全等三角形六种常见的实际应用
三角形全等的判定ASA-AAS及尺规作图五种基本作
以上内容是基于给定的大纲和指令进行的扩 展,但请注意,由于缺乏具体细节和背景信 息,某些描述可能不够精确或全面。如有需 要,请进一步补充和修正。
04
asa-aas在实际问题中的 应用
在几何证明题中的应用
在几何证明题中,asa-aas判定定理常常用于证明两个三角形全等。通过比较两 个三角形的两边和夹角,如果满足条件,则两个三角形全等,从而可以得出其他 相关结论。
asa-aas的发展方向
拓展适用范围
实际应用研究
研究如何将ASA-AAS判定应用于更广 泛的情况,例如处理只有一边和两个 角的情况或者只有两边和夹角的情况。
研究如何将ASA-AAS判定应用于解决 实际问题,例如几何证明、建筑设计、 工程测量等领域。
引入其他判定方法
研究如何将其他三角形全等判定方法 (如SAS、SSS、HL等)与ASA-AAS 判定相结合,以拓展其应用范围。
经过一点做已知直线的垂线
总结词
垂线的作法
详细描述
在给定的直线上选择一个点,然后使 用圆规在该点上画圆,与直线相交于 两点。连接这两点即可得到经过该点 的垂线。
作已知角的角平分线
总结词
角平分线的作法
详细描述
在给定的角内,使用圆规以角的顶点为圆心画圆,与角的两 边相交于两点。连接这两点即可得到该角的角平分线。
Hale Waihona Puke VS应用在尺规作图中,可以利用asa-aas判定三 角形全等来确定未知点的位置。例如,已 知一个三角形的两个角和一边,可以通过 asa-aas判定另一个三角形与之全等,从 而确定未知点的位置。
利用asa-aas解决实际问题
• 实例:在建筑设计中,常常需要确定某一点的位置使得该点到 两个已知点的角度相等。通过asa-aas判定定理,可以确定未知 点的位置,从而满足建筑设计的需求。
三角形全等的应用
经典例题透析类型一:三角形全等的应用1. 如图:BE、CF相交于点D,DE⊥AC,DF⊥AB,垂足分别为E、F,且DE=DF。
求证:AB=AC。
思路点拨:挖掘并合理运用隐含条件:(1)隐含相等的线段:公共边、线段的和(或差);(2)隐含相等的角:公共角、对顶角、角的和或差。
解析:∵DE⊥AC,DF⊥AB∴∠DFB=∠DEC=90°(垂直的定义)在△BDF和△CDE中∴△BDF≌△CDE(ASA)∴BD=CD(全等三角形对应边相等)又DE=DF∴BE=CF在△ABE和△ACF中∴△ABE≌△ACF(AAS)∴AB=AC(全等三角形对应边相等)总结升华:复杂题目都是由简单题目组合而成,所以要特别注意简单典型题目的解题思想以及图形特点。
举一反三:【变式1】如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。
求证:(1)AM=AN;(2)AM⊥AN。
解析:∵BE⊥AC,CF⊥AB∴∠AEB=∠AFC=90°(垂直的定义)∴∠1+∠BAC=∠2+∠BAC=90°(直角三角形的两个锐角互余)∴∠1=∠2在△ABM和△NCA中∴△ABM≌△NCA(SAS)∴AM=AN,∠3=∠N(全等三角形对应边、对应角相等)在Rt△AFN中:∠4+ ∠N=90 °(直角三角形两个锐角互余)∴∠3+ ∠4=90 °∴AM⊥AN(垂直的定义)【变式2】如图:∠BAC=90°,CE⊥BE,AB=AC ,∠ABE=∠CBE,求证:BD=2EC。
解析:延长BA、CE相交于点F∵CE⊥BE∴∠BEF=∠BEC=90°(垂直的定义)在△BEC和△BEF中∴△BEC≌△BEF(ASA)∴CE=EF(全等三角形对应边相等)即FC=2CE∵CA⊥BA∴∠BAC=∠FAC=90°(垂直的定义)在Rt△ABD和Rt△BEF中∠ABD+∠ADB=∠ABD+∠F=90°(直角三角形两个锐角互余)∴∠ADB=∠F在△ABD和△ACF中∴△ABD≌△ACF(AAS)∴BD=FC(全等三角形对应边相等)∴BD=2EC类型二:构造全等三角形2.如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明。
全等三角形在生活中的应用
全等三角形在生活中的应用在全等图形中,全等三角形是最基本,应用最广泛的一类图形,利用全等三角形的有关知识,不仅可以帮助我们进行决策,还可以帮助我们制作一些仪器,现举例说明这个问题,供同学们学习时参考.一、仪器我也会做例1 如图1是小亮做的一个平分角的仪器,其中AB=AD ,BC=DC ,将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE ,AE 就是角平分线.你能说明其中的道理吗?分析:由已知条件易得△ABC 和△ADC 全等,由全等三角形的对应角相等,可知∠BAC=∠DAC ,即AE 是角平分线.解:已知AB=AD ,BC=DC ,又因为AC 是公共边,所以△ABC ≌△ADC ,所以∠BAC=∠DAC .所以AE 是角平分线.评析:利用三角形全等的知识,常常可以说明两个角相等的问题.二、巧测内口直径例2 小红家有一个小口瓶(如图2所示),她很想知道它的内径是多少?但是尺子不能伸在里边直接测,于是她想了想,唉!有办法了.她拿来了两根长度相同的细木条,并且把两根长木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB 的长,就可以知道玻璃瓶的内径是多少.你知道这是为什么吗?请说明理由.(木条的厚度不计)分析:只要量出AB 的长,就知道内径是多少?显然只需要说明AB 和CD 相等就行. 解:连结AB ,CD ,因为AO=DO ,BO=CO , 图 1 图2又因为∠AOB=∠DOC,所以△ABO≌△DCO(SAS).所以AB=CD,也就是AB的长等于内径CD的长.评析:利用三角形全等的知识,可以说明线段长相等的问题.三、距离相等的解释例3 如图3,从小丽家(C处)到学校A和菜市场B的夹角∠C是锐角,又知道从小丽家到学校、菜市场的距离相等,小丽说学校到路段BC的距离AD与菜市场到路段AC的距离BE相等,你认为她说的有道理吗?请说明理由.分析:只要能说明AD与BE相等,就说明她说的有道理.解:小丽说的有道理,理由如下:图3 已知AC=BC,因为∠ADC=∠BEC=90°,又因为∠C是公共角,所以△ACD≌△BCE,所以AD=BE.即学校到路段BC的距离与菜市场到路段AC的距离相等.你还知道全等三角形有哪些应用,说出来和同学们交流交流!应把握的两种模型利用三角形全等测距离,主要有以下两种模型:一、视线模型当需要测量距离的两个点中有一个点无法接近时,常采用这种方法. 视线法简便易行,但有一定的误差,一般在仅适应于目测的情况下使用. 如:例1如图1所示,在一次战役中,我军阵地与敌军碉堡隔河相望,为用炮火实施定点轰炸,需要测量我军阵地与敌军碉堡隔的距离,在不能过河测量又没有任何测量工具的情况下,一个战士想出来一个办法,他面向碉堡方向站好,然后调整帽子,使视线通过帽檐,正好落在碉堡的底部,然后转过一个角度,身体保持刚才的姿势,使视线落在我军一岸的某一点上,接着他用步测法测出自己与那个点的距离,这个距离就是他与碉堡之间的距离.你能解释其中的道理吗?解:这个战士实际上是运用了全等三角形的知识. 要说明其中的道理,首先要根据实际情景建立数学模型,将情景中示意图抽象为几何图形.如图2所示,我军阵地与敌军碉堡之间的距离无法测量,即AC不可测量,但线段FD的长度可以测得,又因为战士与地面是垂直的,也就是∠BCA=∠EFD=90°,另外战士的身高与姿态是不变的,所以BC=EF,∠ABC=∠FED.依据“SAS”可知△ABC≌△DEF,所以AC=FD.所以只要测得FD的距离,就可得到AC的距离.这就是“视线法”的基本模型与解题原理.二、构图模型当需要测量距离的两点均可到达,但两点之间不能通过直接测得距离时,可通过构造两个全等的三角形,进行间接的测量.构图法间接测量的结果比较准确.如:例2如图3所示,A,B两点分别位于一个池塘的两端,小明想用绳子测量这两点之间的距离,但绳子不够长,老师为他出了一个主意:先在地上取一个可以直接到达A,B 两点的点C,连接AC并延长到点D,使DC=AC;连接BC并延长BC到点E,使CE=CB,连接DE并测出它的长度,DE的长度就是A,B之间的距离.你能说明其中的道理吗?解:池塘两端的A点和B点不好直接测量,取一个可以直接到达A,B两点的点C,连接AC并延长的D,使DC=AC;连接BC并延长BC到点E,使CE=CB,这样在△ABC 与△DEC中,有CA=CD,CB=CE,且∠ACB=∠ECD,则依据“SAS”可得△ABC≌△DEC,从而DE=AB,因为DE是可直接测得的,这样即可得到AB的距离.这就是“构图法”的基本模型与解题原理.。
全等三角形的案例
