预应力混凝土简支小箱梁桥设计

合集下载

30m简支箱梁计算书

30m简支箱梁计算书

30m预应力混凝土简支小箱梁计算书一、主要设计标准1、公路等级:城市支路,双向四车道2、桥面宽度:3m人行道+0.25m路缘带+2x3.5m车行道+0.5m双黄线+2x3.5m 车行道+0.25m路缘带+3m人行道=21m3、荷载等级:汽车-80级4、设计时速:30Km/h5、地震动峰值加速度0.2g6、设计基准期:100年二、计算依据、标准和规1、《厂矿道路设计规》(GBJ22-87)2、《公路桥涵设计通用规》(JTG D60-2004)3、《公路钢筋混凝土及预应力混凝土桥涵设计规》(JTG D62-2004)三、计算理论、荷载及方法1、计算理论桥梁纵向计算按照空间杆系理论,采用Midas Civil2012软件计算。

2、计算荷载(1)自重:26KN/ m3(2)桥面铺装:10cm沥青铺装层+8cm钢筋混凝土铺装(3)人行道恒载:20KN/ m(4)预应力荷载:采用4束5φs15.2和6束4φs15.2 fpk=1860MPa钢绞线,控应力1395MPa。

(5)汽车荷载:本桥由于是物流园区部道路,通行的重车较多,本次设计考虑《厂矿道路设计规》(GBJ22-87)汽车-80级,计算图示如下:根据图示,汽车荷载全桥横桥向布置三辆车。

冲击系数按照《公路桥涵设计通用规》(JTG D60-2004)4.3.2条考虑。

(6)人群荷载:3.5 KN/ m2(7)桥面梯度温度:正温差:T1=14°,T2=5.5°负温差:正温差效应乘以-0.53、计算方法(1)将桥梁在纵横梁位置建立梁单元,然后采用虚拟梁考虑横向刚度,以此来建立模型。

(2)根据桥梁施工方法划分为四个施工阶段:架梁阶段、现浇横向湿接缝阶段、二期恒载阶段、收缩徐变阶段。

(3)进行荷载组合,求得构件在施工阶段和使用阶段时的应力、力和位移。

(4)根据规规定的各项容许指标。

按照A类构件验算是否满足规的各项规定。

四、计算模型全桥采用空间梁单元建立模型,共划分为273节点和448个单元。

预应力简支箱梁施工方案

预应力简支箱梁施工方案

预应力简支箱梁施工方案(一)、简支箱梁概述:1、本桥梁是进出污水处理厂的道路桥梁,为预应力混凝土简支箱梁,跨径为20m,样梁全长为34m,桥梁完度为变宽,标准桥宽为0.5m(防撞护栏)+3.95m(车行道)+0.5m(防撞护栏)=4.95m;道路为特殊道路,单行道,设计车速20Km/h,荷载等级为城-B,桥面横坡为2%,平曲线最小半径为153m,纵坡为-3.6%,地震基本烈度为6度,抗震设防烈度为7度,设计使用年限为50年,设计安全等级为二级,防撞护栏为A级,百年一遇洪水位,197.59m,抗洪水频率为100年一遇;2、进厂桥梁起点里程K0+015,止点里程为K0+049,采用(0.5+3.95+0.5)m预应力钢筋混凝土箱梁;3、结构特征:预应力混凝土简支箱梁长34m,宽4.95m,厚1.2m;桥台搭板长8m,宽3.849m和3.95m,厚度0.3m,与预应力混凝土箱梁连接;(二)、重力式U型桥台、台帽施工工艺:本工程A0桥台扩大基础嵌入中风化砂岩1m,台身高8.72m,A1桥台扩大基础嵌入中风化砂岩0.5m,台身高7.17m,台后设置500mm厚级配碎石反滤层,并设置封水层及排水盲沟。

(1)、明挖扩大基础施工定位放样,施工前对各部分的尺寸、标高、坐标等进行复核,复核准确后才能对基坑进行开挖,根据地质情况严格按设计要求及施工规范定出放坡率,再按照基础尺寸、深度确定基坑开挖尺寸。

(2)、基坑采用人工开挖成型,基坑开挖过程中应加强坑壁的支护,避免坑壁的坍塌,基底清底后应立即浇筑基础混凝土垫层,勿使基坑暴露过久或受地表水的浸泡而影响地基承载力;(3)、基坑周边设置排水沟,及时排除坑内积水和地表水,基坑开挖至距基底设计标高时,按照设计地质资料核实基底地质岩性,如基底岩性与设计不符或承载力达不到设计要求时,立即报请监理工程师及设计单位提出处理意见。

