2019版中考数学三轮复习压轴题突破之材料阅读练习1
满分突破中考数学压轴题之专题练习(一)—解答压轴题方法与技巧
满分突破中考压轴题之专题练习(一)1.等腰△ ABC中,CA=CB点D为边AB上一点,沿CD折叠△ CAD得到△ CFD边CF交边(2)连接AF交CD的延长线于点M,连接ME交线段DF于点N,若EF=4EC AB=22,求MN的长.【考点】翻折变换(折叠问题);等腰三角形的性质.菁优网版权所有【解答】(1) 证明:如图1,•/ CA=CB •••/ A=Z ABC,•/ CD=CE CDE=/ CED,'Z A=Z ABC在厶ACE与厶BCD 中,,ZAEC二ZBDC t AC=C&•△ACE^A BCD (AAS)•AE=BD, AD=EB•/ AD=DF, • DF=EBI F二EB在厶DCF与厶ECB中 , “ CF二CBLCD=CE•••△DCF^A ECB ( SSS ,/ DCE=/ ECB / DFE=/ EBC,•/ FDE=Z BCE•••/ DEC=ZFEB•/ DCE=/ EBF,•△DEF^A CEBAB 于点E, CD=CE 连接BF.• FD=FB•△DE3A FEB, •/ FDB=/ FBD,(2) 解:•••沿CD 折叠△ CAD 得到△ CFD,••• CA=CF / CAD=Z CFD,•••/ CAD=Z CBE•••/ DEF=Z CEB又•••/ CED=/ BEF•••/ CFD=/ CBE, • △ DEF ^A CEB • △ CED^A BEF,•/ CD=CE• BE=BF , △ EBF 为等腰三角形,•/ CF=CBBCF 为等腰三角形, 则/ BCF=Z EBF,• / DCE=/ BCF, CEBCD 和/ BCD 的平分线,由角平分线定理,可得 CB _ EB CE+EF CD^ED ? CE =ED ?•/ EF=4EC•「_5・・ =5 ,ED•/ AB=AD+ED+EB=22,• 5ED+ED+5ED=22 ,解得ED=2,• •匸■ W TT•- 4CW=5ED 2 , EC=",由余弦定理,可得 ED 2=C D 2+C E ?- 2CD X CEcos / DCE cos / DCE=;.5如图2,过点M 作AE 的平行线分别交 FD EF 于点G 、H ,• M 为AF 边的中点,•••点G 、H 是FD EF 的中点,•/ EF=4EC• EH=2EC• MD=2CD , MH=3ED , •/ GH=- ED, 2• / DCE=/ EBF郢2•/△MNG s^ END,,讥=,MN= ME,ED EN EN 2 7在厶MCE中,由余弦定理,可得ME2=MC2+EC? - 2MC X EC X cos/ DCEME2=10EC - 3.6EC=6.4E(C ,• ME=4 二MN」2 .如图,Rt A ABC中,M为斜边AB上一点,且MB=MC=AC=8cm,平行于BC的直线l从BC的位置出发以每秒1cm的速度向上平移,运动到经过点MB、MC、AC于点D、E、P,以DE为边向下作等边厶DEF,设厶DEF与厶MBC重叠部分的面积为S( cm2),直线I的运动时间为t (秒).(1) 求边BC的长度;(2) 求S与t的函数关系式;(3) 在整个运动过程中,是否存在这样的时刻t,使得以P、C、F为顶点的三角形为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.(4) 在整个运动过程中,是否存在这样的时刻t,使得以点D为圆心、BD为半径的圆与直线EF相切?若存在,请求出t的值;若不存在,请说明理由.【考点】几何变换综合题.菁优网版权所有【解答】解:(1)设/ B=a,•/ MB=MC,M时停止•直线I分别交线段A•/ MC=MA,•••/ A=Z AMC=a ,•••/ B+Z A=90 ,•- a+2 a =90;•a =30°•Z B=30°;■/ cotB= I -;AC•BC=AC X cotB=8 ;厂;;(2)由题意,若点F恰好落在BC上,• MF=4 ( 4 - t) =4;--1=3.当0v t w3时,如图,• BD=2t;DM=8 - 2t ;•/ l // BC,•時」,•L1 :J-•: :,•DE= : (8 - 2t).•点D到EF的距离为FJ= DE=3 (4 - t),2•/ l // BC,•:V i;l】• ---DE"FJ•/ FN=FJ- JN=3 (4 - t)- t=12 - 4t,• "= 一( 3-t)S=S弟形DHG (HG+DE)X FN=-当3 v t w 4时,重叠部分就是厶DEF,S=S年匚詔=3二t2- 24和48 =.即:S= 3 2 砺t+4 结血(3<t<4)(3) 当 O v t w 3 时,/ FC 禺 90°••• Fd CP,•••△ PCF 不可能为等腰三角形当3 v t w 4时,若△ PCF 为等腰三角形,•只能FC=FP•-=3( 4 - t ), 2• t (7)•••存在这样的时刻t=— 时,使得以P 、C 、F 为顶点的三角形为等腰三角形,7 (4 )若相切,理由:•••/ B=30° ,• BD=2t , DM=8 - 2t ,•/ l // BC,…時」,•li :: ■'•-,• DE=二(8 - 2t ).