全等三角形的案例全等三角形这玩意儿,在咱们数学学习里可是个重要角色!记得我当年上学那会,全等三角形就把我折磨得够呛。
老师在讲台上讲得唾沫横飞,我在下面听得云里雾里。
特别是那些个复杂的证明题,感觉就像一团乱麻,怎么也理不清。
可后来,经过不断地琢磨和练习,我总算是把它给拿下了。
咱们先来说说什么是全等三角形。
简单来讲,就是两个三角形的形状和大小完全一样。
这就好比是两个双胞胎,长得一模一样,哪儿哪儿都相同。
那怎么判断两个三角形全等呢?这就有好几个条件啦,比如“边边边”(SSS)、“边角边”(SAS)、“角边角”(ASA)、“角角边”(AAS),还有直角三角形的“斜边、直角边”(HL)。
咱们来举个例子,比如说有两个三角形,一个三角形的三条边分别是 3cm、4cm、5cm,另一个三角形也是 3cm、4cm、5cm,那这两个三角形就是全等的,因为符合“边边边”的条件。
再比如,一个三角形的两条边分别是 5cm 和 7cm,它们的夹角是60 度,另一个三角形也有两条边是 5cm 和 7cm,夹角也是 60 度,这两个三角形也是全等的,这就是“边角边”的情况。
在实际生活中,全等三角形也有不少用处呢。
我有一次去家具店买椅子,就发现了全等三角形的影子。
那椅子的靠背和坐垫连接的部分,就是利用了全等三角形的稳定性,让椅子更加牢固,坐起来更安心。
还有一次,我在路上看到工人师傅在搭建脚手架。
那一根根的钢管组成的三角形结构,其实也是利用了全等三角形的原理,保证脚手架不会摇晃,施工人员才能在上面安全地工作。
学习全等三角形,可不能光死记硬背那些条件和定理,得会灵活运用。
多做几道题,多琢磨琢磨,慢慢就能找到感觉了。
比如说,给你一道题,让你证明两个三角形全等,你就得先观察给出的条件,看看符合哪个判定条件,然后再一步一步地写证明过程。
有时候,题目可能会故意给你设个小陷阱,让你误以为两个三角形全等,其实还差那么一点儿条件。
这就需要咱们擦亮眼睛,仔细分析,可不能马虎大意。
专题02 全等三角形中的六种模型梳理
专题02 全等三角形中的六种模型梳理专题02 全等三角形中的六种模型梳理全等三角形是初中数学中一个非常重要的概念,也是平面几何中的基础知识之一。
全等三角形指的是具有相同形状和大小的三角形,它们的对应边长和对应角度都相等。
在学习全等三角形的过程中,我们可以通过六种模型来更好地理解和应用这一概念。
本文将以深度和广度的要求,全面探讨全等三角形的六种模型,帮助读者更好地理解和掌握这一知识点。
1. 回顾全等三角形的概念在深入探讨全等三角形的六种模型之前,我们首先需要回顾一下全等三角形的概念。
在平面几何中,如果两个三角形的对应边长和对应角度都相等,我们就称它们为全等三角形。
全等三角形的性质包括边长相等、对应角度相等、周长相等和面积相等。
这些性质是我们理解全等三角形的基础,也是之后探讨六种模型的重要依据。
2. 全等三角形的基本模型我们来看全等三角形的基本模型。
当两个三角形的对应边和对应角均相等时,这两个三角形就是全等的。
这是最基本的全等三角形模型,也是其他五种模型的基础。
通过这个基本模型,我们可以理解全等三角形的定义和性质,为之后的探讨打下基础。
3. 侧边-夹角-侧边模型我们来探讨侧边-夹角-侧边模型。
当两个三角形的一个对应边和夹角以及另一个对应边均相等时,这两个三角形也是全等的。
这个模型在实际问题中经常用到,比如通过已知一个角和两边的长短来确定两个三角形是否全等。
这个模型的理解和运用可以帮助我们更好地解决实际问题。
4. 夹角-边-夹角模型接下来,我们继续探讨夹角-边-夹角模型。
当两个三角形的一个夹角和两个对应边的夹角均相等时,这两个三角形也是全等的。
这个模型的理解有助于我们在解题过程中更灵活地运用全等三角形的性质,从而更快地解决问题。
5. 边-边-边模型我们来看一下边-边-边模型。
当两个三角形的三条边分别相等时,这两个三角形也是全等的。
这个模型在实际问题中也经常用到,通过边长的关系来判断两个三角形是否全等。
专题02 全等三角形中的六种模型梳理
专题02 全等三角形中的六种模型梳理一、概述全等三角形是初中数学中一个重要且常见的概念,对于几何学的学习具有重要的意义。
在全等三角形的学习中,有六种基本模型,它们是解决全等三角形问题的重要工具。
本文将对全等三角形中的六种模型进行深入探讨和梳理,帮助读者更加全面地理解和掌握这一知识点。
二、模型一:SSS全等模型在全等三角形中,如果两个三角形的三条边分别相等,则可以确定它们是全等三角形,这就是SSS全等模型。
如果已知两个三角形的三边分别相等,那么这两个三角形一定是全等的。
模型二:SAS全等模型SAS全等模型是指如果两个三角形的一条边和夹角以及另一边的长度分别相等,则可以确定它们是全等三角形。
如果已知两个三角形的一个角和两边分别相等,那么可以确定这两个三角形是全等的。
模型三:ASA全等模型在全等三角形中,如果两个三角形的一个角和两个角边相等,则可以确定它们是全等三角形,这就是ASA全等模型。
如果已知两个三角形的一个角和两个角边分别相等,那么可以确认这两个三角形是全等的。
模型四:HL全等模型HL全等模型是指如果两个直角三角形的斜边和一个直角边的长度分别相等,则可以确定它们是全等三角形。
如果已知两个直角三角形的斜边和一个直角边的长度分别相等,那么可以确定这两个三角形是全等的。
模型五:LL全等模型LL全等模型是指如果两个三角形的两个角和一个边分别相等,则可以确定它们是全等三角形。
如果已知两个三角形的两个角和一个边分别相等,那么可以确定这两个三角形是全等的。
模型六:对顶全等模型对顶全等模型是指如果两个三角形的两个对顶角和一个边分别相等,则可以确定它们是全等三角形。
如果已知两个三角形的两个对顶角和一个边分别相等,那么可以确定这两个三角形是全等的。
三、总结与回顾通过上述对全等三角形中六种模型的梳理,我们可以发现几何学中的相似和全等的概念是非常重要的。
在实际问题中,我们可以通过判断形状的相似或全等,推断出一些未知的信息,帮助我们解决问题。
人教版八年级数学全等三角形的常见模型总结(精选
人教版八年级数学全等三角形的常见模型总结(精选.)人教版八年级数学全等三角形常见模型总结要点梳理:全等三角形的判定与性质:一般三角形:边角边(SAS)、判角边角(ASA)、定角角边(AAS)、边边边(SSS)。
直角三角形:斜边、直角边定理(HL)。
性质:对应边相等,对应角相等(其他对应元素也相等,如对应边上的垂高相等)。
备判定:三角形全等必须有一组对应边相等。
注类型一:角平分线模型应用1.角平分性质模型:利用角平分线的性质。
例题解析:例1:如图1,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到直线AB的距离是多少?答案】作DE⊥XXX于点E,DE=3cm。
例2:如图2,已知,∠1=∠2,∠3=∠4,求证:AP平分∠BAC。
答案】如图2,由角平分线的性质可知,PM=PN,PN=PQ,故PM=PQ,又因为PA是角BAC的平分线,所以XXX平分∠BAC。
类型二:角平分线模型应用2.角平分线,分两边,对称全等(截长补短构造全等)。
例题解析:例1:在△ABC中,∠BAC=60°,∠C=40°,AP平分∠XXX于P,BQ平分∠XXX于Q,求证:AB+BP=BQ+AQ。
答案】如图1,过O作OD∥BC交AB于D,∠ADO=∠ABC=180°-60°-40°=80°,又∵∠AQO=∠C+∠QBC=80°,∴∠ADO=∠AQO,又∵∠DAO=∠QAO,OA=AO,∴△ADO≌△AQO,∴OD=OQ,AD=AQ,又因为OD∥BP,所以∠PBO=∠DOB,又∠PBO=∠DBO,∴∠DBO=∠DOB,∴BD=OD,又∵∠XXX∠C+∠PAC=70°,∠BOP=∠OBA+∠BAO=70°,∴∠BOP=∠BPO,∴BP=OB,∴AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ。
如图,将△ADE逆时针旋转60°,使△ADE≌△ABC,从而得到△MDE≌△MAC,因为M为BD的中点,所以ME=MC,因此△EMC为等腰三角形,且∠MDE=∠MAC=30°,所以△EMC为等腰直角三角形。
北师大版七年级数学下册 三角形全等的五种常见应用
7.【2019·宜昌】如图,在△ABC 中,D 是 BC 边上的一点,AB
=DB,BE 平分∠ABC,交 AC 边于点 E,连接 DE.
因为 AB∥DC,所以∠BAE=∠G, 又 BE=CE,∠AEB=∠GEC, 所以△AEB≌△GEC(AAS).所以 AB=GC. 因为 AE 是∠BAF 的平分线,所以∠BAG=∠FAG. 因为∠BAG=∠G,所以∠FAG=∠G.所以 AF=GF. 因为 CG=CF+GF,所以 AB=CF+AF.
