,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:△定义;△四边相等;△对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定. 9.2 【分析】由直角三角形斜边上的中线等于斜边的一半可得出28AB CD ==,又因为30A ∠=︒,所以4BC =,由三角形的中位线定理可得出122DE BC ==. 【详解】解:△CD 是Rt ABC 中斜边上的中线,4CD = △28AB CD ==△90ACB ∠=︒,30A ∠=︒ △4BC =△点D ,E 分别是AB 和AC 边的中点 △122DE BC == 故答案为:2. 【点拨】本题考查的知识点是三角形的中位线定理,由直角三角形斜边上的中线等于斜边的一半可得出28AB CD ==,是解此题的关键. 10.> 等腰三角形 平行四边形 【分析】(1)连接AD 可知,在Rt ADH 中,AH 为直角边,AD 为斜边,可得AH 与AD 大小关系;(2)在Rt AHC 中,11,22HF AC FC AC ==,可得HF FC =,可得FHC 为等腰三角形;(3)根据中位线的性质,可得//,//DE AF AE DF ,可得AEDF 的形状 【详解】(1)连接AD ,在Rt ADH 中,AH 为直角边,AD 为斜边,得AD AH >; 故答案为:>(2)在Rt ADC 中,F 为AC 中点 △11,22HF AC FC AC ==, △HF FC =,△FHC 为等腰三角形; 故答案为:等腰三角形(3)△,,D E F 分别是ABC ∆各边的中点 △//,//DE AF AE DF△四边形AEDF 为平行四边形 故答案为:平行四边形 【点拨】本题考查了直角三角形的边角关系,以及中点的应用,熟知中点的作用是解题的关键. 11.3 【分析】根据直角三角形的性质求出CD ,根据三角形中位线定理计算即可. 【详解】在Rt△ABC中,△ACB=90°,D为AB的中点,△CD12=AB=6△E,F分别为AC,AD的中点,△EF12=CD=3.故答案为:3【点拨】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.12.1.5【分析】先由中线知BD=AD,求出AD,再利用三角形中位线是性质即可解答.【详解】解:△CD是ABC的中线,3BD=△AD=BD= 3△点E、F分别是AC、DC的中点,△EF是ACD的中位线,△EF=12AD=1.5,故答案为:1.5.【点拨】本题考查了三角形的中线和中位线,熟练掌握三角形中位线的性质是解答的关键.13.1【分析】由题意易得BM=MC,则有MN△CD,12MN CD=,进而可求解.【详解】解:AB=AC,AM BC⊥,∴BM=MC,BN=ND,∴MN△CD,12MN CD=,AB=3,AD=5,∴CD=2,∴MN=1;故答案为1.【点拨】本题主要考查等腰三角形的性质及三角形中位线,熟练掌握等腰三角形的性质及三角形中位线是解题的关键.14.8【分析】根据线段垂直平分线的性质得到AB=BC=6,根据三角形中位线定理求出DE,根据直角三角形的性质求出AE,根据三角形的周长公式计算,得到答案.【详解】△D是AC边的中点,BD△AC,△BD是线段AC的垂直平分线,AD12=AC=2,△AB=BC=6,△D是AC边的中点,ED△BC,△点E是AB的中点,DE12=BC=3,在Rt△ADB中,点E是AB的中点,△DE12=AB=3,△△ADE的周长=AE+DE+AD=8,故答案为:8.【点拨】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.15.48【分析】根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.【详解】解:连接AF,△DE是△ABC的中位线,△DE△BC,BC=2DE=12cm;由折叠的性质可得:AF△DE,△AF△BC,△S△ABC=12BC×AF=12×12×8=48cm2.故答案为:48.【点拨】本题考查了翻折变换的性质及三角形的中位线定理,解答本题的关键是得出AF是△ABC的高.16.2【分析】连接CM,根据直角三角形的性质求出CM,根据三角形中位线定理得到MN=12BC,MN//BC,证明四边形NDCM是平行四边形,根据平行四边形的性质解答.【详解】解:连接CM,△△ACB=90°,M是AB的中点,△CM=12AB=2,△M、N分别是AB、AC的中点,△MN=12BC,MN//BC,△CD=13 BD,△CD=12 BC,△MN=CD,又MN//BC,△四边形NDCM是平行四边形,△DN=CM=2,故答案为:2.【点拨】本题考查直角三角形斜边的中线定理、三角形中位线定理、平行四边形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.4【分析】先根据D点是BC的中点,E点是AC的中点,得出S△ADE=14×S△ABC,即可得出答案.【详解】△D点是BC的中点,△S△ABD=S△ADC=12S△ABC,△E点是AC的中点,△S△ADE=S△DCE=12S△ADC=14×S△ABC△S△ABC=16,△S△ADE=4,故答案为:4.【点拨】本题考查了三角形中线的性质,得出S△ADE=14×S△ABC是解题关键.18.2【分析】由菱形的性质得出OA=OC,OB=OD,AC△BD,面积=12AC×BD,证出四边形EFOG是矩形,EF//OC,EG//OB,得出EF、EG都是△OBC的中位线,则EF=12OC=14AC,EG =12OB =14BD ,由矩形面积即可得出答案. 【详解】解:△四边形ABCD 是菱形,△OA =OC ,OB =OD ,AC△BD ,面积=12AC×BD=16, △AC×BD=32△EF△BD 于F ,EG△AC 于G ,△四边形EFOG 是矩形,EF//OC ,EG//OB ,△点E 是线段BC 的中点,△EF 、EG 都是△OBC 的中位线,△EF =12OC =14AC ,EG =12OB =14BD , △矩形EFOG 的面积=EF×EG =14AC×14BD =116×32=2; 故答案为:2.【点拨】本题考查了菱形的性质、矩形的判定与性质、三角形中位线定理等知识;熟练掌握菱形的性质和矩形的性质是解题的关键.19.2【分析】连结AF ,利用中位线的性质GH=12AF ,要使GH 最小,只要AF 最小,由点F 在BC ,当AF△BC 时,AF 最小,利用菱形性质求出AB =45B ∠=︒确定△ABF 为等腰直角三角形,得出AF=BF ,由勾股定理得:22222AB BF AF AF =+=求出AF 即可.【详解】连结AF ,△G ,H 分别为AE ,EF 的中点,△GH△AF ,且GH=12AF , 要使GH 最小,只要AF 最小,由点F 在BC ,当AF△BC 时,AF 最小,在菱形ABCD 中,BC = △AB =在Rt△ABF 中,45B ∠=︒,△△ABF 为等腰直角三角形,△AF=BF ,由勾股定理得:22222AB BF AF AF =+=,△(22=2AF ,△AFGH 最小=12【点拨】本题考查动点图形中的中位线,菱形的性质,等腰直角三角形的性质,勾股定理应用问题,掌握中位线的性质,菱形性质,等腰直角三角形的性质, 点F 在BC 上,AF 最短,点A 到BC 直线的距离最短时由点A 向直线BC 作垂线,垂线段AF 为最短是解题关键. 20.12【分析】作AH BC ⊥交BC 于H 点,交DE 于I 点,根据90,6,8A AB cm AC cm 可得BC 10cm =,根据D 是边AB 的中点可知DE 是ABC 的中位线,得12AIIH AH ,利用三角形面积1122ABC S AC AB BC AH ,可得245AH =,11225IH AH ,则根据DEFG S DE IH ,计算可得结果.【详解】如图示,作AH BC ⊥交BC 于H 点,交DE 于I 点,△90,6,8A AB cm AC cm△BC 10cm =△D 是边AB 的中点,//DE BC ,△DE 是ABC 的中位线,5DE cm = △12AIIH AH , 又△1122ABCS AC AB BC AH , 即有6810AH , △245AH =, △1124122255IHAH , △2125125DEFG S DE IHcm , 故答案为:12.【点拨】本题考查了三角形中位线的应用,勾股定理,三角形的面积和平行四边形的面积,熟悉相关性质定理是解题的关键.中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.212cm【分析】BCF △为等边三角形,点A 为BF 的中点,可得90BAC ∠=︒,求得12ACD S AC CD =,再证明出点E 为AD 的中点,得到12ACE ACD S S =,可求出面积. 【详解】解:ABC 折叠至ACF 处,∴AB=AF=2cm ,BC=BF=CF=4cm ,BCF △为等边三角形,AC BF ∴⊥,90BAC ∠=︒, 又四边形ABCD 为平行四边形,∴//AB CD ,90ACD ∴∠=︒,AC ==,CD=AB=2cm ,12ACD S AC CD ∴==212⨯=2cm , 点A 为BF 的中点,//AE BC ,∴AE 为BCF △的中位线,1122AE BC AD ∴==, ∴点E 为AD 的中点, 12ACE ACD S S ∴==12⨯2cm 为折叠重合部分的面积,2cm .【点拨】本题考查了折叠问题以及等边三角形和平行四边形的综合问题,还涉及勾股定理,需要有一定的推理论证能力,熟练掌握等边三角形和平行四边形的性质是解题的关键.22.4【分析】设3AB a =,从而可得2,a AD a BD ==,先根据平行线的性质可得,ADE B EDM BMD ∠=∠∠=∠,再根据翻折的性质可得,2ADE EDM DF AD a ∠=∠==,从而可得B BMD ∠=∠,然后根据等腰三角形的判定可得DM BD a ==,从而可得FM a =,最后根据三角形的中位线定理即可得.【详解】设3AB a =,则2,BD D a A a A AB D =-==,//DE BC ,,ADE B EDM BMD ∠=∠∠=∠∴,由翻折的性质得:,2ADE EDM DF AD a ∠=∠==,B BMD ∴∠=∠,DM BD a ∴==,FM DF DM a DM ∴=-==,即点M 是DF 的中点,又//DE BC ,MN ∴是FDE 的中位线,118422MN DE ∴==⨯=, 故答案为:4.【点拨】本题考查了翻折的性质、等腰三角形的判定、三角形的中位线定理等知识点,熟练掌握翻折的性质是解题关键.23.201812【分析】先计算出C 1、C 2的长,进而得到规律,最后求出C 2020的长即可.【详解】解:△E 是BC 的中点,ED △AB ,△DE 是△ABC 的中位线,△DE =12AB =12,AD =12AC =12, △EF △AC ,△四边形EDAF 是菱形,△C 1=4×12, 同理C 2=4×12×12=4×212, …C n =4×12n , △20202020201811422C =⨯=. 故答案为:201812.【点拨】本题考查了中位线的性质,菱形的判定与性质,根据题意得到规律是解题关键.24【分析】过D作DF△AC于F,得到AB△DF,求得AF=CF,根据三角形中位线定理得到DF=12 AB=1,根据等腰直角三角形的性质即可得到结论.【详解】解:过D作DF△AC于F,△△DFC=△A=90°,△AB△DF,△点D是BC边的中点,△BD=DC,△AF=CF,△DF=12AB=1,△△DEC=45°,△△DEF是等腰直角三角形,△DE DF,【点拨】本题考查了三角形的中位线定理,平行线的判定和性质,等腰直角三角形的性质,正确的作出辅助线构造等腰直角三角形是解题的关键.25.(1)见解析;(2)BF、PF、PE、QE.【分析】(1)根据正方形的性质及对顶角相等利用ASA即可证明PDE QCE≌,再利用全等三角形的性质即可得证;(2)根据三角形中位线的判定及性质定理、直角三角形斜边上的中线即可得出答案.【详解】(1)证明:如图,△四边形ABCD 是正方形△90D ECQ ∠=∠=︒,△E 是CD 的中点△DE CE =,又△DEP CEQ ∠=∠△()PDE QCE ASA ≌△△△PE QE =(2)如图,BF 、PF 、PE 、QE,//PB PQ EF BC =,PE QE =∴EF 为PBQ △的中位线PF FB PE EQ ∴===,四边形ABCD 为正方形,90BAP ∴∠=︒,∴AF 为BAP Rt △斜边的中线12AF BP BF PF ∴=== ∴与线段AF 相等的所有线段为:BF 、PF 、PE 、QE .【点拨】本题考查了正方形的性质、三角形中位线的判定及性质定理、直角三角形斜边上的中线、全等三角形的判定及性质,熟练掌握性质定理是解题的关键.26.(1)见解析;(2)54︒【分析】(1)根据三角形中位线定理推出12FE AB =,根据直角三角形斜边上的中线等于斜边的一半推出12FD AC =,即可证明FE FD =; (2)根据三角形中位线定理推出24EFC BAC ∠=∠=︒,根据直角三角形斜边上的中线的性质结合三角形的外角性质推出48DFC ∠=︒,利用(1)的结论结合三角形内角和定理即可求得EDF ∠的度数.【详解】(1)△E ,F 分别是BC ,AC 的中点, △12FE AB =, △F 是AC 的中点,90ADC ∠=︒, △12FD AC =, △AB AC =,△FE FD =;(2)△E ,F 分别是BC ,AC 的中点,△//FE AB ,△24EFC BAC ∠=∠=︒,△F 是AC 的中点,90ADC ∠=︒,△FD AF =,△24ADF CAD ︒∠=∠=,△48DFC ∠=︒,△72EFD ∠=︒,△FE FD=,△18072542FED EDF︒-︒∠=∠==︒.【点拨】本题考查了三角形中位线定理,直角三角形斜边上的中线等于斜边一半,平行线的性质,三角形的外角性质等,灵活运用有关定理来分析、判断、推理或解答是解题的关键.27.(1)见解析;(2)EF=5.【分析】(1)利用三角形的中位线的性质与等量代换得出DE=AF,DE△AF,从而得出结论.(2)先利用(1)中的结论得出EF=AD,再利用勾股定理的逆定理,求出△ABC是直角三角形,再利用直角三角形斜边上的中线等于斜边的一半求出。
专项6.3 三角形中位线计算(解析版)