在处理方法确定后再进行开挖至设计地质岩性,合格的基坑基底,在报请监理工程师复检批准后,迅速进行基础垫层施工。

预应力砼简支小箱梁

预应力砼简支小箱梁

预应力砼简支小箱梁在现代桥梁建设中,预应力砼简支小箱梁是一种被广泛应用的结构形式。

它以其独特的优势,在跨越江河、山谷等地形时发挥着重要作用。

预应力砼简支小箱梁,顾名思义,是由混凝土制成,并通过预应力技术增强其性能的一种箱梁结构。

这种结构的“简支”特点意味着它在两端支撑,受力较为简单明确。

先来说说混凝土。

混凝土是这种箱梁结构的主要材料之一,它由水泥、骨料(如砂、石子)、水以及外加剂等按一定比例混合而成。

优质的混凝土具有良好的抗压性能,能够承受巨大的压力。

但混凝土的抗拉性能相对较弱,这就需要预应力技术来弥补。

预应力技术是预应力砼简支小箱梁的核心所在。

通过在混凝土构件中预先施加一定的压力,可以有效地提高构件的抗裂性能和承载能力。

在施工过程中,通常会使用高强度的钢绞线或钢丝作为预应力筋。

这些预应力筋在箱梁预制时就被张拉到一定的应力水平,然后锚固在梁的两端。

当箱梁承受荷载时,预先施加的压力会抵消一部分拉应力,从而延缓裂缝的出现,提高箱梁的耐久性和安全性。

预应力砼简支小箱梁的制作通常在预制厂进行。

预制的好处在于可以更好地控制质量和施工进度。

在预制厂,工人会先制作箱梁的模板,然后将钢筋骨架布置在模板内,接着浇筑混凝土。

待混凝土达到一定强度后,进行预应力筋的张拉和锚固。

箱梁的设计也是至关重要的一环。

设计人员需要根据桥梁的跨度、荷载要求、使用环境等因素,确定箱梁的尺寸、配筋数量和预应力的大小。

例如,跨度较大的箱梁需要更厚的腹板和顶板,以承受更大的弯矩;而在重载交通的情况下,配筋和预应力都需要相应增加。

在施工安装阶段,预应力砼简支小箱梁一般通过吊车或架桥机进行架设。

将预制好的箱梁准确地放置在桥墩上,并做好连接和固定工作。

连接部位的处理要确保箱梁之间的整体性和受力传递的顺畅。

与其他桥梁结构形式相比,预应力砼简支小箱梁具有诸多优点。

首先,它的预制生产方式可以大大缩短施工周期,减少现场施工对交通和环境的影响。

其次,由于采用了预应力技术,箱梁的跨度可以较大,能够满足不同桥梁跨径的需求。

「预应力混凝土简支小箱梁桥设计」

「预应力混凝土简支小箱梁桥设计」

「预应力混凝土简支小箱梁桥设计」预应力混凝土简支小箱梁桥是一种常见的桥梁结构,具有结构简单、施工方便、经济高效等优点。

本文将详细介绍预应力混凝土简支小箱梁桥的设计内容,包括桥梁的布置、荷载计算、截面设计等方面的内容。

首先,预应力混凝土简支小箱梁桥的设计需要根据具体的工程条件和要求进行桥梁布置的确定。

一般而言,桥梁的位置应选择在河流或道路的垂直线上,且保证桥梁两端的主跨与辅跨的比值在1.5~2之间。

桥墩的高度和位置应根据地形条件和水流情况进行确定,同时要考虑桥墩的航道通行能力和洪水的安全要求。

接下来是荷载计算。

荷载计算是预应力混凝土简支小箱梁桥设计的基础,需要综合考虑标准荷载和特殊荷载的作用。

标准荷载包括活载和恒载,例如交通载荷、行人载荷、道路维护车辆等;特殊荷载包括温度荷载、风荷载、地震荷载等。

在荷载计算中,应根据桥梁规范的要求进行动力系数和荷载车型的选取,并合理考虑各种荷载的组合。

在桥梁的截面设计中,需要确定箱梁的净高、净宽、壁厚等。

净高的确定应满足桥梁的承载力、挠曲和剪切等要求,一般可根据经验公式进行初步估算,再根据受拉区钢筋的计算结果进行优化。

净宽的确定应考虑横向强度、波动弯曲、回弹和带宽等要求,需要进行横向强度的校核。

壁厚的确定应满足截面剪切抗力、抗弯抗剪计算要求,一般采用经验公式进行初步估算,再根据具体的计算结果进行调整。

此外,预应力混凝土简支小箱梁桥的设计还需要进行施工过程中的内力、挠度和碰撞等检查。

在施工过程中,应进行各个构件的施工序列和施工方法的确定,考虑各个工况的组合。

钢筋的预应力力值和拉杆的布置应满足受拉区的强度和刚度要求。

在完成施工过程的检查后,还需要进行验收,确保桥梁满足设计要求。

总之,预应力混凝土简支小箱梁桥的设计包括桥梁的布置、荷载计算、截面设计和构件施工等方面的内容。

设计过程中需要综合考虑结构的安全、经济和实用性要求,并按照相关规范和规程进行设计和验收。

通过科学合理的设计,可以保证预应力混凝土简支小箱梁桥的安全稳定和使用寿命。

预应力混凝土简支小箱梁计算(2011级)

预应力混凝土简支小箱梁计算(2011级)
2.3.1 各部分尺寸计算 根据《公路钢筋混凝土及预应力混凝土桥梁设计规范》 (JTG D62-2004) 确定箱型梁上下翼缘有效宽度:
bmi f bi bm 3 f b3 bm 4 f b4
l i l 39m b3 0.53 0.05 li 39 b4 0.7 0.05 li 39
0 2433.12 3408.19 4236.82
注:表中荷载值已计入冲击系数 1 1.056 。
4.3 内力组合 注:1)基本组合(用于承载能力极限状态)
M d 1.2( M G1k M G 2 k ) 1.4 M Q1k Vd 1.2(VG1k VG 2 k ) 1.4VQ1k
M Q1k ( kN m)
0 2575.4 3717.86 5293.55
对应 V ( kN ) 231.53 469.34 404.24 163.43
VQ1k ( kN )
576.94 472.78 414.79 226.39
对应 M ( kN m )
支点 变截面 L/4 跨中
0 5480 9750 19500
Ii
cm 4
95573.33 70.67 138.89 381.11 12045996 1666.67 19406.83 12163233.5
51321475.12
第 8 页 共 48 页
预应力钢筋混凝土课程设计
第四章 主梁作用效应计算
4.1 自重、恒载内力
表 4-1 自重、恒载内力计算结果
截面位置 支点 变截面 L/4 跨中
注:①预制主梁(包括横隔板)的自重: g 1 p 27.15kN / m ; ②现浇板的自重: g1m 16.92kN / m ; ③二期恒载(包括桥面铺装、人行道、栏杆) : g 2 p 10.0kN / m 。

(参考资料)预应力混凝土简支小箱梁计算(2011级)

(参考资料)预应力混凝土简支小箱梁计算(2011级)
b 0.4 , pu 0.2563 (3)普通钢筋:采用 HRB335 钢筋 f sk 335MPa , f sd 280MPa , Es 2.0 105 MPa b 0.53 , pu 0.1985 (4)箍筋及构造钢筋:采用 R235 钢筋 f sk 235MPa , f sd 195MPa , Es 2.1105 MPa
截面位置
支点 变截面
L/4 跨中
距支点距离 (mm) 0 5480 9750 19500
预制梁
M(kN.m) V(kN)
0
498.7
2074 350.5
3519 226.3
4603
0
现浇
M(kN.m) V(kN)
0
79.8
347
59.2
592
38.8
777
0
二期
M(kN.m) V(kN)
0
195
849
2.3.2 等效工字形截面示意图
根据上述计算结果,绘制出等效工字型截面如下:
图 2-5 等效工字形截面(单位:mm)
第 7 页 共 48 页
预应力钢筋混凝土课程设计
第三章 主梁全截面几何性质
选择跨中截面,计算截面几何特性。 在工程设计中,主梁几何特性多采用分块数值求和法进行,其计算式为:
全截面面积: A Ai
381.11
3666345.12
12045996
2455265.33
1666.67
13862804.02
19406.83
39158241.62
12163233.5
51321475.12
第 8 页 共 48 页
预应力钢筋混凝土课程设计
第四章 主梁作用效应计算