2.如图,在正方形 ABCD 中,点 E,F 分别在边 AB,BC 上, AE=BF,AF 和 DE 交于点 G.
(1)观察图形,写出图中所有与∠AED 相等的角(∠CDE 除外);
解:∠DAG、∠AFB 与∠AED 相等.
2.如图,在正方形 ABCD 中,点 E,F 分别在边 AB,BC 上, AE=BF,AF 和 DE 交于点 G.
(2)求∠APN 的度数. 解:由(1)可知△ABM≌△BCN, 所以∠BAM=∠CBN. 因为∠APN=∠BAM+∠ABP, 所以∠APN=∠CBN+∠ABP=∠ABC=(5-25)×180°=108°.
(2)选择图中与∠AED 相等的任意一个角(∠CDE 除外)加以 证明. 解:(答案不唯一)选择∠DAG=∠AED. 证明如下:
因为四边形 ABCD 是正方形, 所以∠DAB=∠B=90°,DA=AB.
DA=AB, 在△DAE 和△ABF 中,∠DAB=∠B,
AE=BF. 所以△DAE≌△ABF(SAS),所以∠ADE=∠BAF.
实际生活中的全等三角形
因为 粤阅彝月悦袁耘云彝月悦袁所以 粤阅椅耘云袁
所以蚁猿越蚁缘袁所以蚁猿越蚁源袁
又因为 云阅彝粤 阅袁云酝彝粤 悦袁所以 阅云越云酝援 三尧与其他知识的综合运用
例 猿 如图 缘 所示袁 在吟粤 月悦 中袁蚁月越怨园毅袁粤月越
苑袁月悦越圆源袁粤 悦越圆缘援吟粤月悦 内是否有一点 孕 到各边的
距离相等钥 如果有袁请作出这一点袁并说明理由袁同时
析尧解决问题援 一尧用于产品检验 例 员 如图 员袁 工人师傅要检查人字梁的蚁月 和
蚁悦 是否相等袁但他没有量角器袁只有一把刻度尺袁他 是这样操作的院 淤分别在 月粤 和 悦粤 上取 月耘袁悦郧袁使 月耘越悦郧曰于在 月悦 上取 月阅越悦云曰盂量出 阅耘 的长 a 米袁 云郧 的长 b 米援若 a=b袁则说明蚁月越蚁悦援他的这种做法 合理吗钥 为什么钥
三尧用于测量距离 例 猿 如图 猿袁小红和小亮两家分别位于 粤尧月 两 处隔河相望袁要测得两家之间的距离袁请你设计出测 量方案援 分析院本题的测量方案实际上是利用三角形全等 的知识构造两个全等三角形袁使一个三角形在河岸的 同一边袁通过测量这个三角形中与 粤 月 相等的线段的 长袁就可求出两家的距离援
实际生活中的全等三角形
山东 于化平
本期导读
《全等三角形》一章复习.
学习了三角形全等的有关知识后袁同学们会发现 它可以解决许多生活中的实际问题袁并且有利于考查
同学们识别图形尧动手操作的能力袁更注重考查大家
抽象尧转化的思维能力以及运用几何知识解决实际问 题的能力援因此袁同学们在学习过程中应该注意观察
自己身边的实际问题袁 善于用数学的头脑去发现尧分
不用补充揖铱月援员圆mn悦援圆mn阅援员猿mn悦图远月圆耘员粤阅图缘悦月阅怨援如图远袁蚁员越蚁圆袁蚁悦越蚁阅袁粤悦尧月阅相交于点耘袁则下列结论中正确的个数有淤蚁阅粤耘越蚁悦月耘曰于吟粤阅耘艺吟月悦耘曰盂悦耘越阅耘曰榆吟耘粤月为等腰三角形援粤援员个员园援如图苑袁在吟粤月悦与吟阅耘云中袁给出下列六个结论院淤粤月越阅耘曰于月悦越耘云曰盂粤悦越阅云曰榆蚁粤越蚁阅曰虞蚁月越蚁耘曰愚蚁悦越蚁云援以其中三个条件作为已知袁不能得到吟粤月悦与吟阅耘云全等的是粤援淤于虞悦援淤榆愚粤揖铱月援圆个悦援猿个阅援源个揖铱月援淤于盂阅援于盂榆图苑悦月云耘阅c图愿ba云耘阅二尧耐心填一填渊每小题猿分袁共圆源分冤员员援如图愿袁吟粤月悦艺吟阅耘云袁粤与阅袁月与耘分别是对应顶点袁蚁月越猿圆毅袁蚁粤越远愿毅袁粤月越员猿cm袁则蚁云越赃赃赃赃赃赃袁阅耘越赃赃赃赃赃cm援员圆援如图怨袁在吟粤月悦中袁粤阅越阅耘袁粤月越月耘袁蚁粤越愿园毅袁则蚁悦耘阅越援图怨悦耘阅月粤图员园悦阅月云耘粤员猿援如图员园袁阅耘彝粤月袁阅云彝粤悦袁粤耘越粤云袁请找出一对全等的三角形院赃赃赃赃赃赃赃赃赃赃赃赃赃赃赃赃赃赃赃赃赃援员源援如图员员袁吟粤月悦是三边均不相等的三角形袁阅耘越月悦袁以阅尧耘为两个顶点画位置不同的三角形袁使所作的三角形与吟粤月悦全等袁这样的三角形最多可以画出赃赃赃赃赃个援粤悦月图员员耘阅图员圆悦阅月粤悦忆阅忆月忆粤忆员缘援如图员圆所示袁粤阅袁粤忆阅忆分别是锐角吟粤月悦和锐角吟粤忆月忆悦忆中月悦袁月忆悦忆边上的高袁且粤月越粤忆月忆袁粤阅越粤忆阅忆袁若使吟粤月悦艺吟粤忆月忆悦忆袁请你补充条件赃赃赃赃赃赃赃赃赃渊填写一个你认为适当的条件即可冤援员远援如图员猿袁已知粤悦彝月阅袁月悦越悦耘袁粤悦越阅悦袁试分析蚁月垣蚁阅越赃赃赃赃赃赃赃赃赃赃援粤图员猿员苑援如图员源袁已知吟粤月悦中袁蚁粤越怨园毅袁粤月越粤悦袁悦阅平分蚁粤悦月袁阅耘彝月悦于耘袁若月悦越员缘cm袁则吟阅耘月的周长为赃赃赃赃赃赃赃赃cm援员愿援在数学活动课上袁小明提出这样一个问题院如图员缘袁蚁月越蚁悦越怨园毅袁耘是月悦的中点袁阅耘平分蚁粤阅悦袁蚁悦阅耘越猿缘毅袁则蚁耘粤月是多少度钥大家一起热烈地讨论交流袁小英第一个得出正确答案袁是赃赃赃赃赃赃援三尧用心做一做渊共缘远分冤员怨援渊愿分冤如图员远袁已知粤月越粤阅袁月悦越阅悦袁粤悦尧月阅相交于点耘袁由这些条件写出源个你认为正确的结论渊不再添加辅助线袁不再标注其它字母冤援阅悦
全等三角形常见题型5种
全等三角形是初中数学中的一个重要知识点,其常见题型主要有以下五种:
1. 已知两边及其夹角,求证全等:这是全等三角形最基本的题型,也是最常见的题型。
解题的关键在于理解全等三角形的定义,即两个三角形如果它们的三边分别相等,那么这两个三角形就是全等的。
在解答这类题目时,我们通常会使用SAS(边角边)或ASA(角边角)定理。
2. 已知一边及其对角,求证全等:这类题目的解题思路与第一种类似,但是需要用到的是AAS(角角边)定理。
在解答这类题目时,我们需要先找出两个三角形的对应角和对应边,然后利用AAS定理进行证明。
3. 已知两角及其夹边,求证全等:这类题目的解题思路与前两种有所不同,需要用到的是HL(直角边边)定理。
在解答这类题目时,我们需要先找出两个三角形的对应角和对应边,然后利用HL定理进行证明。
4. 已知一边及其高,求证全等:这类题目的解题思路与前三种有所不同,需要用到的是SSS (边边边)定理。
在解答这类题目时,我们需要先找出两个三角形的对应边,然后利用SSS 定理进行证明。
5. 已知一边及其中线或高线,求证全等:这类题目的解题思路与第四种相似,但是需要用到的是RHS(旋转、平移、缩放)定理。
在解答这类题目时,我们需要先找出两个三角形的对应边和对应的中线或高线,然后利用RHS定理进行证明。
以上就是全等三角形的五种常见题型,每种题型都有其特定的解题方法和技巧。
在解答这类题目时,我们需要灵活运用全等三角形的各种定理,同时也需要注意观察和分析题目中的条件,以便找到最合适的解题方法。
最新初二数学全等三角形常见几何模型总结归类大全
最新初二数学全等三角形常见几何模型总结归类大全一、角平分线模型应用1.角平分性质模型: 辅助线:过点G 作GE ⊥射线AC(1).例题应用:①如图1,在中ABC ∆,,cm 4,6,900==∠=∠BD cm BC CAB AD C 平分,那么点D 到直线AB 的距离是 cm.②如图2,已知,21∠=∠,43∠=∠.BAC AP ∠平分求证:.图1 图2①2 (提示:作DE ⊥AB 交AB 于点E )②21∠=∠ ,PN PM =∴,43∠=∠ ,PQ PN =∴,BAC PA PQ PM ∠∴=∴平分,.(2).模型巩固:练习一:如图3,在四边形ABCD 中,BC>AB ,AD=CD ,BD 平分BAC ∠..求证:︒=∠+∠180C A图3练习二:已知如图4,四边形ABCD 中,..,1800BAD AC CD BC D B ∠==∠+∠平分求证:图4练习三:如图5,,,900CAB AF D AB CD ACB ABC Rt ∠⊥=∠∆平分,垂足为,中,交CD 于点E ,交CB 于点F. (1)求证:CE=CF.(2)将图5中的△ADE 沿AB 向右平移到'''E D A ∆的位置,使点'E 落在BC 边上,其他条件不变,如图6所示,是猜想:'BE 于CF 又怎样的数量关系?请证明你的结论.图5 图6练习四:如图7,90A AD BC=︒,∠∥,P是AB的中点,PD平分∠ADC.求证:CP平分∠DCB.图7练习五:如图8,AB>AC,∠A的平分线与BC的垂直平分线相交于D,自D作DE⊥AB,DF ⊥AC,垂足分别为E,F.求证:BE=CF.图8练习六:如图9所示,在△ABC中,BC边的垂直平分线DF交△BAC的外角平分线AD于点D,F为垂足,DE⊥AB于E,并且AB>AC。
求证:BE-AC=AE。
练习七:如图10,D、E、F分别是△ABC的三边上的点,CE=BF,且△DCE的面积与△DBF 的面积相等,求证:AD平分∠BAC。
苏科版八上数学专题 三角形全等的简单应用