2020—2021八年级下学期专项冲刺卷(北师大版)专项6.3三角形中位线计算姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、 选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在□ABCD 中,对角线AC ,BD 相交于点O ,E 是BC 的中点,若OE =3,则AB 的长为( )A .3B .6C .9D .12【答案】B【分析】 点O 是AC 的中点,E 是BC 的中点,则OE 是三角形ABC 的中位线,据此计算即可【详解】∵在□ABCD 中,对角线AC ,BD 相交于点O ,∴OA =OC ,∵EB =EC ,∴AB =2OE ,∵OE =3,∴AB =6,故选:B .【点睛】本题考查了平行四边形的性质,三角形的中位线定理,熟练掌握平行四边形的性质,灵活运用三角形中位线定理是解题的关键.2.如图,平行四边形ABCD 中,对角线AG ,BD 相交于点O ,10AC =,6BD =,AD BD ⊥.在边AB 上取一点E ,使AE AO =,则AEO △的面积为( )A .61313B .91313C .121313D .151313【答案】D【分析】先过O 作OF AB ⊥于F ,过D 作DG AB ⊥于G ,依据勾股定理求得AD 和AB 的长,再根据面积法即可得出DG 的长,进而得到OF 的长,再根据三角形面积公式即可得到AEO ∆的面积.【详解】解:如图所示,过O 作OF AB ⊥于F ,过D 作DG AB ⊥于G ,平行四边形ABCD 中,10AC =,6BD =,5AO ∴=,3DO =,又AD BD ⊥,Rt AOD ∴△中,2222534AD AO DO =-=-=,Rt ABD ∴中,222246213AB AD BD =+=+=,1122AD BD AB DG ⨯=⨯, 121313AD BD DG AB ⨯∴==, //DG OF ,BO DO =,1613213OF DG ∴==, 又5AE AO ==,1161551313221313AOE S AE OF ∆∴=⨯=⨯⨯=, 故选:D .【点睛】此题考查了平行四边形的性质与勾股定理的运用,三角形的中位线的性质.依据平行四边形的性质得到O 是对角线的中点是解决问题的关键.3.如图,在△ABC 中,点D 、E 、F 分别是各边的中点,若△ABC 的面积为16cm 2,则△DEF 的面积是( )cm 2.A .2B .4C .6D .8【答案】B【分析】 根据三角形中位线定理判定四边形BEFD 是平行四边形,然后可证明△BDE ≌△FED ,同理可证:△DAF ≌△FED ,△EFC ≌△FED ,从而这四个三角形彼此全等,它们的面积也相等,所以可求得△DEF 的面积.【详解】∵点D 、F 分别是AB ,AC 的中点,∴//DF BC ,DF =12BC , ∴//DF BE ,∵E 是BC 的中点,∴BE =12BC , ∴DF =BE ,∴四边形BEFD 是平行四边形,∴BD =EF ,在△BDE 和△FED 中,BE DF BD EF DE ED =⎧⎪=⎨⎪=⎩,∴△BDE ≌△FED (SSS ),同理可证△DAF ≌△FED ,△EFC ≌△FED ,即△BDE ≌△DAF ≌△EFC ≌△FED ,∴S △DEF =14S △ABC =14×16=4(cm 2), 故选:B .【点睛】本题考查了三角形的中位线定理、三角形全等的判定等知识.4.如图,AD 是ABC ∆的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE 下列说法中不正确的有( )A .CE AE =B .ABD ∆和ACD ∆面积相等C .//BF CED .BDF CDE ∆∆≌【答案】A【分析】 根据三角形中线的定义可得BD =CD ,然后利用“边角边”证明△BDF 和△CDE 全等,根据全等三角形对应边相等可得CE =BF ,不能得出CE =AE 全等三角形对应角相等可得∠F =∠CED ,再根据内错角相等,两直线平行可得BF //CE ,最后根据等底等高的三角形的面积相等判断ABD ∆和ACD ∆面积相等.【详解】解:∵AD 是△ABC 的中线,∴BD =CD ,在△BDF 和△CDE 中,BD CD BDF CDE DF DE ⎧⎪∠∠⎨⎪⎩===,∴△BDF ≌△CDE (SAS ),故D 选项正确,不符合题意;∴CE =BF ,∠F =∠CED ,不能得出CE =AE ,故A 说法错误,符合题意,∴BF //CE ,故C 正确,不符合题意;∵BD =CD ,点A 到BD 、CD 的距离相等,∴△ABD 和△ACD 面积相等,故B 正确,不符合题意;故选A .【点睛】本题考查了全等三角形的判定与性质,等底等高的三角形的面积相等,熟练掌握三角形全等的判定方法并准确识图是解题的关键.5.如图,在ABC 中,AB =10,BC =16,点D 、E 分别是边AB 、AC 的中点,点F 是线段DE 上的一点,连接AF 、BF ,若∠AFB =90°,则线段EF 的长为( )A .2B .3C .4D .5【答案】B【分析】 根据直角三角形的斜边的中线等于斜边的一半,得到DF =5,由三角形中位线的性质得到DE =8,最后由线段的和差解题即可.【详解】解:∵∠AFB =90°,点D 是AB 的中点,∴DF = 12AB =5, ∵BC = 16,D 、E 分别是AB ,AC 的中点, ∴DE =12BC =8, ∴EF=DE -DF =3,【点睛】本题考查了直角三角形的性质和中位线性质,掌握定理是解题的关键.6.如图,在平行四边形ABCD中,AB=10,∠BAD的平分线与DC交于点F,AF⊥BF,DG⊥AF,垂足为G,DG=4,则AF的长为()A.6 B.5 C7D.8【答案】A【分析】延长AD、BF交于点E,证明△DEF≌△CBF(AAS),得出DE=BC,EF=BF,证出DG是△AEF 的中位线,得出EF=2DG=8,即可得出答案.【详解】解:延长AD、BF交于点E,如图所示:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠E=∠CBF,∠BAF+∠DAF+∠ABF+∠CBF=180°,∵AF平分∠BAD,∴∠BAF=∠DAF,∵AF⊥BF,∴∠BAF+∠ABF=90°,∴∠ABF=∠CBF,∵四边形ABCD为平行四边形,∴AB∥CD,BC=AD,∴∠CFB=∠ABF,∠BAF=∠DF A,∴∠CFB=∠CBF,∠DF A=∠DAF,∴CB=CF,DA=DF,在△DEF 和△CBF 中,E CBF DFE CFB DF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△CBF (AAS ),∴DE =BC ,EF =BF ,∴AD =DE ,∵AF ⊥BF ,DG ⊥AF ,∴DG ∥EF ,∴DG 是△AEF 的中位线,∴EF =2DG =2×4=8,∴BF =EF =8, 226AF AB BF =-=;故选:A .【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、三角形中位线定理等知识;熟练掌握平行四边形的性质和三角形中位线定理,证明三角形全等是解题的关键.7.如图,在四边形ABCD 中,AB =6,BC =10,∠A =130°,∠D =100°,AD =CD .若点E,F 分别是边AD ,CD 的中点,则EF 的长是( )A .3B .4C .2D .5 【答案】B【分析】 连接AC ,根据等腰三角形的性质、三角形内角和定理求出∠DAC ,结合图形求出∠BAC =90°,根据勾股定理求出AC ,根据三角形中位线定理计算,得到答案.【详解】解:连接AC ,∵DA =DC ,∠D =100°,∴∠DAC =∠DCA =40°,∴∠BAC =∠BAD ﹣∠DAC =130°﹣40°=90°,∴AC =22221068BC AB --==,∵点E ,F 分别是边AD ,CD 的中点,∴EF =12AC =4, 故选:B .【点睛】本题考查的是三角形中位线定理、勾股定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8.如图所示,在ABC 中,D 是BC 边上任一点,,,F G E 分别是,,AD BF CF 的中点,连结GE ,若FGE △的面积为6,则ABC 的面积为( )A .32B .48C .64D .72【答案】B【分析】 过点F 作FH ⊥BC 于点H ,交GE 于点M ,由题意易得1//,2GE BC GE BC =,,ABF FBD AFC FDC SS S S ==,进而可得12GE FM ⋅=,然后可得11222422FBC S BC FH GE FM =⋅=⨯⋅=,最后问题可求解. 【详解】解:过点F 作FH ⊥BC 于点H ,交GE 于点M ,如图所示:∵点,G E 分别是,BF CF 的中点,∴1//,2GE BC GE BC =, ∴12FM FH =, ∵162FGE S GE FM =⋅=, ∴12GE FM ⋅=, ∴11222422FBC S BC FH GE FM =⋅=⨯⋅=, ∵点F 是AD 的中点,∴,ABF FBD AFC FDC SS S S ==, ∵FBC FBD FDC SS S =+, ∴248ABC FBC S S ==,故选B .【点睛】本题主要考查三角形中位线及三角形的中线,熟练掌握三角形中位线及三角形的中线是解题的关键.9.如图,在四边形ABCD 中,E ,F 分别为DC 、AB 的中点,G 是AC 的中点,则EF 与AD CB +的关系是( )A .2EF AD BC =+B .2EF AD BC >+ C .2EF AD BC ≤+ D .不确定【答案】C【分析】 由题意易得11,22GE AD GF BC ==,然后根据三角形三边关系可进行排除选项. 【详解】解:∵E ,F 分别为DC 、AB 的中点,G 是AC 的中点, ∴11,22GE AD GF BC ==, 由三角形三边关系可得:GE GF EF +>,即1122AD BC EF +>, ∴2AD BC EF +>,当四边形ABCD 是平行四边形时,则有2AD BC EF +=,∴2EF AD BC ≤+;故选C .【点睛】本题主要考查三角形中位线,熟练掌握三角形中位线是解题的关键.10.如图,已知AD 是△ABC 的高,把三角形纸片ABC 折叠,使A 点落在D 处,折痕为EF ,则下列结论中错误的是( )A .EF ⊥ADB .EF =12BC C .DF =12ACD .DF =12AB 【答案】D【分析】 如图,证明EF ⊥AD ,且平分AD ;证明EF ∥BC ,得到AF =FC ,AE =BE ,进而得到EF =12BC ;证明DF =12AC ,即可解决问题. 【详解】解:如图,由题意得:EF ⊥AD ,且平分AD ,∵BC ⊥AD ,∴EF ∥BC ,AF =FC ,AE =BE ,∴EF 为△ABC 的中位线, ∴EF =12BC ;而点F 为AC 的中点, ∴DF =12AC , 综上所述,选项A 、B 、C 均正确.故选:D .【点睛】该题主要考查了翻折变换的性质、三角形中位线定理、直角三角形的性质等几何知识点及其应用问题;应牢固掌握三角形中位线定理、直角三角形的性质等几何知识点.11.如图,在平行四边形ABCD 中,对角线,AC BD 交于点O ,2BD AD =,E ,F ,G 分别是,,OA OB CD 的中点,EG 交FD 于点H .下列结论:①ED CA ⊥;②EF EG =;③12EH EG =;成立的个数有( )A.3个B.2个C.1个D.0个【答案】A【分析】由平行四边形性质和等腰三角形“三线合一”即可得ED⊥CA,根据三角形中位线定理可得EF=12AB;由直角三角形斜边上中线等于斜边一半可得EG=12CD,即可得EF=EG;连接EG,可证四边形DEFG是平行四边形,即可得EH=12 EG.【详解】解:如图,连接FG,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD=BC,AD∥BC,AB=CD,AB∥CD,∵BD=2AD,∴OD=AD,∵点E为OA中点,∴ED⊥CA,故①正确;∵E,F,G分别是OA,OB,CD的中点,∴EF∥AB,EF=12AB,∵∠CED=90°,CG=DG=12 CD,∴EG=12 CD,∴EF=EG,故②正确;∵EF∥CD,EF=DG,∴四边形DEFG是平行四边形,∴EH=HG,即EH=12EG ,故③正确; 故选:A .【点睛】本题考查了平行四边形性质和判定,三角形中位线定理,三角形面积,直角三角形斜边上中线等于斜边一半,等腰三角形性质等;熟练运用三角形中位线定理、等腰三角形“三线合一”、直角三角形斜边上中线等于斜边一半等性质是解题关键.12.如图,在ABC 中,AB AC =,90BAC ∠=︒,直角EPF ∠的顶点P 是BC 的中点,两边PE ,PF 分别交AB ,AC 于点E ,F .现给出以下四个结论:①AE CF =;②EPF 是等腰直角三角形;③EF AP =;④12ABC AEPF S S =四边形△.当EPF ∠在ABC 内绕顶点P 旋转时(点E 不与点A ,B 重合),上述结论中始终正确的是( )A .①②③B .①②④C .②③④D .①③④【答案】B【分析】 根据等腰直角三角形的性质得出∠B =∠C =∠BAP =∠CAP =45°,AP =PC =PB ,∠APC =∠EPF =90°,求出∠APE =∠CPF ,证△APE ≌△CPF ,推出AE =CF ,EP =PF ,推出S △AEP =S △CPF ,求出S 四边形AEPF =S △APC =12S △ABC ,EF 不是△ABC 的中位线,故EF ≠AP ,即可得出答案. 【详解】解:∵△ABC 中,AB =AC ,∠BAC =90°,P 是BC 中点,∴∠B =∠C =∠BAP =∠CAP =45°,AP =PC =PB ,∠APC =∠EPF =90°,∴∠EPF -∠APF =∠APC -∠APF ,∴∠APE =∠CPF ,在△APE 和△CPF 中45EAP C AP CPAPE CPF ∠∠︒⎧⎪⎨⎪∠∠⎩====, ∴△APE ≌△CPF (ASA ),∴AE =CF ,EP =PF ,∴△EPF 是等腰直角三角形,∴①正确;②正确;∵△ABC 是等腰直角三角形,P 是BC 的中点,∴AP =12BC , ∵EF 不是△ABC 的中位线,∴EF ≠AP ,故③错误;∵△APE ≌△CPF ,∴S △AEP =S △CPF ,∴S 四边形AEPF =S △AEP +S △APF =S △CPF +S △APF =S △APC =12S △ABC , ∴④正确;∴正确的有①②④,故选:B .【点睛】本题考查了等腰三角形性质,三角形中位线的性质,三角形三边关系定理,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力.二、 填空题(本大题共6小题,每小题3分,共18分)13.如图,等边ABC 中,10AB =,E 为AC 中点,F ,G 为AB 边上的动点,且5FG =,则EF CG +的最小值是__________.【答案】57【分析】作C点关于AB的对称点C',取BC的中点Q,连接C'Q,交AB于点G,此时CG+EF最小,作C'H⊥BC交BC的延长线于点H,再根据等边三角形的性质和勾股定理可得答案.【详解】解:如图,作C点关于AB的对称点C',则C'G=CG,取BC的中点Q,连接EQ,GQ,B C',∵点E是AC的中点,∴EQ=12AB=5=FG,EQ∥AB,∴四边形EFGQ是平行四边形,∴EF=GQ,∴当点C',G,Q在同−条线上时,CG+EF最小,作C'H⊥BC交BC的延长线于点H,∵BC=BC'=10,∠CBC'=120°,∠HB C'=60°,∴HC'=3HB=5,∴HQ=10,∴C'Q7510057+=∴EF+CG的最小值是57故答案为:57【点睛】本题主要考查等边三角形的性质与判定,勾股定理,轴对称最值问题,根据题意作出正确的辅助线是解题关键.14.如图,在四边形ABCD 中,CD 平分对角线AC 与BC 边延长线的夹角,AD DC ⊥,点E 为AB 中点,若3AC =,5BC =,则线段DE 的长为________.【答案】4【分析】如图,延长AD 交BC 延长线于G ,利用ASA 可证明△ACD ≌△GCD ,可得AC =CG ,AD =GD ,根据线段的和差关系可得BG 的长,根据点E 为AB 中点可得DE 为△ABG 的中位线,根据中位线的性质即可得答案.【详解】如图,延长AD 交BC 延长线于G ,∵CD 平分对角线AC 与BC 边延长线的夹角,AD DC ⊥,∴∠ACD =∠GCD ,∠ADC =∠GDC =90°,在△ACD 和△GCD 中,ACD GCD CD CD ADC GDC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACD ≌△GCD ,∴AC =CG ,AD =GD ,∵3AC =,5BC =,∴BG =BC +CG =BC +AC =8,∵点E 为AB 中点,∴DE 为△ABG 的中位线,∴DE =12BG =4,故答案为:4【点睛】本题考查全等三角形的判定与性质及三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半;熟练掌握相关定理及性质是解题关键.15.如图,在平行四边形ABCD 中,M N 、分别为CD BC 、的中点,4,2,60AM AN MAN ==∠=,则对角线BD 的长为____.【答案】43 【分析】延长AM 至E ,使得ME =AM ,过点E 作EH ⊥AN ,交AN 延长线于H 点,连接MN .证明N 点为AH 中点,则MN =12HE =12BD ,即求BD 长转化为求HE 值即可. 【详解】解:延长AM 至E ,使得ME =AM ,过点E 作EH ⊥AN ,交AN 延长线于H 点,连接MN .∴AE =2AM =8.∵∠MAN =60°,∴∠E =30°,∴AH =12AE =4,HE =2243AE AH -=. ∵AN =2,∴N 点为AH 中点.∴MN =12HE . ∵M 、N 分别为CD 、BC 的中点,∴MN =12BD . ∴BD =HE =43故答案为43.【点睛】本题主要考查了了平行四边形的性质、勾股定理、三角形中位线的性质,解决此题的关键是借助线段的中点作“倍长中线”辅助线,使得线段得以转化.16.如图,在Rt ABC 中,4AC BC ==,90ACB ∠=︒,正方形BDEF 的边长为2,将正方形BDEF 绕点B 旋转一周,连接AE ,点M 为AE 的中点,连接FM ,则线段FM 的最大值是__________.【答案】32【分析】延长EF 到G ,使FG =EF ,连接BG ,FG ,可得△BFG 是等腰直角三角形,得到BG 222BF =根据三角形中位线定理得AG =2FM ,由勾股定理求出AB ,再根据三角形三边关系可求出AG 的最大值,从而可得结论.