磁盘阵列各种RAID原理、磁盘使用率
最全面的服务器的RAID详解
最全面的服务器的RAID详解磁盘阵列(Redundant Arrays of Independent Disks,RAID),全称独立磁盘冗余阵列。
磁盘阵列是由很多廉价的磁盘,组合成一个容量巨大的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能。
利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。
利用同位检查(ParityCheck)的观念,在数组中任意一个硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置入新硬盘中。
相同的数据存储在多个硬盘的不同的地方的方法。
通过把数据放在多个硬盘上(冗余),输入输出操作能以平衡的方式交叠,改良性能。
因为多个硬盘增加了平均故障间隔时间(MTBF),储存冗余数据也增加了容错。
分类:一是外接式磁盘阵列柜、二是内接式磁盘阵列卡,三是利用软件实现。
RAID实现的方式:RAID 0,RAID 1,RAID2,RAID 3,RAID 4,RAID 5,RAID 6,RAID 7,RAID 01,RAID 10,RAID50,RAID 53。
常见的有:RAID 0,RAID 1,RAID 5,RAID 6,RAID 01,RAID 10。
原理剖析:RAID 0:RAID 0又称为Stripe或Striping,中文称之为条带化存储,它代表了所有RAID级别中最高的存储性能。
原理:是把连续的数据分散到多个磁盘上存取,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求。
这种数据上的并行操作可以充分利用总线的带宽,显著提高磁盘整体存取性能。
磁盘空间= 磁盘总量= 100%需要的磁盘数≥2读写性能= 优秀= 磁盘个数(n)*I/O速度= n*100%块大小= 每次写入的块大小= 2的n次方= 一般为2~512KB优点:1、充分利用I/O总线性能使其带宽翻倍,读/写速度翻倍。
2、充分利用磁盘空间,利用率为100%。
缺点:1、不提供数据冗余。
磁盘阵列各种RAID原理磁盘使用率
磁盘阵列各种RAID原理磁盘使用率RAID(Redundant Array of Inexpensive Disks)是一种磁盘阵列,可以将多块普通的磁盘拼接在一起形成更高效、可靠的数据存储系统。
它可以通过将存储空间划分成若干块虚拟磁盘来提高磁盘访问性能。
存储空间划分的方式共分为9种,分别是RAID0,RAID1,RAID2,RAID3,RAID4,RAID5,RAID6,RAID7和RAID10,其中RAID 0、RAID 1、RAID 5和RAID 10是最常用的四种RAID级别。
RAID0是把多块磁盘组合成一个虚拟磁盘,通过分割、重组来提升数据的存取速度,这种RAID把多块磁盘拼接在一起形成一个虚拟磁盘,不提供数据冗余,磁盘使用率比较高,但是其可靠性较低。
RAID1是把多块相同容量的磁盘拼接在一起形成一个虚拟磁盘,不同的是,这种RAID方式采用镜像技术,每个磁盘上的数据都会与另一块磁盘上的数据完全相同,提供了更好的可靠性,磁盘使用率较低,只有一半的磁盘空间可以使用。
RAID5是一种磁盘阵列中比较常用的RAID级别,它将磁盘阵列中的磁盘分成两种,一般磁盘和校验磁盘,这样就可以在一个虚拟磁盘上存储大量数据,任一块磁盘出现问题时,系统可以通过校验磁盘上的冗余数据来恢复受损的数据,并且RAID5提供了比RAID1更高的数据存储空间,磁盘使用率也比RAID1更高。
磁盘阵列原理
磁盘阵列原理磁盘阵列(RAID)是一种通过将多个磁盘驱动器合并成一个逻辑单元来提供数据冗余和性能提升的技术。
磁盘阵列利用磁盘级别的冗余来提供数据的备份和恢复能力,并通过将数据分布在多个磁盘上来提高数据访问速度。
在本文中,我们将探讨磁盘阵列的原理以及它是如何工作的。
1. 磁盘阵列的概念和分类磁盘阵列是一种将多个独立的磁盘驱动器组合在一起,形成一个逻辑单元的技术。
根据不同的需求,磁盘阵列可以被划分为多个级别,常见的包括RAID 0、RAID 1、RAID 5、RAID 6等级别。
每个级别都有其特定的数据保护和性能特性。
2. RAID 0RAID 0将数据分块并分布到多个磁盘上,以提高数据的读写性能。
它通过在多个磁盘上同时读取和写入数据来实现并行访问。
然而,RAID 0没有冗余机制,一旦其中一个磁盘损坏,所有数据将会丢失。
3. RAID 1RAID 1通过将数据复制到多个磁盘上来提供冗余能力。
每个数据块都会被复制到两个或更多的磁盘上,以确保数据的完整性。
当其中一个磁盘发生故障时,系统可以从其他磁盘中恢复数据。
4. RAID 5RAID 5采用分布式奇偶校验的方式来提供冗余能力。
它将数据分块并分布到多个磁盘上,同时计算奇偶校验信息并存储在不同的磁盘上。
当其中一个磁盘损坏时,系统可以通过计算奇偶校验信息来恢复数据。
5. RAID 6RAID 6在RAID 5的基础上增加了第二个奇偶校验信息。
这意味着RAID 6可以容忍两个磁盘的故障,提供更高的数据可靠性。
6. 磁盘阵列的工作原理磁盘阵列通过控制器来管理和操作多个磁盘驱动器。
控制器负责将数据分块并分布到多个磁盘上,同时监测磁盘的状态。
当磁盘发生故障时,控制器可以根据不同的级别(如RAID 1、RAID 5等)来执行数据的恢复操作。
7. 磁盘阵列的优势和应用磁盘阵列提供了数据的冗余和性能提升能力,可以提高数据的可靠性和访问速度。
它广泛应用于服务器、存储系统、数据库等需要高可靠性和高性能的场景。
RAID的磁盘利用率