三角形全等的简单应用【学习目标】1.感受三角形全等在生活中的应用;2.能够用三角形全等解决一些实际问题及运动型问题.【典型例题】一.生活中的应用例题1.如图所示的A、B是两根呈南北方向排列的电线杆,A、B之间有一条小河,小刚想估测这两根电线杆之间的距离,于是小刚从A点开始向正西方向走了20步到达一棵大树C处,接着又向前走了20步到达D处,然后他左转90°直行,当他看到电线杆B、大树C和他自己现在所处的位置E恰在同一条直线上时,他从D位置走到E处恰好走了100步,利用上述数据,小刚测出了A、B两根电线杆之间的距离.(1)请你根据上述的测量方法在原图上画出示意图;(2)如果小刚一步大约60厘米,请你求A、B两根电线杆之间的距离.小河北BA例题2如图,两根长12m的绳子,一端系在旗杆上的同一位置,另一端分别固定在地面上的两个木桩上(绳结处的误差忽略不计),现在只有一把卷尺,如何来检验旗杆是否垂直于地面?请说明理由.DB二.运动型问题中的应用例题3 如图,AB =6cm ,AC =BD =4cm .∠CAB =∠DBA ,点P 在线段AB 上以2cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为t (s ).设点Q 的运动速度为x cm/s ,若使得△ACP 与△BPQ 全等,则x 的值为 .QPDCBA三.全等应用的几个重要模型 (1)中线型例题4 (1)阅读理解:如图1,在△ABC 中,若AB =10,BC =8.求AC 边上的中线BD 的取值范围.小聪同学是这样思考的:延长BD 至E 使DE =BD ,连结CE.利用全等将边AB 转化到CE ,在△BCE 中利用三角形三边关系即可求出中线BD 的取值范围.在这个过程中小聪同学证三角形全等用到的判定方法是 ;中线BD 的取值范围是 .(2)问题解决:如图2,在△ABC 中,点D 是AC 的中点,点M 在AB 边上,点N 在BC 边上,若DM ⊥DN .求证:AM +CN >MN .图1E DCBA图2N M D CBA(2)角平分线型例题5 如图,已知OC 平分∠AOB ,点E 、F 分别在边OA 、OB 上,且EC =FC .若∠AOB =60°,求∠ECF 的度数;OF E CBA(3)K 型全等例题6王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC =BC ,∠ACB =90°),点C 在DE 上,点A 和B 分别与木墙的顶端重合,求两堵木墙之间的距离.变式:如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD 上,转轴B 到地面的距离BD =3m .小亮在荡秋千过程中,当秋千摆动到最高点A 时,测得点A 到BD 的距离AC =2m ,点A 到地面的距离AE =1.8m ;当他从A 处摆动到A ′处时,有A 'B ⊥AB . (1)求A ′到BD 的距离; (2)求A ′到地面的距离.A '地面ED CB A32HF 1A '地面EDC BA拓展提升:例题7(1)如图1:在四边形ABC 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.E ,F 分别是BC ,CD 上的点.且∠EAF =60°.探究图中线段BE ,EF ,FD 之间的数量关系并证明. (提示:延长CD 到G ,使得DG =BE )(2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12 ∠BAD ,上述结论是否仍然成立,并说明理由;图1GDFECBA图2DFE CBAO图3N FEB A(3)如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西20°的A 处,舰艇乙在指挥中心南偏东60°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1小时后,指挥中心观测到甲、乙两舰艇分别到达E ,F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.(可利用(2)的结论)【课后练习】 一、选择题1.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB 是一个任意角,在边OA 、OB 上分别取OM =ON ,移动角尺,使角尺两边相同的到刻度分别与点M 、N 重合,过角尺顶点C 作射线OC 由此作法便可得△NOC ≌△MOC ,其依据是( )A .SSSB .SASC .ASAD .AAS2.某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是()A.1B.2C.3D.43.如图,平安路与幸福路是两条平行的道路,且都与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处.如果小强同学站在平安路与新兴大街交叉路口,准备去书店,按图中的街道行走,最近的路程为()A.300m B.400m C.500m D.700m二、填空题4.如图所示,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工具,则A'B'的长等于内槽宽AB,那么判定△OAB≌OA'B'的理由是.5. 如图,小明与小红玩跷跷板游戏,如果跷跷板的支点O(即跷跷板的中点)至地面的距离是50cm,当小红从水平位置CD下降40cm时,这时小明离地面的高度是90cm.6.如图,在正方形ABCD 中,AB =8厘米,如果动点P 在线段AB 上以2厘米/秒的速度由A 点向B 点运动,同时动点Q 在以1厘米/秒的速度线段BC 上由C 点向B 点运动,当点P 到达B 点时整个运动过程停止.设运动时间为t 秒,当AQ ⊥DP 时,t 的值为 秒.QP DCBA三、解答题7.为了测量一幢高楼高AB ,在旗杆CD 与楼之间选定一点P .测得旗杆顶C 视线PC 与地面夹角∠DPC =38°,测楼顶A 视线P A 与地面夹角∠APB =52°,量得P 到楼底距离PB 与旗杆高度相等,等于8米,量得旗杆与楼之间距离为DB =33米,计算楼高AB 是多少米?P D B8.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B 点,选对岸正对的一棵树A ; ②沿河岸直走20m 有一树C ,继续前行20m 到达D 处;③从D 处沿河岸垂直的方向行走,当到达A 树正好被C 树遮挡住的E 处停止行走;④测得DE 的长为5米. 求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.9.如图,点C 、E 分别在直线AB 、DF 上,小华想知道∠ACE 和∠DEC 是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF ,再找出CF 的中点O ,然后连结EO 并延长EO 和直线AB 相交于点B ,经过测量,他发现EO =BO ,因此他得出结论:∠ACE 和∠DEC 互补,而且他还发现BC =EF .小华的想法对吗?为什么?OFED C BA10.如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形. (1)若固定三根木条AB ,BC ,AD 不动,AB =AD =2cm ,BC =5cm ,如图,量得第四根木条CD =5cm ,判断此时∠B 与∠D 是否相等,并说明理由. (2)若固定一根木条AB 不动,AB =2cm ,量得木条CD =5cm ,如果木条AD ,BC 的长度不变,当点D 移到BA 的延长线上时,点C 也在BA 的延长线上;当点C 移到AB 的延长线上时,点A 、C 、D 能构成周长为30cm 的三角形,求出木条AD ,BC 的长度.DCBA【典型例题】一.生活中的应用例题1.如图所示的A、B是两根呈南北方向排列的电线杆,A、B之间有一条小河,小刚想估测这两根电线杆之间的距离,于是小刚从A点开始向正西方向走了20步到达一棵大树C处,接着又向前走了20步到达D处,然后他左转90°直行,当他看到电线杆B、大树C和他自己现在所处的位置E恰在同一条直线上时,他从D位置走到E处恰好走了100步,利用上述数据,小刚测出了A、B两根电线杆之间的距离.(1)请你根据上述的测量方法在原图上画出示意图;(2)如果小刚一步大约60厘米,请你求A、B两根电线杆之间的距离.小河北BA【解答】解:(1)根据题意画出图形,如图所示.ED C(2)由题可知∠BAC=∠EDC=90°,60cm=0.6m,AC=20×0.6=12m,DC=20×0.6=12m,DE=100×0.6=60m,∵点E、C、B在一条直线上,∴∠DCE=∠ACB.在△ABC 和△DEC 中,===BAC EDC AC DCDCE ACB ∠∠∠∠⎧⎪⎨⎪⎩∴△ABC ≌△DEC , ∴AB =DE . ∵DE =60m , ∴AB =60m ,答:A 、B 两根电线杆之间的距离大约为60m .例题2如图,两根长12m 的绳子,一端系在旗杆上的同一位置,另一端分别固定在地面上的两个木桩上(绳结处的误差忽略不计),现在只有一把卷尺,如何来检验旗杆是否垂直于地面?请说明理由.B【解答】解:用卷尺测量出BD 、CD ,看它们是否相等,若BD =CD ,则AD ⊥BC .理由如下:∵在△ABD 和△ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩, ∴△ABD ≌△ACD (SSS ), ∴∠ADB =∠ADC ,又∵∠ADB +∠ADC =180°,∴∠ADB =∠ADC =90°, 即AD ⊥BC .二.运动型问题中的应用例题3 如图,AB =6cm ,AC =BD =4cm .∠CAB =∠DBA ,点P 在线段AB 上以2cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为t (s ).设点Q 的运动速度为x cm/s ,若使得△ACP 与△BPQ 全等,则x 的值为 .QPDCBA【解答】解:当△ACP ≌△BPQ , ∴AP =BQ , ∵运动时间相同,∴P ,Q 的运动速度也相同, ∴x =2(s ).