预应力混凝土简支小箱梁支座选型设置研究

预应力混凝土简支小箱梁支座选型设置研究
关键截面3横向应力影响线 0.250
0.150
0.050
-8
-4
-0.050
0
4 支座规格1 支座规格2 支座规格3 支座规格4
8
图5
25m 标准跨度小箱梁实体模型图
图1
25m 跨度小箱梁横断面图
采用桥梁有限元计算软件进行支座仿真计算,分析结构在恒、 活载作用下支座反力和位移,据此对设计单位选用支座的受力及变 形是否满足规范要求作出评判,计算模型如图 2 所示。
图2
25m 跨度小箱梁 Midas 计算模型图 图3 25m 简支小箱梁支座反力计算结果图
25m 简支小箱梁荷载作用下支座反力计算结果及梁体变形结果 分别如图 3 和图 4 所示。 《公路桥梁板式橡胶支座规格系列》(JT/T 663-2006)规定,跨径不大于 25m 小箱梁采用 GYZ400×84mm 橡胶支 座,最大承压力 Rck =1195kN,允许转角正切值为 0.0079rad(温热地 区),从支座反力计算结果可以看出,25m 跨度简支小箱梁的最大支 座反力为 1366kN,超过支座最大承压力 14.3%,按上述最大反力计 算支座的平均压应力为 11.43MPa,大于规范要求的支座使用阶段的 平均压应力限值σc=10.00MPa,需再适当增大支座尺寸。支座处梁 体最大转角为 0.004rad,小于允许转角,支座变形满足要求。
黄定华
(广东省高速公路有限公司,广东 广州 510100)
【摘 要】文章在阐述预应力混凝土简支小箱梁支座病害的基 础上,通过建立简支箱梁结构的有限元模型对其支座受力、支座设 置对端横梁结构受力的影响、支座的选型及布置等多个方面进行了 研究,结果表明:采用端部布设单个矩形板式橡胶支座并适当增大 支座的尺寸对桥梁结构的受力相对有利,本文的研究思路和计算分 析方法可为类似桥梁结构支座的设置提供参考。 【关键词】简支箱梁;支座;有限元模型;选型设置 1 引言 桥梁支座是连接桥梁上部和下部结构的重要部件,起到将桥梁 上部结构的反力和变形(位移和转角)可靠的传递给桥梁下部结构的 作用,其质量和性能直接影响桥梁的使用性和耐久性。然而,由于 其在桥梁工程总造价中所占比例较小,往往未引起工程技术和管理 人员的重视,在使用过程中极易成为桥梁结构的薄弱环节,产生病 害的机率较高。 高速公路桥梁目前采用的支座主要类型主要包括板式橡胶支座 和盆式橡胶支座两种。就板式橡胶支座而言,支座早期剪切变形、 局部脱空、橡胶层老化开裂病害等病害较为普遍。就盆式橡胶支座 而言,其早期病害主要为:支座涂层起皮、脱落,临时连接件未拆 除,钢垫板局部脱空,密封圈开裂,锚固螺栓锈蚀、松动,限位装 置损坏、缺失等。这些支座病害的产生给桥梁结构营运的安全性和 耐久性造成了严重的影响。 为了进一步改善预应力混凝土简支小箱梁支座的受力,减少支 座在后期营运中常见病害的出现,文章对预应力混凝土小箱梁支座 的受力、端横梁的结构受力、支座的形式和布置等多个方面进行研 究,最终确定了预应力混凝土小箱梁支座最佳设置形式,本文的研 究思路和计算分析方法可为类似工程条件下桥梁结构支座设置提供 参考。 2 简支小箱梁支座的受力情况分析 简支小箱梁支座主要是将上部结构的支承反力(包括结构自重 和可变作用引起的竖向反力和水平力)传递到桥梁墩台,同时保证 结构在汽车荷载、温度变化、混凝土收缩和徐变等因素作用下能自 由变形。支座受力是否合理对于支座直接关系到支座的安全和使用 寿命。 文章以跨径 25m 的预应力混凝土简支小箱梁支座为研究对象, 对两端采用 GYZ400×84m 板式橡胶支座简支箱梁的受力情况进行分 析,以确定橡胶支座是否满足桥梁结构受力的要求,简支小箱梁横 断面如图 1 所示。

05 预应力混凝土简支变连续小箱梁示例

05 预应力混凝土简支变连续小箱梁示例

05 预应力混凝土简支变连续小箱梁示例1.本文目的本文的目的是,通过一个预应力混凝土简支变连续小箱梁示例的演示,使大家掌握在“桥梁设计师”中简支变连续小箱梁的设计过程。

2.系统支持设计师1.0.2版本预应力混凝土简支变连续小箱梁的依据:2005年出版的由中交第一公路勘察设计研究院编制的《装配式部分预应力混凝土箱形连续梁桥》公路桥涵通用图、2007年由交通部出版的《装配式部分预应力混凝土箱形连续梁桥》公路桥涵通用图;交通部《公路桥涵设计通用规范》(JTG D60-2004)、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)只支持直桥,支持斜交,且只支持各标准跨径相同的简支变连续小箱梁。

斜交时小箱梁两端的斜交角度需相等。

3.流程介绍按如下流程可从无到有建立一个简支变连续小箱梁。

图3-14.工程示例4.1工程概况为使大家比较直观的了解桥梁设计师中简支变连续小箱梁的设计过程,下面我们以一个4跨斜交的预应力混凝土简支变连续小箱梁为例来进行介绍。

(图4-1-1)图4-1-14.2布孔信息双击打开路线下的路线总体,打开布孔信息标签进行编辑。

(图4-2-1)图4-2-1●布孔线里程这列,第一行数字表示里程桩号,其后各行数字表示跨径。

●布孔线序号这列的数字,和构件名中的“##”后的数字需对应起来。

对上部构件,如果构件名是“新跨1##n”(n为阿拉伯数字),则布孔线序号的第n行是这个构件的起始位置,n+1行的跨径为该构件的第一孔跨径。

本例我们的构件名是“简支变连续小箱梁##1”,那么布孔线序号的第1行桩号10是当前连续小箱梁的起始绝对里程,此示例共有4跨,那我们在第2行到第5行的布孔线里程列都输入30表示第一孔到第四孔跨径都为30m(实际里程在表格的最后一列中由程序自动计算)。

●桥墩中心线距离布孔线L:桥墩中心线在布孔线大桩号侧为正,小桩号侧为负。

本例中L为0。

●斜交角A(度):水平面内,由道路设计线法线旋转至布孔线的角度。

30米预应力简支箱形梁桥结构设计(迈达斯计算)

30米预应力简支箱形梁桥结构设计(迈达斯计算)

本科毕业设计题目: 30m预应力简支箱形梁桥结构设计学院: 土木工程学院专业: 土木工程(交通土建工程)班级: 1111班学号: 1vnvn学生姓名:hgjfgfh指导教师: 李建vn 职称:讲师二○一四年四月三十日30m预应力混凝土简支箱梁计算书摘要预应力混凝土简支箱梁桥以结构受力性能好、变形小、行车平顺舒适、养护工程量小、抗震能力强等而成为最富有竞争力的主要桥型之一。

预应力混凝土简支梁桥是一种预先储存了足够预加应力的新型梁桥,预加应力可大幅度提高梁体的抗裂性,并增加了梁的耐久性,截面尺寸减小,高跨比减小,受力明确,理论计算较简单,设计和施工的方法日趋完善和成熟。

简支箱形截面梁具有优良的力学特性:较大的刚度和强大的抗扭性能、结构简单、受力明确、节省材料、架设安装方便,跨越能力较大、桥下视觉效果好,因而被广泛地应用于城市桥梁和高等级公路立交桥的上部结构中。

本次设计的主要内容是关于预应力简支箱形梁桥的结构设计。

设计跨度是30m,双向四车道,桥面宽度15m(0.5m防撞墙+4×3.5m行车道+0.5m防撞墙),采用单箱双室箱形截面,桥轴线为直线,荷载等级:公路I级汽车荷载,地震设防烈度:7级。