RAID的磁盘利用率。
你好,这个是是存储资料中的几种raid的磁盘利用率,请检视一下是否有错误,谢谢。
RAID级别可靠性读性能写性能最少硬盘数量硬盘利用率RAID 0 低高高 2 100% RAID 1 高低低 2 1/NRAID 5 较高高中 3 (N-1)/N RAID 6 较高高中 4 (N-2)/N RAID 10 高中中 4 M/NRAID 50 高高较高 6 (N-M)/N RAID 60 高高较高8 (N-M*2)/N 注:N为RAID组成员盘的个数,M为RAID组的子组数。
一般我们理解的RAID1是只有50%的磁盘利用率啊,可是为什么是N分之一呢?楼主给科普一下吧。
Raid1是镜像,一般情况都是双盘镜像,所以我们看到是50%。
但是也可以支持更多镜像,比如三盘、四盘镜像,所以这里写出来是1/NRAID (0+1):结合了RAID 0 和 RAID 1 —条块化读写的同时使用镜像操作。
RAID (0+1)允许多个硬盘损坏,因为它完全使用硬盘来实现资料备余。
如果有超过两个硬盘做RAID 1,系统会自动实现RAID (0+1)。
RAID技术的应用DAS --direct access storage device直接访问存储设备DAS是磁盘存储设备的术语,以前被用在大、中型机上。
使用在PC机上还包括硬盘设备DAS的最新形式是RAID。
“直接访问”指访问所有数据的时间是相同的。
NAS --Network Attached Storage 网络附加存储设备一种特殊目的的服务器,它具有嵌入式的软件系统,可以通过网络对个种的系统平台提供文件共享服务SAN --Storage Area Networks存储区域网一种高速的专用网络,用于建立服务器、磁盘阵列和磁带库之间的一种直接联接。
它如同扩展的存储器总线,将专用的集线器、交换器以及网关或桥路互相连接在一起。
SAN常使用光纤通道。
一个 SAN可以是本地的或者是远程的,也可以是共享的或者是专用的。
磁盘阵列(raid分类介绍)
磁盘阵列RAID 概念磁盘阵列(Redundant Arrays of Independent Disks,RAID),有“独立磁盘构成的具有冗余能力的阵列”之意。
磁盘阵列是由很多价格较便宜的磁盘,组合成一个容量巨大的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能。
利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。
[1]磁盘阵列还能利用同位检查(Parity Check)的观念,在数组中任意一个硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置入新硬盘中。
RAID级别1、RAID 0 最少磁盘数量:2Striped Disk Array without Fault Tolerance(没有容错设计的条带磁盘阵列)原理:RAID 0是最早出现的RAID模式,即Data Stripping数据分条技术。
RAID 0是组建磁盘阵列中最简单的一种形式,只需要2块以上的硬盘即可,成本低,可以提高整个磁盘的性能和吞吐量。
优点:极高的磁盘读写效率,没有效验所占的CPU资源,实现的成本低。
缺点:如果出现故障,无法进行任何补救。
没有冗余或错误修复能力,如果一个磁盘(物理)损坏,则所有的数据都无法使用。
用途:RAID 0一般只是在那些对数据安全性要求不高的情况下才被人们使用。
2、RAID 1 最少磁盘数量:2Mirroring and Duplexing (相互镜像)原理:RAID 1称为磁盘镜像,原理是把一个磁盘的数据镜像到另一个磁盘上,也就是说数据在写入一块磁盘的同时,会在另一块闲置的磁盘上生成镜像文件,在不影响性能情况下最大限度的保证系统的可靠性和可修复性上。
优点:理论上两倍的读取效率,系统中任何一对镜像盘中至少有一块磁盘可以使用,甚至可以在一半数量的硬盘出现问题时系统都可以正常运行,当一块硬盘失效时,系统会忽略该硬盘,转而使用剩余的镜像盘读写数据,具备很好的磁盘冗余能力。
缺点:对数据的写入性能下降,磁盘的利用率最高只能达到50%(使用两块盘的情况下),是所有RAID级别中最低的。
磁盘阵列的工作原理及应用
磁盘阵列的工作原理及应用什么是磁盘阵列?磁盘阵列是一种将多个磁盘组合起来的存储系统,可以提供更高的存储容量、更高的性能和更高的可靠性。
它是一种通过分布式数据存储的方式来提高磁盘系统性能和可靠性的技术。
磁盘阵列的工作原理磁盘阵列通过将多个独立的磁盘驱动器组合在一起,形成一个逻辑的存储单元,称为阵列。
这个阵列可以被操作系统视为一个单独的磁盘驱动器,从而简化了数据管理和存取操作。
磁盘阵列通常由控制器、磁盘驱动器和磁盘阵列的管理软件组成。
控制器是磁盘阵列的核心部分,负责管理和控制磁盘阵列的工作。
磁盘驱动器是存储数据的硬件设备,而磁盘阵列的管理软件则负责分配和管理磁盘阵列中的数据。
磁盘阵列采用一种称为“数据条带化”的技术来提高性能。
数据条带化是将数据划分为固定大小的条带,并将这些条带分散存储在磁盘阵列的不同磁盘驱动器中。
这样可以同时从多个磁盘驱动器中读取数据,从而提高读取性能。
此外,磁盘阵列还可以通过冗余数据存储来提高可靠性。
冗余数据存储是将数据的多个副本存储在不同的磁盘驱动器中,以便在某个磁盘驱动器发生故障时可以从其他磁盘驱动器中恢复数据。
磁盘阵列的应用磁盘阵列在存储系统中有着广泛的应用。
以下是一些磁盘阵列应用的常见场景:1.数据中心:磁盘阵列可以用于构建大规模的数据中心存储系统,提供高容量和高性能的存储服务,以满足大规模数据处理和存储的需求。