当△ACP ≌△BQP 时, AC =BQ =4,P A =PB , ∴t =1.5, ∴x =41.5=83(s ) ∴综上所述,x 的值为2或83s .三.全等应用的几个重要模型 (1)中线型例题4 (1)阅读理解:如图1,在△ABC 中,若AB =10,BC =8.求AC 边上的中线BD 的取值范围.小聪同学是这样思考的:延长BD 至E 使DE =BD ,连结CE.利用全等将边AB 转化到CE ,在△BCE 中利用三角形三边关系即可求出中线BD 的取值范围.在这个过程中小聪同学证三角形全等用到的判定方法是 ;中线BD 的取值范围是 .(2)问题解决:如图2,在△ABC 中,点D 是AC 的中点,点M 在AB 边上,点N 在BC 边上,若DM ⊥DN .求证:AM +CN >MN .图1E DCBA图2N M D CB A【解答】(1)解:∵BD 是AC 边上的中线, ∴AD =CD ,在△ABD 和△CED 中,=ADB CD AD CD BD ED E =⎧=∠∠⎪⎨⎪⎩, ∴△ABD ≌△CED (SAS ), ∴CE =AB =10,在△CBE 中,由三角形的三边关系得:CE -BC <BE <CE -BC , ∴10-8<BE <10+8,即2<BE <18, ∴1<BD <9;故答案为:SAS ;1<BD <9;(2)证明:延长ND 至点F ,使FD =ND ,连接AF 、MF , 同(1)得:△AFD ≌△CND (SAS ), ∴AF =CN ,FD =ND , ∵DM ⊥DN ,∴MDN MDF ∠=∠=90° 在△MDN 和△MDF 中,MD MD MDN MDF DN DF =⎧⎪∠=∠⎨⎪=⎩∴△MDN ≌△MDF ∴MF =MN ,在△AFM 中,由三角形的三边关系得:AM +AF >MF , ∴AM +CN >MNF图2N M DCBA(2)角平分线型例题5 如图,已知OC 平分∠AOB ,点E 、F 分别在边OA 、OB 上,且EC =FC .若∠AOB =60°,求∠ECF 的度数;OF E CBA解:过点C 作CM ⊥OB ,CN ⊥OA ,∵CM ⊥OB ,CN ⊥OA , ∴CNO CMO ∠=∠ ∵OC 平分∠AOB , ∴AOC BOC ∠=∠ 在△NOC 和△MOC 中,CNO CMO NOC MOC OC OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△NOC ≌△MOC ∴CN =CM ,在Rt △ECN 和Rt △FCM 中CN CMCE CF=⎧⎨=⎩ ∴Rt △ECN ≌Rt △FCM , ∴∠NCE =∠MCF ,∴∠AOB +∠ECF =∠AOB +∠NCM =180°, ∵∠AOB =60°, ∴∠ECF =120°;N M OF E CBA(3)K 型全等例题6王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC =BC ,∠ACB =90°),点C 在DE 上,点A 和B 分别与木墙的顶端重合,求两堵木墙之间的距离.【解答】解:由题意得:AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE , ∴∠ADC =∠CEB =90°,∴∠ACD +∠BCE =90°,∠ACD +∠DAC =90°, ∴∠BCE =∠DAC , 在△ADC 和△CEB 中,ADC CEB DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADC ≌△CEB (AAS );由题意得:AD =EC =6cm ,DC =BE =14cm , ∴DE =DC +CE =20(cm ), 答:两堵木墙之间的距离为20cm .变式:如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD 上,转轴B 到地面的距离BD =3m .小亮在荡秋千过程中,当秋千摆动到最高点A 时,测得点A 到BD 的距离AC =2m ,点A 到地面的距离AE =1.8m ;当他从A 处摆动到A ′处时,有A 'B ⊥AB . (1)求A ′到BD 的距离; (2)求A ′到地面的距离.A '地面ED CB A32HF 1A '地面EDC BA解:(1)作A 'F ⊥BD ,垂足为F . ∵AC ⊥BD ,∴∠ACB =∠A 'FB =90°; 在Rt △A 'FB 中,∠1+∠3=90°; 又∵A 'B ⊥AB ,∴∠1+∠2=90°, ∴∠2=∠3;在△ACB 和△BF A '中,23ACB A FB AB A B '∠=∠⎧⎪∠=∠⎨⎪'=⎩∴△ACB ≌△BF A '(AAS ); ∴A 'F =BC∵AC ∥DE 且CD ⊥AC ,AE ⊥DE , ∴CD =AE =1.8;∴BC =BD -CD =3-1.8=1.2, ∴A 'F =1.2,即A '到BD 的距离是1.2m . (2)由(1)知:△ACB ≌△BF A ' ∴BF =AC =2m , 作A 'H ⊥DE ,垂足为H . ∵A 'F ∥DE , ∴A 'H =FD ,∴A 'H =BD -BF =3-2=1,即A '到地面的距离是1m .拓展提升:例题7(1)如图1:在四边形ABC 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.E ,F 分别是BC ,CD 上的点.且∠EAF =60°.探究图中线段BE ,EF ,FD 之间的数量关系并证明. (提示:延长CD 到G ,使得DG =BE ) (2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12 ∠BAD ,上述结论是否仍然成立,并说明理由;图1GDFECBA图2DFE CBAO图3N FEB A(3)如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西20°的A 处,舰艇乙在指挥中心南偏东60°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1小时后,指挥中心观测到甲、乙两舰艇分别到达E ,F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.(可利用(2)的结论) 【解答】解:(1)EF =BE +DF ; 证明:如图1,延长FD 到G ,使DG =BE ,连接AG , 在△ABE 和△ADG 中,=B ADG DG BE AB AD =⎧∠=∠⎪⎨⎪⎩, ∴△ABE ≌△ADG (SAS ), ∴AE =AG ,∠BAE =∠DAG , ∵∠EAF =12 ∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF ,在△AEF 和△AGF 中,=EAF GA AE AG AF AF F =⎧=∠∠⎪⎨⎪⎩, ∴△AEF ≌△AGF (SAS ), ∴EF =FG ,∵FG =DG +DF =BE +DF , ∴EF =BE +DF ;(2)EF =BE +DF 仍然成立.证明:延长FD 到G ,使DG =BE ,连接AG , ∵∠B +∠ADC =180°,∠ADC +∠ADG =180°, ∴∠B =∠ADG , 在△ABE 和△ADG 中,=B ADG DG BE AB AD =⎧∠=∠⎪⎨⎪⎩, ∴△ABE ≌△ADG (SAS ), ∴AE =AG ,∠BAE =∠DAG , ∵∠EAF =12 ∠BAD , ∴∠GAF =∠DAG +∠DAF=∠BAE +∠DAF =∠BAD -∠EAF =∠EAF ,在△AEF 和△AGF 中,=EAF GA AE AG AF AF F =⎧=∠∠⎪⎨⎪⎩, ∴△AEF ≌△AGF (SAS ), ∴EF =FG ,∵FG =DG +DF =BE +DF , ∴EF =BE +DF ;(3)如图3,连接EF ,延长AE 、BF 相交于点C , ∵∠AOB =20°+90°+(90°-60°)=140°, ∠EOF =70°, ∴∠EOF =12 ∠AOB , 又∵OA =OB ,∠OAC +∠OBC =(90°-20°)+(60°+50°)=180°, ∴符合探索延伸中的条件, ∴结论EF =AE +BF 成立,即EF =1×(60+80)=140(海里). 答:此时两舰艇之间的距离是140海里.图2GDFECBAO图3N FECB A【课后练习】 一、选择题1.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB 是一个任意角,在边OA 、OB 上分别取OM =ON ,移动角尺,使角尺两边相同的到刻度分别与点M 、N 重合,过角尺顶点C 作射线OC 由此作法便可得△NOC ≌△MOC ,其依据是( )A.SSS B.SAS C.ASA D.AAS【解答】解:∵在△ONC和△OMC中ON OM CO CO NC MC=⎧⎪=⎨⎪=⎩,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.2.某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是()A.1B.2C.3D.4【解答】解:因为第2块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第2块.故选:B.3.