梁高采用变高度梁,因梁桥在支点处截面的剪力过大,故在梁桥支点处选择变截面过渡,按一次曲线变化。

设计主要进行了桥梁总体布置及结构尺寸拟定、桥梁荷载内力计算、桥梁预应力钢束的估算与布置、桥梁预应力损失及应力的验算、内力组合验算、主梁截面应力验算。

利用软件Midas Civil 进行结构分析,根据桥梁的尺寸拟定建立桥梁基本模型,然后进行内力分析,计算配筋结果,进行施工各阶段分析及截面验算。

关键词:预应力混凝土、简支、箱梁、结构分析、内力验算30m prestressed concrete box girder calculationsBecause of the long-span pre-stressed concrete continuous box Girder Bridge have many advantages such as its big span ability, flexible construction methods, adaptability, structural rigidity, anti-seismic capability, Structure stress performance good, small deformation, less expansion joints, driving smooth and comfortable, beautiful forms, small maintenance quantity and etc a,it become the most competitive one of the main bridge ,and it becomes more and more widely used in China.This graduate design is mainly about the design of the superstructure of the road pre-stressed concrete Charpy Bridge. The span of the bridge is 30m. This design is a continuous bridge which has four lanes. The bridge deck is made of C50 water-protected concrete. It consists of 3.5m (the width of road deck) ×4 + 0.5m (the width of the sidewalk) ×2=15m; The axis of this bridge is a straight line, The design load standard is the Road One-Level Load,Seismic fortification intensity 7. And the height of girder is changing in the form of conic.The design of pre-stressed concrete continuous girder bridge is mainly the upper structure design , in the design of the main bridge layout and structure size, load calculation, bridge pre-stressing tendons estimation and layout ,the loss of pre-stress and stress of the bridge, the resultant checked, internal combination calculation, section stress calculation girder. This design using the Midas software analysis the structure, according to the size of the bridge, the basic model establishment bridge worked, then force analysis, calculation results of reinforced, for each phase analysis and construction. At the same time, consider the concrete shrinkage, Creep force times and temperature resultant t ime’s factors.Key word: Pre-stressed Concrete; Simple Support; Box girder; Structural Analysis; Checking the internal forces目录第一章绪论 (1)1.1概述 (1)1.2预应力梁桥受力特点 (1)1.3预应力混凝土梁桥发展综述 (2)1.3.1国外预应力混凝土梁桥的发展 (2)1.3.2国内预应力混凝土梁桥的发展 (3)1.4我国高速公路桥梁的发展 (4)1.4.1公路桥梁发展现状 (5)1.4.2我国高速公路桥梁建设特点 (5)1.5桥梁设计的基本原则 (6)1.6预应力混凝土简支梁桥的特点 (7)1.7预应力混凝土梁桥施工技术 (8)1.8毕业设计主要内容 (8)1.9毕业设计的目的和意义 (9)第二章设计要点及构造、材料、尺寸的拟定 (10)2.1桥梁选取的基本原则 (10)2.2设计的基本资料 (10)2.3箱形截面桥梁的特点 (10)2.4主要技术标准 (11)2.5主要材料及材料性能 (11)2.6设计参数取值 (11)2.7结构概述 (13)2.7.1截面形式及截面尺寸拟定 (13)2.8计算原则及控制标准 (15)第三章结构有限元模型的建造过程 (16)3.1 Midas Civil软件介绍 (16)3.2模型建立过程 (17)3.2.1设定建模环境 (17)3.2.2设置结构类型 (18)3.2.3定义材料和截面特性值 (19)3.2.4建立结构有限元模型 (21)3.2.5定义边界条件 (23)3.2.6定义荷载 (23)3.2.7定义施工阶段 (29)3.2.8汽车荷载 (29)每四章主梁作用效应计算 (32)4.1作用分类 (32)4.2公路预应力钢筋混凝土(psc)桥梁设计设计验算内容 (34)4.2.1施工阶段法向压应力验算 (34)4.2.2受拉区钢筋的接应力验算 (41)4.2.3使用阶段正截面抗裂验算 (43)4.2.4使用阶段斜截面抗裂验算 (50)4.2.5使用阶段正截面压应力验算 (55)4.2.6使用阶段斜截面主压应力验算 (60)4.2.7使用阶段正截面抗弯验算 (65)4.2.8使用阶段斜截面抗剪验算 (71)4.2.9使用阶段抗扭验算 (78)结论 (89)致谢 (90)参考文献 (91)第一章绪论1.1概述我在进行毕业设计之前,先阅读了各种文献,对桥梁的历史和发展有一个初步的了解,同时也要对桥梁结构的各种形式有系统的了解,以便今后对毕业设计有更好的把握。

(完整版)预应力砼简支小箱梁

(完整版)预应力砼简支小箱梁

Ⅰ、预应力砼简支小箱梁一、下部结构(一)钻孔灌输桩(冲击钻机施工)桩基采纳冲击钻孔机钻孔。

该桥墩地势陡峻,修筑便道可抵达各桩位。

1、埋设钢护筒在冲孔施工的各墩位埋设孔口式护筒,采纳挖埋式埋设,埋设护筒的目的是为了钻孔导向和定位。

钢护筒制定最高高度 4.5m,露出地面 0.5m,壁厚 12mm,每隔 1.5 米焊一道 12mm 厚钢板增强箍。

桩基施工完成钢护筒随钻机周转使用。

2、安装钻机钢护筒埋设达成后进行墩位处场所平坦、碾压夯实,而后安装钻机。

安装过程顶用全站仪丈量定位,要求钻头中心瞄准钢护筒中心,钢护筒中心要求与桩基设计中心一致。

3、钻孔主要工序及注意事项(1)冲击钻头造孔时,钻头须不停沿一个方向旋转,方能均匀钻圆孔。

钻头的旋转,主要靠悬挂钻头的钢丝绳各股钢丝束的扭转所产生的扭转力。

当钻头冲击孔底的一顷刻,钢丝绳因不蒙受荷载,即恢还本来的松绞状态,一提空钻头,钢丝绳各束钢丝被拉紧拉直,即产生扭矩,带动钻头旋转。

故在钢丝绳与冲击钻头间一定连结坚固并设转向装置。

(2)冲击钻孔,为防备冲击振动使邻孔壁坍塌或影响邻孔刚灌输的砼的凝固,应待邻孔砼灌输完成,一般经24h 后,方可开钻,或进行隔孔施钻。

(3)开孔阶段钻孔时,开孔前应在孔内多放一些黏土,并加适当粒径不大1.6 左右。

钻进到于 15cm的片石,顶部抛平,用低冲程冲砸,泥浆比重控制在0.5~1.5m时,再回填黏土(如地表为砂土,第二次宜回填1: 1 的黏土和碎石;如为软土或粉砂,即回填黏土和粒径不大于15cm的片石。