【详解】解:延长EF 到G ,使FG =EF ,连接BG ,FG ,如图,∵四边形BDEF 是正方形,∴BF =EF ,∠BFE =90°∴∠BFG =90°∴△BFG 是等腰直角三角形,∴BG 22222BF ==在Rt △ABC 中,∠C =90°,AC =BC =4 ∴2242AB AC BC =+=∵AB BG AG AB BG -≤≤+ ∴2262AG ≤≤ 232FM ≤∴线段FM 的最大值是32故答案为:32【点睛】此题主要考查了正方形的性质、等腰直角三角形的判定与性质,三角形中位线定理,银河股定理等知识,能正确作出相关的辅助线是解决本题的关键.17.如图,在等边三角形ABC 中,6AB =,D ,E 分别为边AB 和AC 上的点,连接DE ,将ADE ∆沿DE 折叠得到FDE ∆.若点F 始终落在边BC 上,则线段DE 的取值范围为___________.≤≤【答案】333DE【分析】当A点与F点重合,D点与E点重合时,此时DE最大;当点F在BC上且DE∥BC时,此时DE 最短,结合等边三角形的性质和中位线定理求解,从而确定DE的取值范围.【详解】解:当A点与F点重合,D点与E点重合时,此时DE最大由折叠性质可得,此时DE⊥AB,∠AED=∠BED=30°AB=,∵在等边三角形ABC中,6∴BD=3,DE=333BD=当点F在BC上且DE∥BC时,此时DE最短由折叠性质可得此时DE为△ABC的中位线∴DE=3∴线段DE的取值范围为333≤≤DE故答案为:333DE≤≤.【点睛】本题考查等边三角形的性质,含30°的直角三角形性质以及三角形中位线定理,掌握相关性质定理正确推理论证是解题关键.18.如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF 的中点,连接DG,则DG的长为________【答案】19 2【分析】连接DE,根据等边三角形的性质可得∠C=60°,根据三角形的中位线的性质得DE∥AC,DE=2,再根据等边三角形的性质可得∠C=60°,利用直角三角形中30°所对的直角边是斜边的一半和勾股定理求得EG和DG即可.【详解】解:连接DE,∵△ABC是等边三角形,∴∠C=60°,AC=BC=4,∵D、E分别是AB、BC的中点,∴DE为△ABC的中位线,CE= 12BC=2,∴DE∥AC,DE= 12AC=2,∵EF⊥AC,∴∠EFC=∠DEF=90°,在Rt△EFC中,∠CEF=90°﹣∠C=30°,CE=2,∴CF= 12CE=1,EF= 2222213CE CF--=∵G为EF的中点,∴EG = 12EF = 3, 在Rt △DEG 中,由勾股定理得DG =22223192()2DE EG +=+=, 故答案为:19.【点睛】本题考查等边三角形的性质、三角形的中位线、平行线的性质、含30°角的直角三角形的性质、勾股定理,熟练掌握等边三角形的性质和三角形的中位线性质是解答的关键.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.已知:平行四边形ABCD 中,点M 为边CD 的中点,点N 为边AB 的中点,联结AM 、CN . (1)求证:AM ∥CN ;(2)过点B 作BH AM ⊥,垂足为H ,联结CH .求证:△BCH 是等腰三角形.【答案】(1)见解析;(2)见解析【分析】(1)由四边形ABCD 是平行四边形,根据平行四边形的性质,可得AB ∥CD ,AB=CD ,又由点M 为边CD 的中点,点N 为边AB 的中点,即可得CM=AN ,继而可判定四边形ANCM 是平行四边形,则可证得AM ∥CN .(2)由AM ∥CN ,BH ⊥AM ,点N 为边AB 的中点,可证得BH ⊥CN ,ME 是△BAH 的中位线,则可得CN 是BH 的垂直平分线,继而证得△BCH 是等腰三角形.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB CD =.∵点M 、N 分别是边CD 、AB 的中点, ∴12CM CD =,1AN AB 2=. ∴CM AN =.又∵AB ∥CD ,∴四边形ANCM 是平行四边形∴AM ∥CN .(2)设BH 与CN 交于点E ,∵AM ∥CN ,BH ⊥AM ,∴BH ⊥CN ,∵N 是AB 的中点,∴EN 是△BAH 的中位线,∴BE=EH ,∴CN 是BH 的垂直平分线,∴CH=CB ,∴△BCH 是等腰三角形.【点睛】此题考查了平行四边形的判定与性质、线段垂直平分线的性质以及等腰三角形的判定.此题难度适中,注意掌握数形结合思想的应用.20.在ABC 中,AC BC =,90ACB ∠=︒,点D 为AC 的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作FH FC,交直线AB于点H.判断FH与FC的数量关系并加以证明.(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,给出证明.【答案】(1)CF=FH;理由见解析;(2)结论不变,CF=FH;理由见解析.【分析】(1)延长DF交AB于点G,根据三角形中位线的判定得出点G为AB的中点,根据中位线的性质及已知条件AC=BC,得出DC=DG,从而EC=FG,易证∠1=∠2=90°-∠DFC,∠CEF=∠FGH=135°,于是证出△CEF≌△FGH.故CF=FH.(2)类似(1)的证法证明△CEF≌△FGH,故CF=FH.【详解】解:(1)FH与FC的数量关系是:FH=FC.理由如下:如图1,延长DF交AB于点G,由题意,知∠EDF=∠ACB=90°,DE=DF,∴DG∥CB,∵点D为AC的中点,∴点G为AB的中点,且DC=12 AC,∴DG为△ABC的中位线,∴DG=12 BC.∵AC=BC,∴DC=DG,∴DC-DE=DG-DF,即EC=FG.∵∠EDF=90°,FH⊥FC,∴∠1+∠CFD=90°,∠2+∠CFD=90°,∴∠1=∠2.∵△DEF与△ADG都是等腰直角三角形,∴∠DEF=∠DGA=45°,∴∠CEF=∠FGH=135°,∴△CEF≌△FGH,∴CF=FH.(2)FH与FC仍然相等.理由如下:如图2,由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG=12BC ,DC= 12AC , ∴DG=DC ,∴EC=GF ,∵∠DFC=∠FCB ,∴∠GFH=∠FCE ,在△FCE 和△HFG 中,CEF FGH EC GF ECF GFH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△FCE ≌△HFG (ASA ),∴HF=FC .【点睛】本题考查了全等三角形的判定和性质、等腰三角形的性质、三角形中位线定理等知识,综合性强,难度较大.21.如图,在Rt ABC △中,90BAC ∠=︒,中线BD ,CE 相交于点O ,点F ,G 分别为OB ,OC 的中点.(1)求证://EF DG ,EF DG =;(2)若3AB =,4AC =,求四边形EFGD 的面积.【答案】(1)见解析;(2)2【分析】(1)利用中位线性质可得12ED BC =,//ED BC .12FG BC =,//FG BC .可证四边形EFGD 是平行四边形.由平行四边形性质可得EF DG =,//EF DG .(2)由EFGD 和OG GC =,可推得EO OG CG ==.求13462ABC S =⨯⨯=△由点D 是AC 中点,1322DEC AEC S S ==△△.由三等分可求2231332DEG DEC S S ==⨯=△△.根据平行四边形性质可得四边形DEFG 的面积22DEG S ==△.【详解】(1)证明:∵点E ,D 分别是AB ,AC 的中点, ∴12ED BC =,//ED BC . ∵点F ,G 分别是OB ,OC 的中点, ∴12FG BC =,//FG BC . ∴FG ED =,//FG ED .∴四边形EFGD 是平行四边形.∴EF DG =,//EF DG ;(2)解:∵EFGD ,∴EO OG =.又∵OG GC =,∴EO OG CG ==.∵3AB =,4AC =, ∵13462ABC S =⨯⨯=△, ∵点D 是AC 中点, ∴1322DEC AEC S S ==△△. ∴2231332DEG DEC S S ==⨯=△△. ∴四边形DEFG 的面积22DEG S ==△.【点睛】本题考查中位线性质,平行四边形的判定与性质,中线的性质,掌握中位线性质,平行四边形的判定与性质,中线的性质,注意中线与中位线的区别以及它们性质是解题关键.22.如图1,在ABC 中,点D 是边BC 的中点,点E 在ABC 内,AE 平分BAC ∠,CE AE ⊥,点F 在边AB 上,//EF BC .(1)求证:四边形BDEF 是平行四边形.(2)判断线段BF 、AB 、AC 的数量之间具有怎样的关系?证明你所得到的结论.(3)点P 是ABC 的边AB 上的一点,若DCE 的面积3DCE S =△,请直接写出DPE 的面积(不需要写出解答过程).【答案】(1)证明见解析;(2)()12BF AB AC =-,证明见解析;(3)DPE S =3. 【分析】(1)证明△AGE ≌△ACE ,根据全等三角形的性质可得到GE =EC ,再利用三角形的中位线定理证明DE ∥AB ,再加上条件EF ∥BC 可证出结论;(2)先证明BF =DE =12BG ,再证明AG =AC ,可得到BF =12(AB−AG )=12(AB−AC ); (3) 根据△DCE 中DC 边上的高与BDEF 中BD 边上的高相等,得出BDEF 的面积为6,设BDEF 中BF 边上的高为h ,由DPE BDP BDEP SS S=-梯形即可求解. 【详解】(1)延长CE 交AB 于点G ,AE CE ⊥,90AEG AEC ∴∠=∠=︒,又∵AE 平分BAC ∠,∴∠GAE=∠CAE在AEG △和AEC 中,GAE CAE AE AE AEG AEC ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA AEG ACE ∴≌△△,GE EC ∴=,∵点D 是边BC 的中点,∴BD CD =DE ∴为CGB △的中位线,//DE AB ∴,//EF BC ,∴四边形BDEF 是平行四边形.(2)四边形BDEF 是平行四边形,BF DE ∴=, D ,E 分别是BC ,GC 的中点, 12BF DE BG ∴==, AEG AEC ≌△△,AG AC ∴=,()()1122BF AB AG AB AC ∴=-=-. (3)如图:∵BD=DC ,EF ∥BC∴△DCE 中DC 边上的高与BDEF 中BD 边上的高相等, ∴2236BDEF DCE S S ==⨯=∵BF ∥DE设BDEF 中BF 边上的高为h , 则DPE BDP BDEP S S S =-梯形=(DE+BP )×h÷2-BP×h÷2=DE×h÷2=6÷2=3.【点睛】此题主要考查了平行四边形的判定与性质,全等三角形的判定与性质,三角形中位线定理,以及等底同高的平行四边形和三角形的面积之间的关系,证明GE =EC ,再利用三角形中位线定理证明DE ∥AB 是解决问题的关键.23.已知等边ABC ,D 为边BC 中点,M 为边AC 上一点(不与A ,C 重合),连接DM .(1)如图1,点E 是边AC 的中点,当M 在线段AE 上(不与A ,E 重合)时,将DM 绕点D 逆时针旋转120︒得到线段DF ,连接BF .①依题意补全图1;②此时EM 与BF 的数量关系为: ,DBF ∠= °.(2)如图2,若2DM MC =,在边AB 上有一点N ,使得120NDM ∠=︒.直接用等式表示线段BN ,ND ,CD 之间的数量关系,并证明.【答案】(1)①见解析;②EM BF =,120;(2)12CD BN ND =+,证明见解析 【分析】(1)①根据提示画出图形即可;②连接DE ,证明△DME ≌△DFB 即可得到结论;(3)取线段AC 中点E ,连接ED .由三角形中位线定理得12DE BA =,12CE CA =,12BD CD BC ==.根据ABC 是等边三角形可证明DE BD CD CE ===,60CED EDC B ∠=∠=∠=︒,再证明EDM BDN ≅△△得BN EM =,2ND MD MC ==,进一步可得结论.【详解】 解:(1)①补全图形如图1.②线段EM 与BF 的数量关系为EM BF =;120DBF ∠=︒.连接DE ,∵D 为BC 的中点,E 为AC 的中点,∴DE 为△ABC 的中䏠线,∴DE =12AB ,DE //AB ∵ABC 是等边三角形,∴AB BC AC ==,60∠=∠=∠=︒A B C .∵D 为BC 的中点,∴12BD BC DE == ∵//DE AB∴60CDE ABC ∠=∠=︒,60CED A ∠=∠=︒∴120BDE BDM EDM ∠=︒=∠+∠∵120BDM BDF ∠+∠=︒ ,,DM DF =∴ BDF EDM ∠=∠∴△DME ≌△DFB∴EM BF =;DBF DEM ∠=∠.∵60CED ∠=︒∴120DEM ∠=︒∴120DBF ∠=︒.故答案为:EM BF =;120DBF ∠=︒.(2)证明:取线段AC 中点E ,连接ED .如图2 .∵点D 是边BC 的中点,点E 是边AC 的中点, ∴12DE BA =,12CE CA =,12BD CD BC ==. ∵ABC 是等边三角形,∴AB BC AC ==,60B C ∠=∠=︒.∴DE BD CD CE ===,60CED EDC B ∠=∠=∠=︒.∴120∠=︒BDE ,∵120NDM ∠=︒,∴EDM BDN ∠=∠.∴EDM BDN ≅△△.∴BN EM =,2ND MD MC ==,∵EC EM MC =+,∴12CD BN ND =+.【点睛】此题主要考查了全等三角形的判定与性质,等边三角形的性质以及三角形中位线定理,正确作出辅助线构造全等三角形是解答此题的关键.24.问题提出(1)如图①,在ABC 中,D 、E 分别是AB 和AC 的中点,连接DE ,则DE 与BC 的数量关系是______,位置关系是______;问题探究(2)如图②,在四边形ABCD 中,90BAC ∠=︒,42AB AC ==,4CD =,E 为AD 中点,连接BE ,求BE 的最大值;问题解决(3)如图③,某小区计划在一片足够大的空地上修建四边形的花园ABCD ,其中20BC =米,AD CD =,AD CD ⊥,//AB CD ,由于受地理位置的影响,90ABC ∠<︒.根据要求,现计划给该花园修建条笔直的绿色长廊,且绿色长廊的入口O 定为BC 的中点,出口定为点D ,为了尽可能地提高观赏体验,要求绿色长廊OD 最长,试求绿色长廊OD 最长为多少米?【答案】(1)12DE BC =,//DE BC ;(2)2102;(3)()10210米 【分析】 (1)根据中位线定理即可得出答案;(2)取AC 的中点F ,连接EF 、BF ,由图在三角形BEF 中,BF EF BE +>,可得当B 、E 、F 三点共线的时候BE 最大,此时=BE BF EF +,根据中位线可得出EF 的长度,在Rt ABF 中根据勾股定理可得BF 的长度,即可得出BE 的最大值;(3)过C 作CM AB ⊥于M 点,在AD 上截取DN 使DN BM =,连接BN ,取CN 中点P ,连接DP 、OP ,可证得ADCM 为正方形,再证明CMB CDN ≅,易证BCN △为等腰直角三角形,从而得出BN 的长度,根据中位线定理可得出OP 的长度;利用直角三角形斜边中线等于斜边的一半求出1102DP CN ==,再根据OP PD OD +>可得,当O 、P 、D 三点共线的时OD 最大,即可得出答案.【详解】解:(1)由题可知,D 、E 分别是AB 和AC 的中点,DE ∴为ABC 的中位线,//DE BC ∴且12DE BC =; 故答案为:12DE BC =,//DE BC . (2)如图,取AC 的中点F ,连接EF 、BFE 、F 分别是AD 和AC 的中点,EF ∴为ADC 的中位线,//D EF C ∴且114222EF CD ==⨯=, 在Rt ABF 中,142,222AB AF AC ===, ()()22224222210BF AB AF ∴=+=+=;如图在BEF 中,BF EF BE +>,∴当B 、E 、F 三点共线的时候BE 最大,即此时=2102BE BF EF +=+.答:BE 的最大值为2102+.(3)过C 作CM AB ⊥于M 点,在AD 上截取DN 使DN BM =,连接BN ,取CN 中点P ,连接DP 、OP ,CM AB ⊥,//AB CD ,90CMA MCD ADC ∴∠=∠=∠=︒,ADCM ∴为矩形,AD CD =,ADCM ∴为正方形,CD CM ∴=,在CMB 与CDN △中,90CM CD CMB CDN BM DN =⎧⎪∠=∠=︒⎨⎪=⎩()CMB CDN SAS ∴≅,CN CB ∴=,BCM NCD ∠=∠,90BCN MCD ∴∠=∠=︒,在Rt BCN △中,20BC CN ==,BN ∴===在Rt CDN 中,点P 为CN 中点,1102DP CN ∴==, 在Rt BCN △中,点P 、O 分别为CN 、CB 中点,OP ∴为BCN △的中位线,//OP BN ∴且12OP BN == 在OPD △中,OP PD OD +>,∴当O 、P 、D 三点共线的时OD 最大,即此时OD=OP 10PD +=,答:绿色长廊OD最长为()10米.【点睛】本题考查中位线定理的综合应用,结合三角形的全等以及三角形三边长度关系,在做此类题目时注意类比每一问之间的关系,一般下一问都会用到上一问的结论和做题思路.。