如图,平安路与幸福路是两条平行的道路,且都与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处.如果小强同学站在平安路与新兴大街交叉路口,准备去书店,按图中的街道行走,最近的路程为()A .300mB .400mC .500mD .700m【解答】解:如图所示,设老街与平安路的交点为C .∵BC ∥AD ,∴∠DAE =∠ACB ,又∵BC ⊥AB ,DE ⊥AC ,∴∠ABC =∠DEA =90°,在△ABC 和△DEA 中ACB DAE CBA AED AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEA (AAS ),∴EA =BC =300m ,AC =AD =500m ,∴CE =AC -AE =200m ,从B 到E 有两种走法:①BA +AE =700m ;②BC +CE =500m ,∴最近的路程是500m .故选:C .二、填空题4.如图所示,将两根钢条AA ′、BB ′的中点O 连在一起,使AA ′、BB ′可以绕着点O 自由转动,就做成了一个测量工具,则A 'B '的长等于内槽宽AB ,那么判定△OAB ≌OA 'B '的理由是 SAS .【解答】解:∵OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△OAB≌△OA′B′(SAS)所以理由是SAS.5. 如图,小明与小红玩跷跷板游戏,如果跷跷板的支点O(即跷跷板的中点)至地面的距离是50cm,当小红从水平位置CD下降40cm时,这时小明离地面的高度是90cm.【解答】解:在△OCF与△ODG中,OCF ODGCOF DOGOF OG∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OCF≌△ODG(AAS),∴CF=DG=40,∴小明离地面的高度是50+40=90,故答案为:90.6.如图,在正方形ABCD中,AB=8厘米,如果动点P在线段AB上以2厘米/秒的速度由A点向B点运动,同时动点Q在以1厘米/秒的速度线段BC上由C点向B点运动,当点P到达B点时整个运动过程停止.设运动时间为t秒,当AQ⊥DP时,t的值为秒.Q PDCB A【解答】解:∵四边形ABCD 是正方形∴AD =AB ,∠B =∠BAD =90°∵AQ ⊥DP∴∠QAD +∠ADP =90°,且∠DAQ +∠BAQ =90°∴∠BAQ =∠ADP ,在△ABQ 和△DAP 中==BAQ ADP AB AD B BAD ⎧∠∠=∠∠⎪⎨⎪⎩∴△ABQ ≌△DAP (ASA )∴AP =CQ∴2t =8-t∴t =83故答案为:83三、解答题7.为了测量一幢高楼高AB ,在旗杆CD 与楼之间选定一点P .测得旗杆顶C 视线PC 与地面夹角∠DPC =38°,测楼顶A 视线P A 与地面夹角∠APB =52°,量得P 到楼底距离PB 与旗杆高度相等,等于8米,量得旗杆与楼之间距离为DB =33米,计算楼高AB 是多少米?PD B【解答】解:∵∠CPD=38°,∠APB=52°,∠CDP=∠ABP=90°,∴∠DCP=∠APB=52°,在△CPD和△P AB中∵CDP ABPDC PBDCP APB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CPD≌△P AB(ASA),∴DP=AB,∵DB=33,PB=8,∴AB=33-8=25(m),答:楼高AB是25米.8.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.【解答】(1)解:河的宽度是5m ;(2)证明:由作法知,BC =DC ,∠ABC =∠EDC =90°,在△ABC 和△EDC 中,ABC EDC BC DCACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△EDC (ASA ),∴AB =ED ,即他们的做法是正确的.9.如图,点C 、E 分别在直线AB 、DF 上,小华想知道∠ACE 和∠DEC 是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF ,再找出CF 的中点O ,然后连结EO 并延长EO 和直线AB 相交于点B ,经过测量,他发现EO =BO ,因此他得出结论:∠ACE 和∠DEC 互补,而且他还发现BC =EF .小华的想法对吗?为什么?O F E D CBA解:∵O 是CF 的中点,∴CO =FO (中点的定义)在△COB 和△FOE 中=COB EO CO FO EO BO F =⎧=∠∠⎪⎨⎪⎩,∴△COB ≌△FOE (SAS )∴BC =EF (对应边相等)∠BCO =∠F (对应角相等)∴AB ∥DF (内错角相等,两直线平行)∴∠ACE 和∠DEC 互补(两直线平行,同旁内角互补),10.如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB ,BC ,AD 不动,AB =AD =2cm ,BC =5cm ,如图,量得第四根木条CD =5cm ,判断此时∠B 与∠D 是否相等,并说明理由.(2)若固定一根木条AB 不动,AB =2cm ,量得木条CD =5cm ,如果木条AD ,BC 的长度不变,当点D 移到BA 的延长线上时,点C 也在BA 的延长线上;当点C 移到AB 的延长线上时,点A 、C 、D 能构成周长为30cm 的三角形,求出木条AD ,BC 的长度.D CBA解:(1)相等.理由:连接AC ,在△ACD 和△ACB 中,∵AC AC AD AB CD BC =⎧⎪=⎨⎪=⎩,∴△ACD ≌△ACB (SSS ),∴∠B =∠D ;D CBA(2)设AD =x ,BC =y , 由题意点C 在点D 右侧,可得25(2)530x y x y +=+⎧⎨+++=⎩, 解得1310x y =⎧⎨=⎩;∴AD =13cm ,BC =10cm .。
两边及一角的平分线相等的三角形全等
三角形是初中数学中重要的几何形状,而全等三角形是其中的一个重要概念。
全等三角形具有相同的形状和相同的大小,是重要的几何性质之一。
在本文中,我们将探讨两边及一角的平分线相等的三角形全等的性质和应用。
一、全等三角形的定义1.1 两个三角形全等的定义全等三角形是指在几何形状上,两个三角形的对应边相等,对应角相等的情况下,两个三角形全等。
1.2 全等三角形的符号表示两个全等三角形可以用符号来表示,常用的表示方法是△ABC ≌ △DEF,其中△ABC 代表一个三角形,△DEF 表示另一个三角形。
二、两边及一角的平分线相等的三角形全等的条件2.1 两个三角形的对应边相等当两个三角形的对应边分别相等时,可以推断这两个三角形全等。
2.2 两边及一角的平分线相等若两个三角形的一个角和它们的两边的切线相等,则这两个三角形全等。
2.3 证明方法要证明两边及一角的平分线相等的三角形全等,可以通过 SSS 全等判据(三边对应相等判据)、SAS 全等判据(两边及夹角对应相等判据)、AAS 全等判据(两角及夹边对应相等判据)进行证明。
三、全等三角形的性质和应用3.1 全等三角形的性质全等三角形具有以下性质:(1)全等三角形的对应边相等(2)全等三角形的对应角相等(3)全等三角形的面积相等3.2 全等三角形的应用全等三角形的性质和条件在几何问题中有着广泛的应用:(1)在证明几何定理时,可以利用全等三角形的性质进行证明。
(2)在计算三角形的面积时,可以利用全等三角形的面积相等性质,简化计算步骤。
(3)在解决实际问题中,可以利用全等三角形的特性,求解未知长度和角度。
四、如何判断两边及一角的平分线相等的三角形全等4.1 观察三角形的给定条件要判断两边及一角的平分线相等的三角形全等,需要观察给定的三角形条件,看是否满足两边及一角的平分线相等的条件。
4.2 应用全等三角形的判定条件根据全等三角形的判定条件,可以利用SSS 全等判据、SAS 全等判据、AAS 全等判据等进行判断。
微专题 全等三角形的六种基本模型-2024年中考数学复习
21
全等三角形的六种基本模型
模型应用
8.如图17, △ 是边长为1的等边三角形, = ,
∠ = 120∘ ,点 , 分别在 , 上,且
∠ = 60∘ .求 △ 的周长.
提示:如图16,延长 至点 ,使 = ,连接 .
图6
= ,
在 △ 和 △ 中, ቐ∠ = ∠, ∴ △≌△ SAS .
= ,
∠ = ∠ = 50∘ .
7
全等三角形的六种基本模型
模型三 旋转型
模型剖析
如图7,将三角形绕着公共顶
点旋转一定角度后,两个三角形能
够完全重合,这两个三角形称为旋
图3
在 △ 和△ 中, ∵ ∠ = ∠ , ∠ = ∠ , = ,
∴ △ ≌ △ AAS .
∴ = .
4
全等三角形的六种基本模型
模型二 对称型
模型剖析
如图4、图5,将所给图形沿某一条直线折叠后,直线两旁的部分能
够完全重合,这两个三角形称为对称型全等三角形,其中重合的顶点就
= , ∴ △ ≌ △ SAS . ∴ = ,
图17
图16
22
全等三角形的六种基本模型
∠ = ∠. ∵ ∠ = 120∘ , ∠ = 60∘ , ∴ ∠ +
∠ = 60∘ . ∴ ∠ + ∠ = 60∘ . ∴ ∠ = ∠ =
∴ ∠ = ∠ + ∠ = 110∘ .
∴ ∠ = ∠ .
= ,
图9
在 △ 和 △ 中, ቐ∠ = ∠ , ∴ △ ≌ △ .
= ,
∴ = .