2.企业存储:磁盘阵列可以用于构建企业级存储系统,为企业提供高可靠性和高性能的存储服务,以支持企业的业务运营和数据管理。
3.多媒体存储:磁盘阵列可以用于存储和管理大型多媒体文件,如音频、视频和图像等。
通过多个磁盘驱动器的并行工作,可以提供更高的数据传输速度和更快的文件访问速度。
4.数据备份与恢复:磁盘阵列可以用于构建备份和恢复系统,可以将数据备份到多个磁盘驱动器中,以提高数据的安全性和可靠性。
在数据丢失或系统故障时,可以从备份磁盘中快速恢复数据。
5.虚拟化存储:磁盘阵列可以与虚拟化技术结合使用,提供给虚拟机高性能和高可靠性的存储服务。
磁盘阵列技术
磁盘阵列技术磁盘阵列技术磁盘阵列技术是一种通过将多个硬盘组合在一起,形成一个逻辑上的单一存储设备的技术。
它能够提供更高的存储容量、更快的数据读写速度和更高的数据可靠性。
本文将从以下几个方面详细介绍磁盘阵列技术。
一、磁盘阵列基础知识1. 磁盘阵列定义磁盘阵列指的是将多个硬盘组合成一个逻辑上的单一存储设备,以提供更高的存储容量、更快的数据读写速度和更高的数据可靠性。
2. 磁盘阵列类型常见的磁盘阵列类型包括RAID 0、RAID 1、RAID 5、RAID 6等。
其中,RAID 0可以提供较高的读写速度,但没有冗余机制;RAID 1可以提供较高的数据可靠性,但存储容量较低;RAID 5和RAID 6则兼具了读写速度和数据可靠性,并且能够实现部分硬盘故障时仍然能够正常运行。
3. 磁盘阵列控制器磁盘阵列控制器是磁盘阵列的核心组成部分,它负责管理和控制硬盘的读写操作,并提供RAID级别的数据保护功能。
磁盘阵列控制器可以分为软件RAID和硬件RAID两种类型,其中硬件RAID通常性能更好、可靠性更高。
二、磁盘阵列实现原理1. RAID 0实现原理RAID 0通过将数据块分散存储在多个硬盘上,从而实现读写速度的提升。
例如,如果有两个硬盘A和B,那么一个10MB的文件可以被分成两个5MB的块,分别存储在A和B上。
当需要读取这个文件时,两个硬盘可以同时进行读取操作,从而实现读取速度的加快。
2. RAID 1实现原理RAID 1通过将数据同时存储在多个硬盘上,从而实现数据冗余备份。
例如,如果有两个硬盘A和B,在RAID 1中它们会被视为一个逻辑上的单一存储设备,并且所有数据都会被同时写入到A和B中。
当其中一个硬盘出现故障时,另一个硬盘仍然可以继续工作,从而保证数据的可靠性。
3. RAID 5实现原理RAID 5通过将数据块分散存储在多个硬盘上,并使用奇偶校验码来实现数据冗余备份。
例如,如果有三个硬盘A、B和C,在RAID 5中它们会被视为一个逻辑上的单一存储设备,并且所有数据都会被分成多个块,分别存储在A、B和C中。
RAID的级别和原理
RAID的级别和原理
RAID(Redundant Array of Independent Disks,独立磁盘阵列)是
一种在两台甚至更多的服务器上组合逻辑磁盘的一种存储技术,它可以给
存储系统带来高可靠性和高性能。
它也是一种可以实现各种磁盘阵列虚拟化,有效提高存储性能和可靠性的技术。
RAID级别有许多,它们的组织方式和功能也不同。
具体来说,RAID0,RAID1,RAID5,RAID6,RAID10,RAID50和RAID60均为非常常见的RAID
级别。
RAID0,也称为快速存储池或者磁盘阵列,是RAID特有的级别,其基
本原理是将多块磁盘分割成几块虚拟磁盘,使得多个物理磁盘的性能可以
叠加达到更高的系统性能,并且不需要添加额外的比较开销。
RAID0不支
持纠错,任何一块物理磁盘损坏则导致所有的数据全部丢失。
RAID1由两块或多块磁盘组成,使用两个磁盘镜像来实现高可用性,
可以防止任何单块磁盘故障而造成的数据丢失。
然而,RAID1的缺点在于,它没有第三块磁盘防止数据丢失,当两块磁盘都出现故障的时候,会导致
数据的全部丢失。
RAID5是以软件RAID磁盘阵列的方式提高容量和性能的磁盘阵列技术,其原理是使用特殊的方式将多块物理磁盘逻辑联结为一个虚拟磁盘,
并在这些物理磁盘上创建一个复制的冗余数据块用于错误校正。
磁盘阵列常用RAID方案速度及数据对比
磁盘阵列常用RAID方案速度及数据对比磁盘阵列常用RAID方案速度及数据对比RAID也称为“磁盘阵列”,它将多个硬盘用某种逻辑方式联系起来,作为逻辑上的一个硬盘来使用,是逻辑上,不是物理上,请分清楚。
简而言之,多个硬盘当一个硬盘使用,提升N倍于单个硬盘的速度。
只列举常用RAID方案RAID 模式下磁盘空间的使用,举例如下:RAID的优点1. 传输速率高。
在部分RAID模式中,可以让很多磁盘驱动器同时传输数据,而这些磁盘驱动器在逻辑上又是一个磁盘驱动器,所以使用RAID可以达到单个的磁盘驱动器几倍的速率。
因为CPU的速度增长很快,而磁盘驱动器的数据传输速率无法大幅提高,所以需要有一种方案解决二者之间的矛盾。
2. 更高的安全性。
相较于普通磁盘驱动器很多RAID模式都提供了多种数据修复功能,当RAID中的某一磁盘驱动器出现严重故障无法使用时,可以通过RAID中的其他磁盘驱动器来恢复此驱动器中的数据,而普通磁盘驱动器无法实现,这是使用RAID的第二个原因。
RAID 0的优缺点RAID 0的缺点是不提供数据冗余,因此一旦用户数据损坏,损坏的数据将无法得到恢复。
RAID0运行时只要其中任一块硬盘出现问题就会导致整个数据的故障。
一般不建议企业用户单独使用RAID 0具有的特点,使其特别适用于对性能要求较高,而对数据安全不太在乎的领域,如图形工作站等。
对于个人用户,RAID 0也是提高硬盘存储性能的绝佳选择。
RAID 1简介RAID 1磁盘阵列级,是一种镜像磁盘阵列,其原理就是将一块硬盘的数据以相同位置指向另一块硬盘的位置。