鲁教版八年级数学上册5.3三角形的中位线基础达标训练题(附答案)
鲁教版八年级数学上册5.3三角形的中位线基础达标训练题(附答案)一.选择题(共10小题)1.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为6m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是()A.AB=12m B.MN∥AB C.△CMN∽△CAB D.CM:MA=1:2 2.如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是OB、OC的中点,连接AO.若AO=3cm,BC=4cm,则四边形DEFG的周长是()A.7cm B.9 cm C.12cm D.14cm3.如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=20m,则AB长为()A.10m B.20m C.30m D.40m4.如图,在△ABC中,动点P在AB边上由点A向点B以3cm/s的速度匀速运动,则线段CP的中点Q运动的速度为()A.3cm/s B.2cm/s C.1.5cm/s D.1cm/s5.在△ABC中,点D,E分别是边AB,BC的中点,若DE=3,则AC=()A.3B.6C.9D.126.如图,点B是直线l外一点,在l的另一侧任取一点K,以B为圆心,BK为半径作弧,交直线l与点M、N;再分别以M、N为圆心,以大于MN为半径作弧,两弧相交于点P;连接BP交直线l于点A;点C是直线l上一点,点D、E分别是线段AB、BC的中点;F在CA的延长线上,∠FDA=∠B,AC=8,AB=6,则四边形AEDF的周长为()A.8B.10C.16D.187.如图,若DE是△ABC的中位线,△ADE的周长为1,则△ABC的周长为()A.1B.2C.3D.48.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=8,BC=14,则线段EF的长为()A.2B.3C.5D.69.如图,四边形ABCD中,点E、F、G分别是线段AD、BC、AC的中点,则△EFG的周长()A.与AB、BC、AC的长有关B.与AD、DC、AC的长有关C.与AB、DC、EF的长有关D.与AD、BC、EF的长有关10.如图,A、B两点被池塘隔开,在AB外选一点C,连结AC、BC.分别取AC、DC的中点写D、E,连结DE,若测得DE=40m,则A、B两点之间的距离是()A.40m B.60m C.80m D.100m二.填空题(共10小题)11.△ABC中,BC=8,AB,AC的中点分别为D,E,则DE=.12.如图,跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=0.8m;当它的一端B地时,另一端A离地面的高度AC为m.13.京珠高速公路粤北段地势十分复杂,所以当年在建这段路时,要开很多隧道,如图是一个要开挖的隧道,为保证按时完成工程,必须先要知道所挖隧道的长度,于是测量人员在山外取一点O,并取AO,BO的中点C,D,测得CD=237m,则隧道AB的长是m.14.如图,已知等边三角形ABC边长为16,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A4B4C4的周长为.15.如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,如果△ABC的周长为20+2,那么△DEF的周长是.16.如图,在△ABC中,D,E分别是AB和AC的中点,F是BC延长线上一点,CF=1,DF交CE于点G,且EG=CG,则BC=.17.若三角形各边长分别为8cm、10cm、16cm,则以各边中点为顶点的三角形的周长是.18.如图,在△ABC中,D、E分别为AB、AC的中点,点F在DE上,且AF⊥CF,若AC =3,BC=5,则DF=.19.等边三角形的中位线与高之比为.20.如图,在四边形ABCD中,∠A=90°,M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),E、F分别为DM、MN的中点,若AB=2,AD=2,则EF 长度的最大值为.三.解答题(共8小题)21.如图,在△ABC中,点D,E分别是AB,AC的中点,F是BC延长线上的一点,且CF =BC.试猜想DE与CF有怎样的数量关系,并说明理由.22.如图,在△ABC中,M是BC的中点,AN平分∠BAC,AN⊥BN于N,延长BN交AC 于点D,已知AB=10,MN=4,BM=7,求△ABC的周长.23.如图,在Rt△ABC中,∠A=90°,∠B=30°,D、E分别是AB、BC的中点,若DE =3,求BC的长.24.如图,四边形ABCD中,AB=AD,对角线BD平分∠ABC,E,F分别是BD,CD的中点.求证:AD∥EF.25.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.(1)求证:DE=CF;(2)求EF的长.26.证明:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.(要求:在给出的△ABC中用尺规作出AB、AC边的中点M、N,保留作图痕迹,不要求写作法,并根据图形写出已知、求证和证明)27.“过三角形一边的中点,且平行于另一边的直线,必过第三边的中点”.根据这个结论解决问题:如图,S△ABC=32,AC=8,BC=10,点M为BC的中点,MN⊥AC于点N,求NC的长.28.如图,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,求证:PM=PN.参考答案与试题解析一.选择题(共10小题)1.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为6m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是()A.AB=12m B.MN∥AB C.△CMN∽△CAB D.CM:MA=1:2【解答】解:∵M、N分别是AC、BC的中点,∴MN是△ABC的中位线,CM=AM,∴MN∥AB,MN=AB,AB=2MN=12m,CM:MA=1:1,∴△CMN∽△CAB;故A,B,C正确,故选:D.2.如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是OB、OC的中点,连接AO.若AO=3cm,BC=4cm,则四边形DEFG的周长是()A.7cm B.9 cm C.12cm D.14cm【解答】解:∵BD、CE是△ABC的中线,∴DE=BC=2,同理,FG=BC=2,EF=OA=1.5,DG=OA=1.5,∴四边形DEFG的周长=DE+EF+FG+DG=7(cm),故选:A.3.如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=20m,则AB长为()A.10m B.20m C.30m D.40m【解答】解:∵E、F是AC,AB的中点,∴EF是△ABC的中位线,∴EF=AB∵EF=20m,∴AB=40m.故选:D.4.如图,在△ABC中,动点P在AB边上由点A向点B以3cm/s的速度匀速运动,则线段CP的中点Q运动的速度为()A.3cm/s B.2cm/s C.1.5cm/s D.1cm/s【解答】解:取AC的中点H,连接QH,当点P与点A重合时,点Q与点H重合,∵点Q是线段CP的中点,点H为AC的中点,∴QH=AP,∵动点P在AB边上由点A向点B以3cm/s的速度匀速运动,∴点Q运动的速度为1.5cm/s,故选:C.5.在△ABC中,点D,E分别是边AB,BC的中点,若DE=3,则AC=()A.3B.6C.9D.12【解答】解:∵点D,E分别是边AB,BC的中点,∴AC=2DE=6,故选:B.6.如图,点B是直线l外一点,在l的另一侧任取一点K,以B为圆心,BK为半径作弧,交直线l与点M、N;再分别以M、N为圆心,以大于MN为半径作弧,两弧相交于点P;连接BP交直线l于点A;点C是直线l上一点,点D、E分别是线段AB、BC的中点;F在CA的延长线上,∠FDA=∠B,AC=8,AB=6,则四边形AEDF的周长为()A.8B.10C.16D.18【解答】解:由题意得,BA⊥MN,∴BC==10,∵∠BAC=90°,点D是线段BC的中点,∴AE=BE=BC=5,∴∠EAB=∠B,∵∠FDA=∠B,∴∠FDA=∠EAB,∴DF∥AE,∵点D、E分别是线段AB、BC的中点,∴DE∥AC,DE=AC=4,∴四边形AEDF是平行四边形,∴四边形AEDF的周长=2×(4+5)=18,故选:D.7.如图,若DE是△ABC的中位线,△ADE的周长为1,则△ABC的周长为()A.1B.2C.3D.4【解答】解:∵DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵△ADE的周长为1,∴△ABC的周长为2,故选:B.8.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=8,BC=14,则线段EF的长为()A.2B.3C.5D.6【解答】解:延长AF交BC于G,在△BF A和△BFG中,,∴△BF A≌△BFG(ASA)∴BG=AB=8,AF=FG,∴GC=BC﹣BG=6,∵AF=FG,AE=EC,∴EF=GC=3,故选:B.9.如图,四边形ABCD中,点E、F、G分别是线段AD、BC、AC的中点,则△EFG的周长()A.与AB、BC、AC的长有关B.与AD、DC、AC的长有关C.与AB、DC、EF的长有关D.与AD、BC、EF的长有关【解答】解:∵点E、G分别是线段AD、AC的中点,∴EG=CD,∵点F、G分别是线段BC、AC的中点,∴GF=AB,则△EFG的周长=EG+GF+EF=CD+AB+EF,∴△EFG的周长与AB、DC、EF的长有关,故选:C.10.如图,A、B两点被池塘隔开,在AB外选一点C,连结AC、BC.分别取AC、DC的中点写D、E,连结DE,若测得DE=40m,则A、B两点之间的距离是()A.40m B.60m C.80m D.100m【解答】解:∵D、E分别是AC、DC的中点,∴AB=2DE=80(m),故选:C.二.填空题(共10小题)11.△ABC中,BC=8,AB,AC的中点分别为D,E,则DE=4.【解答】解:∵D,E分别是边AC、AC的中点,∴BC=2DE,∵BC=8,∴DE=×8=4,故答案为:4.12.如图,跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=0.8m;当它的一端B地时,另一端A离地面的高度AC为 1.6m.【解答】解:∵AC∥OD,O是AB的中点,∴D是BC的中点,∵O是AB的中点,D是BC的中点,∴AC=2OD=1.6,故答案为:1.6.13.京珠高速公路粤北段地势十分复杂,所以当年在建这段路时,要开很多隧道,如图是一个要开挖的隧道,为保证按时完成工程,必须先要知道所挖隧道的长度,于是测量人员在山外取一点O,并取AO,BO的中点C,D,测得CD=237m,则隧道AB的长是474 m.【解答】解:∵点C,D是AO,BO的中点,∴AB=2CD,∵CD=237m,∴AB=474m,故答案为:474.14.如图,已知等边三角形ABC边长为16,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A4B4C4的周长为3.【解答】解:∵等边三角形ABC边长为16,∴△ABC的周长为48,∵△A1B1C1是△ABC的三条中位线组成,∴△A1B1C1的周长=×△ABC的周长=24,同理,△A2B2C2,的周长=24×=12,△A3B3C3的周长=12×=6,△A4B4C4的周长=6×=3,故答案为:3.15.如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,如果△ABC的周长为20+2,那么△DEF的周长是10+.【解答】解:∵△ABC的周长为20+2,∴AB+AC+BC=20+2,∵点D、E、F分别是BC、AB、AC的中点,∴EF=BC,DF=AB,DE=AC,∴△DEF的周长=DE+EF+DF=(AC+BC+AB)=10+,故答案为:10+.16.如图,在△ABC中,D,E分别是AB和AC的中点,F是BC延长线上一点,CF=1,DF交CE于点G,且EG=CG,则BC=2.【解答】解:∵D、E分别是AB和AC的中点∴DE∥BC,DE=BC∴△ADE∽△ABC,△GED≌△GCF∴DE=CF=1∴CF=BC∴BC=2故答案为2.17.若三角形各边长分别为8cm、10cm、16cm,则以各边中点为顶点的三角形的周长是17cm.【解答】解:∵D、E分别是AB、AC的中点,∴DE=BC=8,同理,DF=5=8,FE=BA=4,∴△DEF的周长=DE+EF+DF=17故答案为:17cm.18.如图,在△ABC中,D、E分别为AB、AC的中点,点F在DE上,且AF⊥CF,若AC =3,BC=5,则DF=1.【解答】解:∵D、E分别为AB、AC的中点,∴DE=BC=2.5,∵AF⊥CF,E为AC的中点,∴EF=AC=1.5,∴DF=DE﹣EF=1,故答案为:1.19.等边三角形的中位线与高之比为1:.【解答】解:设等边三角形的边长为2a,则中位线长为a,高线的长为=a,所以等边三角形的中位线与高之比为a:a=1:,故答案为:1:.20.如图,在四边形ABCD中,∠A=90°,M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),E、F分别为DM、MN的中点,若AB=2,AD=2,则EF 长度的最大值为2.【解答】解:连接BD、DN,在Rt△ABD中,DB==4,∵点E、F分别为DM、MN的中点,∴EF=DN,由题意得,当点N与点B重合时,DN最大,∴DN的最大值是4,∴EF长度的最大值是2,故答案为:2.三.解答题(共8小题)21.如图,在△ABC中,点D,E分别是AB,AC的中点,F是BC延长线上的一点,且CF =BC.试猜想DE与CF有怎样的数量关系,并说明理由.【解答】解:DE=CF,理由如下:∵点D,E分别是AB,AC的中点,∴DE=BC,∵CF=BC,∴DE=CF.22.如图,在△ABC中,M是BC的中点,AN平分∠BAC,AN⊥BN于N,延长BN交AC 于点D,已知AB=10,MN=4,BM=7,求△ABC的周长.【解答】解:在△ANB和△AND中,,∴△ANB≌△AND(ASA)∴AD=AB=10,BN=BD,∵M是BC的中点,BN=BD,∴BC=2BM=14,CD=2MN=8,∴△ABC的周长=AB+BC+AC=10+14+8+10=42.23.如图,在Rt△ABC中,∠A=90°,∠B=30°,D、E分别是AB、BC的中点,若DE =3,求BC的长.【解答】解:∵D、E是AB、BC的中点,DE=3∴AC=2DE=6,∵∠A=90°,∠B=30°,∴BC=2AC=12.24.如图,四边形ABCD中,AB=AD,对角线BD平分∠ABC,E,F分别是BD,CD的中点.求证:AD∥EF.【解答】证明:∵E,F分别是BD,CD的中点,∴EF∥BC,∵AB=AD,∴∠ADB=∠ABD,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠DBC,∴AD∥BC,∴AD∥EF.25.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.(1)求证:DE=CF;(2)求EF的长.【解答】解:(1)∵D、E分别为AB、AC的中点,∴DE∥BC,DE=BC,∵EF∥CD∴四边形DEFC是平行四边形,∴DE=CF.(2)∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.26.证明:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.(要求:在给出的△ABC中用尺规作出AB、AC边的中点M、N,保留作图痕迹,不要求写作法,并根据图形写出已知、求证和证明)【解答】解:如图,点M,N即为所求作的点,已知:如图,△ABC中,点M,N分别是AB,AC的中点,连接MN,求证:MN∥BC,MN=BC证明:延长MN至点D,使得MN=ND,连接CD,在△AMN和△CDN中,,∴△AMN≌△CDN(SAS)∴∠AMN=∠D,AM=CD,∴AM∥CD,即BM∥CD,∵AM=BM=CD,∴四边形BMDC为平行四边形,∴MN∥BC,MD=BC,∵,∴.27.“过三角形一边的中点,且平行于另一边的直线,必过第三边的中点”.根据这个结论解决问题:如图,S△ABC=32,AC=8,BC=10,点M为BC的中点,MN⊥AC于点N,求NC的长.【解答】解:过点B作MN的平行线BD,∵S△ABC=32,∴BD=8,∵点M为BC的中点,∴MN=4,∵BC=10,∴CM=5,在Rt△MNC中,CM=5,MN=4,可得:CN=.28.如图,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,求证:PM=PN.【解答】解:∵M、N、P分别是AD、BC、BD的中点,∴PM=AB,PN=CD,∵AB=CD,∴PM=PN。