• 2t=3 (4 - t ),解得t=—. 5•••存在这样的时刻t=l —时,使得以点D 为圆心、BD 为半径的圆与直线 EF 相切.^t Z +8V3t(O<t<3) DE=3 (4 - t )3.在Rt A ABC 中,/ ACB=90°, AC=BC=2点P 为BC 边上的一个动点 (不与B 、C 重合).点 第7页(共25页)• AP=AM=AN ,Z 1 = / 2,7 3=/4,•••/ CAB=/ 2+/ 3=45°,MAN=90(1) 当点P 为线段BC 的中点时,求/ M 的正切值;(2) 当点P 在线段BC 上运动时(不与 B 、C 重合),连接AM 、AN ,求证:① 厶AMN 为等腰直角三角形;② 厶 AEF ^A BAM .【考点】相似形综合题.菁优网版权所有【解答】(1 )解:连接NB ,如图1 ,•••在 Rt A ABC 中,/ ACB=90 , AC=BC•••△ ACB 为等腰直角三角形,•••/ A=Z CBA=45 ,•••点P 关于直线AB 的对称点为N ,关于直线AC 的对称点为M ,• AB 垂直 PN, BN=BP,•••/ NBA=Z PBA=45 ,•••/ PBN=90 ,•••点P 为BC 的中点,BC=2,• MC=CP=PB=NB=1• tan / M= m =X 1厂二(2)证明:①连接AP,如图2,•••点P 关于直线AC AB 的对称点分别为M 、N , P 关于直线AC 、AB 的对称点分别为 M 、N ,连接MN 交AC 于点E,交AB 于点F .•••△AMN为等腰直角三角形;②•••△ AMN为等腰直角三角形,•••/ 5=/ 6=45°,•••/ AEF=/ 5+/ 仁45° + / 1 ,•// EAF=45•/ BAM=/ EAF+/ 仁45° + / 1,•/ AEF=/ BAM,又•••/ B=/ EAF=45•△AEF^A BAM.d4. 已知:在梯形ABCD中,AD// BC, AC=BC=10cos/ ACB=:,点E在对角线AC上,且CE=AD,5BE的延长线与射线AD、射线CD分别相交于点F、G,设AD=x,A AEF的面积为y.(1 )求证:/ DCA=/ EBC;(2) 如图,当点G在线段CD上时,求y关于x的函数解析式,并写出它的定义域;(3) 如果△ DFG是直角三角形,求△ AEF的面积.【考点】相似形综合题.菁优网版权所有【解答】(1)证明:T AD / BC,•/ DAC=/ ECB 在厶DCA和厶ECB中,r AD=CE,ZDAC^ZECB ,M 二BC•△DCA^A ECB( SAS,• / DCA=/ EBC(2)T AD// BC,•••△ AEF^A CEB,• .': T !\ : 即I J…茁—:T.,: ,,解得:AF=』'',X作EH丄AF于H ,如图1所示,• EH=;AE=;(10 -x),5 51 3--y=S^ AEF= x —25(10- x)10(10-x) =3(10P)2•- 0v x w 5訂.:-5 ,• y关于x的函数解析式为: y_ " ' ||:, ' 11y=(0v x< 5 , I - 5); (3)分两种情况考虑:①当/ FDG_90时,如图2所示:A在Rt A ADC 中,AD_AC X—_8 ,即x_8 ,5• S L :…AAEF_y_ —②当/ DGF_90时,过E作EM丄BC于点M,如图3所示,由(1)得:CE_AF_x3 4在Rt A EMC 中,EM_ x , MC_ x ,5 5•BM_BC- MC_10-二x,5•••/ GCE_/ GBC, / EGC_/ CGB,•△CGE^A BGC,.CE_CG 即工_CG•g_ j ' : _ ,•••点G在线段CD上,• AF> AD ,即 _ > x,(1) (2)(3) 求厶BCQ 的面积S 与t 的函数关系式.t 为何值时,QP// AC ?t 为何值时,直线 QR 经过点P ?当点P 在AB 上运动时,以PQ 为边在AB 上方所作的正方形 PQMN 在 Rt A ABC 内部,求此时t 的取值范围.【考点】相似形综合题.菁优网版权所有【解答】解:(1 )过C 作CD 丄AB 于D 点,如图所示:•/ AB=10, AQ=2+2t ,• QB=AB- AQ=10-( 2+2t ) =8 - 2t ,在 Rt A ABC 中,AB=10, AC=8,根据勾股定理得:BC=6,•••/ EBM=Z CBG, / BME=Z BGC=90 ,•••△ BMEs^ BGC,-■<?1!=匸''丽硕io4/53• 1 =,即 x=5, 10碍 5此时 y= ;「’=15,综上,此时△ AEF 的面积为「或15.5. 