RAID 1磁盘阵列又称为Mirror或Mirroring(镜像),因为它就是将一块硬盘的内容完全复制到另一块硬盘上。
当读取数据时,系统先从源盘读取数据,如果读取数据成功,则系统不去管备份盘上的数据;如果读取源盘数据失败,则系统自动转而读取备份盘上的数据,不会造成用户工作任务的中断。
当然,我们应当及时地更换损坏的硬盘并利用备份数据重新建立Mirror,避免备份盘在发生损坏时,造成不可挽回的数据损失。
简述raid0,raid1,raid5,raid10的工作原理及特点
简述raid0,raid1,raid5,raid10的⼯作原理及特点RAID 0 ⽀持1块盘到多块盘,容量是所有盘之和
RAID1 只⽀持2块盘,容量损失⼀块盘
RAID 5最少三块盘,不管硬盘数量多少,只损失⼀块容量
RAID 10最少4块盘,必须偶数硬盘,不管硬盘多少,都损失⼀半的容量,不⽀持虚拟磁盘
RAID级别最少磁盘要求关键优点关键缺点实际应⽤场景
RAID01块读写速度很快没有任何冗余MySQL slave,集
群节点RS
RAID1只能2块100%冗余,镜像读写性能⼀般,成
本⾼单独的,数据重要,且不能宕机的业务监控系统盘。
RAID53块具备⼀定性能和冗
余,可以坏⼀块
盘,读性能不错写⼊性能不⾼⼀般的业务都可以
⽤
RAID104块读写速度很
快,100%冗余成本⾼性能和冗余要求很
好的业务数据库主
库(master)和存
储的主节点。
磁盘阵列基本原理
磁盘阵列基本原理磁盘阵列(RAID)是一种通过将多个磁盘驱动器组合在一起来提供更高性能、更大存储容量和更高容错能力的技术。
它通过将数据分散存储在多个磁盘上,以实现更快的数据读写速度和更好的数据冗余保护。
RAID技术有多种级别,每种级别都有其独特的数据分布和冗余机制。
下面将介绍几种常见的RAID级别及其基本原理。
1. RAID 0:RAID 0是一种条带化(striping)技术,它将数据分散存储在多个磁盘上,从而提高数据读写速度。
数据被分成块,并按顺序写入不同的磁盘。
当读取数据时,多个磁盘可以同时工作,从而提供更高的吞吐量。
然而,RAID 0没有冗余机制,如果其中一个磁盘故障,所有数据都将丢失。
2. RAID 1:RAID 1是一种镜像(mirroring)技术,它将数据同时写入两个磁盘,从而实现数据的冗余备份。
当其中一个磁盘故障时,另一个磁盘仍然可以提供数据访问。
RAID 1提供了很高的数据可靠性,但存储容量利用率较低,因为每一个数据都需要在两个磁盘上存储一份。
3. RAID 5:RAID 5是一种条带化和分布式奇偶校验(distributed parity)技术的组合。
它将数据和奇偶校验信息分别存储在多个磁盘上,以提供更高的数据读写速度和冗余保护。
奇偶校验信息用于恢复故障磁盘上的数据。
RAID 5至少需要三个磁盘,其中一个磁盘用于存储奇偶校验信息。
当其中一个磁盘故障时,系统可以通过奇偶校验信息计算出丢失的数据。
4. RAID 6:RAID 6是在RAID 5的基础上增加了第二个奇偶校验信息。
它需要至少四个磁盘,并可以容忍两个磁盘的故障。
RAID 6提供了更高的容错能力,但相应地增加了存储开消。
5. RAID 10:RAID 10是RAID 1和RAID 0的组合。
它将数据分散存储在多个磁盘上,并通过镜像技术实现数据的冗余备份。
RAID 10提供了更高的数据读写速度和数据可靠性,但需要至少四个磁盘,且存储容量利用率较低。
磁盘阵列方案
磁盘阵列方案简介磁盘阵列(RAID)是一种将多个磁盘组合在一起,形成一个逻辑驱动器的技术。
它通过将数据分散存储在多个磁盘上,提高了数据的可靠性和性能。
在本文中,我们将介绍磁盘阵列的基本原理,并讨论几种常见的磁盘阵列方案。
磁盘阵列的原理磁盘阵列基于两个基本原理:数据分散(striping)和冗余(redundancy)。
数据分散是指将数据分成多个块,然后将这些数据块存储在多个磁盘上。
每个磁盘都存储一部分数据,这样可以提高读写数据的并发性和性能。
冗余是指将数据的冗余副本存储在不同的磁盘上。
冗余数据可以用于数据恢复和提高数据的可靠性。
当一个磁盘发生故障时,系统可以使用冗余数据来恢复丢失的数据。
常见的磁盘阵列方案1. RAID 0RAID 0是最基本的磁盘阵列方案,它只实现了数据分散功能,没有冗余。
RAID 0将数据块分散存储在多个磁盘上,以提高读写性能。
然而,由于没有冗余,任何一个磁盘的故障都会导致数据的完全丢失。
因此,RAID 0不适用于需要高可靠性的应用。
2. RAID 1RAID 1是一种基于冗余的磁盘阵列方案。
它将数据的完全副本存储在另一个磁盘上。
当一个磁盘发生故障时,系统可以使用冗余数据来恢复丢失的数据。
RAID 1提供了较高的数据可靠性,但读写性能较低,因为需要同时写入两个磁盘。
3. RAID 5RAID 5是一种基于数据分散和冗余的磁盘阵列方案。
它将数据分成多个块,并将每个块的校验信息存储在不同的磁盘上。
当一个磁盘发生故障时,系统可以使用校验信息和其他磁盘上的数据来恢复丢失的数据。
RAID 5提供了较高的数据可靠性和读写性能,并且可以容忍单个磁盘的故障。
4. RAID 6RAID 6是一种更高级的磁盘阵列方案,它提供了比RAID 5更高的数据可靠性。
RAID 6使用两个磁盘来存储数据的校验信息,这样可以容忍两个磁盘的故障。
RAID 6可以提供更高的数据可靠性,但写入性能相对较低。
5. RAID 10RAID 10是一种组合了RAID 1和RAID0的磁盘阵列方案。
raid的原理和应用
RAID的原理和应用1. 什么是RAIDRAID(冗余磁盘阵列,Redundant Array of Independent Disks)是一种通过将多个独立的物理硬盘组合起来来提供数据冗余、容错和性能提升的技术。