北师大版数学八年级下册:6.3 三角形的中位线 同步练习(附答案)
3 三角形的中位线知识点1 三角形中位线定理1.如图,点D ,E 分别是△ABC 边BA ,BC 的中点,AC =3,则DE 的长为( ) A .2B.43C .3D.32第1题图 第2题图2.如图,M ,N 分别是△ABC 的边AB ,AC 的中点.若∠A =65°,∠ANM =45°,则∠B =( )A .20°B .45°C .65°D .70°3.已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( )A .8B .2 2C .16D .44.如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是( )A .∠B =∠F B .∠B =∠BCFC .AC =CFD .AD =CF第4题图 第5题图5.如图,在▱ABCD 中,点M 为边AD 上一点,AM =2MD ,点E ,F 分别是BM ,CM 的中点.若EF =6,则AM 的长为 .6.如图,在△ABC 中,点D ,E ,F 分别为边AB ,BC ,CA 的中点.求证:四边形DECF 是平行四边形.7.如图,在等腰△ABC中,AB=AC=8,AD是∠BAC的平分线,交BC于点D,点E是AB的中点,连接DE.求线段DE的长.知识点2三角形中位线定理的应用8.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是m.第8题图第9题图9.如图,吴伯伯家有一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需用篱笆的长是()A.15米B.20米C.25米D.30米10.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7B.8C.9D .1011.如图,D 是△ABC 内一点,BD ⊥CD ,AD =7,BD =4,CD =3,E ,F ,G ,H 分别是AB ,BD ,CD ,AC 的中点,则四边形EFGH 的周长为( )A .12B .14C .24D .21第11题图 第12题图12.如图,在四边形ABCD 中,点P 是对角线BD 的中点,点E ,F 分别是AB ,CD 的中点,AD =BC ,∠PEF =35°,则∠PFE 的度数是 .13.如图,在△ABC 中,∠BAC =90°,延长BA 到点D ,使AD =12AB ,E ,F 分别是边BC ,AC 的中点.求证:DF =BE.14.如图,在△ABC 中,AB =4,AC =3,AD ,AE 分别是△ABC 的角平分线和中线,过点C 作CG ⊥AD 于点F ,交AB 于点G ,连接EF ,求线段EF 的长.15.如图,在四边形ABCD中,已知AB=CD,点E,F分别为AD,BC的中点,延长BA,CD,分别交射线FE于P,Q两点.求证:∠P=∠CQF.参考答案:3 三角形的中位线知识点1 三角形中位线定理1.如图,点D ,E 分别是△ABC 边BA ,BC 的中点,AC =3,则DE 的长为(D ) A .2B.43C .3D.32第1题图 第2题图2.如图,M ,N 分别是△ABC 的边AB ,AC 的中点.若∠A =65°,∠ANM =45°,则∠B =(D )A .20°B .45°C .65°D .70°3.已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为(A )A .8B .2 2C .16D .44.如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是(B )A .∠B =∠F B .∠B =∠BCFC .AC =CFD .AD =CF第4题图 第5题图5.如图,在▱ABCD 中,点M 为边AD 上一点,AM =2MD ,点E ,F 分别是BM ,CM 的中点.若EF =6,则AM 的长为8.6.如图,在△ABC 中,点D ,E ,F 分别为边AB ,BC ,CA 的中点.求证:四边形DECF 是平行四边形.证明:∵D ,F 分别是边AB ,AC 的中点, ∴DF ∥BC.同理:DE ∥AC.∴四边形DECF 是平行四边形.7.如图,在等腰△ABC 中,AB =AC =8,AD 是∠BAC 的平分线,交BC 于点D ,点E 是AB 的中点,连接DE.求线段DE 的长.解:∵AB =AC ,AD 平分∠BAC , ∴AD 是等腰△ABC 底边BC 上的中线. ∴点D 是BC 的中点. 又∵点E 是AB 的中点, ∴DE 是△ABC 的中位线. ∴DE =12AC =4.知识点2 三角形中位线定理的应用8.如图,要测量池塘两岸相对的A ,B 两点间的距离,可以在池塘外选一点C ,连接AC ,BC ,分别取AC ,BC 的中点D ,E ,测得DE =50 m ,则AB 的长是100m.第8题图 第9题图9.如图,吴伯伯家有一块等边三角形的空地ABC ,已知点E ,F 分别是边AB ,AC 的中点,量得EF =5米,他想把四边形BCFE 用篱笆围成一圈放养小鸡,则需用篱笆的长是(C )A .15米B .20米C .25米D .30米10.如图,在△ABC 中,∠ABC =90°,AB =8,BC =6.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为(B )A .7B .8C .9D .1011.如图,D 是△ABC 内一点,BD ⊥CD ,AD =7,BD =4,CD =3,E ,F ,G ,H 分别是AB ,BD ,CD ,AC 的中点,则四边形EFGH 的周长为(A )A .12B .14C .24D .21第11题图 第12题图12.如图,在四边形ABCD 中,点P 是对角线BD 的中点,点E ,F 分别是AB ,CD 的中点,AD =BC ,∠PEF =35°,则∠PFE 的度数是35°.13.如图,在△ABC 中,∠BAC =90°,延长BA 到点D ,使AD =12AB ,E ,F 分别是边BC ,AC 的中点.求证:DF =BE.证明:∵E ,F 分别是边BC ,AC 的中点, ∴EF =12AB ,EF ∥AB ,AF =FC ,BE =EC.∵AD =12AB ,∴EF =AD.∵∠BAC =90°,EF ∥AB , ∴∠DAF =∠EFC =90°. 又∵AF =FC ,AD =FE , ∴△DAF ≌△EFC (SAS ). ∴DF =EC.又∵BE =EC ,∴DF =BE.14.如图,在△ABC 中,AB =4,AC =3,AD ,AE 分别是△ABC 的角平分线和中线,过点C 作CG ⊥AD 于点F ,交AB 于点G ,连接EF ,求线段EF 的长.解:∵AF 是△ABC 的角平分线,∴∠GAF =∠CAF. 又∵CG ⊥AD ,∴∠AFC =∠AFG =90°. 在△AGF 和△ACF 中,⎩⎨⎧∠GAF =∠CAF ,AF =AF ,∠AFG =∠AFC ,∴△AGF ≌△ACF (ASA ). ∴AG =AC =3,GF =CF. ∴BG =AB -AG =4-3=1.又∵BE =CE ,∴EF 是△BCG 的中位线. ∴EF =12BG =12.15.如图,在四边形ABCD 中,已知AB =CD ,点E ,F 分别为AD ,BC 的中点,延长BA ,CD ,分别交射线FE 于P ,Q 两点.求证:∠P =∠CQF.证明:连接BD ,取BD 的中点M ,连接EM ,FM. ∵点E 是AD 的中点, ∴EM ∥AB ,EM =12AB.∴∠MEF =∠P.同理可证:FM ∥CD ,FM =12CD.∴∠MFE =∠CQF. 又∵AB =CD ,∴EM =FM. ∴∠MEF =∠MFE.∴∠P =∠CQF.。
中考数学总复习《三角形中位线综合》专题训练(附答案)
中考数学总复习《图形的旋转综合题》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图,是边长为的等边三角形,边在射线上,且,点从点出发,沿的方向以的速度运动,当不与点重合是,将绕点逆时针方向旋转得到,连接.(1)求证:是等边三角形;(2)当时,的周长是否存在最小值?若存在,求出的最小周长;若不存在,请说明理由.(3)当点在射线上运动时,是否存在以为顶点的三角形是直角三角形?若存在,求出此时的值;若不存在,请说明理由.2.如图,在Rt△ABC中∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.l l l,正方形1234且垂直于于点E,分别交24,l l于点F,G,1,2===.EF DG DF(1)AE=____,正方形ABCD的边长=____;(2)如图2,将AEG∠绕点A顺时针旋转得到AE D∠'',旋转角为(090)αα<<,点D'在直线3l''',使点,B C''分别在直线24,l l上.上,以AD'为边在的E D''左侧作菱形AD C B①写出B AD∠''与α的函数关系并给出证明;'''的边长.②若α=30°,求菱形AD C B5.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.6.(1)如图1,在△ABC中BA=BC,D,E是AC边上的两点,且满足∠DBE=1∠ABC(0°<∠CBE2(2)类比引申如图2,四边形ABCD中AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF.(3)联想拓展如图3,在△ABC中∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.8.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN 为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.9.1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.(1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,当ABC的三个内角均小于'',连接如图1,将得到A P C已知当ABC有一个内角大于或等于≥︒,则该三角形的“费马点”为120如图4,在ABC中三个内角均小于为ABC的“费马点”,求PA PB+参考答案:1.解:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE∴∠DCE=60°,DC=EC∴△CDE是等边三角形;(2)存在,当6<t<10时由旋转的性质得,BE=AD∴C△DBE=BE+DB+DE=AB+DE=4+DE由(1)知,△CDE是等边三角形∴DE=CD∴C△DBE=CD+4由垂线段最短可知,当CD⊥AB时,△BDE的周长最小此时,CD=23cm∴△BDE的最小周长=CD+4=23+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形∴当点D与点B重合时,不符合题意②当0≤t<6时,由旋转可知,∠ABE=∠CBE-∠ABC=∠CAD-∠ABC=60°,∠BDE<60°∴∠BED=90°由(1)可知,△CDE是等边三角形∴∠DEC=60°∴∠CEB=30°∵∠CEB=∠CDA∴∠CDA=30°∵∠CAB=60°∴∠ACD=∠ADC=30°∴DA=CA=4∴OD=OA﹣DA=6﹣4=2∴t=2÷1=2s;③当6<t<10s时,由∠DBE=∠CBE+∠ABC=∠CAD+∠ABC=120°>90°∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=180°-∠CBE-∠ABC=180°-∠CAB-∠ABC=60°又由(1)知∠CDE=60°∴∠BDE=∠CDE+∠BDC=60°+∠BDC而∠BDC>0°∴∠BDE>60°∴只能∠BDE=90°∴∠BDC=30°∴∠BCD=60°-30°=30°∴∠BDC=∠BCD∴BD=BC=4∴OD=14cm∴t=14÷1=14s综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.2.(1)结论:BQ=CP.理由:如图1中作PH∥AB交CO于H.在Rt△ABC中∵∠ACB=90°,∠A=30°,点O为AB中点∴CO=AO=BO,∠CBO=60°∴△CBO是等边三角形∴∠CHP=∠COB=60°,∠CPH=∠CBO=60°∴∠CHP=∠CPH=60°∴△CPH是等边三角形∴PC=PH=CH,∴OH=PB∵∠OPB=∠OPQ+∠QPB=∠OCB+∠COP∵∠OPQ=∠OCP=60°∴∠POH=∠QPB∵PO=PQ∴△POH≌△QPB∴PH=QB∴PC=BQ.(2)成立:PC=BQ.理由:作PH∥AB交CO的延长线于H.在Rt△ABC中∵∠ACB=90°,∠A=30°,点O为AB中点∴CO=AO=BO,∠CBO=60°∴△CBO是等边三角形∴∠CHP=∠COB=60°,∠CPH=∠CBO=60°∴∠CHP=∠CPH=60°∴△CPH是等边三角形∴PC=PH=CH3.(1)如图1将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′∴△ABP′≌△CBP∴∠PBP′=90°,BP′=BP=2,AP′=CP=3在Rt△PBP′中BP=BP′=2∴∠BPP′=45°,根据勾股定理得,PP′=2BP=22∵AP=1∴AP2+PP′2=1+8=9∵AP′2=32=9∴AP2+PP′2=AP′2∴△APP′是直角三角形,且∠APP′=90°∴∠APB=∠APP′+∠BPP′=90°+45°=135°;(2)如图2将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′在Rt△AED′和Rt△B′MA 中'''B M AE AB AD =⎧⎨=⎩ ∴Rt△AED′≌Rt△B′MA(HL )∴∠D′AE+∠B′AM=90°∠B′AD′+α=90°∴∠B′AD′=90°﹣α;②过点E 作ON 垂直于l 1分别交l 1,l 2于点O ,N若α=30°,则∠ED′N=60°,AE=1,故EO=,EN=,ED′=533由勾股定理可知菱形的边长为:2584133+=.5.解:(1)如图1,延长ED 交AG 于点H∵点O 是正方形ABCD 两对角线的交点∴OA =OD ,OA ⊥OD∵OG =OE在△AOG 和△DOE 中同理可求∠BOG′=30°∴α=180°−30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A.O、F′在一条直线上时,AF′的长最大∵正方形ABCD的边长为1∴OA=OD=OC=OB=22∵OG=2OD∴OG′=OG=2∴OF′=2∴AF′=AO+OF′=22+2∵∠COE′=45°∴此时α=315°.6.解:(1)∵△BE′A是△BEC按逆时针方向旋转∠ABC得到∴BE′=BE,∠E′BA=∠EBC.∵∠DBE=12∠ABC,∴∠ABD+∠EBC =12∠ABC.∴∠ABD+∠E′BA =12∠ABC,即∠E′BD=12∠ABC.∴∠E′BD=∠DBE.在△E′BD和△EBD中∵BE′=BE,∠E’BD=∠DBE,BD=BD ∴△E′BD≌△EBD(SAS).∴DE′=DE.(2)以点B为旋转中心,将△BEC按逆时针方向旋转∠ABC=90°,得到△BE′A(点C与点A 重合,点E到点E′处),连接DE′.