11
全等三角形的六种基本模型
中考数学复习:专题4-9 全等三角形在生活中的应用
专题09 全等三角形在生活中的应用【专题综述】学习了三角形全等的有关知识后,同学们会发现它可以解决许多生活中的实际问题,并且有利于考查同学们识别图形、动手操作的能力,更注重考查大家抽象、转化的思维能力以及运用几何知识解决实际问题的能力。
因此,同学们在学习过程中应该注意观察身边的实际问题,善于用数学的头脑去发现、分析、解决问题。
【方法解读】一、用于产品检验例1 如图,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA和CA上取BE=CG;②在BC上取BD=CF;③量出DE的长a米,FG的长b米.如果a=b,则说明∠B和∠C是相等的,他的这种做法合理吗?为什么?【举一反三】如图,由两根钢丝固定的高压电线杆,按要求当两根钢丝与电线杆的夹角相同时,固定效果最好.现已知钢丝触地点到电线杆的距离相等,那么请你判断图中两根钢丝的固定是否合乎要求,并说明理由.(电线杆的粗细忽略不计)【来源】北师大版七年级数学下4.5 利用三角形全等测距离同步练习二、用于图形复原例2 如图是举世闻名的三星堆考古中挖掘出的一个三角形残缺玉片,工作人员想制作该玉片模型,则测量图中哪些数据,就可制成符合规格的三角形玉片模型?并说明其中的道理.【举一反三】小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块【来源】2014-2015学年江苏省南苑中学八年级上学期第一次单元考试数学试卷(带解析)三、用于测量距离例3 如图3,从小丽家(C处)到学校A和菜市场B的夹角∠C是锐角,又知道从小丽家到学校、菜市场的距离相等,小丽说学校到路段BC的距离AD与菜市场到路段AC的距离BE相等,你认为她说的有道理吗?请说明理由.图3【举一反三】小强为了测量一幢高楼高AB,在旗杆CD与楼之间选定一点P.测得旗杆顶C视线PC与地面夹角∠DPC=36°,测楼顶A视线PA与地面夹角∠APB=54°,量得P到楼底距离PB与旗杆高度相等,等于10米,量得旗杆与楼之间距离为DB=36米,小强计算出了楼高,楼高AB是多少米?【来源】北师大版七年级数学下册习题:4.5《利用三角形全等测距离》(详细答案)【强化训练】1.如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,如图所示的这种方法,是利用了三角形全等中的()A. SSSB. ASAC. AASD. SAS【来源】北师大版数学七年级下册第四章4.5利用全等三角形全等测距离课时练习2.山脚下有A、B两点,要测出A、B两点间的距离。
全等三角形及其应用(含解答)
全等三角形及其应用专题辅导1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。
互相重合的边叫对应边,互相重合的角叫对应角。
2. 全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC≌△A′B′C′其中,“≌”读作“全等于”。
记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等;4. 寻找对应元素的方法(1)根据对应顶点找如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。
通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。
(2)根据已知的对应元素寻找全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(3)通过观察,想象图形的运动变化状况,确定对应关系。
通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。
①翻折如图(1),∆BOC≌∆EOD,∆BOC可以看成是由∆EOD沿直线AO翻折180︒得到的;②旋转如图(2),∆COD≌∆BOA,∆COD可以看成是由∆BOA绕着点O旋转180︒得到的;③平移如图(3),∆DEF≌∆ACB,∆DEF可以看成是由∆ACB沿CB方向平行移动而得到的。
5. 判定三角形全等的方法:(1)边角边公理、角边角公理、边边边公理、斜边直角边公理(2)推论:角角边定理6. 注意问题:(1)在判定两个三角形全等时,至少有一边对应相等;(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。
全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。
在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常需要借助全等三角形的知识。
全等三角形在实际生活中的应用
全等三角形在实际生活中的应用三角形全等在解决实际问题中有广泛的应用,如测量无法直接测量的距离时,可根据三角形全等进行转化.有许多图形分割问题,也蕴含着全等思想.一、测量中的全等三角形例1.图1为人民公园中的荷花池,现要测量此荷花池两旁A 、B 两棵树间的距离(我们不能直接量得).请你根据所学知识,以卷尺和测角仪为测量工具设计一种测量方案.要求:(1)画出你设计的测量平面图;(2)简述测量方法,并写出测量的数据(长度用,,,c b a …表示;角度用,,,γβα…表示);(3)根据你测量的数据,计算A 、B 两棵树间的距离.分析:此题的测量方法很多,这里用全等知识来解决,方案如图2,步骤为:(1)在地上找可以直接到达的一点O ,(2)在OA 的延长线上取一点C ,使OC=OA ;在BO 的延长线上取一点D ,使OD=OB ;(3)测得DC=a ,则AB=a . 点评:本题是一道全开放式的设计方案题,它的解题策略非常多,可以利用三角函数、三角形中位线定理、全等三角形、三角形相似等许多知识,本题来源于课本、来源于生活,可以激发学生“学有用的数学”,更激发学生的学习热情和创新热情以及求知欲望.例2.如图3所示,在一次战役中,我军阵地与敌军碉堡隔河相望,为用炮火实施定点轰炸,需要测量我军阵地与敌军碉堡隔的距离,在不能过河测量又没有任何测量工具的情况下,一个战士想出来一个办法,他面向碉堡方向站好,然后调整帽子,使视线通过帽檐,正好落在碉堡的底部,然后转过一个角度,身体保持刚才的姿势,使视线落在我军一岸的某一点上,接着他用步测法测出自己与那个点的距离,这个距离就是他与碉堡之间的距 B A C D O 图2 A • • • B图1 图3离。
你能解释其中的道理吗?解:这个战士实际上是运用了三角形全等的知识 . 要说明其中的道理,首先要根据实际情景建立数学模型,将情景中示意图抽象为几何图形。
如图4所示,我军阵地与敌军碉堡之间的距离无法测量,即AC不可测量,但线段FD 的长度可以测得,又战士与地面是垂直的,也就是∠BAC =∠EFD =900,另外战士的身高与姿态是不变的,所以BC =EF ,∠ABC =∠FED . 依据“SAS”可知△ABC ≌△DEF ,所以AC =FD . 所以只要测得FD的距离,就可得到AC 的距离 .二、修路中的全等三角形例3.如图5,有一块不规则土地ABCD ,分别被甲、乙二人承包,一条公路GEFH 穿过这块土地,EF 左边是甲,右边是乙,AB ∥CD.为方便通行,决定将这条公路尽量修直,但要求甲、乙二人的土地面积不变.请你设计一种方案,解决这个问题,并说明方案正确的理由.分析:将公路修直并不困难,关键是要保持甲、乙二人的土地面积不变.这里,我们应注意充分利用AB ∥CD 这一条件来构造全等三角形.解:取EF 的中点O ,连接GO 并延长交FH 于点M ,GM 就是修直后的公路.理由是:设GM 分别交AB 、CD 于点P 、Q ,由AB ∥CD ,可得∠PEO =∠QFO ,又因为EO =FO ,∠EOP =∠FOQ ,故△EOP ≌△FOQ ,所以这个方案能保持甲、乙二人的土地面积不变.三、其他问题中的全等三角形例4.如图6,某同学把一块三角形的玻璃打碎成了三块,现在要去玻璃店配一块完全一样的玻璃,请你设计一个最省事的配玻璃方案,并说明理由.解:最省事的配玻璃方案是带着碎玻璃块③去玻璃店.理由是:玻璃块③含有一条完整的边BC 和夹BC 的两个图 5图4图6完整的角,根据ASA,只需将∠B和∠C的不完整的边延长相交即可,得到的三角形与原三角形全等.例5.如图7,点C是路段AB的中点,两人从C同时出发以相同的速度分别沿两条直线行走,并同时到达D,E两地,DA⊥AB,EB⊥AB,D,E与路段AB的距离相等吗?为什么?分析:因为两人是从点C同时出发,且同时到达D,E两点,所以CD=CE.要说明DA与EB是否相等,则只需说明△ADC和△BEC是否全等.解:D,E与路段AB的距离相等.理由:因为点C是AB的中点,所以CA=CB,又CD=CE,DA⊥AB,EB⊥AB,所以Rt△ADC≌Rt△BEC(Hl).所以DA=EB.即D,E与路段AB的距离相等.例6.如图8是用两根拉线固定电线杆的示意图,其中,两根拉线的长AB=AC,BD和DC的长相等吗?为什么?分析:因为电线杆和地面垂直,它和两根拉线分别构成两个直角三角形,所以通过全等三角形的知识解决.解:BD和DC相等.因为AD⊥BC,所以∠ADB=∠ADC=90°,又AB=AC,AD=AD,所以Rt△ABD≌Rt△ACD(HL).所以BD=DC.例7.如图9,海岛上有A,B两个观测点,点B在点A 的正东方,海岛C在观测点A的正北方,海岛D在观测点B 图7图8图9的正北方,从观测点A看海岛C、D的视角∠CAD与从观测点B看海岛C、D 的视角∠CBD相等,那么海岛C、D到观测点A、B所在海岸的距离相等吗?为什么?分析:本题是一道和三角形全等有关的实际问题,要看海岛C、D到海岸AB的距离是否相等,则要看△ABC与△BAD是否全等.解:海岛C、D到观测点A、B所在海岸的距离相等.理由:由已知得∠CAB=∠DBA=90°,又∠CAD=∠CBD,所以∠DAB=∠CBA,在Rt△ABC和Rt△BAD中,∠CAB=∠DBA,AB=BA,∠CBA=∠DAB,所以△ABC≌△BAD(ASA),所以CA=DB,即海岛C、D到观测点A、B所在海岸的距离相等.。