RAID技术通常用于服务器和数据存储系统,目的是提高数据的可靠性和性能。
2. RAID的工作原理RAID通过在多个磁盘之间分配数据和校验位,实现了冗余、容错和性能提升的功能。
下面是几种常见的RAID级别以及它们的工作原理:2.1 RAID 0RAID 0通过将数据分散存储在多个磁盘上,以提高数据的读写性能。
数据被分成块,并且每个块交替写入不同的磁盘上。
读取操作也会同时从多个磁盘中读取数据,以提高读取速度。
2.2 RAID 1RAID 1通过将数据在多个磁盘上复制,提供了数据的冗余和容错能力。
每个磁盘中的数据完全相同,当一块磁盘发生故障时,其他磁盘仍然可以继续提供数据访问。
2.3 RAID 5RAID 5通过将数据和校验位分散存储在多个磁盘上,提供了数据的冗余和容错能力。
读写操作会涉及多个磁盘,可以提高性能。
当一块磁盘发生故障时,可以通过校验位重新计算丢失的数据。
2.4 RAID 10RAID 10是RAID 1和RAID 0的组合,提供了数据的冗余和性能提升。
RAID 10将数据在多组磁盘上进行复制,并通过RAID 0将各组磁盘连接起来。
这样即能提供高可靠性的数据冗余,又能实现高性能的读写操作。
3. RAID的应用RAID技术在许多领域都得到广泛应用,特别是在需要大容量、高性能和可靠性的数据存储系统中。
以下是几个常见的RAID应用场景:3.1 服务器RAID通常用于服务器中的数据存储系统,以提高数据的可靠性和性能。
服务器上的RAID可以根据需求选择不同的RAID级别,从而达到数据保护和性能优化的目的。
3.2 数据中心在数据中心中,RAID被广泛应用于大规模的数据存储系统。
通过使用RAID,数据中心可以获得容错能力,确保数据的可用性和持久性。
raid1raid2raid5raid6raid10如何选择使用?
raid1raid2raid5raid6raid10如何选择使⽤?我们在做监控项⽬存储时,经常会⽤到磁盘阵列,什么是磁盘阵列呢?那为什么要做磁盘阵列呢?raid1 raid2 raid5 raid6 raid10各有什么优势?本期我们来看下。
⼀、什么是Raid?它有什么作⽤?1、什么是Raidraid就是冗余磁盘阵列,把多个硬磁盘驱动器按照⼀定的要求使整个磁盘阵列由阵列控制器管理组成⼀个储存系统。
最开始研制⽬的是为了利⽤多个廉价的⼩磁盘来替代昂贵的⼤磁盘,以此来降低成本。
⽽随着硬盘技术的发展,如今的磁盘阵列采⽤了冗余信息的⽅式,使得其具有数据保护的功能。
2、那么服务器为啥要做磁盘阵列呢?主要有两个作⽤:提供容错功能普通的磁盘驱动器是⽆法提供容错功能的,⽽磁盘阵列可以通过数据校验提供容错功能,服务器会将数据写⼊多个磁盘,如果某个磁盘发⽣故障时,此时仍能保证信息的可⽤性,重要数据不会丢失,也不会耽误服务器的正常运转。
提⾼传输速率磁盘阵列将多个磁盘组成⼀个阵列,当做⼀个单⼀的磁盘使⽤,把数据已分段的形式存储到不同的硬盘之中,发⽣数据存取变动时,阵列中的相关磁盘⼀起⼯作,这就可以⼤幅的降低数据存储的时间,同时还能拥有更佳的空间和使⽤率。
⼆、常⽤Raid的优缺点Raid 0:⼀块硬盘或者以上就可做raid0优势:数据读取写⼊最快,最⼤优势提⾼硬盘容量,⽐如3块80G的硬盘做raid0,可⽤总容量为240G,也就是利⽤率是100%,速度也⽐较快。
缺点:⽆冗余能⼒,⼀块硬盘损坏,数据全⽆。
建议:做raid0 可以提供更好的容量以及性能,推荐对数据安全性要求不⾼的项⽬使⽤。
Raid 1:⾄少2块硬盘可做raid1优势:镜像,数据安全强,⼀块正常运⾏,另外⼀块镜像备份数据,保障数据的安全。
⼀块坏了,另外⼀块硬盘也有完整的数据,保障运⾏。
所以这种安全性⽐较性最⾼。
缺点:性能提⽰不明显,做raid1之后硬盘使⽤率为50%,有些费硬盘。
raid5磁盘利用率计算方式
raid5磁盘利用率计算方式Raid5磁盘利用率是指在Raid5存储方案中,磁盘的有效利用率。
Raid5是一种磁盘冗余阵列技术,通过将数据和校验信息分散存储在多个磁盘上,实现数据的冗余备份和提高存储性能。
在Raid5中,磁盘利用率是衡量存储系统效率的重要指标之一。
了解Raid5的存储原理对于计算磁盘利用率非常重要。
Raid5最少需要三块磁盘,其中两块用于存储数据,另一块用于存储校验信息。
当有数据需要写入时,Raid5会将数据和校验信息分别划分为多个数据块,并依次存储在不同的磁盘上。
这样,在任何一块磁盘发生故障时,系统都可以利用其他磁盘上的数据和校验信息进行数据的恢复。
在计算Raid5磁盘利用率时,需要考虑到存储系统中的各个部分。
首先是数据盘的利用率,即实际存储数据的磁盘所占的比例。
在Raid5中,数据盘的利用率为磁盘总数减去一个用于存储校验信息的磁盘后的比例。
例如,如果Raid5存储方案中有5块磁盘,其中一块用于存储校验信息,那么数据盘的利用率为4/5,约为80%。
其次是校验盘的利用率,即存储校验信息的磁盘所占的比例。
在Raid5中,校验盘的利用率为1/总磁盘数。
与数据盘相反,在Raid5中,校验盘的利用率较低。
还需要考虑到Raid5的容错能力对磁盘利用率的影响。
Raid5通过数据的分散存储和校验信息的冗余备份,实现了对磁盘故障的容错能力。
当一块磁盘发生故障时,系统可以利用其他磁盘上的数据和校验信息进行数据的恢复。
然而,这种容错能力也会影响磁盘的利用率。
在Raid5中,每个数据块都需要存储在不同的磁盘上,因此,存储相同数据的磁盘数目就是存储系统的冗余度。
冗余度越高,容错能力越强,但磁盘利用率也会降低。