由(1)知DE′=DE.由旋转的性质,知E′A=EC,∠E′ AB=∠ECB.又∵BA=BC,∠ABC=90°,∴∠BAC=∠ACB=45°.∴∠E′AD=∠E′AB+∠BAC=90°.在Rt△DE′A中DE′2=AD2+E′A2∴DE2=AD2+EC2.7.解:(1)思路梳理∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,如图1∵∠ADC=∠B=90°∴∠FDG=180°,点F、D、G共线则∠DAG=∠BAE,AE=AG,BE=DG∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90°-45°=45°=∠EAF 即∠EAF=∠FAG在△EAF和△GAF中AE AG{EAF FAGAF AF=∠=∠=∴△AFG≌△AEF(SAS).∴EF=FG=DG+DF=BE+DF;故答案为:SAS;△AFG;(2)类比引申∠B+∠ADC=180°时,EF=BE+DF;理由如下:∵AB=AD∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,如图2所示:∴∠BAE=∠DAG,BE=DG∵∠BAD=90°,∠EAF=45°∴∠BAE+∠DAF=45°∴∠EAF=∠FAG∵∠ADC+∠B=180°∴∠FDG=180°,点F、D、G共线在△AFE和△AFG中,,AE AG FAE FAGAF AF =⎧⎪∠=∠⎨⎪=⎩∴△AFE≌△AFG(SAS )∴EF=FG∵FG=DG+DF∴EF=BE+DF故答案为:∠B+∠ADC=180°;(3)联想拓展猜想:DE 2=BD 2+EC 2.理由如下:把△ACE 绕点A 逆时针旋转90°到ABF 的位置,连接DF ,如图3所示:则△ABF≌△ACE,∠FAE=90°∴∠FAB=∠CAE.BF=CE ,∠ABF=∠C∴∠FAE=∠BAC=90°∵∠DAE=45°∴∠FAD=90°-45°=45°∴∠FAD=∠DAE=45°在△ADF 和△ADE 中,AF AE FAD DAE ADAD =⎧⎪∠=∠⎨⎪=⎩∴△ADF≌△ADE(SAS )∴DF=DE∵∠BAC=90°,AB=AC∴∠ABC=∠C=45°∴∠C=∠ABF=45°∴∠DBF=∠ABF+∠ABC=90°∴△BDF 是直角三角形∴BD 2+BF 2=DF 2∴BD 2+EC 2=DE 2.8.(1)证明:如图1∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M 为DE 的中点,∴DM=EM.在△ADM 和△NEM 中∵MAD MNE ADM NEM DM EM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADM≌△NEM(AAS ). ∴AM=MN.∴M 为AN 的中点.(2)证明:如图2∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中∵AB NEABC NECBC EC=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△NEC(SAS).∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明如下:如图3,此时A、B、N三点在同一条直线上.∵AD∥EN,∠DAB=90°,∴∠ENA=∠DAN=90°.∵∠BCE=90°,∴∠CBN+∠CEN=360°﹣90°﹣90°=180°.∵A、B、N三点在同一条直线上,∴∠ABC+∠CBN=180°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中∵AB NEABC NECBC EC=⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△NEC(SAS).∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN 为等腰直角三角形.9.(1)解:∵60PC P C PCP ''=∠=︒,∴PCP '△为等边三角形;∴PP PC '= 60P PC PP C ''∠=∠=︒又P A PA ''=,故PA PB PC PA PB PP A B '''++=++≥由两点之间线段最短可知,当B ,P ,P ' A 在同一条直线上时,PA PB PC ++取最小值 最小值为A B ',此时的P 点为该三角形的“费马点”∴180BPC P PC '∠+∠=︒ 180A P C PP C ∠+∠='''︒∴120BPC ∠=︒ 120A P C ''∠=︒又∵A P C APC ≅''∴120APC AP C '∠=∠=︒∴360120APB APC BPC ∠=︒-∠-∠=︒∴120APC BPC APB ∠=∠=∠=︒;∵120BAC ∠≥︒∴BC AC > BC AB >∴BC AB AC AB +>+ BC AC AB AC +>+∴三个顶点中顶点A 到另外两个顶点的距离和最小.又∵已知当ABC 有一个内角大于或等于120︒时,“费马点”为该三角形的某个顶点. ∴该三角形的“费马点”为点A故答案为:①等边;②两点之间线段最短;③120︒;④A .(2)将APC △绕,点C 顺时针旋转60︒得到A P C '',连接PP '2(PA a PB a PC a a PA ++=最小时,总的铺设成本最低 顺时针旋转90︒得到A P C '',连接PC 90PCP ACA ''∠=∠=︒过点A '作A H BC '⊥,垂足为H∵60ACB ∠=︒ 90ACA '∠=︒∴30A CH '∠=︒∴12km 2A H A C ''==∴22224223(km)HC AC AH =-=-= ∴2323=43(km)BH BC CH =+=+∴2222(43)2213(km)A B AH BH '=+=+= 2PA PB PC ++的最小值为213km 总的铺设成本2(2)=213PA a PB a PC a a PA PB PC a =++=++(元) 故答案为:213a。
2022年春北师大版九年级数学中考一轮复习《三角形的中位线》综合练习题(附答案)
2022年春北师大版九年级数学中考一轮复习《三角形的中位线》综合练习题(附答案)1.如图,在△ABC中,点M是BC边上的中点,AN平分∠BAC,BN⊥AN于点N,若AC =12,MN=2,则AB的长为()A.4B.6C.7D.82.如图,在△ABC中,∠A=90°,AC>AB>4,点D、E分别在边AB、AC上,BD=4,CE=3,取DE、BC的中点M、N,线段MN的长为()A.2.5B.3C.4D.53.如图,在△ABC中,CE是中线,CD是角平分线,AF⊥CD交CD延长线于点F,AC=7,BC=4,则EF的长为()A.1.5B.2C.2.5D.34.如图,四边形ABCD中,AD∥BC,AD=2,BC=5,点E,F分别是对角线AC,BD的中点,则EF的长为()A.1B.1.5C.2.5D.3.55.如图,AD为△ABC的角平分线,BE⊥AD于E,F为BC中点,连接EF,若∠BAC=80°,∠EBD=20°,则∠EFD=()A.26°B.28°C.30°D.32°6.如图,Rt△ABC中,AB=8,AC=6,∠BAC=90°,D,E分别为AB,AC的中点,P 为DE上一点,且满足∠EAP=∠ABP,则PE=()A.1B.C.D.27.已知点D、点E分别是△ABC的边AB、AC的中点,点G是EC的中点,连接DG并延长交BC延长线于点F.若△GCF的面积为a,则△ABC的面积为()A.5a B.6a C.7a D.8a8.如图,顺次连接△ABC三边的中点D,E,F得到的三角形面积为S1,顺次连接△CEF 三边的中点M,G,H得到的三角形面积为S2,顺次连接△CGH三边的中点得到的三角形面积为S3,设△ABC的面积为64,则S1+S2+S3=()A.21B.24C.27D.329.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=6,BC=13,CD=5,则△BCD的面积为()A.60B.48C.30D.1510.如图,在四边形ABCD中,∠A=90°,AB=,AD=1,点M,N分别是边BC,AB 上的动点(含端点,但点M不与点B重合),点E,F分别是线段DM,MN的中点,则线段EF长度的最大值为()A.2B.C.1D.11.如图,△ABC中,AB=8,AD为∠BAC的外角平分线,且AD⊥CD于点D,E为BC 的中点,若DE=10,则AC的长为()A.12B.14C.16D.1812.如图,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.若AD、BC所在直线互相垂直,的值为.13.如图,已知E是AC的中点,C是BD的中点,那么=.14.如图,四边形ABCD中,点E、F分别为AD、BC的中点,延长FE交CD延长线于点G,交BA延长线于点H,若∠BHF与∠CGF互余,AB=4,CD=6,则EF的长为.15.如图,在△ABC中,E是AB的中点,D是AC上一点,连接DE,BH⊥AC于H,若2∠ADE=90°﹣∠HBC,AD:BC=4:3,CD=2,则BC的长为.16.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=13,AC=8,则DF的长为.17.如图,在四边形ABCD中,E,F分别是AD,BC的中点.(1)若AB=6,CD=8,∠ABD=30°,∠BDC=120°,求EF的长;(2)若∠BDC﹣∠ABD=90°,求证:AB2+CD2=4EF2.18.【教材呈现】如图是华师版九年级上册数学教材第80页的第3题,请完成这道题的证明.【结论应用】(1)如图②,在上边题目的条件下,延长图①中的线段AD交NM的延长线于点E,延长线段BC交NM的延长线于点F.求证:∠AEN=∠F.(2)若(1)中的∠A+∠ABC=122°,则∠F的大小为.19.如图1,DE是△ABC的中位线,李琳同学对这个图形进行了剪拼,先连接AD(如图2),再沿AD剪开(如图3),然后将△ABD放于△ADC的下面,使BD和CD重合(如图4).李琳同学对剪拼后的图形很感兴趣,于是自编了一道数学题:如图4,在四边形ADFC中,DE是△ADC的中线,∠DCF=∠DCA+∠DAC,FC=AD,求证:DE=DF.(1)从图3变化至图4.采用的图形变化是图形的和图形的.(2)请你解答李琳自编的题.20.如图,等边△ABC的边长是4,D,E分别为AB,AC的中点,延长BC至点F,使CF =BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长;(3)求四边形DEFC的面积.21.如图,四边形ABCD中,AB=CD,E、F分别为AD、BC中点,延长BA、FE交于M,延长FE,CD交于N.求证:∠AME=∠N.参考答案1.解:如图,延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND(ASA),∴AD=AB,BN=ND,又∵M是△ABC的边BC的中点,∴MN是△BCD的中位线,∴DC=2MN=4,∴AC=AD+CD=AB+DC=12,即AB+4=12.∴AB=8.故选:D.2.解:作CH∥AB,连接DN并延长交CH于H,连接EH,∵BD∥CH,∴∠B=∠NCH,∠ECH+∠A=180°,∵∠A=90°,∴∠ECH=∠A=90°,在△DNB和△HNC中,,∴△DNB≌△HNC(ASA),∴CH=BD=4,DN=NH,在Rt△CEH中,CH=4,CE=3,∴EH===5,∵DM=ME,DN=NH,∴MN=EH=2.5,故选:A.3.解:延长AF、BC交于点G,∵CD是△ABC的角平分线,∴∠ACF=∠BCF,在△ACF和△GCF中,,∴△ACF≌△GCF(ASA),∴CG=AC=7,AF=FG,∴BG=CG﹣CB=3,∵AE=EB,AF=FG,∴EF=BG=1.5,故选:A.4.解:∵取DC中点G,连结FG、EG,如图所示:∵点E,F分别是对角线AC,BD的中点,∴FG∥BC,EG∥AD,∵AD∥BC,∴EG∥BC,FG∥EG,∴E、F、G三点共线,∴FG是△BCD的中位线,∴FG=BC=2.5,∵AD∥BC,∴EG∥AD,∴EG是△ACD的中位线,∴EG=AD=1,∴EF=FG﹣EG=1.5.故选:B.5.解:延长BE交AC于G,如图所示:∵AD平分∠BAC,∠BAC=80°,∴∠BAE=∠GAE=∠BAC=40°,∵BE⊥AD,∴∠BEA=∠GEA=90°,∵AE=AE,∴△ABE≌△AGE(ASA),∴BE=GE,∵F为BC的中点,∴EF是△BCG的中位线,∴EF∥GC,∴∠EFD=∠C,∵∠BEA=90°,∴∠ABE=90°﹣∠BAE=90°﹣40°=50°,∴∠ABC=∠ABE+∠EBD=50°+20°=70°,∴∠EFD=∠C=180°﹣∠BAC﹣∠ABC=180°﹣80°﹣70°=30°,故选:C.6.解:在Rt△ABC中,AB=8,AC=6,由勾股定理得:BC===10,∵D,E分别为AB,AC的中点,∴DE=BC=5,∵∠BAC=90°,∴∠BAP+∠EAP=90°,∵∠EAP=∠ABP,∴∠BAP+∠ABP=90°,∴∠APB=90°,∵D为AB的中点,∴PD=AB=4,∴PE=DE﹣DP=1,故选:A.7.解:连接CD.∵点D、点E分别是△ABC的边AB,AC的中点,∴DE∥BF,BC=2DE,∴∠EDG=∠F,∵∠DGE=∠FGC,EG=GC,∴△DGE≌△FGC(AAS),∴S△DGE=S△GCF=S△DGC=a,DE=CF,DG=GF,∴S△ADE=S△DEC=S△DCF=2a,S△BDC=2S△DCF=4a,∴S△ABC=S△ADE+S△DEC+S△CBD=8a,故选:D.8.解:∵点D,E,F分别是△ABC三边的中点,∴AD=DB,DF=BC=BE,DE=AC=AF,在△ADF和△DBE中,,∴△ADF≌△DBE(SSS),同理可证,△ADF≌△DBE≌△EFD≌△FEC(SSS),∴S1=S△FEC=S△ABC=16,同理可得,S2=S1=4,S3=S2=1,∴S1+S2+S3=16+4+1=21,故选:A.9.解:连接BD,∵E、F分别是AB、AD中点,∴BD=2EF=12,∵CD2+BD2=25+144=169,BC2=169,∴CD2+BD2=BC2,∴∠BDC=90°,∴S△DBC=BD•CD=×12×5=30,故选:C.10.解:∵点E,F分别是线段DM,MN的中点,∴ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB===2,∴EF的最大值为1.故选:C.11.解:延长BA、CD交于点F,在△ADF和△ADC中,,∴△ADF≌△ADC(ASA),∴CD=DF,AC=AF,∵CD=DF,CE=EB,∴BF=2DE=20,∴AF=BF﹣AB=20﹣8=12,∴AC=AF=12,故选:A.12.解:连接BD,取BD的中点H,连接EH、FH,由题意可知:GE是线段AB的垂直平分线,∴GA=GB,同理:GD=GC,在△AGD和△BGC中,,∴△AGD≌△BGC(SAS),∴AD=BC,∵点E、F、H分别是AB、CD、BD的中点,∴EH∥AD,EH=AD,FH∥BC,FH=BC,∵AD=BC,∴EH=FH,∵直线AD与直线BC垂直,∴EH⊥FH,∴=,∴=,故答案为:.13.解:取BF的中点G,连接CG,如图所示:∵C是BD的中点,∴CG是△BDF的中位线,∴CG∥DF,CG=DF,∵E是AC的中点,∴EF是△ACG的中位线,∴EF=CG,∴EF=DF,即DF=4EF,∴ED=3EF,∴=,故答案为:.14.解:连接BD,取BD的中点M,连接EM,FM,∵E、F分别为AD、BC的中点,M为BD的中点,∴EM,MF分别为△ADB、△BCD的中位线,∴EM∥AB,MF∥DC,EM=AB=2,MF=DC=3,∵MF∥DC,∴∠BFM=∠BCD,∵∠FGC+∠GCF=∠BFH=∠BFM+∠EFM,∴∠FGC=∠EFM,∵EM∥AB,∴∠FEM=∠FHB,∵∠BHF与∠CGF互余,∴∠CGF+∠BHF=∠EFM+∠FEM=90°,∴∠EMF=180°﹣∠EFM﹣∠FEM=90°,∴△EMF是直角三角形,∴EF=,故答案为:.15.解:如图,延长AC至N,使CN=BC,连接BN,∵2∠ADE=90°﹣∠HBC,∠BCA=90°﹣∠HBC,∴∠BCA=2∠ADE,∵CN=BC,∴∠N=∠CBN,∴∠BCA=∠N+∠CBN=2∠N,∴∠ADE=∠N,∴DE∥BN,又∵E是AB的中点,∴DE是△ABN的中位线,∴AD=DN,∵AD:BC=4:3,∴设AD=DN=4x,BC=CN=3x,∴CD=DN﹣CN=x=2,∴BC=6,故答案为6.16.