在 Rt A ABC 中,/ C=90° AB=10, AC=8,点 Q 在 AB 上,且 AQ=2,过 Q 做 QR 丄 AB,垂 足为Q , QR 交折线AC- CB 于R (如图1),当点Q 以每秒2个单位向终点B 移动时,点P 同时从A 出发,以每秒6个单位的速度沿 AB - BC- CA 移动,设移动时间为t 秒(如图2).•••丄AC?BC= AB?CD,即卩-X 6X X 10X CD,2 2 2 2••• CD二,5则S^BCQ F QB?CD= (8- 2t) =- 〔t+ ( 0 < t w 4);2 5 5 5(2)当PQ// AC 时,可得/ BPQ=Z C,Z BQP=Z A,• △ BPQ^A BCA, 又BQ=8- 2t, BP=6t- 10,•讥=[F 即-'■ J" -一…, i _ -,整理得:6 (8 - 2t) =10 (6t - 10),解得:t=',18则t= 1时,QP/ AC;18(3)①当Q、P 均在AB 上时,AP=6t , AQ=2+2t ,可得:AP=AQ,即6t=2+2t,解得:t=0.5s ;②当P在BC上时,P与R重合,如图所示:•••/ PQB=Z ACB=90 , / B=Z B ,•△BP2A BAC,•—,又BP=6t- 10 , AB=10 , BQ=8- 2t ,BC=6 AB BC'1= :,即6 (6t - 10) =10 (8 - 2t),10 6解得:t=2.5s;③当P在AC上不存在QR经过点P ,综上,当t=0.5s或2.5s时直线QR经过点P;(4) 当点P在点Q的左侧时,若点N落在AC上,如图所示:•/ AP=6t , AQ=2+2t ,•PQ=AQ- AP=2+2t - 6t=2 - 4t ,•••四边形PQMN是正方形,•PN=PQ=2- 4t,•••/ APN=Z ACB=90 , / A=Z A ,第10页(共25页)。
2019年中考数学复习 动点最值问题压轴题 考点突破训练(有答案)
2019年中考数学复习 动点、最值问题压轴题考点突破训练一、选择题1. 如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为( )A .2 3B .2 5C . 3D . 52. 如图,直线y =23x +4与x 轴,y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB的中点,点P 为OA 上一动点,当PC +PD 值最小时,点P 的坐标为( ) A .(-3,0) B .(-6,0)C.(-32,0) D .(-52,0)3. 如图,在Rt △ABC 中,∠C =90°,AC =6 cm ,BC =2 cm ,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( ) A .20 cm B .18 cm C .2 5 cm D .3 2 cm4. 已知抛物线y =14x 2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线y =14x 2+1上一个动点,则△PMF 周长的最小值是( ) A .3 B .4 C .5 D .65. 如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AD 平分∠CAB ,交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE +EF 的最小值为( ) A.403 B.154 C.245D .66. 如图,点A(a ,3),B(b ,1)都在双曲线y =3x 上,点C ,D 分别是x 轴,y 轴上的动点,则四边形ABCD 周长的最小值为( ) A .5 2 B .6 2 C .210+2 2 D .8 27. 如图,在△ABC 中,∠C =90°,AB =10cm ,BC =8cm ,点P 从点A 沿AC 向点C 以1 cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2 cm/s 的速度运动(点Q 运动到点B 停止),求在运动过程中,四边形PABQ 的面积最小值为( )A .19 cm 2B .16 cm 2C .15 cm 2D .12 cm 2二、填空题8. 如图,△ABC 为等边三角形,AB =2.若P 为△ABC 内一动点,且满足∠PAB =∠ACP ,则线段PB 长度的最小值为______________.9. 如图,在△AOB 中,∠O =90°,AO =8 cm ,BO =6 cm ,点C 从A 点出发,在边AO 上以2 cm/s 的速度向O 点运动,与此同时,点D 从点B 出发,在边BO 上以1.5 cm/s 的速度向O 点运动,过OC 的中点E 作CD 的垂线EF ,则当点C 运动了__________s 时,以C 点为圆心,1.5 cm 为半径的圆与直线EF 相切.10. 