Raid5磁盘利用率是综合考虑数据盘的利用率、校验盘的利用率以及容错能力对磁盘利用率的影响而得出的结果。
在实际应用中,可以根据存储需求和容错要求来选择合适的Raid5存储方案,以达到最佳的磁盘利用率。
RAID磁盘利用率详解
RAID磁盘利用率详解一.RAID定义RAID(Redundant Array of Independent Disk 独立冗余磁盘阵列)技术是加州大学伯克利分校1987年提出,最初是为了组合小的廉价磁盘来代替大的昂贵磁盘,同时希望磁盘失效时不会使对数据的访问受损失而开发出一定水平的数据保护技术。
RAID就是一种由多块廉价磁盘构成的冗余阵列,在操作系统下是作为一个独立的大型存储设备出现。
RAID可以充分发挥出多块硬盘的优势,可以提升硬盘速度,增大容量,提供容错功能够确保数据安全性,易于管理的优点,在任何一块硬盘出现问题的情况下都可以继续工作,不会受到损坏硬盘的影响。
二、RAID的几种工作模式(仅讨论RAID0,RAID1,RAID5,RAID10这四种,这四种比较典型)1、RAID0 (又称为Stripe或Striping--分条)即Data Stripping数据分条技术。
RAID 0可以把多块硬盘连成一个容量更大的硬盘群,可以提高磁盘的性能和吞吐量。
RAID 0没有冗余或错误修复能力,成本低,要求至少两个磁盘,一般只是在那些对数据安全性要求不高的情况下才被使用。
特点:RAID 0的工作方式:图1如图1所示:系统向三个磁盘组成的逻辑硬盘(RADI 0 磁盘组)发出的I/O数据请求被转化为3项操作,其中的每一项操作都对应于一块物理硬盘。
我们从图中可以清楚的看到通过建立RAID 0,原先顺序的数据请求被分散到所有的三块硬盘中同时执行。
从理论上讲,三块硬盘的并行操作使同一时间内磁盘读写速度提升了3倍。
但由于总线带宽等多种因素的影响,实际的提升速率肯定会低于理论值,但是,大量数据并行传输与串行传输比较,提速效果显著显然毋庸置疑。
RAID 0的缺点是不提供数据冗余,因此一旦用户数据损坏,损坏的数据将无法得到恢复。
RAID 0具有的特点,使其特别适用于对性能要求较高,而对数据安全不太在乎的领域,如图形工作站等。
各种Raid区别与解释
附图参考:RAID 0又称为Stripe或Striping,它代表了所有RAID级别中最高的存储性能。
RAID 0提高存储性能的原理是把连续的数据分散到多个磁盘上存取,这样,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求。
这种数据上的并行操作可以充分利用总线的带宽,显著提高磁盘整体存取性能。
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。
RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。
由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。
同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mirror虽不能提高存储性能,但由于其具有的高数据安全性,使其尤其适用于存放重要数据,如服务器和数据库存储等领域。
RAID 1+0是先镜射再分区数据。
是将所有硬盘分为两组,视为是RAID 0的最低组合,然后将这两组各自视为RAID 1运作。
RAID 1+0有着不错的读取速度,而且拥有比RAID 0更高的数据保护性。
RAID 0+1则是跟RAID 1+0的程序相反,是先分区再将数据镜射到两组硬盘。
它将所有的硬盘分为两组,变成RAID 1的最低组合,而将两组硬盘各自视为RAID 0运作。
RAID 0+1比起RAID 1+0有着更快的读写速度,不过也多了一些会让整个硬盘组停止运转的机率;因为只要同一组的硬盘全部损毁,RAID 0+1就会停止运作,而RAID 1+0则可以在牺牲RAID 0的优势下正常运作。
RAID 10/01巧妙的利用了RAID 0的速度以及RAID 1的保护两种特性,不过它的缺点是需要的硬盘数较多,因为至少必须拥有四个以上的偶数硬盘才能使用。
吞吐量与IOPS阵列的瓶颈主要体现在2个方面,吞吐量与IOPS。
Raid0、Raid1、Raid0+1、Raid3和Raid5几种磁盘阵列区别
Raid0、Raid1、Raid0+1、Raid3和Raid5几种磁盘阵列区别Raid0 :最少需要两块盘,没用冗余数据,不做备份,任何一块磁盘损坏都无法运行。
n块磁盘(同类型)的阵列理论上读写速度是单块磁盘的n倍(实际达不到),风险性也是单一n倍(实际更高),是磁盘阵列中存储性能最好的。
适用于安全性不高,要求比较高性能的图形工作站或者个人站。
Raid1:至少需要两块盘,磁盘数量是2的n倍,每一块磁盘要有对应的备份盘,利用率是50%,只要有一对磁盘没有损坏就可以正常使用。
n组磁盘(2n块同类型磁盘)的阵列理论上读取速度是单块磁盘的n倍(实际达不到),风险性是单一磁盘的n分之一(实际更低)。
换盘后需要长时间的镜像同步,不影响外界访问,但整个系统性能下降。
磁盘控制器负载比较大。
适用于安全性较高,且能较快恢复数据的场合。
Raid0+1:至少需要四块盘,磁盘数量也是2的n倍。
既有数据镜像备份,也能保证较高的读写速度。
成本比较大。
Raid3:至少需要3块盘(2块盘没有校验的意义)。
将数据存放在n+1块盘上,有效空间是n块盘的总和,最后一块存储校验信息。
数据被分割存储在n块盘上,任一数据盘出现问题,可由其他数据盘通过校正监测恢复数据(可以带伤工作),换数据盘需要重新恢复完整的校验容错信息。