)持续以低冲程冲砸。

这样频频二、三次,必需时多重复几次。

(4)冲孔过程如发现有失水现象,护筒内水位迟缓降落,应补水投黏土。

如泥浆太稠,进尺迟缓时,应抽碴换浆。

开孔时为了使钻碴泥浆尽量挤入孔壁,一般不抽碴。

待冲砸至护筒下3~4m时(钻头顶在护筒下超出1m时),方可加高冲程正常冲入, 4~5m后,方勤抽碴。

钻进中应随时检查,保证孔位正确。

装配式预应力混凝土简支箱梁桥设计和施工

装配式预应力混凝土简支箱梁桥设计和施工

科技与创新┃Science and Technology&Innovation ·126·2022年第16期文章编号:2095-6835(2022)16-0126-03装配式预应力混凝土简支箱梁桥设计和施工杨迎1,王裕滔2(1.四川铁道职业学院,四川成都610072;2.中国市政工程西南设计研究总院有限公司,四川成都610084)摘要:装配式预应力混凝土简支箱梁桥具有受力明确、构造简单、施工方便、经济合理等优点,得到广泛应用。

选取了3×35m装配式预应力混凝土连续小箱梁桥为研究对象,分别从结构设计和施工方面进行介绍,希望为设计和施工人员提供一些参考。

关键词:装配式;预应力混凝土简支箱梁桥;设计;施工中图分类号:TU7文献标志码:A DOI:10.15913/ki.kjycx.2022.16.0391工程概述道路红线宽30~40m,30m宽红线采用双向四车道,40m宽红线采用双向六车道,两侧人行道各宽4m。

道路在上跨毗河处设置一座3×35m的装配式预应力混凝土连续小箱梁桥,桥梁全长110.92m,宽30m。

2水文地质条件2.1地表水及地下水上游水源起于柏条河,为排灌两用河流。

据现场观察,河水呈无色、较为透明。

勘察时在河道内发现有流水,测得水面宽约60.0m,水深1.0~1.5m,流速0.20m/s,流量约15m3/s。

夏季洪水期河水对河床及两岸具有较强的冲刷作用,河流水体与地下含水层已相通。

经调查走访当地村民得知,数十年间桥位处河水最高洪水位高程可达494.2m(出现在1981年)。

桥位处准确最高洪水位以水利主管部门权威数据为准。

该处河床地形起伏较小,该段河道较直,流水大小主要受上游控制,夏季洪水期间流速较快,下切作用与侧蚀作用较强。

百年一遇洪水的一般冲刷深度为1.5m,局部冲刷深度为2.5m,最大冲刷深度为4.0m。

该场地内所见地下水为赋存于砂卵石层中的孔隙潜水,该地下水由大气降水及地表水补给,经地下径流和地面蒸发排泄,具有埋藏浅、含水层较厚、分布广、补给源近、富水性和透水性好的特征。

预应力砼简支小箱梁

预应力砼简支小箱梁

预应力砼简支小箱梁在现代桥梁建设中,预应力砼简支小箱梁作为一种常见且重要的结构形式,发挥着不可或缺的作用。

它以其独特的优势和特点,为桥梁工程的发展提供了有力的支持。

预应力砼简支小箱梁,简单来说,就是一种采用预应力技术制作的混凝土简支箱梁结构。

这种结构通常由预制的箱梁节段组成,通过现场拼接和连接,形成一座完整的桥梁。

预应力砼简支小箱梁的优点众多。

首先,它具有较高的承载能力。

通过施加预应力,可以有效地提高混凝土的抗压强度和抗裂性能,使得箱梁能够承受更大的荷载。

其次,施工速度快。

由于箱梁是在工厂预制的,现场只需进行拼装和连接,大大缩短了施工周期,减少了对交通和周边环境的影响。

再者,它的经济性能较好。

相比其他桥梁结构形式,预应力砼简支小箱梁在材料使用和施工成本方面具有一定的优势。

在设计方面,预应力砼简支小箱梁需要考虑多个因素。

比如,要根据桥梁的跨度、荷载要求、使用环境等条件,确定箱梁的尺寸、配筋和预应力的大小。

同时,还需要考虑箱梁的抗剪、抗弯能力,以及在温度变化、混凝土收缩等情况下的变形和应力分布。

预制过程是预应力砼简支小箱梁施工中的关键环节之一。

在预制工厂,首先要制作高精度的模板,以保证箱梁的尺寸和形状准确无误。

然后,进行钢筋的绑扎和布置,确保钢筋的位置和间距符合设计要求。

接着,浇筑混凝土,并在混凝土达到一定强度后,进行预应力的张拉和锚固。

预应力的张拉是一项非常重要的工作。

通常采用千斤顶等设备,按照设计的预应力值和张拉顺序,对钢绞线或高强钢丝进行张拉。

在张拉过程中,要严格控制张拉应力和伸长量,确保预应力的施加准确可靠。

在现场施工时,需要将预制好的箱梁运输到桥位,并通过吊车等设备进行安装。

安装过程中,要保证箱梁的位置准确、连接牢固。

相邻箱梁之间通常采用湿接缝或干接缝进行连接,以保证桥梁的整体性和稳定性。

在养护方面,预应力砼简支小箱梁也有一定的要求。

混凝土浇筑后,要及时进行保湿养护,以防止混凝土开裂。

预应力张拉后,也要对锚具和钢绞线进行防护处理,延长其使用寿命。

小箱梁预制及架设施工工法

小箱梁预制及架设施工工法

小箱梁预制及架设施工工法1 工法概述本工法所述为预制预应力钢筋混凝土小箱梁,采用先简支后连续的方法进行施工。

小箱梁梁高220cm。

单幅桥面宽15。

5m,布置5片小箱梁,箱梁横向间距3。

0m。

边梁顶板宽300cm,中梁顶板宽250cm;每片小箱梁之间纵向留50cm 现浇湿接缝。

每片预制梁跨中设有3道中横梁,横梁之间采用现浇湿接头连接。

预制小箱梁的重量:边跨边梁1850KN,边跨中梁1750KN,中跨边梁1830KN, 中跨中梁1720KN。

梁体混凝土标号为C50。

预应力束则采用φs15。

2mm的高强度低松弛钢绞线,腹板与顶板分别设有正、负弯矩钢束,预应力管道采用真空压浆填充,压浆强度不低于40MPa.安装采用架桥机进行架设安装.桥面横坡采用结构找坡,利用盖梁及支承垫石来调整。

工法特点为运用模板场加工好的定型钢模,通过严格的施工管理,可确保生产出优良的预制箱梁。

运用自行设计的大跨度、大吨位龙门起重机,起梁、移梁、运梁、提梁安全可靠,降低了劳动强度、效率高。

流水化作业,施工进度快。

本施工工法适用于跨江河、跨铁路桥和高架桥(斜交或正交)的先简支后连续预应力混凝土公路箱梁施工,也适用于其它跨度的先简支后连续预应力混凝土箱梁现场施工.2 一般要求2.1 技术管理2。

1。

1施工前完成设计图纸会审和设计技术交底,施工方案和专项技术措施的审核、审批.2.1.2对所用参与施工的人员进行技术培训和交底。

2.1。

3 关键工序进行书面会签或联签。

2.1.4施工过程中及时进行阶段性技术分析总结.2。

2 作业人员2。

2。

1所有人员必须进行技术培训和安全教育,特种作业作业人员持证上岗.2.2.2作业人员身体健康,无妨碍施工的病症,严禁酒后作业。

2.2。

3必须参加班前会,明确施工任务和职责,掌握操作要求,熟悉安全措施.2.2.4 作业人员必须遵守劳动纪律,作业时应服从统一指挥,相互协调,严禁违章指挥、违章作业。

2.3 设备材料2。

30米预应力简支箱形梁桥结构设计(迈达斯计算)