如图,在Rt △ABC 中,BC =2,∠BAC =30°,斜边AB 的两个端点分别在相互垂直的射线OM ,ON 上滑动,下列结论:①若C ,O 两点关于AB 对称,则OA =23; ②C ,O 两点距离的最大值为4; ③若AB 平分CO ,则AB ⊥CO ; ④斜边AB 的中点D 运动路径的长为π2;其中正确的是______________.(填序号)11. 如图,在平面直角坐标系中,已知点A,B的坐标分别为(8,0),(0,23),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP,EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为________________.12. 如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC =60°,则当△ABM为直角三角形时,AM的长为_____________________.13. 如图,将直线y=-x沿y轴向下平移后的直线恰好经过点A(2,-4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为________________.14. 在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q 分别在AB,AD边上移动,则点A′在BC边上可移动的最大距离为________.三、解答题15. 在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,求PF2+PG2的最小值。
江苏省盐城市大丰区小海镇2019届中考数学三轮复习压轴题突破之材料阅读练习1
压轴题突破之材料阅读题一:【阅读理解】 我们知道,(1)123+2n n n ++++=…,那么2222123+n +++…结果等于多少呢? 在图1所示三角形数阵中,第1行圆圈中的数为1,即12;第2行两个圆圈中数的和为2+2,即22;……;第n 行n 个圆圈中数的和为n +n+…+n ,即n 2.这样, 该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123+n +++….【规律探究】将三角形数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n 行的第一个圆圈中的数分别为n ,2,n ),发现每个位置上三个圆圈中数的和均为______.由此可得,这三个三角形数阵所有圆圈中数的总和为:22223(123+)=n +++…____________.因此,2222123+=n +++…____________.【解决问题】 根据以上发现,计算222212320171232017++++++++……的结果为____________. 题二:规定:如果关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程x 2+2x -8=0是倍根方程;②若关于x 的方程x 2+ax +2=0是倍根方程,则a =±3;③若关于x 的方程ax 2-6ax +c =0(a ≠0)是倍根方程,则抛物线y =ax 2-6ax +c 与x 轴的公共点的坐标是(2,0)和(4,0);④若点(m ,n )在反比例函数4y x =的图象上,则关于x 的方程mx 2+5x +n =0是倍根方程.上述结论中正确的有( )A .①②B .③④C .②③D .②④题三:若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”.(1)实数1,2,3可以构成“和谐三数组”吗?请说明理由.(2)若1(,)M t y ,2(1,)N t y +,3(3,)R t y +三点均在函数k y x=(k 为常数,0k ≠)的图象上,且这三点的纵坐标y 1,y 2,y 3构成“和谐三数组”,求实数t 的值.。
2019人教版九年级数学《反比例函数》挑战压轴题系列之(一)综合大题【PDF版,含答案】
8. 如图,在△ABC 中,AC=BC,AB⊥x 轴于 A,反比例函数 ������ = (������������ x>0)的图象经过点 C,交 AB 于点 D,已知 AB=4,
BC=52. (1)若 OA=4,求 k 的值. (2)连接 OC,若 AD=AC,求 CO 的长.
6 / 23
9. 如图,已知一次函数 y1=k1x+6 与反比例函数 y2=������������2相交于 A、 B,与 x 轴交于点 C,过点 B 作 BD⊥x 轴于点 D,已知
=
������在第一象限内的图象经过点
������
A,交
BC
于点
D,D
是
BC
边的中点.
(1)如图 1,当 a=4 时,求 k 的值及边 OC 的长; (2)如图 2,连结 AD、OD,若△OAD 的面积是 27,求 a 的值及点 B 的坐标.