全等三角形实际中的例子
全等三角形实际中的例子全等三角形是指具有相同的三个角和相等的三个边的三角形。
在实际生活中,我们可以找到很多与全等三角形相关的例子。
下面列举了十个例子来说明全等三角形的应用。
一、地图上的全等三角形在地理学中,地图上的三角形可以用来测量地球上的距离和角度。
当我们在地图上绘制三角形时,可以使用全等三角形来测量无法直接测量的距离和角度。
二、建筑物的设计在建筑设计中,全等三角形经常被用来保持建筑物的对称性和比例。
例如,在设计一座大型建筑物时,可以使用全等三角形来确定建筑物的比例和比例关系,从而保持建筑物的整体美观和稳定性。
三、裁剪布料在裁剪布料时,可以使用全等三角形来确保裁剪的布料均匀且正确。
通过使用全等三角形的性质,可以将布料正确地对齐,并确保裁剪的布料具有相同的形状和大小。
四、航海导航在航海导航中,全等三角形可以用来测量船只的位置和航向。
通过测量观测到的角度和距离,可以绘制全等三角形来确定船只的位置和目标位置的距离。
五、地面测量在土地测量中,全等三角形可以用来测量地面的高度和距离。
通过观测到的角度和已知的距离,可以绘制全等三角形来计算地面的高度和距离。
六、照相机的焦距调节在摄影中,照相机的焦距调节可以使用全等三角形来确定。
通过观察到的物体大小和距离,可以绘制全等三角形来计算出焦距的调节量。
七、地图的放大和缩小在地图制作中,全等三角形可以用来放大或缩小地图的比例。
通过观察到的角度和距离,可以绘制全等三角形来确定地图的比例尺。
八、建筑物的测量和绘制在建筑测量和绘制中,全等三角形可以用来测量建筑物的高度和距离。
通过观察到的角度和已知的距离,可以绘制全等三角形来计算建筑物的高度和距离。
九、地质勘探在地质勘探中,全等三角形可以用来确定地下的岩层和地质结构。
通过测量地面上的角度和距离,可以绘制全等三角形来计算地下的岩层和地质结构的位置和形状。
十、航空导航在航空导航中,全等三角形可以用来确定飞机的位置和航向。
通过测量观测到的角度和距离,可以绘制全等三角形来计算飞机的位置和目标位置的距离。
边角边判定全等三角形的实际应用
边角边判定全等三角形的实际应用在生活中,几乎每天都有需要用到数学知识的时刻,虽然很多人一提到数学就感觉要头疼,但今天我们来聊聊一个简单又有趣的话题,那就是“边角边判定全等三角形”。
这个听起来复杂的概念,其实就像是三角形的秘密武器,能帮我们解决许多实际问题。
想象一下,你和朋友们在公园里野餐,突然发现你们的三明治大小不一,想要把它们分得均匀点。
这里就有用了,假如你们把三明治切成三角形,利用边角边判定,能确保每个人的三明治都是相同的。
这听起来是不是挺不错的?只要测量一下三角形的边长和角度,就能判断出它们是否全等。
也就是说,只要两组三角形的两条边和夹着的一个角相等,就能确认这两个三角形一模一样,分的时候也能心里有数,大家都能吃得开开心心。
说到这里,有没有觉得数学也可以这么生活化呢?其实很多时候,数学不仅仅是在课本里的一堆公式,更是在我们的日常生活中不断显现。
比如说,你家里的照片框,如果你想把几幅照片摆放得整齐,那你就需要用到这种三角形的全等关系。
你可以测量照片框的对角线,如果两幅框的对角线和边长都一样,那你就可以放心地把它们放在一起,确保视觉效果非常和谐。
是不是感觉像是让家里变得更加美观的小技巧?再说说建筑设计。
想象一下,建筑师在设计一座大楼,必须确保所有的角度都精准。
如果他们忽略了这个“边角边”的原则,可能会导致建筑不稳,甚至危险。
这种情况下,边角边判定全等三角形就像是建筑师的超级助手,确保每一个细节都做到完美,真是让人佩服!无论是摩天大楼还是小小的鸟屋,都能通过这个原理来保证结构的牢固性。
我们在制作手工艺品的时候,也能用到这个原理。
比如说做一个三角形的纸鹤,只要你确保每个角和边都相等,那你折出来的纸鹤就是一模一样的,真是让人感到成就感满满。
试想一下,一排整齐的纸鹤飞在空中,岂不是美得不得了?这就是数学带给我们的乐趣和美感。
其实边角边判定全等三角形的应用还真不少,无论是在日常生活中还是在一些专业领域,都是一门值得深入研究的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专训1六种常见的实际应用名师点金:利用三角形全等解决实际问题的步骤:
(1)明确应用哪些知识来解决实际问题;(2)根据实际问题抽象出几何图形;
(3)结合图形和题意分析已知条件;(4)找到已知与未知的联系,寻求恰当的解决途径,并表述清楚.
利用三角形全等测量能到两端的距离
1.如图,为了测量出池塘两端A,B之间的距离,在地面上找到一点C,连接BC,AC,使∠ACB=90°,然后在BC的延长线上确定点D,使CD=BC,那么只要测量出AD的长度就得到了A,B两点之间的距离.你能说明其中的道理吗
(第1题)
利用三角形全等求两端的距离
2.【中考·宜昌】杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下,|
如图,AB∥OH∥CD,相邻两平行线间的距离相等.AC,BD相交于O,OD⊥CD垂足为D.已知AB=20米.请根据上述信息求标语CD的长度.
(第2题)
利用三角形全等测量物体的内径
3.如图,已知零件的外径为a,要求它的厚度x,动手制作一个简单的工具,利用三角形全等的知识,求出x.
(第3题)
利用三角形全等解决工程中的问题
4.如图,工人师傅要在墙壁的点O处用钻打孔,要使孔口从墙壁对面的点B处打开,墙壁厚35 cm,点B与点O的垂直距离AB长20 cm,在点O处作一直线平行于地面,再在直线上截取OC=35 cm,过点C作OC的垂线,在垂线上截取CD=20 cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从点B处打出,这是什么道理
`
(第4题)
利用三角形全等解决面积问题
5.育新中学校园内有一块直角三角形(Rt△ABC,∠BAC=90°)空地,如图所示,园艺师傅以角平分线AD为界,在其两侧分别种上了不同的花草,在△ABD区域内种植了一串红,在△ACD区域内种植了鸡冠花,并量得两直角边AB=20 m,AC=10 m,求两种花草的种植面积各是多少.
(第5题)
利用角平分线的判定和性质设计方案
6.如图,湖边的三条公路两两相交于A,B,C三点,现计划修建一个商品超市,要求这个超市到三条公路的距离相等,则可供选择的地方有多少处【导学号:】
(第6题)
答案
1.解:因为∠ACB=90°,
所以∠ACD=180°-∠ACB=90°.
在△ABC和△ADC中,
、
⎩⎪⎨⎪
⎧BC =DC ,∠ACB=∠ACD,AC =AC ,
所以△ABC≌△ADC (SAS ). 所以AB =AD. 2.解:∵AB∥DC, ∴∠ABO=∠CDO. 又∵DO⊥CD, ∴∠CDO=90°,
∴∠ABO=90°,即BO⊥AB, ∵相邻两平行线间的距离相等, ∴BO=DO.又∵∠AOB=∠COD, ∴△BOA≌△DOC.
{
∴CD=AB =20米.
(第3题)
3.解:可设计如图所示的工具,其中O 为AC ,BD 的中点. 在△AOB 和△COD 中, ⎩⎪⎨⎪
⎧AO =CO ,∠AOB=∠COD,BO =DO ,
所以△AOB≌△COD (SAS ).
所以AB =CD ,即CD 的长就是A ,B 间的距离. 因为AB =a -2x , 所以x =a -AB 2=a -CD 2.
4.解:在△AOB 和△COD 中,
!
⎩⎪⎨⎪
⎧OA =OC ,∠OAB=∠OCD=90°,AB =CD ,
所以△AOB≌△COD (SAS ). 所以∠AOB=∠COD.
又因为∠AOB+∠BOC=180°, 所以∠BOC+∠COD=180°,
即∠BOD=180°.所以D ,O ,B 三点在同一条直线上. 所以钻头沿着DO 的方向打孔,一定从点B 处打出. 5.解:由已知,AB =20 m ,AC =10 m .
在Rt △ABC 的边AB 上取点E ,使AE =AC =1
2AB.连接DE.
∵AD 是∠BAC 的平分线, ∴∠CAD=∠BAD.
~
又∵AD 是△ACD 和△AED 的公共边, ∴△ACD≌△AED (SAS ). ∴S △ACD =S △AED .
又易得S △AED =S △BED =1
2
S △ABD .
∴S △ACD =13S △ABC =16×20×10=1003 m 2
.
S △ABD =2003
m 2
.
答:一串红的种植面积是2003 m 2,鸡冠花的种植面积是1003 m 2
.
6.解:如图所示.
①作出△ABC 的两个内角的平分线,其交点为O 1; ②分别作出△ABC 外角平分线,其交点分别为O 2,O 3. 故满足条件的修建点有三处,即点O 1,O 2,O 3.
(第6题)
点拨:解题的关键是分情况讨论:分所选位置在三条公路所围三角形的内部和外部两种情况.本章角平分线的性质和判定定理尚未学到,但结合全等三角形的判定及性质,很容易理解角平分线的性质及判定定理.前后呼应相得益彰.。