30米预应力简支箱形梁桥结构设计(迈达斯计算)

本科毕业设计题目: 30m预应力简支箱形梁桥结构设计学院: 土木工程学院专业: 土木工程(交通土建工程)班级: 1111班学号: 1vnvn学生姓名:hgjfgfh指导教师: 李建vn 职称:讲师二○一四年四月三十日30m预应力混凝土简支箱梁计算书摘要预应力混凝土简支箱梁桥以结构受力性能好、变形小、行车平顺舒适、养护工程量小、抗震能力强等而成为最富有竞争力的主要桥型之一。

预应力混凝土简支梁桥是一种预先储存了足够预加应力的新型梁桥,预加应力可大幅度提高梁体的抗裂性,并增加了梁的耐久性,截面尺寸减小,高跨比减小,受力明确,理论计算较简单,设计和施工的方法日趋完善和成熟。

简支箱形截面梁具有优良的力学特性:较大的刚度和强大的抗扭性能、结构简单、受力明确、节省材料、架设安装方便,跨越能力较大、桥下视觉效果好,因而被广泛地应用于城市桥梁和高等级公路立交桥的上部结构中。

本次设计的主要内容是关于预应力简支箱形梁桥的结构设计。

设计跨度是30m,双向四车道,桥面宽度15m(0.5m防撞墙+4×3.5m行车道+0.5m防撞墙),采用单箱双室箱形截面,桥轴线为直线,荷载等级:公路I级汽车荷载,地震设防烈度:7级。

梁高采用变高度梁,因梁桥在支点处截面的剪力过大,故在梁桥支点处选择变截面过渡,按一次曲线变化。

设计主要进行了桥梁总体布置及结构尺寸拟定、桥梁荷载内力计算、桥梁预应力钢束的估算与布置、桥梁预应力损失及应力的验算、内力组合验算、主梁截面应力验算。

利用软件Midas Civil 进行结构分析,根据桥梁的尺寸拟定建立桥梁基本模型,然后进行内力分析,计算配筋结果,进行施工各阶段分析及截面验算。

关键词:预应力混凝土、简支、箱梁、结构分析、内力验算30m prestressed concrete box girder calculationsBecause of the long-span pre-stressed concrete continuous box Girder Bridge have many advantages such as its big span ability, flexible construction methods, adaptability, structural rigidity, anti-seismic capability, Structure stress performance good, small deformation, less expansion joints, driving smooth and comfortable, beautiful forms, small maintenance quantity and etc a,it become the most competitive one of the main bridge ,and it becomes more and more widely used in China.This graduate design is mainly about the design of the superstructure of the road pre-stressed concrete Charpy Bridge. The span of the bridge is 30m. This design is a continuous bridge which has four lanes. The bridge deck is made of C50 water-protected concrete. It consists of 3.5m (the width of road deck) ×4 + 0.5m (the width of the sidewalk) ×2=15m; The axis of this bridge is a straight line, The design load standard is the Road One-Level Load,Seismic fortification intensity 7. And the height of girder is changing in the form of conic.The design of pre-stressed concrete continuous girder bridge is mainly the upper structure design , in the design of the main bridge layout and structure size, load calculation, bridge pre-stressing tendons estimation and layout ,the loss of pre-stress and stress of the bridge, the resultant checked, internal combination calculation, section stress calculation girder. This design using the Midas software analysis the structure, according to the size of the bridge, the basic model establishment bridge worked, then force analysis, calculation results of reinforced, for each phase analysis and construction. At the same time, consider the concrete shrinkage, Creep force times and temperature resultant t ime’s factors.Key word: Pre-stressed Concrete; Simple Support; Box girder; Structural Analysis; Checking the internal forces目录第一章绪论 (1)1.1概述 (1)1.2预应力梁桥受力特点 (1)1.3预应力混凝土梁桥发展综述 (2)1.3.1国外预应力混凝土梁桥的发展 (2)1.3.2国内预应力混凝土梁桥的发展 (3)1.4我国高速公路桥梁的发展 (4)1.4.1公路桥梁发展现状 (5)1.4.2我国高速公路桥梁建设特点 (5)1.5桥梁设计的基本原则 (6)1.6预应力混凝土简支梁桥的特点 (7)1.7预应力混凝土梁桥施工技术 (8)1.8毕业设计主要内容 (8)1.9毕业设计的目的和意义 (9)第二章设计要点及构造、材料、尺寸的拟定 (10)2.1桥梁选取的基本原则 (10)2.2设计的基本资料 (10)2.3箱形截面桥梁的特点 (10)2.4主要技术标准 (11)2.5主要材料及材料性能 (11)2.6设计参数取值 (11)2.7结构概述 (13)2.7.1截面形式及截面尺寸拟定 (13)2.8计算原则及控制标准 (15)第三章结构有限元模型的建造过程 (16)3.1 Midas Civil软件介绍 (16)3.2模型建立过程 (17)3.2.1设定建模环境 (17)3.2.2设置结构类型 (18)3.2.3定义材料和截面特性值 (19)3.2.4建立结构有限元模型 (21)3.2.5定义边界条件 (23)3.2.6定义荷载 (23)3.2.7定义施工阶段 (29)3.2.8汽车荷载 (29)每四章主梁作用效应计算 (32)4.1作用分类 (32)4.2公路预应力钢筋混凝土(psc)桥梁设计设计验算内容 (34)4.2.1施工阶段法向压应力验算 (34)4.2.2受拉区钢筋的接应力验算 (41)4.2.3使用阶段正截面抗裂验算 (43)4.2.4使用阶段斜截面抗裂验算 (50)4.2.5使用阶段正截面压应力验算 (55)4.2.6使用阶段斜截面主压应力验算 (60)4.2.7使用阶段正截面抗弯验算 (65)4.2.8使用阶段斜截面抗剪验算 (71)4.2.9使用阶段抗扭验算 (78)结论 (89)致谢 (90)参考文献 (91)第一章绪论1.1概述我在进行毕业设计之前,先阅读了各种文献,对桥梁的历史和发展有一个初步的了解,同时也要对桥梁结构的各种形式有系统的了解,以便今后对毕业设计有更好的把握。

装配式预应力混凝土简支小箱梁设计说明

装配式预应力混凝土简支小箱梁设计说明

设计说明一、设计标准、技术规范及技术指标(一)设计标准1.设计荷载:公路—Ⅰ级。

2.路基宽度:整体式路基宽度34.50m,分离式路基宽度17.00m。

3.桥面宽度:整体式路基:0.60m(防撞护栏)+15.8m(桥面净宽)+ 0.60m(防撞护栏)+0.5m( 中央分隔带) +0.60m(防撞护栏)+15.8m(桥面净宽)+ 0.60m(防撞护栏)=34.50m;分离式路基:0.60m(防撞护栏)+15.8m(桥面净宽)+0.60m(防撞护栏)=17.00m。