解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∴AF垂直平分CG,∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=BG=(AB﹣AG)=(AB﹣AC)=2.5,故答案为:2.5.17.(1)解:如图,取BD的中点P,连接EP、FP.∵E,F分别是AD、BC的中点,AB=6,CD=8,∴PE∥AB,且PE=AB=3,PF∥CD且PF=CD=4.又∵∠ABD=30°,∠BDC=120°,∴∠EPD=∠ABD=30°,∠DPF=180°﹣∠BDC=60°,∴∠EPF=∠EPD+∠DPF=90°,在直角△EPF中,由勾股定理得到:EF===5,即EF=5;(2)证明:如图,取BD的中点P,连接EP、FP.∵E,F分别是AD、BC的中点,∴PE∥AB,且PE=AB,PF∥CD且PF=CD.∴∠EPD=∠ABD,∠BPF=∠BDC,∴∠DPF=180°﹣∠BPF=180°﹣∠BDC,∵∠BDC﹣∠ABD=90°,∴∠BDC=90°+∠ABD,∴∠EPF=∠EPD+∠DPF=∠ABD+180°﹣∠BDC=∠ABD+180°﹣(90°+∠ABD)=90°,∴PE2+PF2=(AB)2+(CD)2=EF2,∴AB2+CD2=4EF2.18.【教材呈现】证明:∵P是BD的中点,M是DC的中点,∴PM=BC,同理,PN=AD,∵AD=BC,∴PM=PN,∴∠PMN=∠PNM,【结论应用】(1)证明:∵P是BD的中点,M是DC的中点,∴PM∥BC,∴∠PMN=∠F,同理,∠PNM=∠AEN,∵∠PMN=∠PNM,∴∠AEN=∠F;(2)解:∵PN∥AD,∴∠PNB=∠A,∵∠DPN是△PNB的一个外角,∴∠DPN=∠PNB+∠ABD=∠A+∠ABD,∵PM∥BC,∴∠MPD=∠DBC,∴∠MPN=∠DPN+∠MPD=∠A+∠ABD+∠DBC=∠A+∠ABC=122°,∵PM=PN,∴∠PMN=×(180°﹣122°)=29°,∴∠F=∠PMN=29°,故答案为:29°.19.解:(1)从图3变化至图4.采用的图形变化是图形的翻折和图形的旋转,故答案为:翻折,旋转;(2)延长CD到B,使DB=CD,连接AB,则∠ADB=∠ACD+∠CAD,∵∠DCF=∠DCA+∠DAC,∴∠ADB=∠FCD,在△ADB与△FCD中.,∴△ADB≌△FCD(ASA),∴AB=CF,∵DE是△ABC的中位线,∴DE=AB,∴DE=DF.20.解:(1)在△ABC中,∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE=BC,∵CF=BC,∴DE=CF.(2)∵AC=BC,AD=BD,∴CD⊥AB,∵BC=4,BD=2,∴CD==2,∵DE∥CF,DE=CF,∴四边形DEFC是平行四边形,∴EF=CD=2.(3)过点D作DH⊥BC于H.∵∠DHC=90°,∠DCB=30°,∴DH=DC=,∵DE=CF=2,∴S四边形DEFC=CF•DH=2×=2.21.解:连接BD,取BD的中点G,连接EG、FG,∵DE=EA,DG=GB,∴EG为△DAB的中位线,∴EG∥AB,EG=AB,∴∠GEF=∠AME,同理,FG∥CD,FG=CD,∴∠GFE=∠N,∵AB=CD,∴EG=FG,∴∠GEF=∠GFE,∴∠AME=∠N.。
2021年中考复习分类专题练习:三角形中位线定理综合运用(二)(含答案)
2021年中考复习分类专题练习:三角形中位线定理综合运用(二)Megan 一.选择题1.如图,在△ABC中,点E、F分别为AB、AC的中点.若△ABC的周长为6,则△AEF的周长为()A.12 B.3 C.4 D.不能确定2.如图在△ABC中,M是BC中点,AP是∠A平分线,BP⊥AP于P,AB=12,AC=22,则MP 长为()A.3 B.4 C.5 D.63.如图,在四边形ABCD中,点P是边CD上的动点,点Q是边BC上的定点,连接AP,PQ,E,F分别是AP,PQ的中点,连接EF.点P在由C到D运动过程中,线段EF的长度()A.保持不变B.逐渐变小C.先变大,再变小D.逐渐变大4.如图,在△ABC中,D,E分别是AB,AC边的中点,若DE=2,则BC的长度是()A.6 B.5 C.4 D.35.如图,在△ABC中,D、E分别是AB、AC的中点,BC=16,F是线段DE上一点,连接AF、CF,DE=4DF,若∠AFC=90°,则AC的长度是()A.6 B.8 C.10 D.126.如图,在▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.3cm B.6cm C.9cm D.12cm7.如图,△ABC中,AB=4,AC=3,AD,AE分别是其角平分线和中线,过点C作CG⊥AD 于F,交AB于G,连接EF,则线段EF的长为()A.1 B.C.D.8.如图,要测量池塘两侧的两点A、B之间的距离,可以取一个能直接到达A、B的点C,连结CA、CB,分别在线段CA、CB上取中点D、E,连结DE,测得DE=35m,则可得A、B 之间的距离为()A.30m B.70m C.105m D.140m9.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC 于点E.若DF=5,BC=16,则线段EF的长为()A.4 B.3 C.2 D.110.如图,以任意△ABC的边AB和AC向形外作等腰Rt△ABD和等腰Rt△ACE,F、G分别是线段BD和CE的中点,则的值等于()A.B.C.D.11.如图,△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD于点D,若AB=12,AC=16,则MD等于()A.4 B.3 C.2 D.112.如图,D是△ABC内一点,BD⊥CD,E、F、G、H分别是边AB、BD、CD、AC的中点.若AD=10,BD=8,CD=6,则四边形EFGH的周长是()A.24 B.20 C.12 D.10二.填空题13.如图,在△ABC中,AB=AC,BC=6,点F是BC的中点,点D是AB的中点,连接AF和DF,若△DBF的周长是11,则AB=.14.如图,EF是△ABC的中位线,将△AEF沿中线AD方向平移到△A1E1F1的位置,使E1F1与BC边重合,已知△AEF的面积为7,则图中阴影部分的面积为.15.如图,D是△ABC内一点,BD⊥CD,E,F,G,H分别是AB,BD,CD,AC的中点.若AD =5,BD=4,CD=3,则四边形EFGH的周长是.16.如图,在Rt△ABC中,∠ABC=90°,D、E、F分别为AB、BC、CA的中点,若BF=5,则DE=.17.△ABC中,∠ACB=90°,BD=AC,M、N分别为CD、AB的中点,CD=2,MN=2,则CN=.三.解答题18.如图,已知在△ABC中,DE∥BC交AC于点E,交AB于点D,DE=BC 求证:D、E分别是AB、AC的中点.19.在△ABC中,∠ACB=90°,AC=.以BC为底作等腰直角△BCD,E是CD的中点,求证:AE⊥EB.20.证明:三角形中位线定理.已知:如图,D,E分别是△ABC的边AB,AC的中点.求证:.证明:21.已知两个等腰Rt△ABC,Rt△CEF有公共顶点C,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB 与CE 在同一直线上时,求证:MB ∥CF ;(2)如图1,若CB =a ,CE =2a ,求BM ,ME 的长;(3)如图2,当∠BCE =45°时,求证:BM =ME .22.如图,在△ABC 中,AB <AC ,点D 、F 分别为BC 、AC 的中点,E 点在边AC 上,连接DE ,过点B 作DE 的垂线交AC 于点G ,垂足为点H ,且△CDE 与四边形ABDE 的周长相等,设AC =b ,AB =c .(1)求线段CE 的长度;(2)求证:DF =EF ;(3)若S △BDH =S △EGH ,求的值.23.如图,E 、F 、G 、H 分别为四边形ABCD 四边之中点.(1)求证:四边形EFGH 为平行四边形;(2)当AC 、BD 满足 时,四边形EFGH 为菱形.当AC 、BD 满足 时,四边形EFGH 为矩形.当AC 、BD 满足 时,四边形EFGH 为正方形.参考答案一.选择题1.解:∵点E、F分别为AB、AC的中点.∴EF=BC,EA=BA,AF=AC,∵△ABC的周长为6,即AB+AB+BC=6,∴△AEF的周长=AE+AF+EF=(AB+AC+BC)=3,故选:B.2.解:延长BP交AC于N∵AP是∠BAC的角平分线,BP⊥AP于P,∴∠BAP=∠NAP,∠APB=∠APN=90°,∴△ABP≌△ANP(ASA),∴AN=AB=12,BP=PN,∴CN=AC﹣AN=22﹣12=10,∵BP=PN,BM=CM,∴PM是△BNC的中位线,∴PM=CN=5.故选:C.3.解:连接AQ,∵点Q是边BC上的定点,∴AQ的大小不变,∵E,F分别是AP,PQ的中点,∴EF=AQ,∴线段EF的长度保持不变,故选:A.4.解:∵在△ABC中,D,E分别是AB,AC边的中点,∴DE是△ABC的中位线,∵DE=2,∴BC的长度是:4.故选:C.5.解:∵D、E分别是AB、AC的中点,∴DE=BC=8,∵DE=4DF,∴DF=DE=2,∴EF=DE﹣DF=6,∵∠AFC=90°,点E是AC的中点,∴AC=2EF=12,故选:D.6.解:∵四边形ABCD是平行四边形,∴OA=OC;又∵点E是BC的中点,∴BE=CE,∴AB=2OE=2×3=6(cm)故选:B.7.解:∵AD是∠BAC平分线,∴∠BAD=∠CAD,在△AGF和△ACF中,,∴△AGF≌△ACF(ASA)∴AG=AC=3,GF=FC,∴GB=AB﹣AG=1,∵CF=FG,CE=EB,∴EF是△CGB的中位线,∴EF=GB=,故选:C.8.解:∵D、E分别是AC、BC的中点,∴DE是△ABC的中位线,根据三角形的中位线定理,得:AB=2DE=70m.故选:B.9.解:延长AF交BC于H,在△AFB和△HFB中,,∴△AFB≌△HFB,∴AF=FH,又AD=DB,∴BH=2DF=10,DF∥BC,∴HC=BC﹣BH=6,∵DF∥BC,AF=FH,∴EF=HC=3,故选:B.10.解:如图,取BC的中点H,连接BE、FH、GH,∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠BAE=∠DAC,在△ABE和△ADC中,,∴△ABE≌△ADC(SAS),∴BE=CD,∠ABE=∠ADC,∴∠BDC+∠DBE=∠BDA+∠ABD=90°,∴BE⊥CD,又∵F、G分别是线段BD和CE的中点,∴FH、GH分别是△BCD和△BCE的中位线,∴FH∥CD且FH=CD,GH∥BE且GH=BE,∴△HFG是等腰直角三角形,∴=,∴=.故选:B.11.解:延长BD交AC于H,∵AD平分∠BAC,BD⊥AD,∴BD=DH,AH=AB=12,∴HC=AC﹣AH=4,∵M是BC中点,BD=DH,∴MD=CH=2,故选:C.12.解:∵BD⊥CD,BD=8,CD=6,∴BC===10,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=BC,EF=GH=AD,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=10,∴四边形EFGH的周长=10+10=20,故选:B.二.填空题(共5小题)13.解:∵AB=AC,AF⊥BC,∴BF=CF=BC=×6=3,∵AF⊥BC,点D是AB的中点,∴AB=2BD=2DF,∵△DBF的周长是11,∴DB=DF=×(11﹣3)=4,∴AB=2DF=2×4=8.故答案为:8.14.解:∵EF是△ABC的中位线,∴EF∥BC,EF=BC.∴△AEF∽△ACB.∴=()2=.∴△ABC的面积=28.∴图中阴影部分的面积为28﹣7﹣7=14.故答案为:14.15.解:在Rt△BDC中,BD=4,CD=3,∴BC==5,∵F,G分别是BD,CD的中点,∴FG是△DBC的中位线,∴FG=BC=2.5,同理,EF=AD=2.5,EH=BC=2.5,HG=AD=2.5,∴四边形EFGH的周长=FG+EF+EH+HG=10,故答案为:10.16.解:如图,∵在Rt△ABC中,∠ABC=90°,F为CA的中点,BF=5,∴AC=2BF=10.又∵D、E分别为AB、BC的中点,∴DE是Rt△ABC的中位线,∴DE=AC=5.故答案是:5.17.解:过点N作NE⊥BC于点E,则NE∥AC,又N是AB的中点,∴NE=AC,BE=(2+BD)=(2+AC)=1+AC,∴EM=MD+DE=1+BD﹣BE=AC,∴NE=ME,由勾股定理得,MN2=ME2+NE2,即(2)2=ME2+NE2,解得,NE=ME=2,∴CN===.故答案为:.三.解答题(共6小题)18.证明:作BF∥AC交ED的延长线于点F,∵DE∥BC,∴四边形BCEF是平行四边形,∴BC=EF=2ED,AC∥BF,EC=BF,∴ED=DF,∠A=∠DBF,∴在△ADE与△BDF中,,∴△ADE≌△BDF(AAS)∴AD=BD,AE=BF=EC,即D、E分别是AB、AC的中点.19.证明:过E作EF∥BC交BD于F.∵∠ACE=∠ACB+∠BCE=135°,∠DFE=∠DBC=45°,∴∠EFB=135°.又EF=BC,EF∥BC,AC=BC,∴EF=AC,CE=FB.∴△EFB≌△ACE.∴∠CEA=∠DBE.又∵∠DBE+∠DEB=90°,∴∠DEB+∠CEA=90°.故∠AEB=90°.∴AE⊥EB.20.求证:DE∥BC,DE=BC.证明:延长DE至点F,使EF=DE连接CF.∵E是AC的中点,∴AE=CE.在△ADE与△CFE中,∵,∴△ADE≌△CFE(SAS),∴AD=CF,∠ADE=∠F,∴BD∥CF,∴四边形BCFD是平行四边形,∴DF∥BC,DF=BC,∴DE∥BC,DE=BC.故答案为:DE∥BC,DE=BC.21.(1)证法一:如答图1a,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,∴点B为线段AD的中点,又∵点M为线段AF的中点,∴BM为△ADF的中位线,∴BM∥CF.证法二:如答图1b,延长BM交EF于D,∵∠ABC=∠CEF=90°,∴AB⊥CE,EF⊥CE,∴AB∥EF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=MF,在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,∵BE=CE﹣BC,DE=EF﹣DF,∴BE=DE,∴△BDE是等腰直角三角形,∴∠EBM=45°,∵在等腰直角△CEF中,∠ECF=45°,∴∠EBM=∠ECF,∴MB∥CF;(2)解法一:如答图2a所示,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,∴AB=BC=BD=a,AC=CD=a,∴点B为AD中点,又点M为AF中点,∴BM=DF.分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=GE=2a,CG=CF=a,∴点E为FG中点,又点M为AF中点,∴ME=AG.∵CG=CF=a,CA=CD=a,∴AG=DF=a,∴BM=ME=×a=a.解法二:如答图1b.∵CB=a,CE=2a,∴BE=CE﹣CB=2a﹣a=a,∵△ABM≌△FDM,∴BM=DM,又∵△BED是等腰直角三角形,∴△BEM是等腰直角三角形,∴BM=ME=BE=a;(3)证法一:如答图3a,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,AC=CD,∴点B为AD中点,又点M为AF中点,∴BM=DF.延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=EG,CF=CG,∴点E为FG中点,又点M为AF中点,∴ME=AG.在△ACG与△DCF中,,∴△ACG≌△DCF(SAS),∴DF=AG,∴BM=ME.证法二:如答图3b,延长BM交CF于D,连接BE、DE,∵∠BCE=45°,∴∠ACD=45°×2+45°=135°∴∠BAC+∠ACF=45°+135°=180°,∴AB∥CF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=FM,在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,BM=DM,∴AB=BC=DF,在△BCE和△DFE中,,∴△BCE≌△DFE(SAS),∴BE=DE,∠BEC=∠DEF,∴∠BED=∠BEC+∠CED=∠DEF+∠CED=∠CEF=90°,∴△BDE是等腰直角三角形,又∵BM=DM,∴BM=ME=BD,故BM=ME.22.