对阵列写入时会重写校验盘的内容,对校验盘的负载较大,读写速度相较于Raid0较慢,适用于读取多而写入少的应用环境,比如数据库和web服务器。
使用容错算法和分块的大小决定了Raid3在通常情况下用于大文件且安全性要求较高的应用,比如视频编辑、硬盘播出机、大型数据库等。
Raid5:至少需要3块盘,读取速度接近Raid0,但是安全性更高。
安全性上接近Raid1,但是磁盘的利用率更高。
可以认为是Raid0和Raid1的一个折中方案。
只允许有一块盘出错,可以通过另外多块盘来计算出故障盘的数据,故障之后必须尽快更换。
比Raid0+1的磁盘利用率高,是目前比较常用的一种方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁盘阵列RAID原理、种类及性能优缺点对比磁盘阵列(Redundant Arrays of Independent Disks,RAID)1. 存储的数据一定分片;2. 分基于软件的软RAID(如mdadm)和基于硬件的硬RAID(如RAID卡);3. RAID卡如同网卡一样有集成板载的也有独立的(PCI-e),一般独立RAID卡性能相对较好,淘宝一搜便可看到他们的原形;4. 现在基本上服务器都原生硬件支持几种常用的RAID;5. 当然还有更加高大上的专用于存储的磁盘阵列柜产品,有专用存储技术,规格有如12/24/48盘一柜等,盘可选机械/固态,3.5/2.5寸等。
近来想建立一个私有云系统,涉及到安装使用一台网络存储服务器。
对于服务器中硬盘的连接,选用哪种RAID模式能准确满足需求收集了资料,简单整理后记录如下:一、RAID模式优缺点的简要介绍目前被运用较多的RAID模式其优缺点大致是这样的:1、RAID0模式优点:在RAID 0状态下,存储数据被分割成两部分,分别存储在两块硬盘上,此时移动硬盘的理论存储速度是单块硬盘的2倍,实际容量等于两块硬盘中较小一块硬盘的容量的2倍。
缺点:任何一块硬盘发生故障,整个RAID上的数据将不可恢复。
备注:存储高清电影比较适合。
2、RAID1模式优点:此模式下,两块硬盘互为镜像。
当一个硬盘受损时,换上一块全新硬盘(大于或等于原硬盘容量)替代原硬盘即可自动恢复资料和继续使用,移动硬盘的实际容量等于较小一块硬盘的容量,存储速度与单块硬盘相同。
RAID 1的优势在于任何一块硬盘出现故障是,所存储的数据都不会丢失。
缺点:该模式可使用的硬盘实际容量比较小,仅仅为两颗硬盘中最小硬盘的容量。
备注:非常重要的资料,如数据库,个人资料,是万无一失的存储方案。
3、RAID 0+1模式RAID 0+1是磁盘分段及镜像的结合,采用2组RAID0的磁盘阵列互为镜像,它们之间又成为一个RAID1的阵列。
硬盘使用率只有50%,但是提供最佳的速度及可靠度。
4、RAID 3模式RAID3是把数据分成多个“块”,按照一定的容错算法,存放在N+1个硬盘上,实际数据占用的有效空间为N个硬盘的空间总和,而第N+1个硬盘存储的数据是校验容错信息,当这N+1个硬盘中的其中一个硬盘出现故障时,从其它N个硬盘中的数据也可以恢复原始数据。
5、RAID 5模式RAID5不对存储的数据进行备份,而是把数据和相对应的奇偶校验信息存储到组成RAID5的各个磁盘上,并且奇偶校验信息和相对应的数据分别存储于不同的磁盘上。
当RAID5的一个磁盘数据发生损坏后,利用剩下的数据和相应的奇偶校验信息去恢复被损坏的数据。
6、RAID 10模式RAID10最少需要4块硬盘才能完成。
把2块硬盘组成一个RAID1,然后两组RAID1组成一个RAID0。
虽然RAID10方案造成了50%的磁盘浪费,但是它提供了200%的速度和单磁盘损坏的数据安全性。
二、另外三种硬件快速硬件设置模式简介在收集资料时看到有的硬件设备提供快速磁盘模式设置,也很方便大家的使用,具体情况如下:1、Clone模式克隆模式,磁盘全部数据一样,以最小硬盘的为准。
2、Large模式硬盘容量简单相加,将几个硬盘变成一个硬盘,容量为几个硬盘容量之和,此模式下可以获得最大的硬盘空间。
3、Normal模式硬盘分别处于正常、独立的状态,可以分别独立的写入或读取资料,能使用的实际容量分别为4个硬盘的容量。
如果其中一个硬盘受损,其他几个硬盘不会受影响。
三、RAID使用简明注意事项★使用前请先备份硬盘的资料,一旦进行RAID设定或是变更RAID模式,将会清除硬盘里的所有资料,以及无法恢复;★建立RAID时,建议使用相同品牌、型号和容量的硬盘,以确保性能和稳定;★请勿随意更换或取出硬盘,如果取出了硬盘,请记下硬盘放入两个仓位的顺序不得更改,以及请勿只插入某一块硬盘使用,以避免造成资料损坏或丢失;★如果旧硬盘曾经在RAID模式下使用,请先进清除硬盘RAID信息,让硬盘回复至出厂状态,以免RAID建立失败;★RAID0模式下,其中一个硬盘损坏时,其它硬盘所有资料都将丢失;★RAID1模式下,如果某一块硬盘受损,可以用一块大于或等于受损硬盘容量的新硬盘替换坏硬盘然后开机即可自动恢复和修复资料以及RAID模式。
此过程需要一定时间,请耐心等待四、细数RAID模式1、概念磁盘阵列(Redundant Arrays of Inexpensive Disks,RAID),有“价格便宜且多余的磁盘阵列”之意。
原理是利用数组方式来作磁盘组,配合数据分散排列的设计,提升数据的安全性。
磁盘阵列是由很多便宜、容量较小、稳定性较高、速度较慢磁盘,组合成一个大型的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能。
同时利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。