4.设计安全等级:一级。

5.环境类别:II类6.环境的年平均相对湿度分别:80%。

(二)技术规范1.《公路工程技术标准》JTG B01-2014;2.《公路桥涵设计通用规范》JTG D60-2015;3.《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004。

4.《公路桥梁抗震设计细则》JTG B02-01-20085.《公路工程抗震规范》JTG B02-20136.《公路交通安全设施设计技术规范》JTG D81-20067.《公路桥涵施工技术规范》JTG/T F50-20118.《钢筋混凝土用钢第1部分:热扎光圆钢筋》GB1499.1—20089.《钢筋混凝土用钢第2部分:热扎带肋钢筋》GB1499.2—200710.《钢筋混凝土用钢第3部分:钢筋焊接网》GB1499.3—201011.《预应力混凝土用钢绞线》GB/T5224-201412.《预应力筋用锚具、夹具和连接器》GB/T 14370-201013.《预应力混凝土用金属波纹管》JG 225-2007(三)技术指标详细见表-1主要技术指标表表-1注:1、本通用图按本表所列跨径、湿接缝宽度和边梁翼板悬臂长度的标准值进行制图,适用范围内的其它尺寸详图应在本图基础上绘制。

2、X为一般悬臂长度标准值,f为曲线段横向弓高值,边梁翼板按曲线预制以适应曲线段桥梁横向弓高影响。

二、适用范围本图适用于正交及斜交桥梁上的简支体系桥面连续的预应力砼带翼小箱梁。

预应力混凝土简支小箱梁毕业设计尺寸拟定

预应力混凝土简支小箱梁毕业设计尺寸拟定

预应力混凝土简支小箱梁毕业设计尺寸拟定1.概述预应力混凝土简支小箱梁是桥梁工程中常见的结构形式,其设计尺寸的合理确定对于保障桥梁工程的安全性、可靠性和经济性至关重要。

在毕业设计中,对预应力混凝土简支小箱梁的尺寸拟定是一个重要的环节,本文将从混凝土材料特性、桥梁结构要求和工程经济性等方面进行详细分析,旨在确定合理的设计尺寸,为桥梁工程的施工和使用提供可靠的技术支持。

2.混凝土材料特性与设计要求在预应力混凝土简支小箱梁的设计过程中,需要充分考虑混凝土材料的特性,以及相应的设计要求。

混凝土的强度等级、抗压强度、抗拉强度等参数必须满足国家相关标准的规定,达到工程所需的强度指标。

应根据桥梁结构的荷载、跨度、受力特点等要求,确定混凝土箱梁的截面形状、尺寸和预应力筋的布置方式,保证其受力性能和耐久性能符合设计要求。

还需考虑混凝土收缩、热应力、蠕变等影响因素,选择合适的混凝土配合比和施工工艺,确保混凝土结构的长期稳定性和安全可靠性。

3.桥梁结构要求与桥梁跨度桥梁结构要求是确定预应力混凝土简支小箱梁尺寸的重要依据之一。

在确定箱梁截面尺寸时,需要考虑箱梁的安全性、刚度和挠度等性能要求。

具体而言,包括桥梁跨度、净空高度、车行道宽度、人行道宽度、边跨比、桥面铺装和桥梁美观性等方面的要求。

一般来说,桥梁的跨度较大时,箱梁的截面尺寸也相应增大,以满足桥梁结构的受力和使用要求。

根据预应力混凝土简支小箱梁的工作状态,分析受力性能和变形特点,确定合理的箱梁截面形状和尺寸,保证其结构稳定和施工可行性。

4.工程经济性分析在确定预应力混凝土简支小箱梁尺寸时,需要充分考虑工程经济性因素。

通过合理的箱梁截面设计和优化布置预应力筋,可以减少材料消耗和减小箱梁的自重,降低施工成本。

另合理的箱梁尺寸设计可降低混凝土应力水平,提高预应力筋的利用率,降低预应力损失,延长箱梁的使用寿命,降低维护保养成本,具有良好的经济效益。

工程经济性分析是确定预应力混凝土简支小箱梁尺寸时必须考虑的重要因素。

25米预应力小箱梁-桥梁设计-手算

25米预应力小箱梁-桥梁设计-手算

设计资料及构造布置2.1 设计资料2.1.1 桥面跨径及桥宽标准跨径:总体方案选择的结果,采用装配式预应力混凝土箱型梁,跨度25m ,共四跨。

主梁长:伸缩缝采用4cm ,预制梁长24.96m 。

计算跨径:取相邻支座中心间距24.5m 。

桥面净空:20m单侧桥横向布置:0.5⨯2(护栏)+3.75⨯2(两车道)=8.5m2.1.2 设计荷载根据线路的等级,确定荷载等级,由二级公路,设计时速80km/h 可查得: 计算荷载:公路二级荷载。

2.1.3 材料及工艺1)水泥混凝土:主梁、栏杆采用C50号混凝土,桥面铺装采用C50号混凝土。

抗压强度标准值ck f =32.4MPa ,抗压强度设计值cd f =22.4MPa ,抗拉强度标准值tk f =2.65MPa ,抗拉强度设计值td f =1.83MPa ,c E =3.45×410MPa 。

2)预应力钢筋采用(ASTM A416—97a 标准)低松弛钢绞线1×7标准型。

抗拉强度标准值pk f =1860MPa ,抗拉强度设计值pd f =1260MPa ,公称直径15.2mm ,公称面积1392mm ,弹性模量p E =1.95×510MPa 。

2.1.4 设计依据1)《公路桥涵设计通用规范》(JTG D60-2004);2)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ D62-2004);2.2 构造布置2.2.1 主梁间距与主梁片数为使材料得到充分利用,拟采用抗弯刚度和抗扭刚度都较大的箱型截面,按单箱单室截面设计,为减小下部结构的工程数量,采用斜腹式。