(1)解:∵点D为BC的中点,∴BD=CD,∵△CDE与四边形ABDE的周长相等,∴CD+DE+CE=AB+BD+DE+AE,∴CE=AB+AE=AB+(AC﹣EC),∴2CE=AC+AB=b+c,∴CE=(b+c);(2)证明:∵点D、F分别为BC、AC的中点,∴DF是△CAB的中位线,∴DF=AB=c,AF=AC=b,由(1)知:CE=(b+c),∴AE=b﹣CE=b﹣(b+c)=(b﹣c),∴EF=AF﹣AE=b﹣(b﹣c)=c,∴DF=EF;(3)解:连接BE、DG,如图所示:∵S△BDH =S△EGH,∴S△BDG =S△DEG,∴BE∥DG,∵DF是△CAB的中位线,∴DF∥AB,=,∴△ABE∽△FDG,∴==,∴FG=AE=×(b﹣c)=(b﹣c),过点A作AP⊥BG于P,∵DF∥AB,∴∠DFC=∠BAC,∵∠DFC=∠DEF+∠EDF,EF=DF,∴∠DEF=∠EDF,∴∠BAP+∠PAC=2∠DEF,∵ED⊥BG,AP⊥BG,∴DE∥AP,∴∠PAC=∠DEF,∴∠BAP=∠DEF=∠PAC,∵AP⊥BG,∴AB=AG=c,∴CG=b﹣c,∴CF=b=FG+CG=(b﹣c)+(b﹣c),∴3b=5c,∴=.23.(1)证明:如图,连接BD,∵E、F、G、H分别为四边形ABCD四边之中点,∴EH是△ABD的中位线,FG是△BCD的中位线,∴EH∥BD 且EH=BD,FG∥BD 且FG=BD,∴EH∥FG且EH=FG,∴四边形EFGH为平行四边形;(2)解:连接AC,同理可得EF∥AC且EF=AC,所以,AC=BD时,四边形EFGH为菱形;AC⊥BD时,四边形EFGH为矩形;AC=BD且AC⊥BD时,四边形EFGH为正方形.故答案为:AC=BD;AC⊥BD;AC=BD且AC⊥BD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年08月17日三角形的中位线一.选择题(共10小题)1.(2016•顺义区一模)如图,为测量池塘岸边A、B两点之间的距离,小亮在池塘的一侧选取一点O,测得OA、OB的中点D、E之间的距离是14米,则A、B两点之间的距离是()A.18 米B.24米C.28米D.30米2.(2016•南充)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC 的中点,则DE的长为()A.1 B.2 C.D.1+3.(2016•广西)如图,在△ABC中,AB=4,BC=6,DE、DF是△ABC的中位线,则四边形BEDF的周长是()A.5 B.7 C.8 D.104.(2016•桐乡市一模)如图,若DE是△ABC的中位线,则S△ADE:S△ABC=()A.1:B.1:2 C.1:3 D.1:45.(2016•深圳校级二模)如图,在△ABC中,AB=BC=10,BD是∠ABC的平分线,E是AB边的中点.则DE的长是()A.6 B.5 C.4 D.36.(2016•湖里区模拟)在△ABC中,若点D为AB中点,点E是AC上一点,则下列条件能判断线段DE一定为△ABC中位线的是()A.DE⊥AC B.CE=2AEC.=1 D.=7.(2016•东平县一模)如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,连接AF,CF,DF=1.若∠AFC=90°,则BC的长度为()A.12 B.13 C.14 D.158.(2016•薛城区模拟)如图,在四边形ABCD中,E,F分别为DC、AB的中点,G是AC 的中点,则EF与AD+CB的关系是()A.2EF=AD+BC B.2EF>AD+BC C.2EF<AD+BC D.不确定9.(2016•葫芦岛)如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4 B.8 C.2D.410.(2016春•滕州市期末)如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N 分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.8 B.6 C.4 D.5二.填空题(共8小题)11.(2016•黄石模拟)如图,O为跷跷板AB的中点,支柱OC与地面MN垂直,垂足为点C,且OC=50cm,当跷跷板的一端B着地时,另一端A离地面的高度为cm.12.(2016•凉山州)如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为cm2.13.(2016•南京)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.14.(2016春•江阴市校级月考)如图,在△ABC中,M是BC边的中点,AP平分∠A,BP ⊥AP于点P、若AB=12,AC=22,则MP的长为.15.(2016•牡丹区校级模拟)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为.16.(2016春•邹城市校级期中)如图,D,E,F分别是三角形ABC各边的中点,AG是高,如果ED=5,那么GF的长为.17.(2016•大庆)如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为.18.(2016春•咸丰县校级月考)已知等边△A1B1C1的边长为1,△A1B1C1的三条中位线组成△A2B2C2,△A2B2C2的三条中位线又组成△A3B3C3,…,以此类推,得到△A n B n C n,则△A n B n C n的边长为.(其中n为正整数)三.解答题(共12小题)19.(2016•广东)如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连结DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.20.(2015秋•乳山市期末)如图,在△ABC中,AD是BC边上的中线,点F在AC上,AF=FC,AD与BF交于点E.求证:点E是AD的中点.21.(2016•淄博)如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME ∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=(AB+AC).22.(2016春•梅河口市校级月考)如图,在四边形ABCD中,AB=DC,P是对角线AC的中点,M是AD的中点,N是BC的中点.(1)若AB=6,求PM的长;(2)若∠PMN=20°,求∠MPN的度数.23.(2015秋•太康县期中)如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,求△ABC的周长.24.(2013秋•海陵区期中)如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么.(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?(3)在(2)的条件下,若EF=2,求四边形ABCD的面积.25.(2014春•太仓市期中)△ABC中E是AB的中点,CD平分∠ACB,AD⊥CD与点D,求证:DE=(BC﹣AC).26.(2016•北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.27.(2014•丹阳市校级模拟)如图,在四边形ABCD中,对角线AC、BD交于点O,E、F 分别是AB、CD的中点,且AC=BD.求证:OM=ON.28.(2015春•汉阳区期中)(1)叙述三角形中位线定理,并运用平行四边形的知识证明;(2)运用三角形中位线的知识解决如下问题:如图,在四边形ABCD中,AD∥BC,E、F分别是AB,CD的中点,求证:EF=(AD+BC)29.(2013秋•江山市校级月考)如图,已知四边形ABCD中,AB=DC,E、F分别为AD 与BC的中点,连结EF与BA的延长线相交于N,与CD的延长线相交于M.求证:∠BNF=∠CMF.30.(2014春•金坛市校级月考)(1)请你在△ABC中做一条线段,把△ABC分成面积相等的两部分.(2)请你按照(1)的方法把四边形ABCD分成面积相等的两部分.(3)请你观察下图,尝试在梯形ABCD中做一条线段,把梯形ABCD分成面积相等的两部分.2016年08月17日三角形的中位线参考答案与试题解析一.选择题(共10小题)1.(2016•顺义区一模)如图,为测量池塘岸边A、B两点之间的距离,小亮在池塘的一侧选取一点O,测得OA、OB的中点D、E之间的距离是14米,则A、B两点之间的距离是()A.18 米B.24米C.28米D.30米【考点】三角形中位线定理.2.(2016•南充)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC 的中点,则DE的长为()A.1 B.2 C.D.1+【考点】三角形中位线定理;含30度角的直角三角形.3.(2016•广西)如图,在△ABC中,AB=4,BC=6,DE、DF是△ABC的中位线,则四边形BEDF的周长是()A.5 B.7 C.8 D.10【考点】三角形中位线定理.4.(2016•桐乡市一模)如图,若DE是△ABC的中位线,则S△ADE:S△ABC=()A.1:B.1:2 C.1:3 D.1:4【考点】三角形中位线定理.5.(2016•深圳校级二模)如图,在△ABC中,AB=BC=10,BD是∠ABC的平分线,E是AB边的中点.则DE的长是()A.6 B.5 C.4 D.3【考点】三角形中位线定理;等腰三角形的性质.6.(2016•湖里区模拟)在△ABC中,若点D为AB中点,点E是AC上一点,则下列条件能判断线段DE一定为△ABC中位线的是()A.DE⊥AC B.CE=2AEC.=1 D.=【考点】三角形中位线定理.7.(2016•东平县一模)如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,连接AF,CF,DF=1.若∠AFC=90°,则BC的长度为()A.12 B.13 C.14 D.15【考点】三角形中位线定理;等腰三角形的判定与性质;直角三角形斜边上的中线.8.(2016•薛城区模拟)如图,在四边形ABCD中,E,F分别为DC、AB的中点,G是AC 的中点,则EF与AD+CB的关系是()A.2EF=AD+BC B.2EF>AD+BC C.2EF<AD+BC D.不确定【考点】三角形中位线定理;三角形三边关系.9.(2016•葫芦岛)如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4 B.8 C.2D.4【考点】三角形中位线定理;含30度角的直角三角形;直角三角形斜边上的中线.10.(2016春•滕州市期末)如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N 分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.8 B.6 C.4 D.5【考点】三角形中位线定理.二.填空题(共8小题)11.(2016•黄石模拟)如图,O为跷跷板AB的中点,支柱OC与地面MN垂直,垂足为点C,且OC=50cm,当跷跷板的一端B着地时,另一端A离地面的高度为100cm.【考点】三角形中位线定理.12.(2016•凉山州)如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为9cm2.【考点】三角形中位线定理.13.(2016•南京)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.【考点】三角形中位线定理.14.(2016春•江阴市校级月考)如图,在△ABC中,M是BC边的中点,AP平分∠A,BP ⊥AP于点P、若AB=12,AC=22,则MP的长为5.【考点】三角形中位线定理.15.(2016•牡丹区校级模拟)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为2.【考点】三角形中位线定理;等腰三角形的判定与性质.16.(2016春•邹城市校级期中)如图,D,E,F分别是三角形ABC各边的中点,AG是高,如果ED=5,那么GF的长为5.【考点】三角形中位线定理;直角三角形斜边上的中线.17.(2016•大庆)如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n﹣3.【考点】三角形中位线定理;规律型:图形的变化类.18.(2016春•咸丰县校级月考)已知等边△A1B1C1的边长为1,△A1B1C1的三条中位线组成△A2B2C2,△A2B2C2的三条中位线又组成△A3B3C3,…,以此类推,得到△A n B n C n,则△A n B n C n的边长为.(其中n为正整数)【考点】三角形中位线定理.三.解答题(共12小题)19.(2016•广东)如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连结DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.【考点】三角形中位线定理;作图—基本作图.20.(2015秋•乳山市期末)如图,在△ABC中,AD是BC边上的中线,点F在AC上,AF=FC,AD与BF交于点E.求证:点E是AD的中点.【考点】三角形中位线定理;全等三角形的判定与性质.21.(2016•淄博)如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME ∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=(AB+AC).【考点】三角形中位线定理;等腰三角形的判定与性质.22.(2016春•梅河口市校级月考)如图,在四边形ABCD中,AB=DC,P是对角线AC的中点,M是AD的中点,N是BC的中点.(1)若AB=6,求PM的长;(2)若∠PMN=20°,求∠MPN的度数.【考点】三角形中位线定理;等腰三角形的判定与性质.23.(2015秋•太康县期中)如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN ⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,求△ABC的周长.【考点】三角形中位线定理;等腰梯形的性质.24.(2013秋•海陵区期中)如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么.(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?(3)在(2)的条件下,若EF=2,求四边形ABCD的面积.【考点】三角形中位线定理.25.(2014春•太仓市期中)△ABC中E是AB的中点,CD平分∠ACB,AD⊥CD与点D,求证:DE=(BC﹣AC).【考点】三角形中位线定理.26.(2016•北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【考点】三角形中位线定理;直角三角形斜边上的中线;勾股定理.27.(2014•丹阳市校级模拟)如图,在四边形ABCD中,对角线AC、BD交于点O,E、F 分别是AB、CD的中点,且AC=BD.求证:OM=ON.【考点】三角形中位线定理;平行线的性质;等腰三角形的判定与性质.28.(2015春•汉阳区期中)(1)叙述三角形中位线定理,并运用平行四边形的知识证明;(2)运用三角形中位线的知识解决如下问题:如图,在四边形ABCD中,AD∥BC,E、F分别是AB,CD的中点,求证:EF=(AD+BC)【考点】三角形中位线定理;梯形中位线定理.29.(2013秋•江山市校级月考)如图,已知四边形ABCD中,AB=DC,E、F分别为AD 与BC的中点,连结EF与BA的延长线相交于N,与CD的延长线相交于M.求证:∠BNF=∠CMF.【考点】三角形中位线定理.30.(2014春•金坛市校级月考)(1)请你在△ABC中做一条线段,把△ABC分成面积相等的两部分.(2)请你按照(1)的方法把四边形ABCD分成面积相等的两部分.(3)请你观察下图,尝试在梯形ABCD中做一条线段,把梯形ABCD分成面积相等的两部分.【考点】三角形中位线定理.。