磁盘阵列还能利用同位检查(Parity Check)的观念,在数组中任一颗硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置入新硬盘中。
2、规范RAID技术主要包含RAID 0~RAID 50等数个规范,它们的侧重点各不相同,常见的规范有如下几种:RAID 0:RAID 0连续以位或字节为单位分割数据,并行读/写于多个磁盘上,因此具有很高的数据传输率,但它没有数据冗余,因此并不能算是真正的RAID 结构。
RAID 0只是单纯地提高性能,并没有为数据的可靠性提供保证,而且其中的一个磁盘失效将影响到所有数据。
因此,RAID 0不能应用于数据安全性要求高的场合。
RAID 1:它是通过磁盘数据镜像实现数据冗余,在成对的独立磁盘上产生互为备份的数据。
当原始数据繁忙时,可直接从镜像拷贝中读取数据,因此RAID 1可以提高读取性能。
RAID 1是磁盘阵列中单位成本最高的,但提供了很高的数据安全性和可用性。
当一个磁盘失效时,系统可以自动切换到镜像磁盘上读写,而不需要重组失效的数据。
RAID 0+1: 也被称为RAID 10标准,实际是将RAID 0和RAID 1标准结合的产物,在连续地以位或字节为单位分割数据并且并行读/写多个磁盘的同时,为每一块磁盘作磁盘镜像进行冗余。
它的优点是同时拥有RAID 0的超凡速度和RAID 1的数据高可靠性,但是CPU占用率同样也更高,而且磁盘的利用率比较低。
RAID 2:将数据条块化地分布于不同的硬盘上,条块单位为位或字节,并使用称为“加重平均纠错码(海明码)”的编码技术来提供错误检查及恢复。
这种编码技术需要多个磁盘存放检查及恢复信息,使得RAID 2技术实施更复杂,因此在商业环境中很少使用。
RAID 3:它同RAID 2非常类似,都是将数据条块化分布于不同的硬盘上,区别在于RAID 3使用简单的奇偶校验,并用单块磁盘存放奇偶校验信息。
如果一块磁盘失效,奇偶盘及其他数据盘可以重新产生数据;如果奇偶盘失效则不影响数据使用。
RAID 3对于大量的连续数据可提供很好的传输率,但对于随机数据来说,奇偶盘会成为写操作的瓶颈。
RAID 4:RAID 4同样也将数据条块化并分布于不同的磁盘上,但条块单位为块或记录。
RAID 4使用一块磁盘作为奇偶校验盘,每次写操作都需要访问奇偶盘,这时奇偶校验盘会成为写操作的瓶颈,因此RAID 4在商业环境中也很少使用。
RAID 5:RAID 5不单独指定的奇偶盘,而是在所有磁盘上交叉地存取数据及奇偶校验信息。
在RAID 5上,读/写指针可同时对阵列设备进行操作,提供了更高的数据流量。
RAID 5更适合于小数据块和随机读写的数据。
RAID 3与RAID 5相比,最主要的区别在于RAID 3每进行一次数据传输就需涉及到所有的阵列盘;而对于RAID 5来说,大部分数据传输只对一块磁盘操作,并可进行并行操作。
在RAID 5中有“写损失”,即每一次写操作将产生四个实际的读/写操作,其中两次读旧的数据及奇偶信息,两次写新的数据及奇偶信息。
RAID 6:与RAID 5相比,RAID 6增加了第二个独立的奇偶校验信息块。
两个独立的奇偶系统使用不同的算法,数据的可靠性非常高,即使两块磁盘同时失效也不会影响数据的使用。
但RAID 6需要分配给奇偶校验信息更大的磁盘空间,相对于RAID 5有更大的“写损失”,因此“写性能”非常差。
较差的性能和复杂的实施方式使得RAID 6很少得到实际应用。
RAID 7:这是一种新的RAID标准,其自身带有智能化实时操作系统和用于存储管理的软件工具,可完全独立于主机运行,不占用主机CPU资源。
RAID 7可以看作是一种存储计算机(Storage Computer),它与其他RAID标准有明显区别。
除了以上的各种标准(如表1),我们可以如RAID 0+1那样结合多种RAID 规范来构筑所需的RAID阵列,例如RAID 5+3(RAID 53)就是一种应用较为广泛的阵列形式。
用户一般可以通过灵活配置磁盘阵列来获得更加符合其要求的磁盘存储系统。
RAID 5E(RAID 5 Enhencement): RAID 5E是在RAID 5级别基础上的改进,与RAID 5类似,数据的校验信息均匀分布在各硬盘上,但是,在每个硬盘上都保留了一部分未使用的空间,这部分空间没有进行条带化,最多允许两块物理硬盘出现故障。
看起来,RAID 5E和RAID 5加一块热备盘好象差不多,其实由于RAID 5E是把数据分布在所有的硬盘上,性能会比RAID5 加一块热备盘要好。
当一块硬盘出现故障时,有故障硬盘上的数据会被压缩到其它硬盘上未使用的空间,逻辑盘保持RAID 5级别。
RAID 5EE: 与RAID 5E相比,RAID 5EE的数据分布更有效率,每个硬盘的一部分空间被用作分布的热备盘,它们是阵列的一部分,当阵列中一个物理硬盘出现故障时,数据重建的速度会更快。
RAID 50:RAID50是RAID5与RAID0的结合。
此配置在RAID5的子磁盘组的每个磁盘上进行包括奇偶信息在内的数据的剥离。
每个RAID5子磁盘组要求三个硬盘。
RAID50具备更高的容错能力,因为它允许某个组内有一个磁盘出现故障,而不会造成数据丢失。
而且因为奇偶位分部于RAID5子磁盘组上,故重建速度有很大提高。
优势:更高的容错能力,具备更快数据读取速率的潜力。
需要注意的是:磁盘故障会影响吞吐量。
故障后重建信息的时间比镜像配置情况下要长。
3、优点提高传输速率。
RAID通过在多个磁盘上同时存储和读取数据来大幅提高存储系统的数据吞吐量(Throughput)。
在RAID中,可以让很多磁盘驱动器同时传输数据,而这些磁盘驱动器在逻辑上又是一个磁盘驱动器,所以使用RAID 可以达到单个磁盘驱动器几倍、几十倍甚至上百倍的速率。