14. 如图所示,直线 y1=14x+1 与 x 轴交于点 A,与 y 轴交于点 B,与反比例函数 y2=������������(x>0)
∴反比例解析式为������
=
−
6,
������
∵AM=2MO,
∴������������
=
1 3
������������
=
1,即
M(-1,0),
把 M 与 D 坐标代入 y=kx+b 中得:{−−���3������+��� +������������==02, 解得:k=b=-1, 则直线 DM 解析式为 y=-x-1;
7 / 23
11. 如图,在平面直角坐标系中,已知点 A(8,1),B(0, -3),反比例函数
江苏省盐城市2019届中考数学三轮复习压轴题突破之材料阅读练习1_1162
打破之资料一 : 【理解】我知道, 1 2 3 ⋯+n n (n 1) ,那么122232⋯ +n2果等于多少呢?2在 1 所示三角形数中,第 1 行圈中的数 1,即 12;第 2 行两个圈中数的和 2+2,即 22;⋯⋯;第n行n个圈中数的和n+n+⋯+n,即n2.,三角形数中共有n(n1) 个圈,全部圈中数的和122232⋯+n2.2【律研究】将三角形数两次旋可得如所示的三角形数,察三个三角形数各行同一地点圈中的数(如第n行的第一个圈中的数分n,2,n),每个地点上三个圈中数的和均 ______.由此可得,三个三角形数全部圈中数的和 : 3(122232⋯+n 2 )=.____________所以, 122232⋯ +n2 = ____________.【解决】的果 ____________.依据以上,算222⋯21232017123⋯2017二 : 定 : 假如对于x的一元二次方程ax2+bx+c=0( a≠0)有两个数根,且此中一个根是另一个根的 2 倍,则称这样的方程为“倍根方程”.现有以下结论 :①方程 x2+2x-8=0是倍根方程;②若对于 x 的方程 x2+ax+2=0是倍根方程,则 a=±3;③若对于 x 的方程 ax2-6ax+c=0( a≠0)是倍根方程,则抛物线 y=ax2-6ax+c 与 x 轴的公共点的坐标是(2,0)和(4 ,0) ;④若点(m,n 在反比率函数y42x n是)x的图象上,则对于 x 的方程 mx+5 + =0倍根方程.上述结论中正确的有( )A.①②B.③④C.②③D.②④题三 : 若三个非零实数x,y,z 知足:只需此中一个数的倒数等于此外两个数的倒数的和,则称这三个实数x,y,z 组成“和睦三数组”.(1)实数 1,2,3 能够组成“和睦三数组”吗?请说明原因.(2) 若M ( t, y1),N (t1, y2 ) , R(t3, y3 ) 三点均在函数 y k(k 为常数,k0 )的x图象上,且这三点的纵坐标y1,y2,y3组成“和睦三数组”,务实数 t 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019版中考数学三轮复习压轴题突破之材料阅读练习1 题一:【阅读理解】
我们知道,
(1)
123+
2
n n
n
+
+++=
…,那么2222
123+n
+++…结果等于多少呢?
在图1所示三角形数阵中,第1行圆圈中的数为1,即12;第2行两个圆圈中数的和为2+2,即22;……;第n行n个圆圈中数的和为n+n+…+n,即n2.这样,
该三角形数阵中共有
(1)
2
n n+
个圆圈,所有圆圈中数的和为2222
123+n
+++….
【规律探究】
将三角形数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n1行的第一个圆圈中的数分别为n1,2,n),发现每个位置上三个圆圈中数的和均为______.由此可得,这三个三角形数阵所有圆圈中数的总和为:
2222
3(123+)=
n
+++…____________.
因此,2222
123+=
n
+++…____________.
【解决问题】
根据以上发现,计算
2222
1232017
1232017
++++
++++
…
…
的结果为____________.
题二:规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:
①方程x2+2x-8=0是倍根方程;
②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;
③若关于x的方程ax2-6ax+c=0(a≠0)是倍根方程,则抛物线y=ax2-6ax+c与x轴的公共点的坐标
是(2,0)和(4,0);
④若点(m ,n )在反比例函数4y x =
的图象上,则关于x 的方程mx 2+5x +n =0是倍根方程.上述结论中正确的有( )
A .①②
B .③④
C .②③
D .②④
题三:若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”.
(1)实数1,2,3可以构成“和谐三数组”吗?请说明理由.
(2)若1(,)M t y ,2(1,)N t y +,3(3,)R t y +三点均在函数k y x
=(k 为常数,0k ≠)的图象上,且这三点的纵坐标y 1,y 2,y 3构成“和谐三数组”,求实数t 的值.
欢迎您的下载,资料仅供参考!。