施工方法采用先预制,在吊装的方法。

在保证行车道板使用性能—挠度和裂缝控制的前提下,将预制箱梁控制在可以吊装的范word 格式-可编辑-感谢下载支持围内,整桥横向按6片预制箱梁布置,设计主梁间距均为3.33m ,边主梁宽3.23m,中主梁宽3.13m ,主梁之间留0.2m 后浇段,以减轻吊装重量,同时能加强横向整体性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弯矩 图2-15
M=1.143*0.8859*6.41*300*0.67+1.143*0.8859*0.5*6.41*34.19*10.5*0.67= 2085.21 kN.m 剪力 图2-16
Q==1.143*0.75*300*0.8859*0.67+1.143*0.8859*0.5*0.75*0.75*34.19*10.5 *0.67=221.05Kn
桥梁工程课程设计
――预应力混凝土简支小箱梁桥
设计计算书
姓 名: 学 号: 班 级: 指导教师: 成 绩:
二○一二年七月
第一章 设计依据
1.《公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004)》(以下
简称《公预规》) 2.《公路桥涵设计通用规范(JTG D60-2004)》(以下简称《桥规》) 3.《公路工程技术标准》(JTG B01—2003)
跨 M(kN.m)
2780 2705 2561 2705 2780
3.3内力组合
表3-6
1号梁内力组合
序 号 荷载类别
1 自重
2 二期恒载
3 恒载
4 活载 承载力极限状态
表3-5
支座处 M(kN.m) Q(kN)
0 388.35 0 398.45 0 392.29 0 398.45 0 388.35
各梁活载内力值
1/8 跨处
1/4 跨处
M(kN.m) Q(kN) M(kN.m) Q(kN)
1216.64 317.26 2085.21 221.05
1183.82 311.84 2028.96 215.18
2号梁 图2-6
mcq2 0.5 * (0.2438 0.241 0.2369 0.227 0.2168 0.1998 0.1876 0.1711) 0.8620 按照2车道加载 mcq1 0.5 * (0.2438 0.241 0.2369 0.227) 0.4744 0.67*0.862=0.5775>0.4744
第二章 设计资料及上部结构主要尺寸 2.1 设计资料
1. 桥梁跨径及桥宽 标准跨径:35 m; 主梁全长:34.94 m; 计算跨径:34.19 m; 桥面宽度:0.5 m (防撞栏杆)+15.9(净行车道宽度)m + 0.5 m(防
撞栏杆) = 16.9 m。 分幅:单幅 行车方向:单向行车
2. 设计荷载 公路-I级,无人群荷载,单侧防撞护栏重7.8 kN/m。
y=1.17m。
第三章 内力计算
序号 1 2 3
3.1 恒载计算
1号梁
一期恒载
梁体自重及横隔板:
q1

26 *
1.401 1.628

2
* 3 1.401* (17.095

3)
1 17.095

3.56 * 0.2 * 2 * 26 1.64 * 0.2 * 3* 26 34.19
1093.93 219.371
3605.95 723.118
2 号梁
1/4 跨处
M
Q
kN.m
kN
4305.36 335.838
1874.9 146.251
6180.25 482.089
3/8 跨处
M
Q
kN.m
kN
5382.04 191.418
2343.77 83.3587
7725.81 274.777
1/8跨处 M=1121.06 kN.m Q=296.35kN
1/4跨处 M=1923.91 kN.m Q=203.75kN
3/8跨处 M=2401.88 kN.m Q=161.04kN
跨中处 M=2561.79 kN.m Q=121.82kN
4,5号梁活载内力分别于2,1号梁相同
梁号 1 2 3 4 5
38.77kN / m
二期恒载
防撞栏杆 :
q2 7.8 * 2 / 5 3.12kN / m 铺装层:
q3 (15.9 * 24 * 0.1 25 * 0.08 *15.9) 13.99kN / m q2 q3 17.11kN / m 总恒载: q q1 q2 q3 55.88kN / m 2号梁
和夹片式锚具。
2.1、基本尺寸
图2-1
图2-2
中梁截面特性: A=1.38 m 2 ; I x =0.548 m4 ; IT 0.849m4 ; 中心点到底面的距离
y=1.16m。
图2-3
图2-4
边梁截面特性: A=1.401m 2 ; I x =0.552 m4 ; IT 0.899m4 ; 中心点到底面的距离
跨中处 弯矩 图2-19
M=1.143*300*8.5475*0.8859*0.67+1.143*0.5*34.19*8.5475 *10.5*0.8859*0.67=2780.55 kN.m
剪力 图2-20
Q=129.37kN 2号梁 弯矩横向分布系数 图2-21
剪力横向分布系数 图2-22
支座处 M=0 Q=398.45kN
1号梁
f

π 2l 2
EI c 3.14 3.45 *1010 * 0.548 2.45HZ
mc 2 * 34.19
5697
0.1767 ln f 0.0157 0.143
弯矩横向分布系数
图2-10
剪力横向分布系数 图2-11
支座处 弯矩
M=0 剪力 图2-12
Q=1.143*1.0789*300*0.67+1.143*(0.5*(1.0789*1+0.8859*0.8571)*34.19/7+0.
根据对称性关系 m0q4 m0q2 1.1323 m0q5 m0q1 1.0789
表3-4 梁号
各梁横向分布系数 跨中 支座
1 0.8859 1.0789 2 0.862 1.1323 3 0.8163 1.1323 4 0.862 1.1323 5 0.8859 1.0789
3.2.2 活载计算 荷载值 qk 10.5kN / m Pk 300kN 折减系数 0.67
3/8 跨处
跨中处
Q
M
Q
M
Q
M
Q
M
Q
荷载类别 kN
kN.m kN
kN.m
kN
kN.m
kN
kN.m
kN
自重
662.7774 2479 497.08
4248.38
331.392
5310.8
188.888
5665.05
0
二期恒载
292.4973 1094 219.37
1874.9
146.25
2343.77
1121.06 296.35 1923.91 203.75
1183.82 311.84 2028.96 215.18
1216.64 317.26 2885.21 221.05
3/8 跨处 M(kN.m) Q(kN)
2606.67 174.77 2536.35 170.06 2401.88 161.04 2536.35 170.06 2606.67 174.77
8859*0.5*6*34.19/7)*10.5*0.67=388.35kN 1/8跨处
弯矩 图2-13
M=1.143*0.8859*3.74*300*0.67+1.143*0.8859*0.5*3.74*34.19*10.5*0.67 =1216.64 kN.m 剪力 图2-14
Q=1.143*0.91*300*0.67+1.143*(0.5*(0.91*0.875+0.8859*0.8571) *0.61+0.8859*0.5*6*34.19/7)*10.5*0.67=317.26kN 1/4跨处
3号梁 mcq3 0.5 * (0.1862 0.1944 0.2005 0.2085 0.2128 0.2150 0.2114 0.2038) 0.8163 按照2车道加载 mcq1 0.5 * (0.1862 0.1944 0.2005 0.2085) 0.3948 0.67*0.8163=0.5469>0.3948 根据对称性关系 mcq4 mcq2 0.8620 mcq5 mcq1 0.8859 3.2.2 支座处用杠杆原理法 1号梁 图2-7
0
3.2 活载计算
3.2.1 横向分布系数计算 3.2.1.1 跨中处用刚接板法
1号梁活载计算 图2-5
mcq1 0.5 * (0.3102 0.2804 0.2578 0.227 0.2064 0.1809 0.1643 0.1448) 0.936 按照2车道加载 mcq1 0.5 * (0.3102 0.2804 0.2578 0.227) 0.5377 0.67*0.936>0.5377
83.3602
2500.1
0
恒载
955.2748 3573 716.45
6123.27
477.642
7654.57
272.248
8165.15
0
表3-2
2号梁恒载表
序号 1 2 3
荷载类别 自重 二期恒载 恒载
支座处 Q
kN 671.66 292.5 964.16
1/8 跨处
M
Q
kN.m
kN
2512.02 503.746
* 3 1.38 * (17.095Βιβλιοθήκη 3)1 17.095

4.99 * 0.2 * 2 * 26 2.9 * 0.2 * 26 * 3 34.19
相关文档
最新文档